Risk Management Toolbox ${ }^{\text {TM }}$

User's Guide

MATLAB ${ }^{\circ}$

How to Contact MathWorks

Latest news:
Sales and services:
User community:
Technical support:
Phone:

The MathWorks, Inc. 1 Apple Hill Drive Natick, MA 01760-2098

Risk Management Toolbox ${ }^{\text {TM }}$ User's Guide
© COPYRIGHT 2016-2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014 Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.
Revision History

September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
September 2022
March 2023

Online only
Online only
Online only Online only Online only Online only Online only Online only Online only Online only Online only Online only Online only
Online only

New for Version 1.0 (Release 2016b)
Revised for Version 1.1 (Release 2017a)
Revised for Version 1.2 (Release 2017b)
Revised for Version 1.3 (Release 2018a)
Revised for Version 1.4 (Release 2018b)
Revised for Version 1.5 (Release 2019a)
Revised for Version 1.6 (Release 2019b)
Revised for Version 1.7 (Release 2020a)
Revised for Version 1.8 (Release 2020b)
Revised for Version 1.9 (Release 2021a)
Revised for Version 1.10 (Release 2021b)
Revised for Version 2.0 (Release 2022a)
Revised for Version 2.1 (Release 2022b)
Revised for Version 2.2 (Release 2023a)

Getting Started

1

Risk Management Toolbox Product Description 1-2
Risk Modeling with Risk Management Toolbox 1-3
Consumer Credit Risk 1-3
Corporate Credit Risk 1-3
Market Risk 1-5
Insurance Risk 1-6
Lifetime Models for Probability of Default 1-6
Loss Given Default Models 1-7
Exposure at Default Models 1-7
Credit Rating Migration Risk 1-10
Default Probability by Using the Merton Model for Structural Credit Risk 1-13
Concentration Indices 1-15
Overview of Claims Estimation Methods for Non-Life Insurance 1-16
Workflow to Estimate Unpaid Claims 1-16
Estimation of Ultimate Claims Using Development Triangles 1-17
Estimation of Unpaid Claims Using Chain Ladder Method 1-19
Estimation of Unpaid Claims Using Expected Claims Method 1-20
Estimation of Unpaid Claims Using Bornhuetter-Ferguson Method 1-21
Estimation of Unpaid Claims Using Cape Cod Method 1-23
Overview of Lifetime Probability of Default Models 1-25
Traditional PD Models Compared to Lifetime PD Models 1-25
Model Development and Validation 1-26
Computation of Lifetime ECL 1-27
Lifetime Credit Analysis Compared to Stress Testing 1-28
Overview of Loss Given Default Models 1-31
Model Development and Validation 1-31
Overview of Exposure at Default Models 1-34
Model Development and Validation 1-34
Overview of VaR Backtesting 2-2
Binomial Test 2-2
Traffic Light Test 2-3
Kupiec's POF and TUFF Tests 2-3
Christoffersen's Interval Forecast Tests 2-4
Haas's Time Between Failures or Mixed Kupiec's Test 2-4
VaR Backtesting Workflow 2-6
Value-at-Risk Estimation and Backtesting 2-10
Overview of Expected Shortfall Backtesting 2-20
Conditional Test by Acerbi and Szekely 2-21
Unconditional Test by Acerbi and Szekely 2-22
Quantile Test by Acerbi and Szekely 2-22
Minimally Biased Test by Acerbi and Szekely 2-23
ES Backtest Using Du-Escanciano Method 2-24
Comparison of ES Backtesting Methods 2-26
Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information 2-30
Expected Shortfall (ES) Backtesting Workflow Using Simulation 2-34
Expected Shortfall Estimation and Backtesting 2-44
Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano 2-63
Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and Escanciano 2-72
Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards
3
Overview of Binning Explorer 3-2
Common Binning Explorer Tasks 3-4
Import Data 3-4
Change Predictor Type 3-5
Change Binning Algorithm for One or More Predictors 3-6
Change Algorithm Options for Binning Algorithms 3-7
Split Bins for a Numeric Predictor 3-11
Split Bins for a Categorical Predictor 3-13
Manual Binning to Merge Bins for a Numeric or Categorical Predictor 3-15
Change Bin Boundaries for a Single Predictor 3-16
Change Bin Boundaries for Multiple Predictors 3-17
Set Options for Display 3-18
Export and Save the Binning 3-19
Troubleshoot the Binning 3-19
Bin Data to Create Credit Scorecards Using Binning Explorer 3-23
Stress Testing of Consumer Credit Default Probabilities Using Panel Data 3-36
compactCreditScorecard Object Workflow 3-57
Feature Screening with screenpredictors 3-64
Use Reject Inference Techniques with Credit Scorecards 3-69
Credit Scoring Using Logistic Regression and Decision Trees 3-87
Explore Fairness Metrics for Credit Scoring Model 3-98
Bias Mitigation in Credit Scoring by Reweighting 3-110
Bias Mitigation in Credit Scoring by Disparate Impact Removal 3-119
Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle 3-131
Corporate Credit Risk Simulations for Portfolios
4
Credit Simulation Using Copulas 4-2
Factor Models 4-2
Supported Simulations 4-3
creditDefaultCopula Simulation Workflow 4-5
creditMigrationCopula Simulation Workflow 4-10
Modeling Correlated Defaults with Copulas 4-18
Modeling Probabilities of Default with Cox Proportional Hazards 4-28
Analyze the Sensitivity of Concentration to a Given Exposure 4-49
Compare Concentration Indices for Random Portfolios 4-51
Comparison of the Merton Model Single-Point Approach to the Time- Series Approach 4-54
Calculating Regulatory Capital with the ASRF Model 4-59
One-Factor Model Calibration 4-64
Compare Probability of Default Using Through-the-Cycle and Point-in- Time Models 4-75
Model Loss Given Default 4-90
Compare Logistic Model for Lifetime PD to Champion Model 4-113
Compare Lifetime PD Models Using Cross-Validation 4-121
Expected Credit Loss Computation 4-124
Basic Lifetime PD Model Validation 4-129
Basic Loss Given Default Model Validation 4-131
Compare Tobit LGD Model to Benchmark Model 4-133
Compare Loss Given Default Models Using Cross-Validation 4-140
Compare Model Discrimination and Model Calibration to Validate of Probability of Default 4-144
Compare Results for Regression and Tobit EAD Models 4-151
Mean Square Error of Prediction for Estimated Ultimate Claims 4-161
Bootstrap Using Chain Ladder Method 4-168
Interpret and Stress-Test Deep Learning Networks for Probability of Default 4-178
Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations 4-195
Create Custom Lifetime PD Model for Decision Tree Model with Function Handle 4-224
Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios 4-231
Assess Physical and Transition Risk for Mortgages 4-248
Analyze Transition Scenarios for Climate-Related Financial Risks 4-267
Interpretability and Explainability for Credit Scoring 4-287
Get Started with Modelscape 5-2
Installation 5-2
Modelscape Workflow 5-2
Modelscape Governance 5-4
Modelscape Governance Workflow 5-4
Modelscape Develop 5-6
Modelscape Develop Workflow 5-6
Modelscape Validate 5-9
Modelscape Validate Workflow 5-9
Modelscape Test 5-12
Modelscape Test Workflow 5-12
Modelscape Deploy 5-13
Modelscape Deploy Workflow 5-13
Extensibility 5-15
Customize Inventory Browser 5-15
Implement Test Metrics 5-15
Customize Review Editor 5-15
Model Development and Experiment Manager 5-16
Remove Risk Factors 5-22
Fairness Metrics in Modelscape 5-26
Screen Risk Factors by Custom Criteria 5-30
Model Documentation in Modelscape 5-35
Metrics Handlers 5-45
Credit Scorecard Validation Metrics 5-48
Validation of Credit Models in ECB Templates 5-57
Validation of External Models 5-60
File Attachments in Modelscape Review Editor 5-68
Customization of Signoff Forms in Review Editor 5-70
Model Implementation for Modelscape Deploy 5-74
Customizing Model Inventory: Risk Tiering 5-78
Test Metrics in Modelscape 5-85

Functions
6

Getting Started

- "Risk Management Toolbox Product Description" on page 1-2
- "Risk Modeling with Risk Management Toolbox" on page 1-3
- "Credit Rating Migration Risk" on page 1-10
- "Default Probability by Using the Merton Model for Structural Credit Risk" on page 1-13
- "Concentration Indices" on page 1-15
- "Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16
- "Overview of Lifetime Probability of Default Models" on page 1-25
- "Overview of Loss Given Default Models" on page 1-31
- "Overview of Exposure at Default Models" on page 1-34

Risk Management Toolbox Product Description Develop risk models and perform risk simulation

Risk Management Toolbox provides functions and interactive workflows for mathematical modeling and simulation of credit, insurance, and market risk. You can perform lifetime credit modeling of probabilities of default (PD), exposure at default (EAD), and loss given default (LGD), as well as expected credit loss (ECL) calculations. You can assess corporate and consumer credit risk, create credit scorecards, estimate probabilities of default, perform credit portfolio analysis, and backtest models to assess potential for financial loss. The toolbox lets you identify important scorecard variables using the predictor screening tools and use the Binning Explorer app to automatically or manually bin variables for credit scorecards. It also includes mortality and unpaid claims models to quantify and analyze insurance risk. Market risk can be assessed with backtesting and simulation tools to evaluate value-at-risk (VaR) and expected shortfall (ES).

Risk Modeling with Risk Management Toolbox

```
In this section...
"Consumer Credit Risk" on page 1-3
"Corporate Credit Risk" on page 1-3
"Market Risk" on page 1-5
"Insurance Risk" on page 1-6
"Lifetime Models for Probability of Default" on page 1-6
"Loss Given Default Models" on page 1-7
"Exposure at Default Models" on page 1-7
```

Risk Management Toolbox provides tools for modeling seven areas of risk assessment:

- Consumer credit risk
- Corporate credit risk
- Market risk
- Insurance risk
- Lifetime models for probability of default
- Loss given default models
- Exposure at default models

Consumer Credit Risk

Consumer credit risk (also referred to as retail credit risk) is the risk of loss due to a customer's default (non-repayment) on a consumer credit product. These products can include a mortgage, unsecured personal loan, credit card, or overdraft. A common method for predicting credit risk is through a credit scorecard. The scorecard is a statistically based model for attributing a score to a customer that indicates the predicted probability that the customer will default. The data used to calculate the score can be from sources such as application forms, credit reference agencies, or products the customer already holds with the lender. Financial Toolbox ${ }^{\mathrm{TM}}$ provides tools for creating credit scorecards and performing credit portfolio analysis using scorecards. Risk Management Toolbox includes a Binning Explorer app for automatic or manual binning to streamline the binning phase of credit scorecard development. For more information, see "Overview of Binning Explorer" on page 3-2.

Corporate Credit Risk

Corporate credit risk (also referred to as wholesale credit risk) is the risk that counterparties default on their financial obligations.

At an individual counterparty level, one of the main credit risk parameters is the probability of default (PD). Risk Management Toolbox allows you to estimate probabilities of default using the following methodologies:

- Structural models: mertonmodel and mertonByTimeSeries
- Reduced-form models: cdsbootstrap and bondDefaultBootstrap using Financial Toolbox
- Historical credit ratings migrations: transprob using Financial Toolbox
- Statistical approaches: credit scorecards using Binning Explorer and the creditscorecard object using Financial Toolbox, and a wide selection of predictive models in Statistics and Machine Learning Toolbox ${ }^{\mathrm{TM}}$

At a credit portfolio level, on the other hand, to assess credit risk, to assess this risk, the main question to ask is, Given a current credit portfolio, how much can be lost in a given time period due to defaults? In differing circumstances, the answer to this question might mean:

- How much do you expect to lose?
- How likely is it that you will lose more than a specific amount?
- What is the most you can lose under relatively normal circumstances?
- How much can you lose if things get bad?

Mathematically, these questions all depend on estimating a distribution of losses for the credit portfolio: What are the different amounts you can lose, and how likely is it that you lose each individual amount.

Corporate credit risk is fundamentally different from market risk, which is the risk that assets lose value due to market movements. The most important difference is that markets move all the time, but defaults occur infrequently. Therefore, the sample sizes to support any modeling efforts are different. The challenge is to calibrate a distribution of credit losses, because the sample sizes are small. For credit risk, even for an individual bond that has not defaulted, you cannot collect direct data on what happens in the event of default because it has not defaulted. And once the issuer actually defaults, unless you can pool default information from similar companies, that is the only data point that you have.

For corporate credit portfolio analysis, estimating credit correlations so that you can understand the benefits of diversification is also challenging. Two companies can only default in the same time window once, so you cannot collect data on how often they default together. To collect more data, you can pool data from similar companies and under similar economic conditions.

Risk Management Toolbox provides a credit default simulation framework for credit portfolios using the creditDefaultCopula object, where the three main elements of credit risk for a single instrument are:

- The probability of default (PD) which is the likelihood that the issuer defaults in a given time period.
- The exposure at default (EAD) which is the amount of money that is at stake. For a traditional bond, this is the bond principal.
- The loss given default (LGD) which is the fraction of the exposure that would be lost at default. When default occurs, usually some money is recovered eventually.

The assumption is that these three quantities are fixed and known for all the companies in the credit portfolio. With this assumption, the only uncertainty is whether each company defaults, which happens with probability PDi.

At the credit portfolio level, however, the main question is, "What are the default correlations between issuers?" For example, for two bonds with 10MM principal each, the risk is different if you expect the companies to default together. In this scenario, you could lose 20 MM minus the recovery, all at once. Alternatively, if the defaults are independent, you could lose 10 MM minus recovery if one defaults, but the other company is likely still alive. Default correlations are therefore important
parameters for understanding the risk at a portfolio level. These parameters are also important for understanding the diversification and concentration characteristics of the portfolio. The approach in Risk Management Toolbox is to simulate correlated variables that can be efficiently simulated and parameterized, then map the simulated values to default or nondefault states to preserve the individual default probabilities. This approach is called a copula. When normal variables are used, this approach is called a Gaussian copula. Risk Management Toolbox also provides a credit migration simulation framework for credit portfolios using the creditMigrationCopula object. For more information, see "Credit Rating Migration Risk" on page 1-10.

Related to the creditDefaultCopula and creditMigrationCopula objects, Risk Management Toolbox provides an analytical model known as the Asymptotic Single Risk Factor (ASRF) model. The ASRF model is useful because the Basel II documents propose this model as the standard for certain types of capital requirements. ASRF is not a Monte-Carlo model, so you can quickly compute the capital requirements for large credit portfolios. You can use the ASRF model to perform a quick sensitivity analysis and exploring "what-if" scenarios more easily than rerunning large simulations. For more information, see asrf.

Risk Management Toolbox also provides tools for portfolio concentration analysis, see "Concentration Indices" on page 1-15.

Market Risk

Market risk is the risk of losses in positions arising from movements in market prices. Value-at-risk is a statistical method that quantifies the risk level associated with a portfolio. VaR measures the maximum amount of loss over a specified time horizon, at a given confidence level. For example, if the one-day 95% VaR of a portfolio is 10 MM , then there is a 95% chance that the portfolio loses less than 10 MM the following day. In other words, only 5% of the time (or about once in 20 days) the portfolio losses exceed 10MM.

VaR Backtesting, on the other hand, measures how accurate the VaR calculations are. For many portfolios, especially trading portfolios, VaR is computed daily. At the closing of the following day, the actual profits and losses for the portfolio are known, and can be compared to the VaR estimated the day before. You can use this daily data to assess the performance of VaR models, which is the goal of VaR backtesting. As such, backtesting is a method that looks retrospectively at data and refines the VaR models. Many VaR backtesting methodologies have been proposed. As a best practice, use more than one criterion to backtest the performance of VaR models, because all tests have strengths and weaknesses.

Risk Management Toolbox provides the following VaR backtesting individual tests:

- Traffic light test (t l)
- Binomial test (bin)
- Kupiec's tests (pof, tuff)
- Christoffersen's tests (cc, cci)
- Haas's tests (tbf, tbfi)

For information on the different tests, see "Overview of VaR Backtesting" on page 2-2.
Expected Shortfall (ES) Backtesting gives an estimate of the loss in those very bad days when the VaR is violated. ES is the expected loss on days when there is a VaR failure. If the VaR is 10 million and the ES is 12 million, you know that the expected loss tomorrow, if it happens to be a very bad day, is about 20% higher than the VaR.

Risk Management Toolbox provides the following table-based tests for expected shortfall based on the esbacktest object:

- unconditionalNormal
- unconditionalT

The following tools support expected shortfall simulation-based tests for the esbacktestbysim object:

- conditional
- unconditional
- quantile

For information on the different tests, see "Overview of Expected Shortfall Backtesting" on page 220.

Insurance Risk

The ability to accurately estimate unpaid claims is important to insurers. Unlike companies in other sectors, insurers might not know the exact earnings during a financial reporting period until many years later. Insurance companies take in insurance premiums on a regular basis and pay out claims when events occur. In order to maximize profits, an insurance company must accurately estimate how much will be paid out on existing claims in the future. If the estimate for unpaid claims is too low, the insurance company will become insolvent. Conversely, if the estimate is too high, then the claims reserve capital of the insurance company could have been invested elsewhere or reinvested in the business

Risk Management Toolbox supports four claims estimation methods for actuaries to use with a developmentTriangle for estimating unpaid claims:

- chainLadder
- expectedClaims
- bornhuetterFerguson
- capeCod

For information on the estimation methods, see "Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16.

Lifetime Models for Probability of Default

Regulatory frameworks such as IFRS 9 and CECL require institutions to estimate loss reserves based on a lifetime analysis that is conditional on macroeconomic scenarios. Earlier models were frequently designed to predict one period ahead and often with no explicit sensitivities to macroeconomic scenarios. With the IFRS 9 and CECL regulations, models must predict multiple periods ahead and the models must have an explicit dependency on macroeconomic variables.

The main output of the lifetime credit analysis is the lifetime expected credit loss (ECL). The lifetime ECL consists of the reserves that banks need to set aside for expected losses throughout the life of a loan. There are different approaches to the estimation of lifetime ECL. Some approaches use relatively simple techniques on loss data, with qualitative adjustments. Other approaches use more advanced time-series techniques or econometric models to forecast losses, with dependencies on
macro variables. Another methodology uses probability of default (PD) models, loss given default (LGD) models, and exposure at default (EAD) models, and combines their outputs to estimate the ECL. The lifetime PD models in Risk Management Toolbox are in the PD-LGD-EAD category

Risk Management Toolbox provides the following lifetime PD models:

- Logistic
- Probit
- Cox
- customLifetimePDModel

For information on the different models, see "Overview of Lifetime Probability of Default Models" on page 1-25.

Loss Given Default Models

Loss given default (LGD) is the proportion of a credit that is lost in the event of default. LGD is one of the main parameters for credit risk analysis. Although there are different approaches to estimate credit loss reserves and credit capital, common methodologies require the estimation of probabilities of default (PD), loss given default (LGD), and exposure at default (EAD). The reserves and capital requirements are computed using formulas or simulations that use these parameters. For example, the loss reserves are usually estimated as the expected loss (EL), given by the following formula:
$E L=P D * L G D * E A D$
Risk Management Toolbox provides the following LGD models:

- Regression
- Tobit
- Beta

For information on the different models, see "Overview of Loss Given Default Models" on page 1-31.

Exposure at Default Models

EAD is seen as an estimation of the extent to which a bank may be exposed to a counterparty in the event of, and at the time of, that counterparty's default. EAD is equal to the current amount outstanding in case of fixed exposures such as term loans. For example, the loss reserves are usually estimated as the expected loss (EL), given by the following formula:
$E L=P D * L G D * E A D$
Risk Management Toolbox provides the following EAD models:

- Regression
- Tobit
- Beta

For information on the different models, see "Overview of Exposure at Default Models" on page 134.

See Also

varbacktest|esbacktest|esbacktestbysim|mertonmodel|mertonByTimeSeries | concentrationIndices |creditDefaultCopula|creditMigrationCopula|asrf| developmentTriangle|chainLadder| expectedClaims|bornhuetterFerguson|Logistic | Probit | Cox | Regression | Tobit | Beta|Regression | Tobit | Beta

Related Examples

- "Common Binning Explorer Tasks" on page 3-4
- "Bin Data to Create Credit Scorecards Using Binning Explorer" on page 3-23
- "creditMigrationCopula Simulation Workflow" on page 4-10
- "creditDefaultCopula Simulation Workflow" on page 4-5
- "Modeling Correlated Defaults with Copulas" on page 4-18
- "Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36
- "VaR Backtesting Workflow" on page 2-6
- "Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information" on page 2-30
- "Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
- "Expected Shortfall Estimation and Backtesting" on page 2-44
- "Value-at-Risk Estimation and Backtesting" on page 2-10
- "Basic Lifetime PD Model Validation" on page 4-129
- "Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
- "Compare Lifetime PD Models Using Cross-Validation" on page 4-121
- "Expected Credit Loss Computation" on page 4-124
- "Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations" on page 4-195

More About

- "Credit Simulation Using Copulas" on page 4-2
- "Credit Rating Migration Risk" on page 1-10
- "Default Probability by Using the Merton Model for Structural Credit Risk" on page 1-13
- "Concentration Indices" on page 1-15
- "Traffic Light Test" on page 2-3
- "Binomial Test" on page 2-2
- "Kupiec's POF and TUFF Tests" on page 2-3
- "Christoffersen's Interval Forecast Tests" on page 2-4
- "Haas's Time Between Failures or Mixed Kupiec's Test" on page 2-4
- "Overview of Expected Shortfall Backtesting" on page 2-20
- "Overview of Lifetime Probability of Default Models" on page 1-25
- "Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

External Websites

- Introduction to Risk Management Toolbox (26 min 24 sec)
- Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)
- Credit Risk Modeling with MATLAB (53 min 09 sec)
- Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

Credit Rating Migration Risk

The migration-based multi-factor copula (creditMigrationCopula) is similar to the creditDefaultCopula object. As described in "Credit Simulation Using Copulas" on page 4-2, each counterparty's credit quality is represented by a "latent variable" which is simulated over many scenarios. The latent variable is composed of a series of correlated factors which are weighted based on the counterparty's sensitivity to each factor. The two objects differ in how the latent variables are used for the remainder of the analysis. Instead of thinking in terms of probability of default for each obligor, the creditMigrationCopula object works with each obligor's credit rating. Credit ratings are issued by several companies (S\&P, Moody's, and so on). Each rating represents a level of credit quality and ratings are changed periodically as a company's situation improves or deteriorates.

Given enough historical data, the likelihood is calculated that a company at a particular rating will migrate to a different rating over some time period. For example, this table shows the probabilities that a company with credit rating " B " will transition to each other rating.

New Rating	Probability (\%)
AAA	0.001
AA	0.0062
A	0.1081
BBB	0.8697
BB	7.3366
B	86.7215
CCC	2.5169
Default	2.4399

While the creditDefaultCopula object is concerned with the 2.4% chance of default exclusively, a migration-based approach using an creditMigrationCopula object accounts for all possible rating states. Given these probabilities, the cut-points are calculated for the distribution of all possible latent variable values that correspond to each rating value.

Probability of Credit Rating Transition

For each scenario, the latent variable value determines the credit rating of the counterparty at the end of the time period based on these cut-points. The cut-points are set such that the probability of transitioning to each rating matches the probabilities in the provided transition table. You now have not just correlated defaults for each counterparty, but correlated rating changes across the entire range of credit ratings.

Each credit rating has a unique discount curve associated with it. As an obligor's credit rating falls, the obligor's bond cashflows become more deeply discounted and the total bond value drops accordingly. Conversely, if an obligor's rating improves, the cashflows are discounted less deeply, and the bond values will rise. After repricing the portfolio with all obligors' new ratings, the total portfolio value can be calculated as the sum of the new bond values. As with the creditDefaultCopula object, various risk measures are calculated and reported for the creditMigrationCopula object.

See Also

creditMigrationCopula|simulate|portfolioRisk|riskContribution| confidenceBands|getScenarios

Related Examples

- "creditMigrationCopula Simulation Workflow" on page 4-10

Default Probability by Using the Merton Model for Structural Credit Risk

In 1974, Robert Merton proposed a model for assessing the structural credit risk of a company by modeling the company's equity as a call option on its assets. The Merton model uses the Black-Scholes-Merton option pricing methods and is structural because it provides a relationship between the default risk and the asset (capital) structure of the firm.

A company balance sheet records book values-the value of a firm's equity E, its total assets A, and its total liabilities L. The relationship between these values is defined by the equation

$$
A=E+L
$$

These book values for E, A, and L are all observable because they are recorded on a firm's balance sheet. However, the book values are reported infrequently. Alternatively, only the equity's market value is observable, and is given by the firm's stock market price times the number of outstanding shares. The market value of the firm's assets and total liabilities are unobservable.

The Merton model relates the market values of equity, assets, and liabilities in an option pricing framework. The Merton model assumes a single liability L with maturity T, usually a period of one year or less. At time T, the firm's value to the shareholders equals the difference $A-L$ when the asset value A is greater than the liabilities L. However, if the liabilities L exceed the asset value A, then the shareholders get nothing. The value of the equity E_{T} at time T is related to the value of the assets and liabilities by the following formula:

$$
E_{T}=\max \left(A_{T}-L, 0\right)
$$

In practice, firms have multiple maturities for their liabilities, so for a selected maturity T, a liability threshold L is chosen based on the whole liability structure of the firm. The liability threshold is also referred to as the default point. For a typical time horizon of one year, the liability threshold is commonly set to a value between the value of the short-term liabilities and the value of the total liabilities.

Assuming a lognormal distribution for the asset returns, you can use the Black-Scholes-Merton equations to relate the observable market value of equity E, and the unobservable market value of assets A, at any time prior to the maturity T :

$$
E=A N\left(d_{1}\right)-L e^{-r T} N\left(d_{2}\right)
$$

In this equation, r is the risk-free interest rate, N is the cumulative standard normal distribution, and d_{1} and d_{2} are given by

$$
\begin{aligned}
& d_{1}=\frac{\ln \left(\frac{A}{L}\right)+\left(r+0.5 \sigma_{A}^{2}\right) T}{\sigma_{A} \sqrt{T}} \\
& d_{2}=d_{1}-\sigma_{A} \sqrt{T}
\end{aligned}
$$

You can solve this equation using one of two approaches:

- The mertonmodel approach uses single-point calibration and requires values for the equity, liability, and equity volatility $\left(\sigma_{E}\right)$.

This approach solves for (A, σ_{A}) using a 2 -by- 2 system of nonlinear equations. The first equation is the aforementioned option pricing formula. The second equation relates the unobservable volatility of assets σ_{A} to the given equity volatility σ_{E} :

$$
\sigma_{E}=\frac{A}{E} N\left(d_{1}\right) \sigma_{A}
$$

- The mertonByTimeSeries approach requires time series for the equity and for all other model parameters.

If the equity time series has n data points, this approach calibrates a time series of n asset values A_{1}, \ldots, A_{n} that solve the following system of equations:

$$
\begin{aligned}
& E_{1}=A_{1} N\left(d_{1}\right)-L_{1} e^{-r_{1} T_{1}} N\left(d_{2}\right) \\
& \ldots \\
& E_{n}=A_{n} N\left(d_{1}\right)-L_{n} e^{-r_{n} T_{n}} N\left(d_{2}\right)
\end{aligned}
$$

The function directly computes the volatility of assets σ_{A} from the time series A_{1}, \ldots, A_{n} as the annualized standard deviation of the log returns. This value is a single volatility value that captures the volatility of the assets during the time period spanned by the time series.

After computing the values of A and σ_{A}, the function computes the distance to default ($D D$) is computed as the number of standard deviations between the expected asset value at maturity T and the liability threshold:

$$
D D=\frac{\log A+\left(\mu_{A}-\sigma_{A}^{2} / 2\right) T-\log (L)}{\sigma_{A} \sqrt{T}}
$$

The drift parameter μ_{A} is the expected return for the assets, which can be equal to the risk-free interest rate, or any other value based on expectations for that firm.

The probability of default (PD) is defined as the probability of the asset value falling below the liability threshold at the end of the time horizon T :

$$
P D=1-N(D D)
$$

See Also

mertonmodel|mertonByTimeSeries

Related Examples

- "Comparison of the Merton Model Single-Point Approach to the Time-Series Approach" on page 4-54

Concentration Indices

In financial risk applications, concentration is the opposite of diversification. If all or most of your risk is in one area, it is concentrated. Higher concentration is interpreted as a risk, although for someone with a high tolerance for risk and who wants higher returns, that person might prefer concentration.

You can use concentration indices to measure and monitor concentration in a credit portfolio. Ad-hoc concentration indices are typically computed by using exposures, and therefore do not usually take into account other risk parameters such as probabilities of default. Ad-hoc concentration indices are frequently included in comprehensive concentration reports, with other concentration measures and concentration limits.

When you use the concentrationIndices function, Risk Management Toolbox supports the following ad-hoc concentration indices or measures:

- Concentration ratio
- Deciles of the portfolio weight distribution
- Gini coefficient
- Herfindahl-Hirschman index
- Hannah-Kay index
- Hall-Tideman index
- Theil entropy index

See Also

concentrationIndices

Related Examples

- "Analyze the Sensitivity of Concentration to a Given Exposure" on page 4-49
- "Compare Concentration Indices for Random Portfolios" on page 4-51

Overview of Claims Estimation Methods for Non-Life Insurance

The ability to accurately estimate unpaid claims is important to insurers. Unlike companies in other sectors, insurers might not know the exact earnings during a financial reporting period until many years later. Insurance companies take in insurance premiums on a regular basis and pay out claims when events occur. In order to maximize profits, an insurance company must accurately estimate how much will be paid out on existing claims in the future. If the estimate for unpaid claims is too low, the insurance company will become insolvent. Conversely, if the estimate is too high, then the claims reserve capital of the insurance company could have been invested elsewhere or reinvested in the business [1 on page 1-24].

Risk Management Toolbox supports four claims estimation methods for actuaries to use for estimating unpaid claims:

- chainLadder
- expectedClaims
- bornhuetterFerguson
- capeCod

Workflow to Estimate Unpaid Claims

For the different claims estimation methods, the basic workflow follows.
1 Create a development triangle with insurance claims data using developmentTriangle. The claims data can be for either reported claims or paid claims. You can plot reported claims using claimsPlot.
2 Use the development triangle to compute link ratios using linkRatios. You can plot link ratios using linkRatiosPlot.
3 Use the development triangle link ratio for reported claims or paid claims to compute the link ratio averages with linkRatioAverages.
4 Use ultimateClaims to compute the projected ultimate claims based on the link ratio averages for either reported claims or unpaid claims.
5 Using the projected ultimate claims for both the reported and paid development triangles, use any of the following to compute incurred-but-not-reported (IBNR) values and the total unpaid claims estimates:

- Chain ladder method - Create a chainLadder object with development triangles for reported and paid claims, generate the IBNR values using ibnr, and compute the unpaid claims estimation with unpaidClaims.
- Expected claims method - Create an expectedClaims object with development triangles for reported and paid claims as well as the earned premium. By default, the initial claims are calculated as the average of the reported ultimate claims and the paid ultimate claims. However, you can specify custom values for the initial claims. Similar to the chain ladder method, you can compute IBNR values using ibnr and the unpaid claims estimates with unpaidClaims.
- Bornhuetter-Ferguson method - Create a bornhuetterFerguson object with development triangles for reported and paid claims as well as initial expected claims values, generate IBNR using ibnr, and compute the unpaid claims estimation with unpaidClaims.
- Cape Cod method - Create a capeCod object with development triangles for reported and paid claims as well as initial expected claims values, generate IBNR using ibnr, and compute the unpaid claims estimation with unpaidClaims.

Estimation of Ultimate Claims Using Development Triangles

One characteristic of Development Triangles is that the ultimate claims are estimated from recorded values assuming that the development of future claims resembles that in prior years - the past is indicative of the future.

The steps for development triangles are demonstrated using simulated data:
1 Use developmentTriangle to generate the reported claims in what is called a development triangle, where there is one row for each origin year and the columns depict how the claims develop over time.

Origin		Reported Claims as of (months)								
Year	12	24	36	48	60	72	84	96	108	120
2010	3995.71	4635.02	4866.78	4964.1	5013.74	5038.82	5058.97	5074.14	5084.29	5089.38
2011	3968.04	4682.28	4963.22	5062.49	5113.11	5138.67	5154.09	5169.56	5179.89	
2012	4217.01	5060.42	5364.04	5508.87	5558.45	5586.24	5608.59	5625.41		
2013	4374.24	5205.34	5517.67	5661.12	5740.38	5780.56	5803.68			
2014	4499.68	5309.62	5628.2	5785.79	5849.43	5878.68				
2015	4530.24	5300.38	5565.4	5715.66	5772.82					
2016	4572.63	5304.25	5569.47	5714.27						
2017	4680.56	5523.06	5854.44							
2018	4696.68	5495.11								
2019	4945.89									

2 Use linkRatios to calculate the age-to-age factors. These factors are also known as report-toreport factors or link ratios. The link ratios measure the change in recorded claims from one valuation date to the next. The standard naming convention is starting month-ending month. For example, the age-to-age factor for the 12 -month period to the 24 -month period is often referred to as the 12-24 factor.

To calculate the age-to-age factors for the 12-24 period, divide the claims as of 24 months by the claims as of 12 months. Thus, the triangle of age-to-age factors has one less row and one less column than the original data triangle.

Origin		Age-to-Age Factors							
Year	12-24	24-36	36-48	48-60	60-72	72-84	84-96	96-108	108-120
2010	1.16	1.05	1.02	1.01	1.005	1.004	1.003	1.002	1.001
2011	1.18	1.06	1.02	1.01	1.005	1.003	1.003	1.002	
2012	1.2	1.06	1.027	1.009	1.005	1.004	1.003		
2013	1.19	1.06	1.026	1.014	1.007	1.004			
2014	1.18	1.06	1.028	1.011	1.005				
2015	1.17	1.05	1.027	1.01					
2016	1.16	1.05	1.026						
2017	1.18	1.06							
2018	1.17								
2019									

3 After calculating the age-to-age factors, use linkRatioAverages to calculate the averages of the age-to-age factors. Actuaries use a wide variety of averages for age-to-age factors. Some of the common ones are the simple average, medial average, geometric average, and volumeweighted average.

Averages									
	$\mathbf{1 2 - 2 4}$	$\mathbf{2 4 - 3 6}$	$\mathbf{3 6 - 4 8}$	$\mathbf{4 8 - 6 0}$	$\mathbf{6 0 - 7 2}$	$\mathbf{7 2 - 8 4}$	$\mathbf{8 4 - 9 6}$	$\mathbf{9 6 - 1 0 8}$	$\mathbf{1 0 8 - 1 2 0}$
Simple Average	1.1767	1.0563	1.0249	1.0107	1.0054	1.0038	1.0030	1.0020	1.0010
Simple Average - Latest 5	1.1720	1.0560	1.0268	1.0108	1.0054	1.0038	1.0030	1.0020	1.0010
Simple Average - Latest 3	1.1700	1.0533	1.0270	1.0117	1.0057	1.0037	1.0030	1.0020	1.0010
Medial Average - Latest 5x1	1.1733	1.0567	1.0267	1.0103	1.0050	1.0040	1.0030	1.0020	1.0010
Volume-weighted Average	1.1766	1.0563	1.0250	1.0107	1.0054	1.0038	1.0030	1.0020	1.0010
Volume-weighted Average - Latest 5	1.1720	1.0560	1.0268	1.0108	1.0054	1.0038	1.0030	1.0020	1.0010
Volume-weighted Average - Latest 3	1.1701	1.0534	1.0270	1.0117	1.0057	1.0037	1.0030	1.0020	1.0010
Geometric Average - Latest 4	1.1700	1.0550	1.0267	1.0110	1.0055	1.0037	1.0030	1.0020	1.0010

4 Use cdfSummary to obtain the cumulative claim development factors (CDF), which are calculated by successive multiplications beginning with the tail factor and the oldest age-to-age factor. The cumulative claim development factor projects the total growth over the remaining valuations.

	Development Factor Selection									
	$\mathbf{1 2 - 2 4}$	$\mathbf{2 4 - 3 6}$	$\mathbf{3 6 - 4 8}$	$\mathbf{4 8 - 6 0}$	$\mathbf{6 0 - 7 2}$	$\mathbf{7 2 - 8 4}$	$\mathbf{8 4 - 9 6}$	$\mathbf{9 6 - 1 0 8}$	$\mathbf{1 0 8 - 1 2 0}$	Ultimate
Selected	1.1767	1.0563	1.0249	1.0107	1.0054	1.0038	1.0030	1.0020	1.0010	1.0000
CDF to Ultimate	1.3069	1.1107	1.0516	1.0261	1.0152	1.0098	1.0060	1.0030	1.0010	1.0000
Percent Reported	0.7651	0.9003	0.9510	0.9746	0.9850	0.9903	0.9940	0.9970	0.9990	1.0000

5 All of the previous steps apply to the reported claims. In order to calculate the unpaid claims estimates, you need the paid claims as well as the reported claims. Use developmentTriangle to generate the development triangle for paid claims.

Origin Year	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{3 6}$	$\mathbf{4 8}$	$\mathbf{6 0}$	$\mathbf{7 2}$	$\mathbf{8 4}$	$\mathbf{9 6}$	$\mathbf{1 0 8}$	$\mathbf{1 2 0}$
$\mathbf{2 0 1 0}$	$\mathbf{1 8 9 3 . 9 2}$	3371.18	4079.13	4487.04	4711.39	4805.62	4853.68	4877.94	4887.71	$\mathbf{4 8 9 2 . 5 9}$
$\mathbf{2 0 1 1}$	2055.52	3638.28	4365.93	4758.87	4949.22	5048.21	5098.69	5124.18	5134.43	
$\mathbf{2 0 1 2}$	2242.45	3946.71	4696.58	5119.27	5324.05	5430.53	5484.83	5512.26		
$\mathbf{2 0 1 3}$	2373.81	4130.43	4915.22	5357.59	5571.9	5677.76	5728.85			
$\mathbf{2 0 1 4}$	2421.75	4189.62	4985.63	5434.34	5651.72	5759.1				
$\mathbf{2 0 1 5}$	2484.05	4272.56	5084.35	5541.95	5763.62					
$\mathbf{2 0 1 6}$	2481.74	4218.95	5020.54	5472.39						
$\mathbf{2 0 1 7}$	2577.88	4382.38	5171.21							
$\mathbf{2 0 1 8}$	2580.04	4386.07								
$\mathbf{2 0 1 9}$	2764.81									

Similar to the reported claims development triangle, you use the paid claims develop triangle to calculate link ratios, average link ratios, and then you can select one link ratio and calculate the cumulative development factors.
6 Use ultimateClaims to project the ultimate claims. The ultimate claims are equal to the product of the latest valuation of claims and the appropriate cumulative claim development factors. The projected ultimate claims are displayed for both the reported claims and the paid claims.

Origin Year	Age of Origin Year at 12/31/2019	Claims at 12/31/2019		CDF to Ultimate		Projected Ultimate Claims using Dev. Method with	
		Reported	Paid	Reported	Paid	Reported	Paid
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
2010	120	5089.38	4892.59	1.0000	1.0000	5089.38	4892.59
2011	108	5179.89	5134.43	1.0010	1.0010	5185.08	5139.56
2012	96	5625.41	5512.26	1.0030	1.0030	5642.30	5528.81
2013	84	5803.68	5728.85	1.0060	1.0080	5838.57	5774.78
2014	72	5878.68	5759.1	1.0098	1.0178	5936.20	5861.87
2015	60	5772.82	5763.62	1.0152	1.0378	5860.78	5981.45
2016	48	5714.27	5472.39	1.0261	1.0810	5863.22	5915.85
2017	36	5854.44	5171.21	1.0516	1.1799	6156.35	6101.37
2018	24	5495.11	4386.07	1.1107	1.4070	6103.54	6171.19
2019	12	4945.89	2764.81	1.3069	2.4388	6464.02	6742.81
Total		55359.57	50585.33			58139.43	58110.27

Column Notes
(3) and (4) Latest Diagonals of the Reported and Paid Claims
(5) and (6) CDF to Ultimate from the Development Factor Selection tables of Reported and Paid Claims
$(7)=[(3) \times(5)]$
(8) $=[(4) \times(6)]$

7 After calculating the projected ultimate claims, use a chainLadder, expectedClaims, or bornhuetterFerguson method for estimating the unpaid claims.

Estimation of Unpaid Claims Using Chain Ladder Method

The chain ladder method requires the Development Triangles for reported and paid claims. The chain ladder method assumes that you can predict future claims activity for a given origin year (accident year, policy year, report year, and so on) based on historical claims activity to date for that origin year. The primary assumption of this method is that the reporting and payment of future claims resembles the patterns observed in the past.

In addition, the chain ladder method requires a large volume of historical claims experience. It works best when the presence or absence of large claims does not greatly distort the data. If the volume of data is not sufficient, large claims can greatly distort the age-to-age factors, the projections of ultimate claims, and the estimate of unpaid claims.

1 After calculating the projected ultimate claims using Development Triangles, create a chainLadder object based on the reported and paid Development Triangles in order to compute the unpaid claim estimates with unpaidClaims.
2 Actuaries calculate the unpaid claims estimate as the difference between the projected ultimate claims and the actual paid claims. This value of the unpaid claim estimate represents total unpaid claims, including both the outstanding claims cases and the IBNR claims. To determine estimated IBNR values based on the chain ladder technique, subtract reported claims from the projected ultimate claims. Alternatively, you can use ibnr to calculate the IBNR, which is equal to the estimate of total unpaid claims less the outstanding cases.

Origin Year	Claims at 12/31/2019		Projected Ultimate Claims using Dev. Method with		Case Outstanding at 12/31/2019	Unpaid Claim Estimate at 12/31/2019				
			IBNR - Based on Dev. Method with	Total - Based on Dev. Method with						
	Reported	Paid			Reported	Paid	Reported	Paid	Reported	Paid
(1)	(2)	(3)	(4)	(5)		(6)	(7)	(8)	(9)	(10)
2010	5089.38	4892.59	5089.38	4892.59		196.79	0.00	-196.79	196.79	0.00
2011	5179.89	5134.43	5185.08	5139.56	45.46	5.19	-40.33	50.65	5.13	
2012	5625.41	5512.26	5642.30	5528.81	113.15	16.89	-96.60	130.04	16.55	
2013	5803.68	5728.85	5838.57	5774.78	74.83	34.89	-28.90	109.72	45.93	
2014	5878.68	5759.1	5936.20	5861.87	119.58	57.52	-16.81	177.10	102.77	
2015	5772.82	5763.62	5860.78	5981.45	9.2	87.96	208.63	97.16	217.83	
2016	5714.27	5472.39	5863.22	5915.85	241.88	148.95	201.58	390.83	443.46	
2017	5854.44	5171.21	6156.35	6101.37	683.23	301.91	246.93	985.14	930.16	
2018	5495.11	4386.07	6103.54	6171.19	1109.04	608.43	676.08	1717.47	1785.12	
2019	4945.89	2764.81	6464.02	6742.81	2181.08	1518.13	1796.92	3699.21	3978.00	
Total	55359.57	50585.33	58139.42767	58110.26703	4774.24	2779.8577	2750.697029	7554.0977	7524.937	

Column Notes

(2) and (3) Latest Diagonals of the Reported and Paid Claims
(4) and (5) Developed in the previous sheet
(6) $=[(2)-(3)]$
(7) $=[(4)-(2)]$
(8) $=[(5)-(2)]$
(9) $=[(6)+(7)]$
$(10)=[(6)+(8)]$

Estimation of Unpaid Claims Using Expected Claims Method

The key assumption of the expected claims method is that an actuary can better estimate unpaid claims based on an initial estimate rather than existing claims observed to date.

The expected claims method requires the Development Triangles for reported and paid claims as well as the earned premium. By default, the initial claims are calculated as the average of the reported ultimate claims and the paid ultimate claims. However, you can specify custom values for the initial claims. Using the initial claims, an actuary applies a claim ratio method, where ultimate claims for a development period are equal to a selected expected claim ratio multiplied by the earned premium. Using these calculated ultimate claims, the actuary can then compute the unpaid claims estimates.

1 Create an expectedClaims object to calculate the ultimateClaims.

Origin Year	Claims at 12/31/2019		CDF to Ultimate		Projected Ultimate Claims using Dev. Method with		Initial Selected Ultimate Claims	Earned Premium	Claim Ratio		Ultimate Claims
	Reported	Paid	Reported	Paid	Reported	Paid			Estimated	Selected	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
2010	5089.38	4892.59	1.0000	1.0000	5089.38	4892.59	4990.99	10000	49.91\%	50.00\%	5000
2011	5179.89	5134.43	1.0010	1.0010	5185.08	5139.56	5162.32	12000	43.02\%	50.00\%	6000
2012	5625.41	5512.26	1.0030	1.0030	5642.30	5528.81	5585.55	14000	39.90\%	50.00\%	7000
2013	5803.68	5728.85	1.0060	1.0080	5838.57	5774.78	5806.67	16000	36.29\%	50.00\%	8000
2014	5878.68	5759.1	1.0098	1.0178	5936.20	5861.87	5899.03	18000	32.77\%	50.00\%	9000
2015	5772.82	5763.62	1.0152	1.0378	5860.78	5981.45	5921.11	20000	29.61\%	40.00\%	8000
2016	5714.27	5472.39	1.0261	1.0810	5863.22	5915.85	5889.53	22000	26.77\%	40.00\%	8800
2017	5854.44	5171.21	1.0516	1.1799	6156.35	6101.37	6128.86	24000	25.54\%	40.00\%	9600
2018	5495.11	4386.07	1.1107	1.4070	6103.54	6171.19	6137.36	26000	23.61\%	40.00\%	10400
2019	4945.89	2764.81	1.3069	2.4388	6464.02	6742.81	6603.41	28000	23.58\%	40.00\%	11200

Column Notes
(2) and (3) Latest Diagonals of the Reported and Paid Claims
(4) and (5) CDF to Ultimate from the Development Factor Selection tables of Reported and Paid Claims
(6) $=[(2) \times(4)]$
(7) $=[(3) \times(5)]$
(8) $=[((6)+(7)) / 2]$
(9) Earned Premium from Data
(10) $=[(8) /(9)]$
(11) Selected judgementally based on experience in (10)
$(12)=[(9) \times(11)]$
2 Use the expectedClaims object to calculate the unpaidClaims.

Origin Year	Claims at 12/31/2019		Ultimate Claims	Case Outstanding at 12/31/2019	Unpaid Claim Estimate based on Expected Claims Method	
	Reported	Paid			IBNR	Total
(1)	(2)	(3)	(4)	(5)	(6)	(7)
2010	5089.38	4892.59	5000	196.79	-89.38	107.41
2011	5179.89	5134.43	6000	45.46	820.11	865.57
2012	5625.41	5512.26	7000	113.15	1374.59	1487.74
2013	5803.68	5728.85	8000	74.83	2196.32	2271.15
2014	5878.68	5759.1	9000	119.58	3121.32	3240.90
2015	5772.82	5763.62	8000	9.2	2227.18	2236.38
2016	5714.27	5472.39	8800	241.88	3085.73	3327.61
2017	5854.44	5171.21	9600	683.23	3745.56	4428.79
2018	5495.11	4386.07	10400	1109.04	4904.89	6013.93
2019	4945.89	2764.81	11200	2181.08	6254.11	8435.19
Total	55359.57	50585.33	83000	4774.24	27640.43	32414.67

Column Notes
(2) and (3) Latest Diagonals of the Reported and Paid Claims
(4) Developed in the previous table
(5) $=[(2)-(3)]$
$(6)=[(4)-(2)]$
$(7)=[(4)-(3)]$

Estimation of Unpaid Claims Using Bornhuetter-Ferguson Method

The Bornhuetter-Ferguson method combines the chain ladder method and the expected claims method by splitting ultimate claims into two components, actual reported (or paid) claims and expected unreported (or unpaid) claims. As the claim matures over development periods, more weight is given to the actual claims and the expected claims become gradually less important.

The Bornhuetter-Ferguson method requires the Development Triangles for reported and paid claims as well as initial expected claims values. The Bornhuetter-Ferguson method calculates its own
projected ultimate claims, different from those calculated in the Development Triangle object. Using these new projected ultimate claims, the unpaid claims estimates are computed.

1 Create a bornhuetterFerguson object to calculate the ultimateClaims.

Origin Year	Expected Claims	CDF to Ultimate		Percentage		Expected Claims		Claims at 12/31/2019		Projected Ultimate Claims using B-F Method with	
		Reported	Paid	Unreported	Unpaid	Unreported	Unpaid	Reported	Paid	Reported	Paid
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
2010	5000	1.0000	1.0000	0.00\%	0.00\%	0.00	0.00	5089.38	4892.59	5089.38	4892.59
2011	6000	1.0010	1.0010	0.10\%	0.10\%	6.00	5.98	5179.89	5134.43	5185.89	5140.41
2012	7000	1.0030	1.0030	0.30\%	0.30\%	20.95	20.95	5625.41	5512.26	5646.36	5533.21
2013	8000	1.0060	1.0080	0.60\%	0.80\%	47.80	63.62	5803.68	5728.85	5851.48	5792.47
2014	9000	1.0098	1.0178	0.97\%	1.75\%	87.20	157.78	5878.68	5759.1	5965.88	5916.88
2015	8000	1.0152	1.0378	1.50\%	3.64\%	120.06	291.34	5772.82	5763.62	5892.88	6054.96
2016	8800	1.0261	1.0810	2.54\%	7.50\%	223.55	659.66	5714.27	5472.39	5937.82	6132.05
2017	9600	1.0516	1.1799	4.90\%	15.25\%	470.79	1463.53	5854.44	5171.21	6325.23	6634.74
2018	10400	1.1107	1.4070	9.97\%	28.93\%	1036.72	3008.38	5495.11	4386.07	6531.83	7394.45
2019	11200	1.3069	2.4388	23.49\%	59.00\%	2630.42	6607.57	4945.89	2764.81	7576.31	9372.38
Total	83000					4643.50	12278.82	55359.57	50585.33	60003.07	62864.15

Column Notes

(2) Developed in the Expected Claims method
(3) and (4) CDF to Ultimate from the Development Factor Selection tables of Reported and Paid Claims
(5) $=[1.00-(1.00 /(3))]$
$(6)=[1.00-(1.00 /(4))]$
(7) $=[(2) \times(5)]$
(8) $=[(2) \times(6)]$
(9) and (10) Latest Diagonals of the Reported and Paid Claims
(11) $=[(7)+(9)]$
$(12)=[(8)+(10)]$
2 Use the bornhuetterFerguson object to calculate the unpaidClaims.

Origin Year	Claims at 12/31/2019		Projected Ultimate Claims using B-F Method with		Case Outstanding at 12/31/2019	Unpaid Claim Estimate at 12/31/2019				
			IBNR - Based on B-F Method with	Total - Based on B-F Method with						
	Reported	Paid			Reported	Paid	Reported	Paid	Reported	Paid
(1)	(2)	(3)	(4)	(5)		(6)	(7)	(8)	(9)	(10)
2010	5089.38	4892.59	5089.38	4892.59		196.79	0.00	-196.79	196.79	0.00
2011	5179.89	5134.43	5185.89	5140.41	45.46	6.00	-39.48	51.46	5.98	
2012	5625.41	5512.26	5646.36	5533.21	113.15	20.95	-92.20	134.10	20.95	
2013	5803.68	5728.85	5851.48	5792.47	74.83	47.80	-11.21	122.63	63.62	
2014	5878.68	5759.1	5965.88	5916.88	119.58	87.20	38.20	206.78	157.78	
2015	5772.82	5763.62	5892.88	6054.96	9.2	120.06	282.14	129.26	291.34	
2016	5714.27	5472.39	5937.82	6132.05	241.88	223.55	417.78	465.43	659.66	
2017	5854.44	5171.21	6325.23	6634.74	683.23	470.79	780.30	1154.02	1463.53	
2018	5495.11	4386.07	6531.83	7394.45	1109.04	1036.72	1899.34	2145.76	3008.38	
2019	4945.89	2764.81	7576.31	9372.38	2181.08	2630.42	4426.49	4811.50	6607.57	
Total	55359.57	50585.33	60003.07	62864.15	4774.24	4643.50	7504.58	9417.74	12278.82	

Column Notes

(2) and (3) Latest Diagonals of the Reported and Paid Claims
(4) and (5) Developed in the previous table
(6) $=[(2)-(3)]$
(7) $=[(4)-(2)]$
(8) $=[(5)-(2)]$
(9) $=[(6)+(7)]$
$(10)=[(6)+(8)]$

Estimation of Unpaid Claims Using Cape Cod Method

As in the Bornhuetter-Ferguson technique, the Cape Cod technique splits ultimate claims into two components: actual reported (or paid) and expected unreported (or unpaid). As an accident year (or other time interval) matures, the actual reported claims replace the expected unreported claims and the initial expected claims assumption becomes gradually less important. The primary difference between the two methods is the derivation of the expected claim ratio. In the Cape Cod technique, the expected claim ratio is obtained from the reported claims experience instead of an independent and often judgmental selection as in the Bornhuetter-Ferguson technique.

The Cape Cod technique requires the Development Triangles for reported and paid claims as well as the earned premium. The key assumption of the Cape Cod technique is that unreported claims will develop based on expected claims, which are derived using reported (or paid) claims and earned premium. Both the Cape Cod and Bornhuetter-Ferguson methods differ from the development method where the primary assumption is that unreported claims will develop based on reported claims to date (not expected claims).

1 Create a capeCod object to calculate the ultimateClaims.

Origin Year	Earned Premium	Expected Claim Ratio	Estimated Expected Claims	Reported CDF to Ultimate	Percentage Unreported	Expected Unreported Claims	$\begin{gathered} \text { Reported } \\ \text { Claims at } \\ 12 / 31 / 2019 \\ \hline \end{gathered}$	Projected Ultimate Claims
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
2010	10000	31.0\%	3101.86	1.0000	0.0\%	0.00	5089.38	5089.38
2011	12000	31.0\%	3722.23	1.0010	0.1\%	3.72	5179.89	5183.61
2012	14000	31.0\%	4342.60	1.0030	0.3\%	13.00	5625.41	5638.41
2013	16000	31.0\%	4962.97	1.0060	0.6\%	29.65	5803.68	5833.33
2014	18000	31.0\%	5583.35	1.0098	1.0\%	54.10	5878.68	5932.78
2015	20000	31.0\%	6203.72	1.0152	1.5\%	93.11	5772.82	5865.93
2016	22000	31.0\%	6824.09	1.0261	2.5\%	173.36	5714.27	5887.63
2017	24000	31.0\%	7444.46	1.0516	4.9\%	365.08	5854.44	6219.52
2018	26000	31.0\%	8064.83	1.1107	10.0\%	803.94	5495.11	6299.05
2019	28000	31.0\%	8685.21	1.3069	23.5\%	2039.80	4945.89	6985.69
Total	190000		58935.33			3575.76	55359.57	58935.33
Column Notes								
(2) Earned Premium from Data								
(3) Based on total weighted estimated claim ratios								
(4) $=[(2) \times(3)]$								
(5) CDF to Ultimate for Reported Claims								
$(6)=[1.00-(1.00 /(5))]$								
$(7)=[(4) \times(6)]$								
(8) Latest Diagonal for Reported Claims								
(9) $=[(7)+(8)]$								

2 Use the capeCod object to calculate the unpaidClaims.

Origin Year	Claims at 12/31/2019		Ultimate Claims	Case Outstanding	Unpaid Claim Estimate	
	Reported	Paid			IBNR	Total
(1)	(2)	(3)	(4)	(5)	(6)	(7)
2010	5089.38	4892.59	5089.38	196.79	0.00	196.79
2011	5179.89	5134.43	5183.61	45.46	3.72	49.18
2012	5625.41	5512.26	5638.41	113.15	13.00	126.15
2013	5803.68	5728.85	5833.33	74.83	29.65	104.48
2014	5878.68	5759.1	5932.78	119.58	54.10	173.68
2015	5772.82	5763.62	5865.93	9.2	93.11	102.31
2016	5714.27	5472.39	5887.63	241.88	173.36	415.24
2017	5854.44	5171.21	6219.52	683.23	365.08	1048.31
2018	5495.11	4386.07	6299.05	1109.04	803.94	1912.98
2019	4945.89	2764.81	6985.69	2181.08	2039.80	4220.88
Total	55359.57	50585.33	58935.33	4774.24	3575.76	8350.00
Column Notes						
(2) and (3) Latest Diagonals of the Reported and Paid Claims						
(4) Developed in the previous table						
$(5)=[(2)-(3)]$						
$(6)=[(4)-(2)]$						
(7) $=[(5)+(6)]$						

References

[1] Friedland, Jacqueline. "Estimating Unpaid Claims using Basic Techniques." Arlington, VA: Casualty Actuarial Society, 2010
[2] Wüthrich, Mario, and Michael Merz. Stochastic Claims Reserving Methods in Insurance. Hoboken, NJ: Wiley, 2008.

See Also

developmentTriangle | chainLadder | expectedClaims | bornhuetterFerguson | capeCod

Related Examples

- "Mean Square Error of Prediction for Estimated Ultimate Claims" on page 4-161
- "Bootstrap Using Chain Ladder Method" on page 4-168

Overview of Lifetime Probability of Default Models

Regulatory frameworks such as IFRS 9 and CECL require institutions to estimate loss reserves based on a lifetime analysis that is conditional on macroeconomic scenarios. Earlier models were frequently designed to predict one period ahead and often with no explicit sensitivities to macroeconomic scenarios. With the IFRS 9 and CECL regulations, models must predict multiple periods ahead and the models must have an explicit dependency on macroeconomic variables.

The main output of the lifetime credit analysis is the lifetime expected credit loss (ECL). The lifetime ECL consists of the reserves that banks need to set aside for expected losses throughout the life of a loan. There are different approaches to the estimation of lifetime ECL. Some approaches use relatively simple techniques on loss data, with qualitative adjustments. Other approaches use more advanced time-series techniques or econometric models to forecast losses, with dependencies on macro variables. Another methodology uses probability of default (PD) models, loss given default (LGD) models, and exposure at default (EAD) models, and combines their outputs to estimate the ECL. The lifetime PD models in Risk Management Toolbox are in the PD-LGD-EAD category.

Traditional PD Models Compared to Lifetime PD Models

Traditional PD models predict the probability of default for the next period (that is, next year, next quarter, and so on). These one-period ahead models include a range of methodologies, such as credit scorecards (creditscorecard), decision trees (fitctree), and transition matrices (transprob). These models include different types of predictors. Some of them are simple, such as customer income, and others are more complex, such as utilization rate, or some other metrics related to the financial activities of the borrower. For these models, the latest observed values of the predictors, possibly with some lagged information, are usually enough to make a prediction, and there is no need to project or forecast the values of the predictors going forward.

In contrast, the lifetime PD models require forward looking values of all predictors to make a prediction of the lifetime PD through the end of the life of the loan. Because the projected values of the predictors are needed, these models can reduce the amount and complexity of predictors and use either predictors with constant values, such as origination score, or predictors that can be projected with little effort, such as loan-to-value ratio. One predictor typically included in these models is the age of the loan. When used for regulatory purposes, macroeconomic predictors must be included in the model, and multiple macroeconomic scenarios are required for the lifetime credit analysis.

Lifetime credit analysis also requires the cumulative lifetime PD, which is a transformation of the predicted, conditional PDs. Specifically, the marginal PD, which is the increments in the cumulative lifetime PD, is used for the computation of the ECL. The survival probability is often reported as well. These alternative versions of the probability are recursive operations on the predicted, conditional PD values for a single loan. In other words, the prediction data may include rows for the same ID a few periods ahead, and the corresponding conditional PDs may show a time-dependent structure. But these conditional PD predictions are "one-period ahead" predictions where the "period" is the same time interval implicit in the training data. Conditional PD predictions are "row-by-row" predictions, where one row of the inputs predicts a conditional PD independently of all other rows. However, for the cumulative lifetime PD, the cumulative PD value for the second period depends on the conditional PDs for the first and second periods, and all subsequent periods have an explicit dependency on the previous period (a recursion). For the lifetime predictions, therefore, the software must know which rows in the inputs correspond to the same loan, so some form of loan identifier is required for the lifetime prediction. Moreover, consecutive rows in the lifetime prediction data must correspond to consecutive time periods, the recursion is defined for consecutive, one-period ahead conditional PDs, it cannot skip periods.

The following table summarizes the differences between traditional PD models and lifetime PD models.

Traditional PD Models	Lifetime PD Models
Predict one period ahead	Predict multiple periods ahead
Predict conditional PD only	Predict conditional PD, cumulative lifetime PD, marginal PD, and survival probability
Predict for each row of the data inputs, independently of all other rows	Predict for all rows of the data inputs that correspond to the same loan; this is a recursive operation that requires some form of loan identifier to know where to start the recursion
Need only most recent observed information to make PD predictions	Need the most recent information and projected, period-by-period values of predictor variables over the lifetime of the loan to make PD predictions
Can use complex predictors that result from nontrivial data processing or data transformations	Typically use simpler predictors, variables that are not hard to project and forecast
Besides loan-specific predictors, models can include macroeconomic variables or an age variable	Besides loan-specific predictors, models must include macroeconomic predictors (especially if used for regulatory purposes) and typically include an age variable

Model Development and Validation

Risk Management Toolbox supports the modeling and validation of lifetime PD models through a family of classes supporting:

- Model fitting with the fitLifetimePDModel
- Prediction of conditional PD with the predict function
- Prediction of lifetime PD (cumulative, marginal, and survival) with the predictLifetime function
- Model discrimination metrics with the modelDiscrimination function
- Plot the ROC curve with the modelDiscriminationPlot function
- Model calibration metrics with the modelCalibration function
- Plot observed default rates compared to predicted PDs on grouped data with the modelCalibrationPlot function

The supported model types are Logistic, Probit, Cox, and customLifetimePDModel models.
A typical modeling workflow for lifetime PD analysis includes:
1 Data preparation
The lifetime PD models require a panel data input for fitting, prediction, and validation. The response variable must be a binary (0 or 1) variable, with 1 indicating default. There is a wide range of tools available to treat missing data (using fillmissing), handle outliers (using filloutliers), and perform other data preparation tasks.

2 Model fitting

Use the fitLifetimePDModel function to fit a lifetime PD model. You must use the previously prepared data, select a model type, and indicate which variables correspond to loan-specific variables (such as origination score and loan-to-value ratio). Also, you can also include an age variable (such as years on books) and the macroeconomic variables (such as gross domestic product growth or unemployment rate), as well as the ID variable and response variable. You can specify a model description and also specify a model ID or tag for reporting purposes during model validation. Alternatively, you can use customLifetimePDModel to use a function handle to define a custom PD model.
3 Model validation
There are multiple tasks involved in model validation, including

- Inspect the underlying statistical model, which is stored in the 'UnderlyingModel' property of the Logistic, Probit, or Cox object. For more information, see "Basic Lifetime PD Model Validation" on page 4-129.
- Measure the model discrimination on either training or test data with the modelDiscrimination function. Visualizations can also be generated using the modelDiscriminationPlot function. Data can be segmented to measure discrimination over different segments.
- Measure the model calibration on either training or test data with the modelCalibration function. Visualizations can also be generated using the modelCalibrationPlot function. A grouping variable is required to measure the observed default rate for each group and compare it against the average predicted conditional PD for the group.
- Validate the model against a benchmark (for example, a champion model). For more information, see "Compare Logistic Model for Lifetime PD to Champion Model" on page 4113.
- Perform a cross-validation analysis to compare alternative models. For more information, see "Compare Lifetime PD Models Using Cross-Validation" on page 4-121.
- Perform a qualitative assessment of conditional PD predictions by using the predict function directly with edge cases. Note that model validation relies on the conditional PD predictions generated by the predict function. The predict function is automatically called by modelDiscrimination and modelCalibration to generate metrics.
- Visualize the lifetime PD predictions for model validation by using the predictLifetime function with edge cases and then perform a qualitative assessment of the predictions.

Computation of Lifetime ECL

Once you develop and validate a lifetime PD model, you can use it for lifetime ECL analysis. The "Expected Credit Loss Computation" on page 4-124 example demonstrates the basic workflow for computing ECL.

The "Expected Credit Loss Computation" on page 4-124 example shows how to visualize the lifetime PD predictions, for different macro scenarios.

The "Expected Credit Loss Computation" on page 4-124 example also shows how to compute the ECL per scenario and how to compute the final lifetime ECL for a given loan.

	Severe	Adverse	Baseline	Favorable	Excellent
ECL 2020	595.58	507.16	430.44	364.11	306.97
ECL 2021	394.24	349.95	310.02	274.11	241.9
ECL 2022	235.53	215.4	196.75	179.5	163.57
ECL 2023	143.05	135.23	127.75	120.59	113.77
ECL 2024	85.219	83.517	81.816	80.118	78.429
ECL 2025	51.346	51.514	51.665	51.798	51.917
ECL 2026	33.162	33.271	33.368	33.454	33.531
ECL total	1538.1	1376	1231.8	1103.7	990.08
Probability	0.1	0.2	0.3	0.2	0.2

For more information on preparing the data for prediction (including joining loan data projections and macro forecasts) and the additional parameters and computations necessary for the estimation of the lifetime ECL, see "Expected Credit Loss Computation" on page 4-124 and portfolioECL.

Lifetime Credit Analysis Compared to Stress Testing

You can also use the lifetime PD models for stress testing analysis. However, lifetime credit analysis and stress testing have several differences that the following table summarizes.

Stress Testing	Lifetime Credit Analysis
Focus on negative, pessimistic scenarios	Must consider a range of scenarios, including pessimistic, neutral, and optimistic ones
Models are often biased, calibrated to produce more conservative results	Models are expected to be unbiased
Spans a few quarters ahead	Can span many years ahead
Macroeconomic forecasts for stress testing go a few quarters into the future	Macro scenarios reach far into the future and are typically expected to revert to some baseline level after a few quarters

The types of models used for both of these analyses are very similar. You can use lifetime PD models for stress testing analysis with some additional considerations to account for the differences listed in the previous table.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.

See Also

fitLifetimePDModel| Logistic|Probit|Cox|customLifetimePDModel|predict| predictLifetime|modelDiscrimination|modelCalibration|modelDiscriminationPlot | modelCalibrationPlot| portfolioECL

Related Examples

- "Basic Lifetime PD Model Validation" on page 4-129
- "Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
- "Compare Lifetime PD Models Using Cross-Validation" on page 4-121
- "Expected Credit Loss Computation" on page 4-124
- "Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations" on page 4-195
- "Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
- "Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 475
- "Create Custom Lifetime PD Model for Decision Tree Model with Function Handle" on page 4224
- "Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle" on page 3-131
- "Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations" on page 4-195

More About

- "Overview of Loss Given Default Models" on page 1-31
- "Overview of Exposure at Default Models" on page 1-34

Overview of Loss Given Default Models

Loss given default (LGD) is the proportion of a credit that is lost in the event of default. LGD is one of the main parameters for credit risk analysis. Although there are different approaches to estimate credit loss reserves and credit capital, common methodologies require the estimation of probabilities of default (PD), loss given default (LGD), and exposure at default (EAD). The reserves and capital requirements are computed using formulas or simulations that use these parameters. For example, the loss reserves are usually estimated as the expected loss (EL), given by the following formula:
$E L=P D * L G D * E A D$
With increased availability of data, there are several different types of LGD models. Risk Management Toolbox supports:

- Regression models - These are linear regression models where the response is a transformation of the LGD data. For more information on the supported transformations, see Regression.
- Tobit models - These are censored regression models with explicit limits on the response values to capture the fact that LGD can take values only between 0 and 1 . Censoring on the left, right or both sides are supported. For more information, see Tobit.
- Beta models - These are beta regression models with explicit limits on the response values to capture the fact that LGD can take values only between 0 and 1 . Censoring on the left, right or both sides are supported. For more information, see Beta.

The "Model Loss Given Default" on page 4-90 example shows these two types of models, as well as other models, are fitted using Statistics and Machine Learning Toolbox. Specifically, besides the regression and Tobit models, this example also includes a non-parametric, look-up table type of model; a Beta regression model; and a "two-stage" model where a classification model (cure-no cure) and a regression model (predicted LGD conditional on no cure) work together to make LGD predictions.

In addition, you can use the Regression, Tobit, and Beta models to develop LGD models that include macroeconomic predictors for stress testing or to support regulatory requirements such as IFRS 9 and CECL. For more information, see "Overview of Lifetime Probability of Default Models" on page 1-25.

Model Development and Validation

Risk Management Toolbox supports the modeling and validation of LGD models through a family of classes supporting:

- Model fitting with the fitLGDModel
- Prediction of LGD with the predict function
- Model discrimination metrics with the modelDiscrimination function and visualization with the modelDiscriminationPlot function
- Model calibration metrics with the modelCalibration function and visualization with the modelCalibartionPlot function

The supported model types are Regression, Tobit, and Beta models.
A typical modeling workflow for LGD analysis includes:

1 Data preparation

Data preparation for LGD modeling requires a significant amount of work in practice. Data preparation requires consolidation of account information, pulling data from multiple data sources, accounting for recoveries, direct and indirect costs, determination of discount rates to determine the observed LGD values. There is also work regarding predictor transformations and screening. There is a wide range of tools available to treat missing data (using fillmissing), handle outliers (using filloutliers), and perform other data preparation tasks. The output of the data preparation is a training dataset with predictor columns and a response column containing the LGD values.
2 Model fitting
Use the fitLGDModel function to fit an LGD model. You must use the previously prepared data and select a model type. Optional inputs allow you to indicate which variables correspond to predictor variables, or which transformation to use for a regression model, or the censoring side for a Tobit or Beta model. You can specify a model description and also specify a model ID or tag for reporting purposes during model validation.
3 Model validation
There are multiple tasks involved in model validation, including

- Inspect the underlying statistical model, which is stored in the 'UnderlyingModel' property of the Regression, Tobit, or Beta object. For more information, see "Basic Loss Given Default Model Validation" on page 4-131.
- Measure the model discrimination on either training or test data with the modelDiscrimination function. Visualizations are generated using the modelDiscriminationPlot function. Data can be segmented to measure discrimination over different segments.
- Measure the model calibration on either training or test data with the modelCalibration function. Visualizations are generated using the modelCalibartionPlot function. Also, you can visualize the residuals.
- Validate the model against a benchmark (for example, a champion model). For more information, see "Compare Tobit LGD Model to Benchmark Model" on page 4-133.
- Perform a cross-validation analysis to compare alternative models. For more information, see "Compare Loss Given Default Models Using Cross-Validation" on page 4-140.
- Perform a qualitative assessment of conditional PD predictions by using the predict function directly with edge cases. Visualize residuals using the modelCalibartionPlot function. There are examples of additional visualizations using histograms and box plots in the "Model Loss Given Default" on page 4-90 example.
4 Once you develop and validate a LGD model, you can use it for lifetime ECL analysis. The "Expected Credit Loss Computation" on page 4-124 example and portfolioECL demonstrates the basic workflow for computing ECL.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Gupton, G., and R Stein. "Losscalc v2: Dynamic Prediction of LGD Modeling Methodology". Moody’s KMV Investor Services, 2005.

See Also

fitLGDModel|predict|modelDiscrimination | modelDiscriminationPlot | modelCalibration|modelCalibartionPlot|Regression|Tobit|Beta|portfolioECL

Related Examples

- "Model Loss Given Default" on page 4-90
- "Basic Loss Given Default Model Validation" on page 4-131
- "Compare Tobit LGD Model to Benchmark Model" on page 4-133
- "Compare Loss Given Default Models Using Cross-Validation" on page 4-140
- "Expected Credit Loss Computation" on page 4-124
- "Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations" on page 4-195

More About

- "Overview of Lifetime Probability of Default Models" on page 1-25
- "Overview of Exposure at Default Models" on page 1-34

Overview of Exposure at Default Models

Exposure at default (EAD) is the loss exposure (balance at the time of default) for a bank when a debtor defaults on a loan.

For example, the loss reserves are usually estimated as the expected loss (EL), given by the following formula:
$E L=P D \times L G D \times E A D$
With increased availability of data, there are several different types of EAD models. Risk Management Toolbox supports:

- Regression models - These are linear regression models where the response is a transformation of the EAD data. For more information on the supported transformations, see Regression.
- Tobit models - These are censored regression models with explicit limits on the response values. Censoring on the left, right or both sides are supported. For more information, see Tobit.
- Beta models - These are beta regression models with explicit limits on the response values. Censoring on the left, right or both sides are supported. For more information, see Beta.

Model Development and Validation

Risk Management Toolbox supports the modeling and validation of EAD models through a family of classes supporting:

- Model fitting with the fitEADModel
- Prediction of EAD with the predict function
- Model discrimination metrics with the modelDiscrimination function and visualization with the modelDiscriminationPlot function
- Model calibration metrics with the modelCalibration function and visualization with the modelCalibrationPlot function

The supported model types are Regression, Tobit, and Beta models.
A typical modeling workflow for EAD analysis includes:
1 Data preparation
Data preparation for EAD modeling requires a significant amount of work in practice. Data preparation requires consolidation of account information, pulling data from multiple data sources, accounting for recoveries, direct and indirect costs, determination of discount rates to determine the observed EAD values. There is also work regarding predictor transformations and screening. There is a wide range of tools available to treat missing data (using fillmissing), handle outliers (using filloutliers), and perform other data preparation tasks. The output of the data preparation is a training dataset with predictor columns and a response column containing the EAD values.
2 Model fitting
Use the fitEADModel function to fit an EAD model. You must use the previously prepared data and select a model type. Optional inputs allow you to indicate the limit (LimitVar) and drawn (DrawnVar) values for a Regression, Tobit, or Beta model. The limit value depends on the
loan. If its a credit card, the limit is the credit limit, and if this is a mortgage limit it is the initial loan amount. In general, LimitVar is the maximum amount that can be borrowed. DrawnVar is the balance on the account at the time of observation, prior to default and EAD is the balance at the time of default. Also, you can specify a model description and also specify a model ID or tag for reporting purposes during model validation.
3 Model validation
There are multiple tasks involved in model validation, including

- Inspect the underlying statistical model, which is stored in the 'UnderlyingModel ' property of the Regression, Tobit, or Beta object.
- Measure the model discrimination on either training or test data with the modelDiscrimination function. Visualizations are generated using the modelDiscriminationPlot function. Data can be segmented to measure discrimination over different segments.
- Measure the model calibration on either training or test data with the modelCalibration function. Visualizations are generated using the modelCalibrationPlot function. Also, you can visualize the residuals.
4 Once you develop and validate an EAD model, you can use it for lifetime ECL analysis. The "Expected Credit Loss Computation" on page 4-124 example and portfolioECL demonstrates the basic workflow for computing ECL.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications. SAS Institute, 2014.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also

fitEADModel|predict|modelDiscrimination |modelDiscriminationPlot | modelCalibration|modelCalibrationPlot|Regression|Tobit|Beta|portfolioECL

Related Examples

- "Compare Results for Regression and Tobit EAD Models" on page 4-151
- "Expected Credit Loss Computation" on page 4-124
- "Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations" on page 4-195

More About

- "Exposure at Default Regression Models" on page 6-645
- "Exposure at Default Tobit Models" on page 6-656
- "Beta Regression Models" on page 6-669
- "Conversion Measure Options" on page 6-658
- "Overview of Lifetime Probability of Default Models" on page 1-25
- "Overview of Loss Given Default Models" on page 1-31

Market Risk Measurements Using VaR BackTesting Tools

- "Overview of VaR Backtesting" on page 2-2
- "VaR Backtesting Workflow" on page 2-6
- "Value-at-Risk Estimation and Backtesting" on page 2-10
- "Overview of Expected Shortfall Backtesting" on page 2-20
- "Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information" on page 2-30
- "Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
- "Expected Shortfall Estimation and Backtesting" on page 2-44
- "Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-63
- "Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-72

Overview of VaR Backtesting

Market risk is the risk of losses in positions arising from movements in market prices. Value-at-risk (VaR) is one of the main measures of financial risk. VaR is an estimate of how much value a portfolio can lose in a given time period with a given confidence level. For example, if the one-day $95 \% \mathrm{VaR}$ of a portfolio is 10 MM , then there is a 95% chance that the portfolio loses less than 10 MM the following day. In other words, only 5% of the time (or about once in 20 days) the portfolio losses exceed 10MM.

For many portfolios, especially trading portfolios, VaR is computed daily. At the closing of the following day, the actual profits and losses for the portfolio are known and can be compared to the VaR estimated the day before. You can use this daily data to assess the performance of VaR models, which is the goal of VaR backtesting. The performance of VaR models can be measured in different ways. In practice, many different metrics and statistical tests are used to identify VaR models that are performing poorly or performing better. As a best practice, use more than one criterion to backtest the performance of VaR models, because all tests have strengths and weaknesses.

Suppose that you have VaR limits and corresponding returns or profits and losses for days $t=1, \ldots, N$. Use VaRt to denote the VaR estimate for day t (determined on day $t-1$). Use $R t$ to denote the actual return or profit and loss observed on day t. Profits and losses are expressed in monetary units and represent value changes in a portfolio. The corresponding VaR limits are also given in monetary units. Returns represent the change in portfolio value as a proportion (or percentage) of its value on the previous day. The corresponding VaR limits are also given as a proportion (or percentage). The VaR limits must be produced from existing VaR models. Then, to perform a VaR backtesting analysis, provide these limits and their corresponding returns as data inputs to the VaR backtesting tools in Risk Management Toolbox.

The toolbox supports these VaR backtests:

- Binomial test
- Traffic light test
- Kupiec's tests
- Christoffersen's tests
- Haas's tests

Binomial Test

The most straightforward test is to compare the observed number of exceptions, x, to the expected number of exceptions. From the properties of a binomial distribution, you can build a confidence interval for the expected number of exceptions. Using exact probabilities from the binomial distribution or a normal approximation, the bin function uses a normal approximation. By computing the probability of observing x exceptions, you can compute the probability of wrongly rejecting a good model when x exceptions occur. This is the p-value for the observed number of exceptions x. For a given test confidence level, a straightforward accept-or-reject result in this case is to fail the VaR model whenever x is outside the test confidence interval for the expected number of exceptions. "Outside the confidence interval" can mean too many exceptions, or too few exceptions. Too few exceptions might be a sign that the VaR model is too conservative.

The test statistic is

$$
Z_{b i n}=\frac{x-N p}{\sqrt{N p(1-p)}}
$$

where x is the number of failures, N is the number of observations, and $p=1-\mathrm{VaR}$ level. The binomial test is approximately distributed as a standard normal distribution.

For more information, see "References" on page 2-5 for Jorion and bin.

Traffic Light Test

A variation on the binomial test proposed by the Basel Committee is the traffic light test or three zones test. For a given number of exceptions x, you can compute the probability of observing up to x exceptions. That is, any number of exceptions from 0 to x, or the cumulative probability up to x. The probability is computed using a binomial distribution. The three zones are defined as follows:

- The "red" zone starts at the number of exceptions where this probability equals or exceeds 99.99%. It is unlikely that too many exceptions come from a correct VaR model.
- The "yellow" zone covers the number of exceptions where the probability equals or exceeds 95% but is smaller than 99.99%. Even though there is a high number of violations, the violation count is not exceedingly high.
- Everything below the yellow zone is "green." If you have too few failures, they fall in the green zone. Only too many failures lead to model rejections.

For more information, see "References" on page 2-5 for Basel Committee on Banking Supervision and tl .

Kupiec's POF and TUFF Tests

Kupiec (1995) introduced a variation on the binomial test called the proportion of failures (POF) test. The POF test works with the binomial distribution approach. In addition, it uses a likelihood ratio to test whether the probability of exceptions is synchronized with the probability p implied by the VaR confidence level. If the data suggests that the probability of exceptions is different than p, the VaR model is rejected. The POF test statistic is

$$
L R_{P O F}=-2 \log \left(\frac{(1-p)^{N-x} p^{x}}{\left(1-\frac{x}{N}\right)^{N-x}\left(\frac{x}{N}\right)^{x}}\right)
$$

where x is the number of failures, N the number of observations and $p=1-\mathrm{VaR}$ level.
This statistic is asymptotically distributed as a chi-square variable with 1 degree of freedom. The VaR model fails the test if this likelihood ratio exceeds a critical value. The critical value depends on the test confidence level.

Kupiec also proposed a second test called the time until first failure (TUFF). The TUFF test looks at when the first rejection occurred. If it happens too soon, the test fails the VaR model. Checking only the first exception leaves much information out, specifically, whatever happened after the first exception is ignored. The TBFI test extends the TUFF approach to include all the failures. See tbfi.

The TUFF test is also based on a likelihood ratio, but the underlying distribution is a geometric distribution. If n is the number of days until the first rejection, the test statistic is given by

$$
L R_{T U F F}=-2 \log \left(\frac{p(1-p)^{n-1}}{\left(\frac{1}{n}\right)\left(1-\frac{1}{n}\right)^{n-1}}\right)
$$

This statistic is asymptotically distributed as a chi-square variable with 1 degree of freedom. For more information, see "References" on page 2-5 for Kupiec, pof, and tuff.

Christoffersen's Interval Forecast Tests

Christoffersen (1998) proposed a test to measure whether the probability of observing an exception on a particular day depends on whether an exception occurred. Unlike the unconditional probability of observing an exception, Christoffersen's test measures the dependency between consecutive days only. The test statistic for independence in Christoffersen's interval forecast (IF) approach is given by

$$
L R_{C C I}=-2 \log \left(\frac{(1-\Pi)^{n 00+n 10} \Pi^{n 01}+n 11}{\left(1-\Pi_{0}\right)^{n 00} \Pi_{0}^{n 01}\left(1-\Pi_{1}\right)^{n 10} \Pi_{1}^{n 11}}\right)
$$

where

- $n 00=$ Number of periods with no failures followed by a period with no failures.
- $n 10=$ Number of periods with failures followed by a period with no failures.
- $n 01=$ Number of periods with no failures followed by a period with failures.
- $n 11=$ Number of periods with failures followed by a period with failures.
and
- Π_{0} - Probability of having a failure on period t, given that no failure occurred on period $t-1=$ $n 01 /(n 00+n 01)$
- Π_{1} - Probability of having a failure on period t, given that a failure occurred on period $t-1=$ $n 11 /(n 10+n 11)$
- $\quad \pi-$ Probability of having a failure on period $t=(n 01+n 11 /(n 00+n 01+n 10+n 11)$

This statistic is asymptotically distributed as a chi-square with 1 degree of freedom. You can combine this statistic with the frequency POF test to get a conditional coverage (CC) mixed test:
$L R_{C C}=L R_{\text {POF }}+L_{\text {CCI }}$
This test is asymptotically distributed as a chi-square variable with 2 degrees of freedom.
For more information, see "References" on page 2-5 for Christoffersen, cc, and cci.

Haas's Time Between Failures or Mixed Kupiec's Test

Haas (2001) extended Kupiec's TUFF test to incorporate the time information between all the exceptions in the sample. Haas's test applies the TUFF test to each exception in the sample and aggregates the time between failures (TBF) test statistic.

$$
L R_{T B F I}=-2 \sum_{i=1}^{X} \log \left(\frac{p(1-p)^{n_{i}-1}}{\left(\frac{1}{n_{i}}\right)\left(1-\frac{1}{n_{i}}\right)^{n_{i}-1}}\right)
$$

In this statistic, $p=1-\mathrm{VaR}$ level and n_{i} is the number of days between failures $i-1$ and i (or until the first exception for $i=1$). This statistic is asymptotically distributed as a chi-square variable with x degrees of freedom, where x is the number of failures.

Like Christoffersen's test, you can combine this test with the frequency POF test to get a TBF mixed test, sometimes called Haas' mixed Kupiec's test:

$$
L R_{T B F}=L R_{P O F}+L R_{T B F I}
$$

This test is asymptotically distributed as a chi-square variable with $x+1$ degrees of freedom. For more information, see "References" on page 2-5 for Haas, tbf, and tbfi.

References

[1] Basel Committee on Banking Supervision, Supervisory framework for the use of "backtesting" in conjunction with the internal models approach to market risk capital requirements. January 1996, https://www.bis.org/publ/bcbs22.htm.
[2] Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol. 39, 1998, pp. 841-862.
[3] Cogneau, P. "Backtesting Value-at-Risk: how good is the model?" Intelligent Risk, PRMIA, July, 2015.
[4] Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar, Bonn, 2001.
[5] Jorion, P. Financial Risk Manager Handbook. 6th Edition, Wiley Finance, 2011.
[6] Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal of Derivatives. Vol. 3, 1995, pp. 73-84.
[7] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management. Princeton University Press, 2005.
[8] Nieppola, O. "Backtesting Value-at-Risk Models." Helsinki School of Economics, 2009.

See Also

varbacktest|tl|bin|pof|tuff|cc|cci|tbf|tbfi|summary|runtests

Related Examples

- "Value-at-Risk Estimation and Backtesting" on page 2-10

More About

- "Risk Modeling with Risk Management Toolbox" on page 1-3

VaR Backtesting Workflow

This example shows a value-at-risk (VaR) backtesting workflow and the use of VaR backtesting tools. For a more comprehensive example of VaR backtesting, see "Value-at-Risk Estimation and Backtesting" on page 2-10.

Step 1. Load the VaR backtesting data.

Use the VaRBacktestData.mat file to load the VaR data into the workspace. This example works with the EquityIndex, Normal95, and Normal99 numeric arrays. These arrays are equity returns and the corresponding VaR data at 95% and 99% confidence levels is produced with a normal distribution (a variance-covariance approach). See "Value-at-Risk Estimation and Backtesting" on page 2-10 for an example on how to generate this VaR data.

```
load('VaRBacktestData')
disp([EquityIndex(1:5) Normal95(1:5) Normal99(1:5)])
\begin{tabular}{rrr}
-0.0043 & 0.0196 & 0.0277 \\
-0.0036 & 0.0195 & 0.0276 \\
-0.0000 & 0.0195 & 0.0275 \\
0.0298 & 0.0194 & 0.0275 \\
0.0023 & 0.0197 & 0.0278
\end{tabular}
```

The first column shows three losses in the first three days, but none of these losses exceeds the corresponding VaR (columns 2 and 3). The VaR model fails whenever the loss (negative of returns) exceeds the VaR.

Step 2. Generate a VaR backtesting plot.

Use the plot function to visualize the VaR backtesting data. This type of visualization is a common first step when performing a VaR backtesting analysis.

```
plot(Date,[EquityIndex -Normal95 -Normal99])
title('VaR Backtesting')
xlabel('Date')
ylabel('Returns')
legend('Returns','VaR 95%','VaR 99%')
```


Step 3. Create a varbacktest object.

Create a varbacktest object for the equity returns and the VaRs at 95% and 99% confidence levels.

```
vbt = varbacktest(EquityIndex,[Normal95 Normal99],...
    'PortfolioID','S&P', ...
    'VaRID',{'Normal95' 'Normal99'}, ...
    'VaRLevel',[0.95 0.99]);
disp(vbt)
    varbacktest with properties:
        PortfolioData: [1043x1 double]
        VaRData: [1043x2 double]
        PortfolioID: "S&P"
        VaRID: ["Normal95" "Normal99"]
            VaRLevel: [0.9500 0.9900]
```


Step 4. Run a summary report.

Use the summary function to obtain a summary for the number of observations, the number of failures, and other simple metrics.

```
summary(vbt)
```

ans $=2 \times 10$ table
PortfolioID
VaRID
VaRLevel
ObservedLevel

"S\&P"	"Normal95"	0.95	0.94535	1043	57
"S\&P"	"Normal99"	0.99	0.9837	1043	17

Step 5. Run all tests.

Use the runtests function to display the final test results all at once.

```
runtests(vbt)
ans=2\times11 table
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & TL & Bin & POF & TUFF & CC \\
\hline "S\&P" & "Normal95" & 0.95 & green & accept & accept & accept & accept \\
\hline "S\&P" & "Normal99" & 0.99 & yellow & reject & accept & accept & accept \\
\hline
\end{tabular}
```


Step 6. Run individual tests.

After running all tests, you can investigate the details of particular tests. For example, use the tl function to run the traffic light test.

```
tl(vbt)
ans=2\times9 table
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & TL & Probability & TypeI & Increase \\
\hline "S\&P" & "Normal95" & 0.95 & green & 0.77913 & 0.26396 & 0 \\
\hline "S\&P" & "Normal99" & 0.99 & yellow & 0.97991 & 0.03686 & 0.26582 \\
\hline
\end{tabular}
```


Step 7. Create VaR backtests for multiple portfolios.

You can create VaR backtests for different portfolios, or the same portfolio over different time windows. Run tests over two different subwindows of the original test window.

```
Ind1 = year(Date)<=2000;
Ind2 = year(Date)>2000;
vbt1 = varbacktest(EquityIndex(Ind1),[Normal95(Ind1,:) Normal99(Ind1,:)],...
    'PortfolioID','S&P, 1999-2000',...
    'VaRID',{'Normal95' 'Normal99'},...
    'VaRLevel',[0.95 0.99]);
vbt2 = varbacktest(EquityIndex(Ind2),[Normal95(Ind2,:) Normal99(Ind2,:)],...
    'PortfolioID','S&P, 2001-2002',...
    'VaRID',{'Normal95' 'Normal99'},...
    'VaRLevel',[0.95 0.99]);
```


Step 8. Display a summary report for both portfolios.

Use the summary function to display a summary for both portfolios.
Summary = [summary(vbt1); summary(vbt2)];
disp(Summary)

PortfolioID	VaRID	VaRLevel	ObservedLevel	Observations	Failures
"S\&P, 1999-2000"	"Normal95"	0.95	0.94626	521	28
"S\&P, 1999-2000"	"Normal99"	0.99	0.98464	521	8
"S\&P, 2001-2002"	"Normal95"	0.95	0.94444	522	29
"S\&P, 2001-2002"	"Normal99"	0.99	0.98276	522	9

Step 9. Run all tests for both portfolios.

Use the runtests function to display the final test result for both portfolios.
Results = [runtests(vbt1); runtests(vbt2)];
disp(Results)

PortfolioID	VaRID	VaRLevel	TL	Bin	POF	TUFF	CC
"S\&P, 1999-2000"	"Normal95"	0.95	green	accept	accept	accept	accept
"S\&P, 1999-2000"	"Normal99"	0.99	green	accept	accept	accept	accept
"S\&P, 2001-2002"	"Normal95"	0.95	green	accept	accept	accept	accept
"S\&P, 2001-2002"	"Normal99"	0.99	yellow	accept	accept	accept	accep

See Also

varbacktest|tl|bin|pof|tuff|cc|cci|tbf|tbfi|summary|runtests

Related Examples

- "Value-at-Risk Estimation and Backtesting" on page 2-10

More About

- "Traffic Light Test" on page 2-3
- "Binomial Test" on page 2-2
- "Kupiec's POF and TUFF Tests" on page 2-3
- "Christoffersen's Interval Forecast Tests" on page 2-4
- "Haas’s Time Between Failures or Mixed Kupiec’s Test" on page 2-4

Value-at-Risk Estimation and Backtesting

This example shows how to estimate the value-at-risk (VaR) using three methods and perform a VaR backtesting analysis. The three methods are:

1 Normal distribution
2 Historical simulation
3 Exponential weighted moving average (EWMA)
Value-at-risk is a statistical method that quantifies the risk level associated with a portfolio. The VaR measures the maximum amount of loss over a specified time horizon and at a given confidence level.

Backtesting measures the accuracy of the VaR calculations. Using VaR methods, the loss forecast is calculated and then compared to the actual losses at the end of the next day. The degree of difference between the predicted and actual losses indicates whether the VaR model is underestimating or overestimating the risk. As such, backtesting looks retrospectively at data and helps to assess the VaR model.

The three estimation methods used in this example estimate the VaR at 95% and 99% confidence levels.

Load the Data and Define the Test Window

Load the data. The data used in this example is from a time series of returns on the S\&P index from 1993 through 2003.

```
load VaRExampleData.mat
Returns = tick2ret(sp);
DateReturns = dates(2:end);
SampleSize = length(Returns);
```

Define the estimation window as 250 trading days. The test window starts on the first day in 1996 and runs through the end of the sample.

```
TestWindowStart = find(year(DateReturns)==1996,1);
TestWindow = TestWindowStart : SampleSize;
EstimationWindowSize = 250;
```

For a VaR confidence level of 95% and 99%, set the complement of the VaR level.
pVaR = [0.05 0.01];
These values mean that there is at most a 5% and 1% probability, respectively, that the loss incurred will be greater than the maximum threshold (that is, greater than the VaR).

Compute the VaR Using the Normal Distribution Method

For the normal distribution method, assume that the profit and loss of the portfolio is normally distributed. Using this assumption, compute the VaR by multiplying the z-score, at each confidence level by the standard deviation of the returns. Because VaR backtesting looks retrospectively at data, the VaR "today" is computed based on values of the returns in the last $N=250$ days leading to, but not including, "today."

```
Zscore = norminv(pVaR);
Normal95 = zeros(length(TestWindow),1);
```

```
Normal99 = zeros(length(TestWindow),1);
for t = TestWindow
    i = t - TestWindowStart + 1;
    EstimationWindow = t-EstimationWindowSize:t-1;
    Sigma = std(Returns(EstimationWindow));
    Normal95(i) = -Zscore(1)*Sigma;
    Normal99(i) = -Zscore(2)*Sigma;
end
figure;
plot(DateReturns(TestWindow),[Normal95 Normal99])
xlabel('Date')
ylabel('VaR')
legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')
title('VaR Estimation Using the Normal Distribution Method')
```


The normal distribution method is also known as parametric VaR because its estimation involves computing a parameter for the standard deviation of the returns. The advantage of the normal distribution method is its simplicity. However, the weakness of the normal distribution method is the assumption that returns are normally distributed. Another name for the normal distribution method is the variance-covariance approach.

Compute the VaR Using the Historical Simulation Method

Unlike the normal distribution method, the historical simulation (HS) is a nonparametric method. It does not assume a particular distribution of the asset returns. Historical simulation forecasts risk by
assuming that past profits and losses can be used as the distribution of profits and losses for the next period of returns. The VaR "today" is computed as the p th-quantile of the last N returns prior to "today."

```
Historical95 = zeros(length(TestWindow),1);
Historical99 = zeros(length(TestWindow),1);
for t = TestWindow
    i = t - TestWindowStart + 1;
    EstimationWindow = t-EstimationWindowSize:t-1;
    X = Returns(EstimationWindow);
    Historical95(i) = -quantile(X,pVaR(1));
    Historical99(i) = -quantile(X,pVaR(2));
end
figure;
plot(DateReturns(TestWindow),[Historical95 Historical99])
ylabel('VaR')
xlabel('Date')
legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')
title('VaR Estimation Using the Historical Simulation Method')
```


The preceding figure shows that the historical simulation curve has a piecewise constant profile. The reason for this is that quantiles do not change for several days until extreme events occur. Thus, the historical simulation method is slow to react to changes in volatility.

Compute the VaR Using the Exponential Weighted Moving Average Method (EWMA)

The first two VaR methods assume that all past returns carry the same weight. The exponential weighted moving average (EWMA) method assigns nonequal weights, particularly exponentially decreasing weights. The most recent returns have higher weights because they influence "today's" return more heavily than returns further in the past. The formula for the EWMA variance over an estimation window of size W_{E} is:

$$
\widehat{\sigma}_{t}^{2}=\frac{1}{c} \sum_{i=1}^{W_{E}} \lambda^{i-1} y_{t-i}^{2}
$$

where c is a normalizing constant:

$$
c=\sum_{i=1}^{W_{E}} \lambda^{i-1}=\frac{1-\lambda^{W_{E}}}{1-\lambda} \rightarrow \frac{1}{1-\lambda} \text { as } W_{E} \rightarrow \infty
$$

For convenience, we assume an infinitely large estimation window to approximate the variance:

$$
\widehat{\sigma}_{t}^{2} \approx(1-\lambda)\left(y_{t-1}^{2}+\sum_{i=2}^{\infty} \lambda^{i-1} y_{t-i}^{2}\right)=(1-\lambda) y_{t-1}^{2}+\lambda \widehat{\sigma}_{t-1}^{2}
$$

A value of the decay factor frequently used in practice is 0.94 . This is the value used in this example. For more information, see References.

Initiate the EWMA using a warm-up phase to set up the standard deviation.

```
Lambda = 0.94;
Sigma2 = zeros(length(Returns),1);
Sigma2(1) = Returns(1)^2;
for i = 2 : (TestWindowStart-1)
    Sigma2(i) = (1-Lambda) * Returns(i-1)^2 + Lambda * Sigma2(i-1);
end
```

Use the EWMA in the test window to estimate the VaR.

```
Zscore = norminv(pVaR);
EWMA95 = zeros(length(TestWindow),1);
EWMA99 = zeros(length(TestWindow),1);
for t = TestWindow
    k = t - TestWindowStart + 1;
    Sigma2(t) = (1-Lambda) * Returns(t-1)^2 + Lambda * Sigma2(t-1);
    Sigma = sqrt(Sigma2(t));
    EWMA95(k) = -Zscore(1)*Sigma;
    EWMA99(k) = -Zscore(2)*Sigma;
end
figure;
plot(DateReturns(TestWindow),[EWMA95 EWMA99])
ylabel('VaR')
xlabel('Date')
legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')
title('VaR Estimation Using the EWMA Method')
```


In the preceding figure, the EWMA reacts very quickly to periods of large (or small) returns.

VaR Backtesting

In the first part of this example, VaR was estimated over the test window with three different methods and at two different VaR confidence levels. The goal of VaR backtesting is to evaluate the performance of VaR models. A VaR estimate at 95% confidence is violated only about 5% of the time, and VaR failures do not cluster. Clustering of VaR failures indicates the lack of independence across time because the VaR models are slow to react to changing market conditions.

A common first step in VaR backtesting analysis is to plot the returns and the VaR estimates together. Plot all three methods at the 95% confidence level and compare them to the returns.

```
ReturnsTest = Returns(TestWindow);
DatesTest = DateReturns(TestWindow);
figure;
plot(DatesTest,[ReturnsTest -Normal95 -Historical95 -EWMA95])
ylabel('VaR')
xlabel('Date')
legend({'Returns','Normal','Historical','EWMA'},'Location','Best')
title('Comparison of returns and VaR at 95% for different models')
```


To highlight how the different approaches react differently to changing market conditions, you can zoom in on the time series where there is a large and sudden change in the value of returns. For example, around August 1998:

```
ZoomInd = (DatesTest >= datetime(1998,8,5)) & (DatesTest <= datetime(1998,10,31));
VaRData = [-Normal95(ZoomInd) -Historical95(ZoomInd) -EWMA95(ZoomInd)];
VaRFormat = {'-','--','-.'};
D = DatesTest(ZoomInd);
R = ReturnsTest(ZoomInd);
N = Normal95(ZoomInd);
H = Historical95(ZoomInd);
E = EWMA95(ZoomInd);
IndN95 = ( 
IndHS95 = ( }<<-H\mathrm{ );
IndEWMA95 = ( 
figure;
bar(D,R,0.5,'FaceColor',[0.7 0.7 0.7]);
hold on
for i = 1 : size(VaRData,2)
    stairs(D-0.5,VaRData(:,i),VaRFormat{i});
end
ylabel('VaR')
xlabel('Date')
legend({'Returns','Normal','Historical','EWMA'},'Location','Best','AutoUpdate','Off')
title('95% VaR violations for different models')
ax = gca;
ax.ColorOrderIndex = 1;
```

```
plot(D(IndN95),-N(IndN95),'O',D(IndHS95),-H(IndHS95),'0',...
    D(IndEWMA95),-E(IndEWMA95),'0','MarkerSize',8,'LineWidth',1.5)
xlim([D(1)-1, D(end)+1])
hold off;
```

95\% VaR violations for different models

A VaR failure or violation happens when the returns have a negative VaR. A closer look around August 27 to August 31 shows a significant dip in the returns. On the dates starting from August 27 onward, the EWMA follows the trend of the returns closely and more accurately. Consequently, EWMA has fewer VaR violations (two (2) violations, yellow diamonds) compared to the Normal Distribution approach (seven (7) violations, blue stars) or the Historical Simulation method (eight (8) violations, red squares).

Besides visual tools, you can use statistical tests for VaR backtesting. In Risk Management Toolbox ${ }^{\mathrm{TM}}$, a varbacktest object supports multiple statistical tests for VaR backtesting analysis. In this example, start by comparing the different test results for the normal distribution approach at the 95% and 99\% VaR levels.

```
vbt = varbacktest(ReturnsTest,[Normal95 Normal99],'PortfolioID','S&P','VaRID',...
    {'Normal95','Normal99'},'VaRLevel',[0.95 0.99]);
summary(vbt)
```

ans $=2 \times 10$ table
PortfolioID
"S\&P"
VaRID
VaRLevel
ObservedLevel
0.94863
1966
101
"S\&P"
"Normal99"
0.99
0.98372
1966
32

The summary report shows that the observed level is close enough to the defined VaR level. The 95\% and 99% VaR levels have at most ($1-\mathrm{VaR}$ _level) x N expected failures, where N is the number of observations. The failure ratio shows that the Normal95 VaR level is within range, whereas the Normal99 VaR Level is imprecise and under-forecasts the risk. To run all tests supported in varbacktest, use runtests.

ans=2×11 table PortfolioID	VaRID	VaRLevel	TL	Bin	POF	TUFF	CC
"S\&P"	"Normal95"	0.95	green	accept	accept	accept	accept
"S\&P"	"Normal99"	0.99	yellow	reject	reject	accept	reject

The 95% VaR passes the frequency tests, such as traffic light, binomial and proportion of failures tests (tl , bin, and pof columns). The 99% VaR does not pass these same tests, as indicated by the yellow and reject results. Both confidence levels got rejected in the conditional coverage independence, and time between failures independence (cci and tbfi columns). This result suggests that the VaR violations are not independent, and there are probably periods with multiple failures in a short span. Also, one failure may make it more likely that other failures will follow in subsequent days. For more information on the tests methodologies and the interpretation of results, see varbacktest and the individual tests.

Using a varbacktest object, run the same tests on the portfolio for the three approaches at both VaR confidence levels.

```
vbt = varbacktest(ReturnsTest,[Normal95 Historical95 EWMA95 Normal99 Historical99 ...
    EWMA99],'PortfolioID','S&P','VaRID',{'Normal95','Historical95','EWMA95',...
    'Normal99','Historical99','EWMA99'},'VaRLevel',[0.95 0.95 0.95 0.99 0.99 0.99]);
runtests(vbt)
```

ans=6×11 table

PortfolioID	VaRID		VaRLevel		TL		Bin		POF		TUFF

The results are similar to the previous results, and at the 95% level, the frequency results are generally acceptable. However, the frequency results at the 99% level are generally rejections. Regarding independence, most tests pass the conditional coverage independence test (cci), which tests for independence on consecutive days. Notice that all tests fail the time between failures independence test (tbfi), which takes into account the times between all failures. This result suggests that all methods have issues with the independence assumption.

To better understand how these results change given market conditions, look at the years 2000 and 2002 for the 95% VaR confidence level.

```
Ind2000 = (year(DatesTest) == 2000);
vbt2000 = varbacktest(ReturnsTest(Ind2000),[Normal95(Ind2000) Historical95(Ind2000) EWMA95(Ind20
    'PortfolioID','S&P, 2000','VaRID',{'Normal','Historical','EWMA'});
runtests(vbt2000)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & TL & Bin & POF & TUFF & CC \\
\hline "S\&P, 2000" & "Normal" & 0.95 & green & accept & accept & accept & accept \\
\hline "S\&P, 2000" & "Historical" & 0.95 & green & accept & accept & accept & accept \\
\hline "S\&P, 2000" & "EWMA" & 0.95 & green & accept & accept & accept & accept \\
\hline
\end{tabular}
Ind2002 = (year(DatesTest) == 2002);
vbt2002 = varbacktest(ReturnsTest(Ind2002),[Normal95(Ind2002) Historical95(Ind2002) EWMA95(Ind20(
    'PortfolioID','S&P, 2002','VaRID',{'Normal','Historical','EWMA'});
runtests(vbt2002)
```

POF	TUFF	CC
reject	accept	reject
accept	accept	reject
accept	accept	accept

```
```

ans=3\times11 table

```
ans=3\times11 table
    PortfolioID VaRID VaRLevel TL Bin POF TUFF CC
    PortfolioID VaRID VaRLevel TL Bin POF TUFF CC
    -
    -
    "S&P, 2002"
    "S&P, 2002"
    "S&P, 2002"
    "S&P, 2002"
    "S&P, 2002
    "S&P, 2002
        _l
        _l
        VaRLevel TL Bin
```

 VaRLevel TL Bin
    ```

For the year 2000, all three methods pass all the tests. However, for the year 2002, the test results are mostly rejections for all methods. The EWMA method seems to perform better in 2002, yet all methods fail the independence tests.

To get more insight into the independence tests, look into the conditional coverage independence (cci) and the time between failures independence (tbfi) test details for the year 2002. To access the test details for all tests, run the individual test functions.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & CCI & LRatioCCI & PValueCCI & Observations \\
\hline "S\&P, 2002" & "Normal" & 0.95 & reject & 12.591 & 0.0003877 & 261 \\
\hline "S\&P, 2002" & "Historical" & 0.95 & reject & 6.3051 & 0.012039 & 261 \\
\hline "S\&P, 2002" & "EWMA" & 0.95 & reject & 4.6253 & 0.031504 & 261 \\
\hline
\end{tabular}

In the CCI test, the probability \(p 01\) of having a failure at time \(t\), knowing that there was no failure at time \(t-1\) is given by
\[
p_{01}=\frac{N_{01}}{N_{01}+N_{00}}
\]

The probability \(p 11\) of having a failure at time \(t\), knowing that there was failure at time \(t-1\) is given by
\[
p_{11}=\frac{N_{11}}{N_{11}+N_{10}}
\]

From the N00, N10, N01, N11 columns in the test results, the value of \(p 01\) is at around \(5 \%\) for the three methods, yet the values of \(p 11\) are above \(20 \%\). Because there is evidence that a failure is followed by another failure much more frequently than \(5 \%\) of the time, this CCI test fails.

In the time between failures independence test, look at the minimum, maximum, and quartiles of the distribution of times between failures, in the columns TBFMin, TBFQ1, TBFQ2, TBFQ3, TBFMax.
```

tbfi(vbt2002)

```
ans \(=3 \times 14\) table
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & TBFI & LRatioTBFI & PValueTBFI & Observation \\
\hline "S\&P, 2002" & "Normal" & 0.95 & reject & 53.936 & 0.00010087 & 261 \\
\hline "S\&P, 2002" & "Historical" & 0.95 & reject & 45.274 & 0.0010127 & 261 \\
\hline "S\&P, 2002" & "EWMA" & 0.95 & reject & 25.756 & 0.027796 & 261 \\
\hline
\end{tabular}

For a VaR level of \(95 \%\), you expect an average time between failures of 20 days, or one failure every 20 days. However, the median of the time between failures for the year 2002 ranges between 5 and 7.5 for the three methods. This result suggests that half of the time, two consecutive failures occur within 5 to 7 days, much more frequently than the 20 expected days. Consequently, more test failures occur. For the normal method, the first quartile is 1 , meaning that \(25 \%\) of the failures occur on consecutive days.

\section*{References}

Nieppola, O. Backtesting Value-at-Risk Models. Helsinki School of Economics. 2009.
Danielsson, J. Financial Risk Forecasting: The Theory and Practice of Forecasting Market Risk, with Implementation in \(R\) and MATLAB®. Wiley Finance, 2012.

\section*{See Also}
varbacktest|tl|bin|pof|tuff|cc|cci|tbf|tbfi|summary|runtests

\section*{Related Examples}
- "VaR Backtesting Workflow" on page 2-6

\section*{More About}
- "Traffic Light Test" on page 2-3
- "Binomial Test" on page 2-2
- "Kupiec's POF and TUFF Tests" on page 2-3
- "Christoffersen’s Interval Forecast Tests" on page 2-4
- "Haas's Time Between Failures or Mixed Kupiec's Test" on page 2-4

\section*{Overview of Expected Shortfall Backtesting}

Expected Shortfall (ES) is the expected loss on days when there is a Value-at-Risk (VaR) failure. If the VaR is 10 million and the ES is 12 million, we know the expected loss tomorrow; if it happens to be a very bad day, it is \(20 \%\) higher than the VaR. ES is sometimes called Conditional Value-at-Risk (CVaR), Tail Value-at-Risk (TVaR), Tail Conditional Expectation (TCE), or Conditional Tail Expectation (CTE).

There are many approaches to estimating VaR and ES, and they may lead to different VaR and ES estimates. How can one determine if models are accurately estimating the risk on a daily basis? How can one evaluate which model performs better? The varbacktest tools help validate the performance of VaR models with regards to estimated VaR values. The esbacktest, esbacktestbysim, and esbacktestbyde tools extend these capabilities to evaluate VaR models with regards to estimated ES values.

For VaR backtesting, the possibilities every day are two: either there is a VaR failure or not. If the VaR confidence level is \(95 \%\), VaR failures should happen approximately \(5 \%\) of the time. To backtest VaR, you only need to know whether the VaR was exceeded (VaR failure) or not on each day of the test window and the VaR confidence level. Risk Management Toolbox VaR backtesting tools support "frequency" (assess the proportion of failures) and "independence" (assess independence across time) tests, and these tests work with the binary sequence of "failure" or "no-failure" results over the test window.

For expected shortfall (ES), the possibilities every day are infinite: The VaR may be exceeded by \(1 \%\), or by \(10 \%\), or by \(150 \%\), and so on. For example, there are three VaR failures in the following example:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Failure Data}} & \multicolumn{2}{|l|}{Severity Ratio} \\
\hline & & & & \begin{tabular}{l}
Observed \\
(-Return/VaR)
\end{tabular} & Expected (ES/VaR) \\
\hline 26-Feb-96 & -1.308 & 1.078 & 1.364 & 1.21 & 1.27 \\
\hline 8-Mar-96 & -2.051 & 1.110 & 1.404 & 1.85 & 1.27 \\
\hline 10-Apr-96 & -1.353 & 1.218 & 1.541 & 1.11 & 1.27 \\
\hline & & & & 1.39 & 1.27 \\
\hline
\end{tabular}

On failure days, the VaR is exceeded on average by \(39 \%\), but the estimated ES exceeds VaR by an average of \(27 \%\). How can you tell if \(39 \%\) is significantly larger than \(27 \%\) ? Knowing the VaR confidence level is not enough, you must also know how likely are the different exceedances over the VaR according to the VaR model. In other words, you need some distribution information about what happens beyond the VaR according to your model assumptions. For thin-tail VaR models, \(39 \%\) vs. \(27 \%\) may be a large difference. However, for a heavy-tail VaR model where a severity of twice the VaR has a non-trivial probability of happening, then \(39 \%\) vs. \(27 \%\) over the three failure dates may not be a red flag.

A key difference between VaR backtesting and ES backtesting is that most ES backtesting methods require information about the distribution of the returns on each day, or at least the distribution of the tails beyond the VaR. One exception is the "unconditional" test (see unconditionalNormal and unconditionalT) where you can get approximate test results without providing the distribution information. This is important in practice, because the "unconditional" test is much simpler to use and can be used in principle for any VaR or ES model. The trade-off is that the approximate results may be inaccurate, especially in borderline accept, or reject cases, or for certain types of distributions.

The toolbox supports the following tests for expected shortfall backtesting for table-based tests for the unconditional Acerbi-Szekely test using the esbacktest object:
- unconditionalNormal
- unconditionalT

ES backtests are necessarily approximated in that they are sensitive to errors in the predicted VaR. However, the minimally biased test has only a small sensitivity to VaR errors and the sensitivity is prudential, in the sense that VaR errors lead to a more punitive ES test. See Acerbi-Szekely (2017 and 2019) for details. When distribution information is available, the minimally biased test (minBiasRelative or minBiasAbsolute) is recommended.

The toolbox supports the following Acerbi-Szekely simulation-based tests for expected shortfall backtesting using the esbacktestbysim object:
- conditional
- unconditional
- quantile
- minBiasRelative
- minBiasAbsolute

For the Acerbi-Szekely simulation-based tests, you must provide the model distribution information as part of the inputs to esbacktestbysim.

The toolbox also supports the following Du and Escanciano tests for expected shortfall backtesting using the esbacktestbyde object:
- unconditionalDE
- conditionalDE

For the Du and Escanciano simulation-based tests, you must provide the model distribution information as part of the inputs to esbacktestbyde.

\section*{Conditional Test by Acerbi and Szekely}

The conditional test statistic by Acerbi and Szekely is based on the conditional relationship
\[
E S_{t}=-E_{t}\left[X_{t} \mid X_{t}<-V a R_{t}\right]
\]
where
\(X_{t}\) is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period \(t\).
\(\mathrm{VaR}_{\mathrm{t}}\) is the estimated VaR for period \(t\).
\(E S_{t}\) is the estimated expected shortfall for period \(t\).
The number of failures is defined as
\[
\text { NumFailures }=\sum_{t=1}^{N} I_{t}
\]
where

N is the number of periods in the test window \((t=1, \ldots, \mathrm{~N})\).
\(\mathrm{I}_{\mathrm{t}}\) is the VaR failure indicator on period \(t\) with a value of 1 if \(X_{t}<-\mathrm{VaR}\), and 0 otherwise.
The conditional test statistic is defined as
\[
Z_{\text {cond }}=\frac{1}{\text { NumFailures }} \sum_{t=1}^{N} \frac{X_{t} I_{t}}{E S_{t}}+1
\]

The conditional test has two parts. A VaR backtest must be run for the number of failures (NumFailures), and a standalone conditional test is performed for the conditional test statistic \(\mathrm{Z}_{\text {cond }}\). The conditional test accepts the model only when both the VaR test and the standalone conditional test accept the model. For more information, see conditional.

\section*{Unconditional Test by Acerbi and Szekely}

The unconditional test statistic by Acerbi and Szekely is based on the unconditional relationship,
\[
E S_{t}=-E_{t}\left[\frac{X_{t} I_{t}}{p_{V a R}}\right]
\]
where
\(\mathrm{X}_{\mathrm{t}}\) is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period \(t\).
\(\mathrm{P}_{\text {VaR }}\) is the probability of VaR failure defined as 1-VaR level.
\(E S_{\mathrm{t}}\) is the estimated expected shortfall for period \(t\).
\(\mathrm{I}_{\mathrm{t}}\) is the VaR failure indicator on period \(t\) with a value of 1 if \(X_{t}<-\mathrm{VaR}\), and 0 otherwise.
The unconditional test statistic is defined as
\[
Z_{\text {uncond }}=\frac{1}{N p_{V a R}} \sum_{t=1}^{N} \frac{X_{t} I_{t}}{E S_{t}}+1
\]

The critical values for the unconditional test statistic are stable across a range of distributions, which is the basis for the table-based tests. The esbacktest class runs the unconditional test against precomputed critical values under two distributional assumptions, namely, normal distribution (thin tails, see unconditionalNormal), and \(t\) distribution with 3 degrees of freedom (heavy tails, see unconditionalT).

\section*{Quantile Test by Acerbi and Szekely}

A sample estimator of the expected shortfall for a sample \(Y_{1}, \ldots, Y_{N}\) is:
\[
\overparen{E S}(Y)=-\frac{1}{\left\lfloor N p_{V a R}\right\rfloor} \sum_{i=1}^{\left\lfloor N p_{V a R}\right\rfloor} Y_{[i]}
\]
where
N is the number of periods in the test window \((t=1, \ldots, \mathrm{~N})\).
\(\mathrm{P}_{\mathrm{VaR}}\) is the probability of VaR failure defined as 1-VaR level.
\(\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{N}}\) are the sorted sample values (from smallest to largest), and \(\left\lfloor N p_{V a R}\right\rfloor\) is the largest integer less than or equal to \(N p_{\mathrm{VaR}}\).

To compute the quantile test statistic, a sample of size N is created at each time \(t\) as follows. First, convert the portfolio outcomes to \(X_{\mathrm{t}}\) to ranks \(U_{1}=P_{1}\left(X_{1}\right), \ldots, U_{N}=P_{N}\left(X_{N}\right)\) using the cumulative distribution function \(P_{t}\). If the distribution assumptions are correct, the rank values \(U_{1}, \ldots, U_{N}\) are uniformly distributed in the interval \((0,1)\). Then at each time \(t\) :

1 Invert the ranks \(\mathrm{U}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{N}}\right)\) to get N quantiles \(P_{t}^{-1}(U)=\left(P_{t}^{-1}\left(U_{1}\right), \ldots, P_{t}^{-1}\left(U_{N}\right)\right)\).
2 Compute the sample estimator \(\overparen{E S}\left(P_{t}^{-1}(U)\right)\).
3 Compute the expected value of the sample estimator \(E\left[\overparen{E S}\left(P_{t}^{-1}(V)\right)\right]\)
where \(\mathrm{V}=\left(\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{N}}\right)\) is a sample of N independent uniform random variables in the interval \((0,1)\). This can be computed analytically.

The quantile test statistic by Acerbi and Szekely is defined as
\[
Z_{\text {quantile }}=-\frac{1}{N} \sum_{t=1}^{N} \frac{\widehat{E S}\left(P_{t}^{-1}(U)\right)}{E\left[\widehat{E S}\left(P_{t}^{-1}(V)\right)\right]}+1
\]

The denominator inside the sum can be computed analytically as
\[
E\left[\widehat{E S}\left(P_{t}^{-1}(V)\right)\right]=-\frac{N}{\left\lfloor N_{p V a R}\right\rfloor} \int_{0}^{1} I_{1-p}\left(N-\left\lfloor N_{p V a R}\right\rfloor,\left\lfloor N_{p V a R}\right\rfloor\right) P_{t}^{-1}(p) d p
\]
where \(I_{x}(z, w)\) is the regularized incomplete beta function. For more information, see betainc and quantile.

\section*{Minimally Biased Test by Acerbi and Szekely}

The minimally biased test statistic by Acerbi and Szekely is based on the following representation of the VaR and ES (see Acerbi and Szekely 2017 and 2019 for details and also Rockafellar and Uryasev 2002, and Acerbi and Tasche 2002):
\[
\begin{aligned}
& E S_{\alpha}=\min _{v} E\left[v+\frac{1}{\alpha}(X+v)_{-}\right] \\
& V a R_{\alpha}=\operatorname{argmin}_{v} E\left[v+\frac{1}{\alpha}(X+v)_{-}\right]
\end{aligned}
\]
where
\(X\) is the portfolio outcome.
\((x)_{-}\)is the negative part function defined as \((x)_{-}=\max (0,-x)\).
\(\alpha\) is \(1-\mathrm{VaR}\) level.
The test statistic has an absolute version and a relative version. The absolute version of the minimally biased test statistic is given by
\[
Z_{\text {minbias }}^{a b s}=\frac{1}{N} \sum_{t=1}^{N}\left(E S_{t}-V a R_{t}-\frac{1}{p_{V a R}}\left(X_{t}+V a R_{t}\right)_{-}\right)
\]
where
\(X_{t}\) is the portfolio outcome, that is the portfolio return or portfolio profit and loss for period \(t\).
\(V a R_{t}\) is the essential VaR for period \(t\).
\(E S_{t}\) is the expected shortfall for period \(t\).
\(p_{\text {VaR }}\) is the probability of Var Failure defined as 1-VaR level.
\(N\) is the number of periods in the test window \((t=1, \ldots N)\).
\((x)_{-}\)is the negative part function defined as \((x)_{-}=\max (0,-x)\).
The relative version of the minimally biased test statistic is given by
\[
Z_{\text {minbias }}^{\text {rel }}=\frac{1}{N} \sum_{t=1}^{N} \frac{1}{E S_{t}}\left(E S_{t}-V a R_{t}-\frac{1}{p_{V a R}}\left(X_{t}+V a R_{t}\right)_{-}\right)
\]

ES backtests are necessarily approximated in that they are sensitive to errors in the predicted VaR. However, the minimally biased test has only a small sensitivity to VaR errors and the sensitivity is prudential, in the sense that VaR errors lead to a more punitive ES test. See Acerbi-Szekely (2017 and 2019) for details. When distribution information is available, the minimally biased test is recommended. For more information, see minBiasRelative and minBiasAbsolute.

\section*{ES Backtest Using Du-Escanciano Method}

For each day, the Du-Escanciano model assumes a distribution for the returns. For example, if you have a normal distribution with a conditional variance of \(1.5 \%\), there is a corresponding cumulative distribution function \(P_{t}\). By mapping the returns \(X_{t}\) with the distribution \(P_{t}\), you get the "mapped returns" series \(U_{t}\), also known as the "ranks" series, which by construction has values between 0 and 1 (see column 2 in the following table). Let \(\alpha\) be the complement of the VaR level - for example, if the VaR level is \(95 \%, \alpha\) is \(5 \%\). If the mapped return \(U_{t}\) is smaller than \(\alpha\), then there is a VaR "violation" or VaR "failure." This is equivalent to observing a return \(X_{t}\) smaller than the negative of the VaR value for that day, since, by construction, the negative of the VaR value gets mapped to \(\alpha\). Therefore, you can compare \(U_{t}\) against \(\alpha\) without even knowing the VaR value. The series of VaR failures is denoted by \(h_{t}\) and it is a series of 0 's and 1's stored in column 3 in the following table. Finally, column 4 in the following table contains the "cumulative violations" series, denoted by \(H_{t}\). This is the severity of the mapped VaR violations on days on which the VaR is violated. For example, if the mapped return \(U_{t}\) is \(1 \%\) and \(\alpha\) is \(5 \%, H_{t}\) is \(4 \% . H_{t}\) is defined as zero if there are no VaR violations.
\begin{tabular}{|l|l|l|l|}
\hline \(\boldsymbol{X}_{\boldsymbol{t}}\) & \(\boldsymbol{U}_{\mathbf{t}}=\boldsymbol{P}_{\mathbf{t}}\left(\boldsymbol{X}_{\mathbf{t}}\right)\) & \(\boldsymbol{h}_{\mathbf{t}}=\boldsymbol{U}_{\mathbf{t}}<\boldsymbol{\alpha}\) & \(\boldsymbol{H}_{\mathbf{t}}=\left(\boldsymbol{\alpha}-\boldsymbol{U}_{\mathbf{t}}\right) * \boldsymbol{h}_{\mathbf{t}}\) \\
\hline 0.00208 & 0.5799 & 0 & 0 \\
\hline-0.01073 & 0.1554 & 0 & 0 \\
\hline-0.00825 & 0.2159 & 0 & 0 \\
\hline-0.02967 & 0.0073 & 1 & 0.0427 \\
\hline 0.01242 & 0.8745 & 0 & 0 \\
\hline
\end{tabular}


Given the violations series \(h_{t}\) and the cumulative violations series \(H_{t}\), the Du-Escanciano (DE) tests are summarized as:
\begin{tabular}{|l|l|l|}
\hline Du-Escanciano Test & VaR Test & ES Test \\
\hline Unconditional & Mean of \(h_{t}\) & Mean of \(H_{t}\) \\
\hline Conditional & Autocorrelation of \(h_{t}\) & Autocorrelation of \(H_{t}\) \\
\hline
\end{tabular}

The DE VaR tests assess the mean value and the autocorrelation of the \(h_{t}\) series, and the resulting tests overlap with known VaR tests. For example, the mean of \(h_{t}\) is expected to match \(\alpha\). In other words, the proportion of time the VaR is violated is expected to match the confidence level. This test is supported in the varbacktest class with the proportion of failures (pof) test (finite sample) and the binomial (bin) test (large-sample approximation). In turn, the conditional VaR test measures if there is a time pattern in the sequence of VaR failures (back-to-back failures, and so on). The conditional coverage independence (cci) test in the varbacktest class tests for one-lag independence. The time between failures independence (tbfi) test in the varbacktest class also assesses time independence for VaR models.

The esbacktestbyde class supports the DE ES tests. The DE ES tests assess the mean value and the autocorrelation of the \(H_{t}\) series. For the unconditional test (unconditionalDE), the expected value is \(\alpha / 2\) - for example, the average value in the bottom \(5 \%\) of a uniform ( 0,1 ) distribution is \(2.5 \%\). The conditional test (conditionalDE) assesses not only if a failure occurs but also if the failure severity is correlated to previous failure occurrences and their severities.

The test statistic for the unconditional DE ES test is
\[
U_{E S}=\frac{1}{N} \sum_{t=1}^{N} H_{t}
\]

If the number of observations is large, the test statistic is distributed as
\[
U_{E S} \underset{\operatorname{dist}}{ } N\left(\frac{\alpha}{2}, \frac{\alpha(1 / 3-\alpha / 4)}{N}\right)=P_{U}
\]
where \(N\left(\mu, \sigma^{2}\right)\) is the normal distribution with mean \(\mu\) and variance \(\sigma^{2}\).
The unconditional DE ES test is a two-sided test that checks if the test statistic is close to the expected value of \(\alpha / 2\). From the limiting distribution, a confidence level is derived. Finite-sample confidence intervals are estimated through simulation.

The test statistic for the conditional DE ES test is derived in several steps. First, define the autocovariance for lag \(j\) :
\[
\gamma_{j}=\frac{1}{N-j} \sum_{t=j+1}^{N}\left(H_{t}-\alpha / 2\right)\left(H_{t-j}-\alpha / 2\right)
\]

The autocorrelation for \(\operatorname{lag} j\) is then
\[
\rho_{j}=\frac{\gamma_{j}}{\gamma_{0}}
\]

The test statistic for \(m\) lags is then
\[
C_{E S}(m)=N \sum_{j=1}^{m} \rho_{j}^{2}
\]

If the number of observations is large, the test statistic is distributed as a chi-square distribution with \(m\) degrees of freedom:
\[
C_{E S}(m) \underset{\text { dist }}{\overrightarrow{2}} \chi_{m}^{2}
\]

The conditional DE ES test is a one-sided test to determine if the conditional DE ES test statistic is much larger than zero. If so, there is evidence of autocorrelation. The limiting distribution computes large-sample critical values. Finite-sample critical values are estimated through simulation.

\section*{Comparison of ES Backtesting Methods}

The backtesting tools supported by Risk Management Toolbox have the following requirements and features.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Backtest \\
ing Tool
\end{tabular} & \begin{tabular}{l} 
Portfol \\
ioData \\
Required
\end{tabular} & \begin{tabular}{l} 
VarData \\
Required
\end{tabular} & \begin{tabular}{l} 
ESData \\
Required
\end{tabular} & \begin{tabular}{l} 
VaRLeve \\
l \\
Required \\
a
\end{tabular} & \begin{tabular}{l} 
Portfol \\
ioID and \\
VaRID \\
Supporte \\
d
\end{tabular} & \begin{tabular}{l} 
Distrib \\
ution \\
Informat \\
ion \\
Required
\end{tabular} & \begin{tabular}{l} 
Supports \\
Multiple \\
Models
\end{tabular} & \begin{tabular}{l} 
Supports \\
Multiple \\
VaRLeve \\
ls
\end{tabular} \\
\hline \begin{tabular}{l} 
varback \\
test
\end{tabular} & Yes & Yes & No & Yes & Yes & No & Yes & Yes \\
\hline \begin{tabular}{l} 
esbackt \\
est
\end{tabular} & Yes & Yes & Yes & Yes & Yes & No & Yes & Yes \\
\hline \begin{tabular}{l} 
esbackt \\
estbysi \\
m
\end{tabular} & Yes & Yes & Yes & Yes & Yes & Yes & No & Yes \\
\hline \begin{tabular}{l} 
esbackt \\
estbyde
\end{tabular} & Yes & No & No & Yes & Yes & Yes & No & Yes \\
\hline
\end{tabular}
a VaRLevel is an optional name-value pair argument with a default value of \(95 \%\). It is recommended to set the VaRLevel when creating the backtesting object.
b For example, you can backtest a normal and a \(t\) model in the same object with varbacktest, but you need two separate instances of the esbacktestbyde class to backtest them.

Risk Management Toolbox supports the following backtesting tools and their associated tests.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Test Type & Test Name & Tests for & \begin{tabular}{l} 
Risk \\
Measure
\end{tabular} & \begin{tabular}{l} 
Critical \\
Value \\
Computatio \\
n
\end{tabular} & Use Object & \begin{tabular}{l} 
Use \\
Function
\end{tabular} \\
\hline Basel & Traffic light & Frequency & VaR & \begin{tabular}{l} 
Exact finite- \\
sample \\
(binomial)
\end{tabular} & \begin{tabular}{l} 
varbacktes \\
t
\end{tabular} & tl \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Test Type & Test Name & Tests for & \begin{tabular}{l}
Risk \\
Measure
\end{tabular} & \begin{tabular}{l}
Critical \\
Value Computatio n
\end{tabular} & Use Object & Use Function \\
\hline Various & Binomial & Frequency & VaR & Largesample normal approximatio n & varbacktes & bin \\
\hline Kupiec & Proportion of failures & Frequency & VaR & Exact finitesample (log likelihood) & varbacktes t & pof \\
\hline Kupiec & Time until first failure & Independenc e & VaR & Exact finitesample (log likelihood) & varbacktes t & tuff \\
\hline \begin{tabular}{l}
Christofferse \\
n
\end{tabular} & Conditional coverage, mixed & Frequency and independenc e & VaR & Exact finitesample (log likelihood) & varbacktes t & cc \\
\hline \begin{tabular}{l}
Christofferse \\
n
\end{tabular} & Conditional coverage, independenc e & Independenc e & VaR & Exact finitesample (log likelihood) & varbacktes t & cci \\
\hline Has & Mixed Kupiec test & Frequency and independenc e & VaR & Exact finitesample (log likelihood) & varbacktes t & tbf \\
\hline Haas & Independenc e ctime between failures) & Independenc e & VaR & Exact finitesample (log likelihood) & varbacktes t & tbfi \\
\hline AcerbiSzekely & "Test 2" or unconditiona 1 & Severity & ES & Tables of presimulated critical values, under normal and \(t\) distribution & esbacktest & unconditio nalNormal and unconditio nalT \\
\hline AcerbiSzekely & "Test 1" or conditional & Severity & ES & Finitesample simulation & esbacktest bysim & conditiona l \\
\hline AcerbiSzekely & "Test 2" or unconditiona 1 & Severity & ES & Finitesample simulation & esbacktest bysim & unconditio nal \\
\hline AcerbiSzekely & "Test 1" or ranks (quantile) & Severity & ES & Finitesample simulation & esbacktest bysim & quantile \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Test Type & Test Name & Tests for & \begin{tabular}{l} 
Risk \\
Measure
\end{tabular} & \begin{tabular}{l} 
Critical \\
Value \\
Computatio \\
n
\end{tabular} & Use Object & \begin{tabular}{l} 
Use \\
Function
\end{tabular} \\
\hline \begin{tabular}{l} 
Acerbi- \\
Szekely
\end{tabular} & \begin{tabular}{l} 
Minimally \\
Biased, \\
relative \\
version
\end{tabular} & Severity & ES & \begin{tabular}{l} 
Finite- \\
sample \\
simulation
\end{tabular} & \begin{tabular}{l} 
esbacktest \\
bysim
\end{tabular} & \begin{tabular}{l} 
minBiasRel \\
ative
\end{tabular} \\
\hline \begin{tabular}{l} 
Acerbi- \\
Szekely
\end{tabular} & \begin{tabular}{l} 
Minimally \\
Biased, \\
absolute \\
version
\end{tabular} & Severity & ES & \begin{tabular}{l} 
Finite- \\
sample \\
simulation
\end{tabular} & \begin{tabular}{l} 
esbacktest \\
bysim
\end{tabular} & \begin{tabular}{l} 
minBiasAbs \\
olute
\end{tabular} \\
\hline \begin{tabular}{l} 
Du- \\
Escanciano
\end{tabular} & \begin{tabular}{l} 
Uncondition \\
al
\end{tabular} & Severity & ES & \begin{tabular}{l} 
Large- \\
sample \\
approximatio \\
n and finite- \\
sample \\
simulation
\end{tabular} & \begin{tabular}{l} 
esbacktest \\
byde
\end{tabular} & \begin{tabular}{l} 
unconditio \\
nalDE
\end{tabular} \\
\hline \begin{tabular}{l} 
Du- \\
Escanciano
\end{tabular} & Conditional & \begin{tabular}{l} 
Independenc \\
e
\end{tabular} & ES & \begin{tabular}{l} 
Large- \\
sample \\
approximatio \\
n and finite- \\
sample \\
simulation
\end{tabular} & \begin{tabular}{l} 
esbacktest \\
byde
\end{tabular} & conditiona \\
lDE
\end{tabular}

\section*{References}
[1] Basel Committee on Banking Supervision. Supervisory Framework for the Use of "Backtesting" in Conjunction with the Internal Models Approach to Market Risk Capital Requirements. January 1996. https://www.bis.org/publ/bcbs22.htm.
[2] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December 2014.
[3] Acerbi, C., and B. Szekely. "General Properties of Backtestable Statistics. SSRN Electronic Journal. January, 2017.
[4] Acerbi, C., and B. Szekely. "The Minimally Biased Backtest for ES." Risk. September, 2019.
[5] Acerbi, C. and D. Tasche. "On the Coherence of Expected Shortfall." Journal of Banking and Finance. Vol. 26, 2002, pp. 1487-1503.
[6] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk." Management Science. Vol. 63, Issue 4, April 2017.
[7] Rockafellar, R. T. and S. Uryasev. "Conditional Value-at-Risk for General Loss Distributions." Journal of Banking and Finance. Vol. 26, 2002, pp. 1443-1471.

\section*{See Also}
esbacktestbyde |esbacktest|esbacktestbysim| varbacktest

\section*{Related Examples}
- "VaR Backtesting Workflow" on page 2-6
- "Value-at-Risk Estimation and Backtesting" on page 2-10
- "Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information" on page 2-30
- "Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
- "Expected Shortfall Estimation and Backtesting" on page 2-44
- "Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-63
- "Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-72

\title{
Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information
}

This example shows an expected shortfall (ES) backtesting workflow and the use of ES backtesting tools. The esbacktest class supports two tests -- unconditional normal and unconditional \(t\)-- which are based on Acerbi-Szekely's unconditional test statistic (also known as the Acerbi-Szekely second test). These tests use presimulated critical values for the unconditional test statistic, with an assumption of normal distribution for the normal case and a \(t\) distribution with 3 degrees of freedom for the \(t\) case.

\section*{Step 1. Load the ES backtesting data.}

Use the ESBacktestData.mat file to load the data into the workspace. This example works with the Returns numeric array. This array represents the equity returns, VaRModel1, VaRModel2, and VaRModel3, and the corresponding VaR data at \(97.5 \%\) confidence levels, generated with three different models. The expected shortfall data is contained in ESModel1, ESModel2, and ESModel3. The three model distributions used to generate the expected shortfall data in this example are normal (model 1), \(t\) with 10 degrees of freedom (model 2), and \(t\) with 5 degrees of freedom (model 3). However, this distribution information is not needed in this example because the esbacktest object does not require it.


\section*{Step 2. Generate an ES backtesting plot.}

Use the plot function to visualize the ES backtesting data. This type of visualization is a common first step when performing an ES backtesting analysis. For illustration purposes only, visualize the returns, together with VaR and ES, for a particular model.

The resulting plot shows some large violations in 1997, 1998, and 2000. The violations in 1996 look smaller in absolute terms, however relative to the volatility of that period, those violations are also significant. For the unconditional test, the magnitude of the violations and the number of violations make a difference, because the test statistic averages over the expected number of failures. If the expected number is small, but there are several violations, the effective severity for the test is larger. The year 2002 is an example of a year with small, but many VaR failures.
figure;
plot (Dates,Returns,Dates,-VaRModel1, Dates,-ESModel1)
legend('Returns','VaR','ES')
title('Test Data, Model 1, VaR level 95\%')
grid on


\section*{Step 3. Create an esbacktest object.}

Create an esbacktest object using esbacktest.
```

load ESBacktestData
ebt = esbacktest(Returns,[VaRModel1 VaRModel2 VaRModel3],[ESModel1 ESModel2 ESModel3],...
'PortfolioID',"S\&P",'VaRID',["Model1", "Model2", "Model3"], 'VaRLevel', ,VaRLevel)
ebt =
esbacktest with properties:
PortfolioData: [1966x1 double]
VaRData: [1966x3 double]
ESData: [1966x3 double]
PortfolioID: "S\&P"
VaRID: ["Model1" "Model2" "Model3"]
VaRLevel: [0.9750 0.9750 0.9750]

```

\section*{Step 4. Generate the ES summary report.}

Generate the ES summary report. The ObservedSeverity column shows the average ratio of loss to VaR on periods when the VaR is violated. The ExpectedSeverity column shows the average ratio of ES to VaR for the VaR violation periods.
```

S = summary(ebt);
disp(S)

| PortfolioID | VaRID | VaRLevel | ObservedLevel | ExpectedSeverity | ObservedSeverity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| "S\&P" | "Model1" | 0.975 | 0.97101 | 1.1928 | 1.4221 |
| "S\&P" | "Model2" | 0.975 | 0.97202 | 1.2652 | 1.4134 |
| "S\&P" | "Model3" | 0.975 | 0.97202 | 1.37 | 1.4146 |

```

\section*{Step 5. Run a report for all tests.}

Run all tests and generate a report only on the accept or reject results.
```

t = runtests(ebt);
disp(t)

| PortfolioID | VaRID | VaRLevel | UnconditionalNormal | UnconditionalT |
| :---: | :---: | :---: | :---: | :---: |
| "S\&P" | "Model1" | 0.975 | reject | reject |
| "S\&P" | "Model2" | 0.975 | reject | accept |
| "S\&P" | "Model3" | 0.975 | accept | accept |

```

\section*{Step 6. Run the unconditional normal test.}

Run the individual test for the unconditional normal test.
```

t = unconditionalNormal(ebt);
disp(t)

| PortfolioID | VaRID | | VaRLevel | | UnconditionalNormal | | PValue |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```

\section*{Step 7. Run the unconditional \(\boldsymbol{t}\) test.}

Run the individual test for the unconditional \(t\) test.
```

t = unconditionalT(ebt);
disp(t)

```
\begin{tabular}{cllllllll} 
PortfolioID & VaRID & VaRLevel & & UnconditionalT & & PValue & & TestStatistic
\end{tabular} Critica

\section*{Step 8. Run ES backtests for a particular year.}

Select a particular calendar year and run the tests for that year only by creating an esbacktest object and passing only the data of interest.
```

Year = 1996;
Ind = year(Dates)==Year;

```
```

PortID = ['S\&P, ' num2str(Year)];
PortfolioData = Returns(Ind);
VaRData = [VaRModel1(Ind) VaRModel2(Ind) VaRModel3(Ind)];
ESData = [ESModel1(Ind) ESModel2(Ind) ESModel3(Ind)];
ebt = esbacktest(PortfolioData,VaRData,ESData,...
'PortfolioID',PortID, 'VaRID', ["Model1", "Model2", "Model3"], 'VaRLevel' ,VaRLevel);
disp(ebt)
esbacktest with properties:
PortfolioData: [262x1 double]
VaRData: [262x3 double]
ESData: [262\times3 double]
PortfolioID: "S\&P, 1996"
VaRID: ["Model1" "Model2" "Model3"]
VaRLevel: [0.9750 0.9750 0.9750]
tt = runtests(ebt);
disp(tt)

| PortfolioID | VaRID | VaRLevel | | UnconditionalNormal | |
| :---: | :---: | :---: | :---: | :---: | :---: | | UnconditionalT |
| :---: |
| |
| |
| "S\&P, 1996" |

```

\section*{See Also}
esbacktest|summary|runtests|unconditionalNormal|unconditionalT

\section*{Related Examples}
- "Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
- "Expected Shortfall Estimation and Backtesting" on page 2-44

\section*{More About}
- "Overview of Expected Shortfall Backtesting" on page 2-20

\section*{Expected Shortfall (ES) Backtesting Workflow Using Simulation}

This example shows an expected shortfall (ES) backtesting workflow using the esbacktestbysim object. The tests supported in the esbacktestbysim object require as inputs not only the test data (Portfolio, VaR, and ES data), but also the distribution information of the model being tested.

The esbacktestbysim class supports five tests -- conditional, unconditional, quantile, which are based on Acerbi-Szekely (2014) and minBiasAbsolute and minBiasRelative, which are based on Acerbi-Szekely (2017 ans 2019). These tests use the distributional assumptions to simulate return scenarios, assuming the distributional assumptions are correct (null hypothesis). The simulated scenarios find the distribution of typical values for the test statistics and the significance of the tests. esbacktestbysim supports normal and \(t\) location-scale distributions (with a fixed number of degrees of freedom throughout the test window).

\section*{Step 1. Load the ES backtesting data.}

Use the ESBacktestBySimData. mat file to load the data into the workspace. This example works with the Returns numeric array. This array represents the equity returns. The corresponding VaR data and VaR confidence levels are in VaR and VaRLevel. The expected shortfall data is contained in ES.
load ESBacktestBySimData

\section*{Step 2. Generate an ES backtesting plot.}

Use the plot function to visualize the ES backtesting data. This type of visualization is a common first step when performing an ES backtesting analysis. This plot displays the returns data against the VaR and ES data.
```

VaRInd = 2;
figure;
plot(Dates,Returns,Dates,-VaR(:,VaRInd),Dates,-ES(:,VaRInd))
legend('Returns','VaR','ES')
title(['Test Data, ' num2str(VaRLevel(VaRInd)*100) '% Confidence'])
grid on

```


\section*{Step 3. Create an esbacktestbysim object.}

Create an esbacktestbysim object using esbacktestbysim. The Distribution information is used to simulate returns to estimate the significance of the tests. The simulation to estimate the significance is run by default when you create the esbacktestbysim object. Therefore, the test results are available when you create the object. You can set the optional name-value pair input argument 'Simulate' to false to avoid the simulation, in which case you can use the simulate function before querying for test results.
```

rng('default'); % for reproducibility
IDs = ["t(dof) 95%","t(dof) 97.5%","t(dof) 99%"];
IDs = strrep(IDs,"dof",num2str(DoF));
ebts = esbacktestbysim(Returns,VaR,ES,Distribution,...
'Degrees0fFreedom',DoF,...
'Location',Mu,...
'Scale',Sigma,...
'PortfolioID',"S\&P", ...
'VaRID',IDs,...
'VaRLevel',VaRLevel);
disp(ebts)
esbacktestbysim with properties:
PortfolioData: [1966x1 double]
VaRData: [1966x3 double]
ESData: [1966x3 double]
Distribution: [1x1 struct]

```
```

 PortfolioID: "S&P"
 VaRID: ["t(10) 95%" "t(10) 97.5%" "t(10) 99%"]
 VaRLevel: [0.9500 0.9750 0.9900]
 disp(ebts.Distribution) % distribution information stored in the 'Distribution' property
Name: "t"
DegreesOfFreedom: 10
Location: 0
Scale: [1966x1 double]

```

\section*{Step 4. Generate the ES summary report.}

The ES summary report provides information about the severity of the violations, that is, how large the loss is compared to the VaR on days when the VaR was violated. The ObservedSeverity (or observed average severity ratio) column is the ratio of loss to VaR over days when the VaR is violated. The ExpectedSeverity (or expected average severity ratio) column shows the average of the ratio of ES to VaR on the days when the VaR is violated.
```

S = summary(ebts);
disp(S)

| PortfolioID | VaRID | | VaRLevel | ObservedLevel | ExpectedSeverity | ObservedSev |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| "S\&P" | "t(10) | 95\%" | 0.95 | 0.94812 | 1.3288 | 1.4515 |
| "S\&P" | "t(10) | 97.5\%" | 0.975 | 0.97202 | 1.2652 | 1.4134 |
| "S\&P" | "t(10) | 99\%" | 0.99 | 0.98627 | 1.2169 | 1.3947 |

```

\section*{Step 5. Run a report for all tests.}

Run all tests and generate a report on only the accept or reject results.
```

t = runtests(ebts);
disp(t)

```


\section*{Step 6. Run the conditional test.}

Run the individual test for the conditional test (also known as the first Acerbi-Szekely test). The second output (s) contains simulated test statistic values, assuming the distributional assumptions are correct. Each row of the s output matches the VaRID in the corresponding row of the \(t\) output. Use these simulated statistics to determine the significance of the tests.
```

[t,s] = conditional(ebts);
disp(t)

| PortfolioID | VaRID | | VaRLevel | Conditional | Conditionalonly | PValue |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| "S\&P" | "t(10) | 95\%" | 0.95 | reject | reject | 0 |
| "S\&P" | "t(10) | 97.5\%" | 0.975 | reject | reject | 0.001 |
| "S\&P" | "t(10) | 99\%" | 0.99 | reject | reject | 0.003 |

```
whos s
\begin{tabular}{llll} 
Name & Size & Bytes Class Attributes \\
s & \(3 \times 1000\) & 24000 & double
\end{tabular}

\section*{Step 7. Visualize the significance of the conditional test.}

Visualize the significance of the conditional test using histograms to show the distribution of typical values (simulation results). In the histograms, the asterisk shows the value of the test statistic observed for the actual returns. This is a visualization of the standalone conditional test. The final conditional test result also depends on a preliminary VaR backtest, as shown in the conditional test output.
```

NumVaRs = height(t);
figure;
for VaRInd = 1:NumVaRs
subplot(NumVaRs,1,VaRInd)
histogram(s(VaRInd,:));
hold on;
plot(t.TestStatistic(VaRInd),0,'*');
hold off;
Title = sprintf('Conditional: %s, p-value: %4.3f',t.VaRID(VaRInd),t.PValue(VaRInd));
title(Title)
end

```


\section*{Step 8. Run the unconditional test.}

Run the individual test for the unconditional test (also known as the second Acerbi-Szekely test).


\section*{Step 9. Visualize the significance of the unconditional test.}

Visualize the significance of the unconditional test using histograms to show the distribution of typical values (simulation results). In the histograms, the asterisk shows the value of the test statistic observed for the actual returns.
```

NumVaRs = height(t);
figure;
for VaRInd = 1:NumVaRs
subplot(NumVaRs,1,VaRInd)
histogram(s(VaRInd,:));
hold on;
plot(t.TestStatistic(VaRInd),0,'*');
hold off;
Title = sprintf('Unconditional: %s, p-value: %4.3f',t.VaRID(VaRInd),t.PValue(VaRInd));
title(Title)
end

```


\section*{Step 10. Run the quantile test.}

Run the individual test for the quantile test (also known as the third Acerbi-Szekely test).
```

[t,s] = quantile(ebts);
disp(t)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PortfolioID & \multicolumn{2}{|c|}{VaRID} & VaRLevel & Quantile & PValue & TestStatistic & CriticalV \\
\hline "S\&P" & "t(10) & 95\%" & 0.95 & reject & 0.002 & -0.10602 & -0.0557 \\
\hline "S\&P" & "t(10) & 97.5\%" & 0.975 & reject & 0 & -0.15697 & -0.0735 \\
\hline "S\&P" & "t(10) & 99\%" & 0.99 & reject & 0 & -0.26561 & -0.101 \\
\hline
\end{tabular}

\section*{Step 11. Visualize the significance of the quantile test.}

Visualize the significance of the quantile test using histograms to show the distribution of typical values (simulation results). In the histograms, the asterisk shows the value of the test statistic observed for the actual returns.
```

NumVaRs = height(t);
figure;
for VaRInd = 1:NumVaRs
subplot(NumVaRs,1,VaRInd)
histogram(s(VaRInd,:));
hold on;
plot(t.TestStatistic(VaRInd),0,'*');
hold off;

```
```

 Title = sprintf('Quantile: %s, p-value: %4.3f',t.VaRID(VaRInd),t.PValue(VaRInd));
 title(Title)
    ```
end

Quantile: t(10) 95\%, p-value: 0.002


Quantile: t(10) 97.5\%, p-value: 0.000


Quantile: t(10) 99\%, p-value: 0.000


\section*{Step 10. Run the minBiasAbsolute test.}

Run the individual test for the minBiasAbsolute test.
```

[t,s] = minBiasAbsolute(ebts);

```
disp(t)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & MinBiasAbsolute & PValue & TestStatistic \\
\hline "S\&P" & "t(10) 95\%" & 0.95 & accept & 0.062 & -0.0014247 \\
\hline "S\&P" & "t(10) 97.5\%" & 0.975 & reject & 0.029 & -0.0026674 \\
\hline "S\&P" & "t(10) 99\%" & 0.99 & reject & 0.005 & -0.0060982 \\
\hline
\end{tabular}

\section*{Step 11. Visualize the significance of the minBiasAbsolute test.}

Visualize the significance of the minBiasAbsolute test using histograms to show the distribution of typical values (simulation results). In the histograms, the asterisk shows the value of the test statistic observed for the actual returns.
```

NumVaRs = height(t);
figure;
for VaRInd = 1:NumVaRs
subplot(NumVaRs,1,VaRInd)

```
```

 histogram(s(VaRInd,:));
 hold on;
 plot(t.TestStatistic(VaRInd),0,'*');
 hold off;
 Title = sprintf('minBiasAbsolute: %s, p-value: %4.3f',t.VaRID(VaRInd),t.PValue(VaRInd));
 title(Title)
 end

```


\section*{Step 10. Run the minBiasRelative test.}

Run the individual test for the minBiasRelative test.
```

[t,s] = minBiasRelative(ebts);
disp(t)

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PortfolioID & \multicolumn{2}{|c|}{VaRID} & VaRLevel & MinBiasRelative & PValue & TestStatistic \\
\hline "S\&P" & "t(10) & 95\%" & 0.95 & reject & 0.003 & -0.10509 \\
\hline "S\&P" & "t(10) & 97.5\%" & 0.975 & reject & 0 & -0.15603 \\
\hline "S\&P" & "t(10) & 99\%" & 0.99 & reject & 0 & -0.26716 \\
\hline
\end{tabular}

\section*{Step 11. Visualize the significance of the minBiasAbsolute test.}

Visualize the significance of the minBiasRelative test using histograms to show the distribution of typical values (simulation results). In the histograms, the asterisk shows the value of the test statistic observed for the actual returns.
```

NumVaRs = height(t);
figure;
for VaRInd = 1:NumVaRs
subplot(NumVaRs,1,VaRInd)
histogram(s(VaRInd,:));
hold on;
plot(t.TestStatistic(VaRInd),0,'*');
hold off;
Title = sprintf('minBiasRelative: %s, p-value: %4.3f',t.VaRID(VaRInd),t.PValue(VaRInd));
title(Title)
end

```
minBiasRelative: \(\mathrm{t}(\mathbf{1 0 )} \mathbf{9 5 \%}\), p-value: \(\mathbf{0 . 0 0 3}\)

minBiasRelative: \(\mathbf{t}(\mathbf{1 0}) 97.5 \%\), p-value: 0.000

minBiasRelative: \(\mathbf{t ( 1 0 )} 99 \%\), p-value: 0.000


\section*{Step 12. Run a new simulation to estimate the significance of the tests.}

Run the simulation again using 5000 scenarios to generate a new set of test results. If the initial test results for one of the tests are borderline, using a larger simulation can help clarify the test results.
ebts = simulate(ebts,'NumScenarios',5000);
t = unconditional(ebts); \% new results for unconditional test disp(t)

\begin{tabular}{llrlrr} 
"S\&P" & "t(10) 97.5\%" & 0.975 & reject & 0.0456 & -0.25011 \\
"S\&P" & "t(10) 99\%" & 0.99 & reject & 0.0104 & -0.57396
\end{tabular}

\section*{See Also}
summary | runtests | conditional | unconditional | quantile | simulate | minBiasRelative|minBiasAbsolute

\section*{Related Examples}
- "Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information" on page 2-30
- "Expected Shortfall Estimation and Backtesting" on page 2-44
- "Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-63

\section*{More About}
- "Overview of Expected Shortfall Backtesting" on page 2-20

\section*{Expected Shortfall Estimation and Backtesting}

This example shows how to perform estimation and backtesting of Expected Shortfall models.
Value-at-Risk (VaR) and Expected Shortfall (ES) must be estimated together because the ES estimate depends on the VaR estimate. Using historical data, this example estimates VaR and ES over a test window, using historical and parametric VaR approaches. The parametric VaR is calculated under the assumption of normal and \(t\) distributions.

This example runs the ES back tests supported in the esbacktest, esbacktestbysim, and esbacktestbyde functionality to assess the performance of the ES models in the test window.

The esbacktest object does not require any distribution information. Like the varbacktest object, the esbacktest object only takes test data as input. The inputs to esbacktest include portfolio data, VaR data and corresponding VaR level, and also the ES data, since this is what is back tested. Like varbacktest, esbacktest runs tests for a single portfolio, but can back test multiple models and multiple VaR levels at once. The esbacktest object uses precomputed tables of critical values to determine if the models should be rejected. These table-based tests can be applied as approximate tests for any VaR model. In this example, they are applied to back test historical and parametric VaR models. They could be used for other VaR approaches such as Monte-Carlo or Extreme-Value models.

In contrast, the esbacktestbysim and esbacktestbyde objects require the distribution information, namely, the distribution name (normal or \(t\) ) and the distribution parameters for each day in the test window. esbacktestbysim and esbacktestbyde can only back test one model at a time because they are linked to a particular distribution, although you can still back test multiple VaR levels at once. The esbacktestbysim object implements simulation-based tests and it uses the provided distribution information to run simulations to determine critical values. The esbacktestbyde object implements tests where the critical values are derived from either a largesample approximation or a simulation (finite sample). The conditionalDE test in the esbacktestbyde object tests for independence over time, to assess if there is evidence of autocorrelation in the series of tail losses. All other tests are severity tests to assess if the magnitude of the tail losses is consistent with the model predictions. Both the esbacktestbysim and esbacktestbyde objects support normal and \(t\) distributions. These tests can be used for any model where the underlying distribution of portfolio outcomes is normal or \(t\), such as exponentially weighted moving average (EWMA), delta-gamma, or generalized autoregressive conditional heteroskedasticity (GARCH) models.

For additional information on the ES backtesting methodology, see esbacktest, esbacktestbysim, and esbacktestbyde, also see [1 on page 2-61], [2 on page 2-61], [3 on page 2-61] and [5 on page 2-61] in the References.

\section*{Estimate VaR and ES}

The data set used in this example contains historical data for the S\&P index spanning approximately 10 years, from the middle of 1993 through the middle of 2003. The estimation window size is defined as 250 days, so that a full year of data is used to estimate both the historical VaR, and the volatility. The test window in this example runs from the beginning of 1995 through the end of 2002.

Throughout this example, a VaR confidence level of \(97.5 \%\) is used, as required by the Fundamental Review of the Trading Book (FRTB) regulation; see [4 on page 2-61].
```

load VaRExampleData.mat
Returns = tick2ret(sp);

```
```

DateReturns = dates(2:end);
SampleSize = length(Returns);
TestWindowStart = find(year(DateReturns)==1995,1);
TestWindowEnd = find(year(DateReturns)==2002,1,'last');
TestWindow = TestWindowStart:TestWindowEnd;
EstimationWindowSize = 250;
DatesTest = DateReturns(TestWindow);
ReturnsTest = Returns(TestWindow);
VaRLevel = 0.975;

```

The historical VaR is a non-parametric approach to estimate the VaR and ES from historical data over an estimation window. The VaR is a percentile, and there are alternative ways to estimate the percentile of a distribution based on a finite sample. One common approach is to use the prctile function. An alternative approach is to sort the data and determine a cut point based on the sample size and VaR confidence level. Similarly, there are alternative approaches to estimate the ES based on a finite sample.

The hHistoricalVaRES local function on the bottom of this example uses a finite-sample approach for the estimation of VaR and ES following the methodology described in [7 on page 2-61]. In a finite sample, the number of observations below the VaR may not match the total tail probability corresponding to the VaR level. For example, for 100 observations and a VaR level of \(97.5 \%\), the tail observations are 2 , which is \(2 \%\) of the sample, however the desired tail probability is \(2.5 \%\). It could be even worse for samples with repeated observed values, for example, if the second and third sorted values were the same, both equal to the VaR, then only the smallest observed value in the sample would have a value less than the VaR, and that is \(1 \%\) of the sample, not the desired \(2.5 \%\). The method implemented in hHistoricalVaRES makes a correction so that the tail probability is always consistent with the VaR level; see [7 on page 2-61] for details.
```

VaR_Hist = zeros(length(TestWindow),1);
ES_Hist = zeros(length(TestWindow),1);
for t = TestWindow
i = t - TestWindowStart + 1;
EstimationWindow = t-EstimationWindowSize:t-1;
[VaR_Hist(i),ES_Hist(i)] = hHistoricalVaRES(Returns(EstimationWindow),VaRLevel);
end

```

The following plot shows the daily returns, and the VaR and ES estimated with the historical method.
```

figure;
plot(DatesTest,ReturnsTest,DatesTest,-VaR_Hist,DatesTest,-ES_Hist)
legend('Returns','VaR','ES','Location','southeast')
title('Historical VaR and ES')
grid on

```


For the parametric models, the volatility of the returns must be computed. Given the volatility, the VaR, and ES can be computed analytically.

A zero mean is assumed in this example, but can be estimated in a similar way.
For the normal distribution, the estimated volatility is used directly to get the VaR and ES. For the \(t\) location-scale distribution, the scale parameter is computed from the estimated volatility and the degrees of freedom.

The hNormalVaRES and hTVaRES local functions take as inputs the distribution parameters (which can be passed as arrays), and return the VaR and ES. These local functions use the analytical expressions for VaR and ES for normal and \(t\) location-scale distributions, respectively; see [6 on page 2-61] for details.
```

% Estimate volatility over the test window
Volatility = zeros(length(TestWindow),1);
for t = TestWindow
i = t - TestWindowStart + 1;
EstimationWindow = t-EstimationWindowSize:t-1;
Volatility(i) = std(Returns(EstimationWindow));
end
% Mu=0 in this example
Mu = 0;
% Sigma (standard deviation parameter) for normal distribution = Volatility
SigmaNormal = Volatility;
% Sigma (scale parameter) for t distribution = Volatility * sqrt((DoF-2)/DoF)
SigmaT10 = Volatility*sqrt((10-2)/10);
SigmaT5 = Volatility*sqrt((5-2)/5);

```
```

% Estimate VaR and ES, normal
[VaR Normal,ES Normal] = hNormalVaRES(Mu,SigmaNormal,VaRLevel);
% Estimate VaR and ES, t with 10 and 5 degrees of freedom
[VaR_T10,ES_T10] = hTVaRES(10,Mu,SigmaT10,VaRLevel);
[VaR_T5,ES_T5] = hTVaRES(5,Mu,SigmaT5,VaRLevel);

```

The following plot shows the daily returns, and the VaR and ES estimated with the normal method.
```

figure;
plot(DatesTest,ReturnsTest,DatesTest, -VaR_Normal,DatesTest,-ES_Normal)
legend('Returns','VaR','ES','Location','southeast')
title('Normal VaR and ES')
grid on

```


For the parametric approach, the same steps can be used to estimate the VaR and ES for alternative approaches, such as EWMA, delta-gamma approximations, and GARCH models. In all these parametric approaches, a volatility is estimated every day, either from an EWMA update, from a delta-gamma approximation, or as the conditional volatility of a GARCH model. The volatility can then be used as above to get the VaR and ES estimates for either normal or \(t\) location-scale distributions.

\section*{ES Backtest Without Distribution Information}

The esbacktest object offers two back tests for ES models. Both tests use the unconditional test statistic proposed by Acerbi and Szekely in [1 on page 2-61], given by
\[
Z_{\text {uncond }}=\frac{1}{\mathrm{~Np} \mathrm{VaR}^{2}} \sum_{t=1}^{N} \frac{X_{t} I_{t}}{\mathrm{ES}_{t}}+1
\]
where
- \(N\) is the number of time periods in the test window.
- \(X_{t}\) is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period \(t\).
- \(\quad p_{\mathrm{VaR}}\) is the probability of VaR failure defined as \(1-\mathrm{VaR}\) level.
- \(E S_{t}\) is the estimated expected shortfall for period \(t\).
- \(I_{t}\) is the VaR failure indicator on period \(t\) with a value of 1 if \(X_{t}<-\mathrm{VaR}_{t}\), and 0 otherwise.

The expected value for this test statistic is 0 , and it is negative when there is evidence of risk underestimation. To determine how negative it should be to reject the model, critical values are needed, and to determine critical values, distributional assumptions are needed for the portfolio outcomes \(X_{t}\).

The unconditional test statistic turns out to be stable across a range of distributional assumptions for \(X_{t}\), from thin-tailed distributions such as normal, to heavy-tailed distributions such as \(t\) with low degrees of freedom (high single digits). Only the most heavy-tailed \(t\) distributions (low single digits) lead to more noticeable differences in the critical values. See [1 on page 2-61] for details.

The esbacktest object takes advantage of the stability of the critical values of the unconditional test statistic and uses tables of precomputed critical values to run ES back tests. esbacktest has two sets of critical-value tables. The first set of critical values assumes that the portfolio outcomes \(X_{t}\) follow a standard normal distribution; this is the unconditionalNormal test. The second set of critical values uses the heaviest possible tails, it assumes that the portfolio outcomes \(X_{t}\) follow a \(t\) distribution with 3 degrees of freedom; this is the unconditionalT test.

The unconditional test statistic is sensitive to both the severity of the VaR failures relative to the ES estimate, and also to the number of VaR failures (how many times the VaR is violated). Therefore, a single but very large VaR failure relative to the ES (or only very few large losses) may cause the rejection of a model in a particular time window. A large loss on a day when the ES estimate is also large may not impact the test results as much as a large loss when the ES is smaller. And a model can also be rejected in periods with many VaR failures, even if all the VaR violations are relatively small and only slightly higher than the VaR. Both situations are illustrated in this example.

The esbacktest object takes as input the test data, but no distribution information is provided to esbacktest. Optionally, you can specify ID's for the portfolio, and for each of the VaR and ES models being backtested. Although the model ID's in this example do have distribution references (for example, "normal" or "t 10"), these are only labels used for reporting purposes. The tests do not use the fact that the first model is a historical VaR method, or that the other models are alternative parametric VaR models. The distribution parameters used to estimate the VaR and ES in the previous section are not passed to esbacktest, and are not used in any way in this section. These parameters, however, must be provided for the simulation-based tests supported in the esbacktestbysim object discussed in the Simulation-Based Tests on page 2-55 section, and for the tests supported in the esbacktestbyde object discussed in the Large-Sample and Simulation Tests on page 2-58 section.
```

ebt = esbacktest(ReturnsTest,[VaR_Hist VaR_Normal VaR_T10 VaR_T5],...
[ES_Hist ES_Normal ES_T10 ES_T\overline{5}],'PortfolioID',"S\&\overline{P}, 1995-2002",..
'Va\overline{RID',["Hīstorical"-"Normā̄","T 10","T 5"],'VaRLevel',VaRLevel);}
disp(ebt)
esbacktest with properties:
PortfolioData: [2087x1 double]
VaRData: [2087x4 double]
ESData: [2087\times4 double]
PortfolioID: "S\&P, 1995-2002"
VaRID: ["Historical" "Normal" "T 10" "T 5"]
VaRLevel: [0.9750 0.9750 0.9750 0.9750]

```

Start the analysis by running the summary function.
```

s = summary(ebt);
disp(s)
PortfolioID
"S\&P, 1995-2002"
"S\&P, 1995-2002"
"S\&P, 1995-2002"
"S\&P, 1995-2002"

VaRID
"Historical"
"Normal"
"T 10"
"T 5"

```

VaRLevel
\(\qquad\)
0.975
0.975
0.975
0.975

ObservedLevel
\(\qquad\)
0.96694
0.97077
0.97173
0.97173

ExpectedSeverity
1.3711
1.1928
1.2652
1.37

The ObservedSeverity column shows the average ratio of loss to VaR on periods when the VaR was violated. The ExpectedSeverity column uses the average ratio of ES to VaR for the VaR violation periods. For the "Historical" and "T 5" models, the observed and expected severities are comparable. However, for the "Historical" method, the observed number of failures (Failures column) is considerably higher than the expected number of failures (Expected column), about 32\% higher (see the Ratio column). Both the "Normal" and the "T 10" models have observed severities much higher than the expected severities.
figure;
subplot \((2,1,1)\)
bar(categorical(s.VaRID),[s.ExpectedSeverity,s.ObservedSeverity])
ylim([1 1.5])
legend('Expected','Observed','Location','southeast')
title('Average Severity Ratio')
subplot (2,1,2)
bar(categorical(s.VaRID), [s.Expected, s.Failures])
ylim([40 70])
legend('Expected','Observed','Location','southeast')
title('Number of VaR Failures')


Number of VaR Failures


The runtests function runs all tests and reports only the accept or reject result. The unconditional normal test is more strict. For the 8 -year test window here, two models fail both tests ("Historical" and "Normal"), one model fails the unconditional normal test, but passes the unconditional t test ("T 10"), and one model passes both tests ("T 5").
```

t = runtests(ebt);

```
disp(t)
\begin{tabular}{|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & UnconditionalNormal & UnconditionalT \\
\hline "S\&P, 1995-2002" & "Historical" & 0.975 & reject & reject \\
\hline "S\&P, 1995-2002" & "Normal" & 0.975 & reject & reject \\
\hline "S\&P, 1995-2002" & "T 10" & 0.975 & reject & accept \\
\hline "S\&P, 1995-2002" & "T 5" & 0.975 & accept & accept \\
\hline
\end{tabular}

Additional details on the tests can be obtained by calling the individual test functions. Here are the details for the unconditionalNormal test.
```

t = unconditionalNormal(ebt);
disp(t)

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & UnconditionalNormal & PValue & TestStat \\
\hline "S\&P, 1995-2002" & "Historical" & 0.975 & reject & 0.0047612 & -0.379 \\
\hline "S\&P, 1995-2002" & "Normal" & 0.975 & reject & 0.0043287 & -0.387 \\
\hline "S\&P, 1995-2002" & "T 10" & 0.975 & reject & 0.037528 & -0.25 \\
\hline "S\&P, 1995-2002" & "T 5" & 0.975 & accept & 0.13069 & -0.161 \\
\hline
\end{tabular}

Here are the details for the unconditionalT test.
```

t = unconditionalT(ebt);
disp(t)

PortfolioID	VaRID	VaRLevel	UnconditionalT	PValue	TestStatistic
"S\&P, 1995-2002"	"Historical"	0.975	reject	0.017032	-0.37917
"S\&P, 1995-2002"	"Normal"	0.975	reject	0.015375	-0.38798
"S\&P, 1995-2002"	"T 10"	0.975	accept	0.062835	-0.2569
"S\&P, 1995-2002"	"T 5"	0.975	accept	0.16414	-0.16179

```

\section*{Using the Tests for More Advanced Analyses}

This section shows how to use the esbacktest object to run user-defined traffic-light tests, and also how to run tests over rolling test windows.

One way to define a traffic-light test is by combining the results from the unconditional normal and the unconditional \(t\) tests. Because the unconditional normal is more strict, one can define a trafficlight test with these levels:
- Green: The model passes both the unconditional normal and unconditional \(t\) tests.
- Yellow: The model fails the unconditional normal test, but passes the unconditional \(t\) test.
- Red: The model is rejected by both the unconditional normal and unconditional \(t\) tests.
t = runtests(ebt);
TLValue = (t.UnconditionalNormal=='reject')+(t.UnconditionalT=='reject');
\begin{tabular}{|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & UnconditionalNormal & UnconditionalT \\
\hline "S\&P, 1995-2002" & "Historical" & 0.975 & reject & reject \\
\hline "S\&P, 1995-2002" & "Normal" & 0.975 & reject & reject \\
\hline "S\&P, 1995-2002" & "T 10" & 0.975 & reject & accept \\
\hline "S\&P, 1995-2002" & "T 5" & 0.975 & accept & accept \\
\hline
\end{tabular}

An alternative user-defined traffic-light test can use a single test, but at different test confidence levels:
- Green: The result is to 'accept' with a test level of \(95 \%\).
- Yellow: The result is to 'reject' at a 95\% test level, but ' accept' at 99\%.
- Red: The result is 'reject' at 99\% test level.

A similar test is proposed in [1 on page 2-61] with a high test level of \(99.99 \%\).
```

t95 = runtests(ebt); % 95% is the default test level value
t99 = runtests(ebt,'TestLevel',0.99);
TLValue = (t95.UnconditionalNormal=='reject')+(t99.UnconditionalNormal=='reject');
tRolling = t95(:,1:3);
tRolling.UnconditionalNormal95 = t95.UnconditionalNormal;
tRolling.UnconditionalNormal99 = t99.UnconditionalNormal;
tRolling.TrafficLight = categorical(TLValue,0:2,{'green','yellow','red'},'0rdinal',true);
disp(tRolling)

```
\begin{tabular}{cllllll} 
PortfolioID & \multicolumn{2}{c}{ VaRID } & & VaRLevel & & UnconditionalNormal95
\end{tabular} UnconditionalNormal?

The test results may be different over different test windows. Here, a one-year rolling window is used to run the ES back tests over the eight individual years spanned by the original test window. The first user-defined traffic-light described above is added to the test results table. The summary function is also called for each individual year to view the history of the severity and the number of VaR failures.
```

sRolling = table;
tRolling = table;
for Year = 1995:2002
Ind = year(DatesTest)==Year;
PortID = ['S\&P, ' num2str(Year)];
PortfolioData = ReturnsTest(Ind);
VaRData = [VaR_Hist(Ind) VaR_Normal(Ind) VaR_T10(Ind) VaR_T5(Ind)];
ESData = [ES Hīst(Ind) ES No`
ebt = esbacktest(PortfolioData,VaRData,ESData,...
'PortfolioID',PortID,'VaRID',["Historical" "Normal" "T 10" "T 5"],...
'VaRLevel',VaRLevel);
if Year == 1995
sRolling = summary(ebt);
tRolling = runtests(ebt);
else

```

\begin{tabular}{llllll} 
"S\&P, 1995" & "T 5" & 0.975 & accept & accept & green \\
"S\&P, 1996" & "T 5" & 0.975 & reject & accept & yellow \\
"S\&P, 1997" & "T 5" & 0.975 & accept & accept & green \\
"S\&P, 1998" & "T 5" & 0.975 & accept & accept & green \\
"S\&P, 1999" & "T 5" & 0.975 & accept & accept & green \\
"S\&P, 2000" & "T 5" & 0.975 & accept & accept & green \\
"S\&P, 2001" & "T 5" & 0.975 & accept & reject & 0.975
\end{tabular}

The year 2002 is an example of a year with relatively small severities, yet many VaR failures. All models perform poorly in 2002, even though the observed severities are low. However, the number of VaR failures for some models is more than twice the expected number of VaR failures.
```

disp(summary(ebt))
PortfolioID VaRID VaRLevel ObservedLevel ExpectedSeverity ObservedSeve
"S\&P 2002"
"S\&P, 2002
"S\&P, 2002
"S\&P, 2002

```

VaRID

"Historical"
0.975
0.975
0.975
```

PortfolioID	VaRID	VaRLevel	ObservedLevel	ExpectedSeverity	ObservedSeve
"S\&P, 2002"	"Historical"	0.975	0.94636	1.2022	1.2
"S\&P, 2002"	"Normal"	0.975	0.94636	1.1928	1.2111
"S\&P, 2002"	"T 10"	0.975	0.95019	1.2652	1.2066
"S\&P, 2002"	"T 5"	0.975	0.95019	1.37	1.2077

```
accept
reject
accept
accept
accept
accept
accept
reject

yellow
green
green
green
green
yellow

The following figure shows the data on the entire 8 -year window, and severity ratio year by year (expected and observed) for the "Historical" model. The absolute size of the losses is not as important as the relative size compared to the ES (or equivalently, compared to the VaR). Both 1997 and 1998 have large losses, comparable in magnitude. However the expected severity in 1998 is much higher (larger ES estimates). Overall, the "Historical" method seems to do well with respect to severity ratios.
```

sH = sRolling(sRolling.VaRID=="Historical",:);
figure;
subplot(2,1,1)
FailureInd = ReturnsTest<-VaR_Hist;
plot(DatesTest,ReturnsTest,DatesTest,-VaR_Hist,DatesTest,-ES_Hist)
hold on
plot(DatesTest(FailureInd),ReturnsTest(FailureInd),'.')
hold off
legend('Returns','VaR','ES','Location','best')
title('Historical VaR and ES')
grid on
subplot(2,1,2)
bar(1995:2002,[sH.ExpectedSeverity,sH.ObservedSeverity])
ylim([1 1.8])
legend('Expected','Observed','Location','best')
title('Yearly Average Severity Ratio, Historical VaR')

```


However, a similar visualization with the expected against observed number of VaR failures shows that the "Historical" method tends to get violated many more times than expected. For example, even though in 2002 the expected average severity ratio is very close to the observed one, the number of VaR failures was more than twice the expected number. This then leads to test failures for both the unconditional normal and unconditional \(t\) tests.
```

figure;
subplot(2,1,1)
plot(DatesTest,ReturnsTest,DatesTest,-VaR_Hist,DatesTest,-ES_Hist)
hold on
plot(DatesTest(FailureInd),ReturnsTest(FailureInd),'.')
hold off
legend('Returns','VaR','ES','Location','best')
title('Historical VaR and ES')
grid on
subplot(2,1,2)
bar(1995:2002,[sH.Expected,sH.Failures])
legend('Expected','Observed','Location','best')
title('Yearly VaR Failures, Historical VaR')

```


\section*{Simulation-Based Tests}

The esbacktestbysim object supports five simulation-based ES back tests. esbacktestbysim requires the distribution information for the portfolio outcomes, namely, the distribution name ("normal" or "t") and the distribution parameters for each day in the test window. esbacktestbysim uses the provided distribution information to run simulations to determine critical values. The tests supported in esbacktestbysim are conditional, unconditional, quantile, minBiasAbsolute, and minBiasRelative. These are implementations of the tests proposed by Acerbi and Szekely in [1 on page 2-61], and [2 on page 2-61], [3 on page 2-61] for 2017 and 2019.

The esbacktestbysim object supports normal and \(t\) distributions. These tests can be used for any model where the underlying distribution of portfolio outcomes is normal or \(t\), such as exponentially weighted moving average (EWMA), delta-gamma, or generalized autoregressive conditional heteroskedasticity (GARCH) models.

ES backtests are necessarily approximated in that they are sensitive to errors in the predicted VaR. However, the minimally biased test has only a small sensitivity to VaR errors and the sensitivity is prudential, in the sense that VaR errors lead to a more punitive ES test. See Acerbi-Szekely ([2 on page 2-61], [3 on page 2-61] for 2017 and 2019) for details. When distribution information is available, the minimally biased test is recommended (see minBiasAbsolute, minBiasRelative).

The "Normal", "T 10", and "T 5" models can be backtested with the simulation-based tests in esbacktestbysim. For illustration purposes, only "T 5" is backtested. The distribution name ("t") and parameters (degrees of freedom, location, and scale) are provided when the esbacktestbysim object is created.
```

rng('default'); % for reproducibility; the esbacktestbysim constructor runs a simulation
ebts = esbacktestbysim(ReturnsTest,VaR_T5,ES_T5,"t",'Degrees0fFreedom',5,...
'Location',Mu,'Scale',SigmaT5,...
'PortfolioID',"S\&P",'VaRID',"T 5",'VaRLevel',VaRLevel);

```

The recommended workflow is the same: first, run the summary function, then run the runtests function, and then run the individual test functions.

The summary function provides exactly the same information as the summary function from esbacktest.
```

s = summary(ebts);
disp(s)

PortfolioID	VaRID	VaRLevel	ObservedLevel	ExpectedSeverity	ObservedSeverity
"S\&P"	"T 5"	0.975	0.97173	1.37	1.4075

```

The runtests function shows the final accept or reject result.
```

t = runtests(ebts);
disp(t)

PortfolioID	VaRID	VaRLevel	Conditional	Unconditional	Quantile	MinBiasAbsol
"S\&P"	"T 5"	0.975	accept	accept	accept	accept

```

Additional details on the test results are obtained by calling the individual test functions. For example, call the minBiasAbsolute test. The first output, t , has the test results and additional details such as the \(p\)-value, test statistic, and so on. The second output, \(s\), contains simulated test statistic values assuming the distributional assumptions are correct. For example, esbacktestbysim generated 1000 scenarios of portfolio outcomes in this case, where each scenario is a series of 2087 observations simulated from \(t\) random variables with 5 degrees of freedom and the given location and scale parameters. The simulated values returned in the optional s output show typical values of the test statistic if the distributional assumptions are correct. These are the simulated statistics used to determine the significance of the tests, that is, the reported critical values and \(p\)-values.
```

[t,s] = minBiasAbsolute(ebts);
disp(t)

PortfolioID	VaRID	VaRLevel	MinBiasAbsolute	PValue	TestStatistic	CriticalVa
"S\&P"	"T 5"	0.975	accept	0.299	-0.00080059	-0.003037

```
whos s
\begin{tabular}{llrl} 
Name & Size & Bytes & Class
\end{tabular} Attributes

Select a test to show the test results and visualize the significance of the tests. The histogram shows the distribution of simulated test statistics, and the asterisk shows the value of the test statistic for the actual portfolio returns.
```

ESTestChoice = MinBiasAbsolute * ;
switch ESTestChoice
case 'MinBiasAbsolute'
[t,s] = minBiasAbsolute(ebts);
case 'MinBiasRelative'
[t,s] = minBiasRelative(ebts);

```
```

case 'Conditional'
[t,s] = conditional(ebts);
case 'Unconditional'
[t,s] = unconditional(ebts);
case 'Quantile'
[t,s] = quantile(ebts);
end
disp(t)

PortfolioID	VaRID	VaRLevel	MinBiasAbsolute	PValue	TestStatistic	CriticalVa
"S\&P"	"T 5"	0.975	accept	0.299	-0.00080059	-0.003037

figure;
histogram(s);
hold on;
plot(t.TestStatistic,0,'*');
hold off;
Title = sprintf('%s: %s, p-value: %4.3f',ESTestChoice,t.VaRID,t.PValue);
title(Title)

```


The unconditional test statistic reported by esbacktestbysim is exactly the same as the unconditional test statistic reported by esbacktest. However the critical values reported by esbacktestbysim are based on a simulation using a \(t\) distribution with 5 degrees of freedom and the given location and scale parameters. The esbacktest object gives approximate test results for the "T 5" model, whereas the results here are specific for the distribution information provided. Also, for the conditional test, this is a visualization of the standalone conditional test (ConditionalOnly result in the table above). The final conditional test result (Conditional column) depends also on a preliminary VaR backtest (VaRTestResult column).

The "T 5" model is accepted by the five tests.

The esbacktestbysim object provides a simulate function to run a new simulation. For example, if there is a borderline test result where the test statistic is near the critical value, you might use the simulate function to simulate new scenarios. In cases where more precision is required, a larger simulation can be run.

The esbacktestbysim tests can be run over a rolling window, following the same approach described above for esbacktest. User-defined traffic-light tests can also be defined, for example, using two different test confidence levels, similar to what was done above for esbacktest.

\section*{Large-Sample and Simulation Tests}

The esbacktestbyde object supports two ES back tests with critical values determined either with a large-sample approximation or a simulation (finite sample). esbacktestbyde requires the distribution information for the portfolio outcomes, namely, the distribution name ("normal" or "t") and the distribution parameters for each day in the test window. It does not require the VaR of the ES data. esbacktestbyde uses the provided distribution information to map the portfolio outcomes into "ranks", that is, to apply the cumulative distribution function to map returns into values in the unit interval, where the test statistics are defined. esbacktestbyde can determine critical values by using a large-sample approximation or a finite-sample simulation.

The tests supported in esbacktestbyde are conditionalDE and unconditionalDE. These are implementations of the tests proposed by Du and Escanciano in [3 on page 2-61]. The unconditionalDE tests and all the tests previously discussed in this example are severity tests that assess if the magnitude of the tail losses is consistent with the model predictions. The conditionalDE test, however, is a test for independence over time that assess if there is evidence of autocorrelation in the series of tail losses.

The esbacktestbyde object supports normal and \(t\) distributions. These tests can be used for any model where the underlying distribution of portfolio outcomes is normal or \(t\), such as exponentially weighted moving average (EWMA), delta-gamma, or generalized autoregressive conditional heteroskedasticity (GARCH) models.

The "Normal", "T 10", and "T 5" models can be backtested with the tests in esbacktestbyde. For illustration purposes, only "T 5" is backtested. The distribution name ("t") and parameters (Degrees0fFreedom, Location, and Scale) are provided when the esbacktestbyde object is created.
```

rng('default'); % for reproducibility; the esbacktestbyde constructor runs a simulation
ebtde = esbacktestbyde(ReturnsTest,"t",'DegreesOfFreedom',5,...
'Location',Mu, 'Scale',SigmaT5,...
'PortfolioID',"S\&P",'VaRID',"T 5",'VaRLevel',VaRLevel);

```

The recommended workflow is the same: first, run the summary function, then run the runtests function, and then run the individual test functions. The summary function provides exactly the same information as the summary function from esbacktest.
```

s = summary(ebtde);
disp(s)

```


The runtests function shows the final accept or reject result.
```

t = runtests(ebtde);
disp(t)

PortfolioID	VaRID	VaRLevel		ConditionalDE	

```

Additional details on the test results are obtained by calling the individual test functions.
```

t = conditionalDE(ebtde);
disp(t)

PortfolioID	VaRID	VaRLevel	ConditionalDE	PValue	TestStatistic
"S\&P"	"T 5"	0.975	reject	0.00034769	12.794

```

By default, the critical values are determined by a large-sample approximation. Critical values based on a finite-sample distribution estimated by using a simulation are available when using the 'CriticalValueMethod ' optional name-value pair argument.
```

[t,s] = conditionalDE(ebtde,'CriticalValueMethod','simulation');
disp(t)

```


The second output, s, contains simulated test statistic values. The following visualization is useful for comparing how well the simulated finite-sample distribution matches the large-sample approximation. The plot shows that the tail of the distribution of test statistics is slightly heavier for the simulation-based (finite-sample) distribution. This means the simulation-based version of the tests are more tolerant and would not reject in some cases where the large-sample approximation results reject. How closely the large-sample and simulation distributions match depends not only on the number of observations in the test window, but also on the VaR confidence level (higher VaR levels lead to heavier tails in the finite-sample distribution).
```

xLS = 0:0.05:30;
pdfLS = chi2pdf(xLS,t.NumLags);
histogram(s,'Normalization',"pdf")
hold on
plot(xLS,pdfLS)
hold off
ylim([0 0.1])
legend({'Simulation','Large-Sample'})
Title = sprintf('Conditional Test Distribution\nVaR Level: %g%%, Sample Size = %d',VaRLevel*100,
title(Title)

```


Similar steps can be used to see details on the unconditionalDE test, and to compare the largesample and simulation based results.

The esbacktestbyde object provides a simulate function to run a new simulation. For example, if there is a borderline test result where the test statistic is near the critical value, you can use the simulate function to simulate new scenarios. Also, by default, the simulation stores results for up to 5 lags for the conditional test, so if simulation-based results for a larger number of lags is needed, you must use the simulate function.

If the large-sample approximation tests are the only tests that you need because they are reliable for a particular sample size and VaR level, you can turn off simulation when creating an esbacktestbyde object by using the 'Simulate' optional input.

The esbacktestbyde tests can be run over a rolling window, following the same approach described above for esbacktest. You can also define traffic-light tests, for example, you could use two different test confidence levels, similar to what was done above for esbacktest.

\section*{Conclusions}

To contrast the three ES backtesting objects:
- The esbacktest object is used for a wide range of distributional assumptions: historical VaR, parametric VaR, Monte-Carlo VaR, or extreme-value models. However, esbacktest offers approximate test results based on two variations of the same test: the unconditional test statistic with two different sets of precomputed critical values (unconditionalNormal and unconditionalT).
- The esbacktestbysim object is used for parametric methods with normal and \(t\) distributions (which includes EWMA, GARCH, and delta-gamma) and requires distribution parameters as inputs. esbacktestbysim offers five different tests (conditional, unconditional, quantile, minBiasAbsolute, and minBiasRelative and the critical values for these tests are simulated using the distribution information that you provide, and therefore, are more accurate. Although all ES backtests are sensitive to VaR estimation errors, the minimally biased test has only a small
sensitivity and is recommended (see Acerbi-Szekely 2017 and 2019 for details [2 on page 2-61], [3 on page 2-61]).
- The esbacktestbyde object is also used for parametric methods with normal and \(t\) distributions (which includes EWMA, GARCH, and delta-gamma) and requires distribution parameters as inputs. esbacktestbyde contains a severity (unconditionalDE) and a time-independence (conditionalDE) tests and it has the convenience of a large-sample, fast version of the tests. The conditionalDE test is the only test for independence over time for ES models among all the tests supported in these three classes.

As shown in this example, all three ES backtesting objects provide functionality to generate reports on severities, VaR failures, and test results information. The three ES backtest objects provide the flexibility to build on them. For example, you can create user-defined traffic-light tests and run the ES backtesting analysis over rolling windows.

\section*{References}
[1] Acerbi, C., and B. Szekely. "Backtesting Expected Shortfall." MSCI Inc., December 2014.
[2] Acerbi, C., and B. Szekely. "General Properties of Backtestable Statistics. SSRN Electronic Journal. January, 2017.
[3] Acerbi, C., and B. Szekely. "The Minimally Biased Backtest for ES." Risk. September, 2019.
[4] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk." January 2016, https://www.bis.org/bcbs/publ/d352.htm
[5] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk." Management Science. Vol 63, Issue 4, April 2017.
[6] McNeil, A., R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press. 2005.
[7] Rockafellar, R. T. and S. Uryasev. "Conditional Value-at-Risk for General Loss Distributions." Journal of Banking and Finance. Vol. 26, 2002, pp. 1443-1471.

\section*{Local Functions}
```

function [VaR,ES] = hHistoricalVaRES(Sample,VaRLevel)
% Compute historical VaR and ES
% See [7] for technical details
% Convert to losses
Sample = -Sample;
N = length(Sample);
k = ceil(N*VaRLevel);

```
```

 z = sort(Sample);
 VaR = z(k);
 if k < N
 ES = ((k - N*VaRLevel)*z(k) + sum(z(k+1:N)))/(N*(1 - VaRLevel));
 else
 ES = z(k);
 end
 end
function [VaR,ES] = hNormalVaRES(Mu,Sigma,VaRLevel)
% Compute VaR and ES for normal distribution
% See [6] for technical details
VaR = -1*(Mu-Sigma*norminv(VaRLevel));
ES = -1*(Mu-Sigma*normpdf(norminv(VaRLevel))./(1-VaRLevel));
end
function [VaR,ES] = hTVaRES(DoF,Mu,Sigma,VaRLevel)
% Compute VaR and ES for t location-scale distribution
% See [6] for technical details
VaR = -1*(Mu-Sigma*tinv(VaRLevel,DoF));
ES_StandardT = (tpdf(tinv(VaRLevel,DoF),DoF).*(DoF+tinv(VaRLevel,DoF).^2)./((1-VaRLevel).*(D
ES = -1*(Mu-Sigma*ES_StandardT);
end

```

\section*{See Also}

\section*{Related Examples}
- "Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information" on page 2-30
- "Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-63

\section*{More About}
- "Overview of Expected Shortfall Backtesting" on page 2-20

\section*{Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano}

This example shows the workflow for using the Du-Escanciano (DE) expected shortfall (ES) backtests and demonstrates a fixed test window for a single DE model with multiple VaR levels.

\section*{Load Data}

The data in the ESBacktestDistributionData. mat file has returns, VaR and ES data, and distribution information for three models: normal, and \(t\) with 5 degrees of freedom and \(t\) with 10 degrees of freedom. The data spans multiple years from January 1996 to July 2003 and includes a total of 1966 observations.

This example uses a \(t\) distribution with 10 degrees of freedom and focuses on one year of data to show the difference between the critical value methods for large-sample approximation and simulation supported by the esbacktestbyde class.
load ESBacktestDistributionData.mat
TargetYear \(=1998\); Change to test other calendar years
Ind = year (Dates)==TargetYear;
Dates = Dates(Ind);
Returns = Returns(Ind);
VaR = T10VaR(Ind,:);
ES = T10ES(Ind,:);
Mu \(=0\); \% Always 0 in this data set Sigma = T10Scale(Ind);

Plot Data
Plot the data for a VaR level of 0.975 .
```

% Plot data
TargetVaRLevel = 0.975;
VaRInd = VaRLevel==TargetVaRLevel;
FailureInd = Returns<-VaR(:,VaRInd);
bar(Dates,Returns)
hold on
plot(Dates,-VaR(:,VaRInd),Dates,-ES(:,VaRInd))
plot(Dates(FailureInd),Returns(FailureInd),'.')
hold off
legend('Returns','VaR','ES','Location','best')
title(['Test Data, VaR Level ' num2str(TargetVaRLevel*100) '%'])
ylabel('Returns')
grid on

```


\section*{Create an esbacktestbyde Object}

Create an esbacktestbyde object to run the DE tests. Note that VaR and ES data are not required inputs because the DE tests work on "mapped returns" or "ranks" and perform mapping by using the distribution information. However, for convenience, the esbacktestbyde object computes the VaR and ES data internally using the distribution information and stores the data in the VaRData and ESData properties of the esbacktestbyde object. The VaR and ES data is used only to estimate the severity ratios reported by the summary function and are not used for any of the DE tests.

By default, when you create a esbacktestbyde object, a simulation runs and large-sample and simulation-based critical values are available immediately. Although the simulation processing is efficient, if you verify that large-sample approximation is appropriate for the sample size and VaR level under consideration, you can turn the simulation off to increase processing speed. To turn off the simulation, when using esbacktestbyde to create an esbacktestbtde object, set the namevalue pair argument 'Simulate' to false.
```

rng('default'); % For reproducibility
tic;
ebtde = esbacktestbyde(Returns,"t",...
'DegreesOfFreedom',10,...
'Location',Mu,...
'Scale',Sigma,...
'VaRLevel',VaRLevel,...
'PortfolioID',"S\&P",...
'VaRID',"t(10)");
toc;

```
```

Elapsed time is 0.098999 seconds.
disp(ebtde)
esbacktestbyde with properties:
PortfolioData: [261x1 double]
VaRData: [261x3 double]
ESData: [261x3 double]
Distribution: [1x1 struct]
PortfolioID: "S\&P"
VaRID: ["t(10)" "t(10)" "t(10)"]
VaRLevel: [0.9500 0.9750 0.9900]
disp(ebtde.Distribution)
Name: "t"
DegreesOfFreedom: 10
Location: 0
Scale: [261x1 double]

```

\section*{Summary Statistics}

Use summary to return a basic expected shortfall (ES) report on failures and severity. This is the same summary output as the other ES backtesting classes esbacktest and esbacktestbysim. When the esbacktestbyde object is created, the VaR and ES data are computed using the distribution information. This information is stored in the VaRData and ESData properties. The summary function uses the VaRData and ESData properties to compute the observed severity ratio.
```

disp(summary(ebtde))

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & ObservedLevel & ExpectedSeverity & ObservedSeverity \\
\hline "S\&P" & "t(10) " & 0.95 & 0.94253 & 1.3288 & 1.5295 \\
\hline "S\&P" & "t(10)" & 0.975 & 0.96935 & 1.2652 & 1.5269 \\
\hline "S\&P" & "t(10)" & 0.99 & 0.98467 & 1.2169 & 1.5786 \\
\hline
\end{tabular}

\section*{Run Tests}

Use runtests to run all expected shortfall (ES) backtests for esbacktestbyde object. The default critical value method is ' large-sample' or asymptotic approximation.
```

disp(runtests(ebtde))

PortfolioID	VaRID	VaRLevel	Conditionalde	UnconditionalDE
"S\&P"	"t(10) "	0.95	accept	accept
"S\&P"	"t(10)"	0.975	accept	accept
"S\&P"	"t(10)"	0.99	accept	accept

```

Run the tests with 'simulation' or finite-sample critical values.
```

disp(runtests(ebtde,'CriticalValueMethod','simulation'))

| PortfolioID VaRID | VaRLevel ConditionalDE | |
| :--- | :--- | :--- | :--- | :--- |

```
\begin{tabular}{llrll} 
"S\&P" & "t(10)" & 0.95 & accept & accept \\
"S\&P" & "t(10)" & 0.975 & accept & accept \\
"S\&P" & "t(10)" & 0.99 & accept & accept
\end{tabular}

The runtests function accepts the name-value pair argument 'ShowDetails' which includes extra columns in the output. Specifically, this output includes the critical value method used, number of lags, and test confidence level.
```

disp(runtests(ebtde,'CriticalValueMethod','simulation','ShowDetails',true))

PortfolioID	VaRID	VaRLevel	Conditionalde	UnconditionaldE	CriticalValueMetho
"S\&P"	"t(10) "	0.95	accept	accept	"simulation"
"S\&P"	"t(10)"	0.975	accept	accept	"simulation"
"S\&P"	"t(10)"	0.99	accept	accept	"simulation"

```

\section*{Unconditional DE Test Details}

The unconditional DE test assesses the severity of the violations based on an evaluation of the observed average tail loss and determines whether the severity is consistent with the model assumptions. All the tests supported in the related classes esbacktest and esbacktestbysim are also severity tests.

To view the unconditional DE test details, use the unconditionalDE function. By default, this function uses the ' large-sample' critical value method.
```

disp(unconditionalDE(ebtde))

PortfolioID	VaRID	VaRLevel	UnconditionalDE	PValue	TestStatistic	Lower
"S\&P"	"t(10)"	0.95	accept	0.31715	0.032842	0.0096
"S\&P"	"t(10)"	0.975	accept	0.32497	0.018009	0.0015
"S\&P"	"t(10)"	0.99	accept	0.076391	0.011309	

```

To compare the results of ' large-sample' to simulation-based critical values, use the name-value pair argument 'CriticalValueMethod '. In this example, the results of both critical value methods, including the confidence interval and the \(p\)-values, look similar.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & UnconditionalDE & PValue & TestStatistic & LowerCI \\
\hline "S\&P" & "t(10) " & 0.95 & accept & 0.326 & 0.032842 & 0.01085 \\
\hline "S\&P" & "t(10)" & 0.975 & accept & 0.336 & 0.018009 & 0.003244 \\
\hline "S\&P" & "t(10)" & 0.99 & accept & 0.126 & 0.011309 & \\
\hline
\end{tabular}

You can visualize the 'simulation' and ' large-sample' distributions to assess whether the ' large-sample' approximation is accurate enough for the sample size and VaR level under consideration. The unconditionalDE function returns the 'simulated' test statistics as an optional output.

In this example, higher VaR levels cause a noticeable mismatch between the ' large-sample' and 'simulation ' distributions. However, the confidence intervals and p-values are comparable.
\% Choose VaR level
TargetVaRLevel = 0.975;
```

VaRInd = VaRLevel==TargetVaRLevel;
[~,s] = unconditionalDE(ebtde,'CriticalValueMethod','simulation');
histogram(s(VaRInd,:),'Normalization',"pdf")
hold on
t = unconditionalDE(ebtde,'CriticalValueMethod','large-sample');
Mu = t.MeanLS(VaRInd);
Sigma = t.StdLS(VaRInd);
MinValPlot = min(s(VaRInd,:))-0.001;
MaxValPlot = max(s(VaRInd,:))+0.001;
xLS = linspace(MinValPlot,MaxValPlot,101);
pdfLS = normpdf(xLS,Mu,Sigma);
plot(xLS,pdfLS)
hold off
legend({'Simulation','Large-Sample'})
Title = sprintf('UnconditionalDE Test Distribution\nVaR Level: %g%%, Sample Size = %d',VaRLevel()
title(Title)

```

UnconditionaIDE Test Distribution
VaR Level: \(\mathbf{9 7 . 5 \%}\), Sample Size \(=\mathbf{2 6 1}\)


\section*{Conditional DE Test Details}

The conditional DE test assesses whether there is evidence of autocorrelation in the tail losses.
Although the names are similar, the conditional DE test and the conditional test supported in esbacktestbysim are qualitatively different tests. The conditional Acerbi-Szekely test supported in esbacktestbysim tests the severity of the ES, conditional on whether the model passes a VaR test. The Acerbi-Szekely conditional test is a severity test, comparable to the tests supported in esbacktest, esbacktestbysim, and the unconditionalDE test.

However, the conditional DE test in esbacktestbyde is a test for independence across time periods.
To see the details of the conditional DE test results, use the conditionalDE function. By default, this function uses the ' large-sample' critical value method and tests for one lag (correlation with the previous time period).
```

disp(conditionalDE(ebtde))

PortfolioID	VaRID	VaRLevel	ConditionaldE	PValue	TestStatistic	CriticalV
"S\&P"	"t(10)"	0.95	accept	0.45361	0.5616	3.8415
"S\&P"	"t(10)"	0.975	accept	0.54189	0.37205	3.8415
"S\&P"	"t(10)"	0.99	accept	0.87949	0.022989	3.8415

```

The results of the ' large-sample' critical value method, particularly the simulation critical values and \(p\)-values, differ substantially from the results of the 'simulation' critical value method.

The critical value is similar for a \(95 \%\) VaR level, but the simulation-based critical value is much larger for higher VaR levels, especially for a \(99 \%\) VaR. The autocorrelation is 1 for any sample without VaR failures. Therefore, the test statistic equals the number of observations for any scenario without VaR failures. For a \(99 \%\) VaR level, scenarios without VaR failures are like; consequently, there is a mass point at the number of observations which appears as a long, heavy tail in the simulated distribution of the test statistic.
```

disp(conditionalDE(ebtde,'CriticalValueMethod','simulation'))

PortfolioID	VaRID			VaRLevel		ConditionalDE		PValue

```

You can visually compare the ' large-sample' and 'simulation' distributions. The conditionalDE function also returns the simulated test statistics as an optional output.

Notice that the tail of the distribution gets heavier as the VaR level increases.
```

% Choose VaR level
TargetVaRLevel = 0.975;
VaRInd = VaRLevel==TargetVaRLevel;
[t,s] = conditionalDE(ebtde,'CriticalValueMethod','simulation');
xLS = 0:0.01:20;
pdfLS = chi2pdf(xLS,t.NumLags(1));
histogram(s(VaRInd,:),'Normalization',"pdf")
hold on
plot(xLS,pdfLS)
hold off
ylim([0 0.01])
legend({'Simulation','Large-Sample'})
Title = sprintf('ConditionalDE Test Distribution\nVaR Level: %g%%, Sample Size = %d',VaRLevel(VaF
title(Title)

```


Because the conditional DE test is based on autocorrelations, you can run the test for differing numbers of lags.

Run the conditional DE test for 2 lags. At a VaR level of \(99 \%\), the ' large-sample' critical value method rejects the model but the 'simulation' critical value method does not reject the model, with a \(p\)-value close to \(10 \%\). This shows that the 'simulation' distribution and the ' largesample' approximation can lead to different results, depending on the sample size and VaR level.
disp(conditionalDE(ebtde,'NumLags',2,'CriticalValueMethod','large-sample'))
\begin{tabular}{ccccccccc} 
PortfolioID & \multicolumn{2}{l}{ VaRID } & VaRLevel & & ConditionalDE & & PValue &
\end{tabular}
disp(conditionalDE(ebtde,'NumLags', 2,'CriticalValueMethod','simulation'))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & ConditionalDE & PValue & TestStatistic & CriticalVa \\
\hline "S\&P" & "t(10) " & 0.95 & reject & 0.03 & 8.294 & 6.1397 \\
\hline "S\&P" & "t(10)" & 0.975 & reject & 0.019 & 15.379 & 9.3364 \\
\hline "S\&P" & "t(10)" & 0.99 & accept & 0.098 & 30.343 & 522 \\
\hline
\end{tabular}

\section*{Running a New Simulation with simulate}

If a \(p\)-value is near a rejection boundary, you can run a new simulation to request more scenarios to reduce a simulation error.

You can also run a new simulation to request a higher number of lags. By default, creating an esbacktestbyde object causes the simulation to run so that the simulation test results are available immediately. However, to avoid extra storage, only 5 lags are simulated. If you request more than 5 lags with the simulate function, the conditionalDE test function displays the following message:

No simulation results available for the number of lags requested. Call 'simulate' with the desired number of lags.

You first need to run a new simulation using esbacktestbyde and specify the number of lags to use for that simulation. Displaying the size of the esbacktestbyde object before and after the new simulation illustrates how simulating with more lags increases the amount of data stored in the esbacktestbyde object, as more simulated test statistics are stored with more lags.
```

% See bytes before new simulation, 5 lags stored
whos ebtde
Name Size Bytes Class Attributes
ebtde 1x1 164883 esbacktestbyde
% Simulate 6 lags
rng('default'); % for reproducibility
ebtde = simulate(ebtde,'NumLags',6);
% See bytes after new simulation, 6 lags stored
whos ebtde

| Name | Size | Bytes | Class |
| :--- | :--- | ---: | :--- |\quad Attributes

```

After you run a new simulation with esbacktestbyde that increases the number of lags to 6 , the test results for conditionalDE are available for the 'simulation' method using 6 lags.
```

disp(conditionalDE(ebtde,'NumLags',6,'CriticalValueMethod','simulation'))

PortfolioID	VaRID	VaRLevel	ConditionaldE	PValue	TestStatistic	CriticalVa
"S\&P"	"t(10)"	0.95	accept	0.136	9.5173	16.412
"S\&P"	"t(10)"	0.975	accept	0.086	15.854	21.299
"S\&P"	"t(10)"	0.99	accept	0.128	30.438	1566

```

Alternatively, the conditionalDE test results are always available for the ' large-sample' method for any number of lags.
```

disp(conditionalDE(ebtde,'NumLags',10,'CriticalValueMethod','large-sample'))

```

\begin{tabular}{llrrr} 
"S\&P" & "t(10)" & 0.975 & accept & 0.088587 \\
"S\&P" & "t(10)" & 0.99 & reject & 0.00070234
\end{tabular}

\section*{See Also}
esbacktestbyde | esbacktest | esbacktestbysim | varbacktest

\section*{Related Examples}
- "VaR Backtesting Workflow" on page 2-6
- "Value-at-Risk Estimation and Backtesting" on page 2-10
- "Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information" on page 2-30
- "Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
- "Expected Shortfall Estimation and Backtesting" on page 2-44
- "Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-72

\title{
Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and Escanciano
}

This example shows the workflow for using the Du-Escanciano (DE) expected shortfall (ES) backtests for rolling window analyses and testing multiple VaR/ES models.

The rolling window workflow in this example is also used for the value-at-risk (VaR) backtests in varbacktest and for the Acerbi-Szekely ES backtests in the esbacktest and esbacktestbysim classes.

The multiple-model workflow in this example is also used for the esbacktestbysim class. For esbacktest and varbacktest, you can create a single object with multiple models and multiple VaR levels.

\section*{Rolling Window}

The data in the ESBacktestDistributionData.mat file has returns, VaR and ES data, and distribution information for three models: normal, and \(t\) with 5 degrees of freedom and \(t\) with 10 degrees of freedom. The data spans multiple years from January 1996 to July 2003, for a total of 1966 observations.

To run the test over a rolling window, one esbacktestbyde object must be created for each year (or time period) of interest. In this example, each year from 1996 through 2002 is tested separately. You can test all VaR levels together, but to simplify the output, this example uses a single VaR level. You can also call any test, or the summary report inside the processing loop, but this example calls only the runtests function.
```

load ESBacktestDistributionData.mat
rng('default'); % For reproducibility
Years = 1996:2002;
TargetVaRLevel = 0.99;
t = table;
for TargetYear = Years
Ind = year(Dates)==TargetYear;
VaRInd = VaRLevel==TargetVaRLevel;
ebtde = esbacktestbyde(Returns(Ind),"t",...
'DegreesOfFreedom',10,...
'Location',0,... % Always 0 in this data set
'Scale',T10Scale(Ind),...
'VaRLevel',VaRLevel(VaRInd),...
'PortfolioID',strcat("S\&P, ",string(TargetYear)),...
'VaRID',"t(10)");
t = [t; runtests(ebtde)];
end
disp(t)
PortfolioID VaRID VaRLevel ConditionalDE UnconditionalDE

```
\begin{tabular}{lllll} 
"S\&P, 1996" & "t(10)" & 0.99 & reject & reject \\
"S\&P, 1997" & "t(10)" & 0.99 & accept & reject \\
"S\&P, 1998" & "t(10)" & 0.99 & accept & accept \\
"S\&P, 1999" & "t(10)" & 0.99 & reject & accept \\
"S\&P, 2000" & "t(10)" & 0.99 & accept & accept \\
"S\&P, 2001" & "t(10)" & 0.99 & accept & accept \\
"S\&P, 2002" & "t(10)" & 0.99 & reject & accept
\end{tabular}

For a more advanced approach, you can use arrays of esbacktestbyde objects and then call different functions on objects corresponding to different years as needed.
```

rng('default'); % For reproducibility
NumYears = length(Years);
ebtdeArray(NumYears) = esbacktestbyde;
TargetVaRLevel = 0.99;
for yy = 1:NumYears
TargetYear = Years(yy);
Ind = year(Dates)==TargetYear;
VaRInd = VaRLevel==TargetVaRLevel;
ebtdeArray(yy) = esbacktestbyde(Returns(Ind),"t",...
'Degrees0fFreedom',10,...
'Location',0,... % Always 0 in this data set
'Scale',T10Scale(Ind),...
'VaRLevel',VaRLevel(VaRInd),...
'PortfolioID',strcat("S\&P, ",string(TargetYear)),...
'VaRID',"t(10)");
end
disp(ebtdeArray)
1x7 esbacktestbyde array with properties:
PortfolioData
VaRData
ESData
Distribution
PortfolioID
VaRID
VaRLevel

```

Display the summary for the year 2002.
\begin{tabular}{|c|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & ObservedLevel & ExpectedSeverity & ObservedSeverity \\
\hline "S\&P, 2002" & "t(10) " & 0.99 & 0.98467 & 1.2169 & 1.1481 \\
\hline
\end{tabular}

Concatenate the conditional tests for all years.
```

condDEResults = table;

```
for yy = 1:NumYears
```

 condDEResults = [condDEResults; conditionalDE(ebtdeArray(yy))];
 end
disp(condDEResults)

PortfolioID	VaRID	VaRLevel	ConditionalDE	PValue	TestStatistic
"S\&P, 1996"	"t(10) "	0.99	reject	0.0084691	6.9315
"S\&P, 1997"	"t(10) "	0.99	accept	0.85691	0.032512
"S\&P, 1998"	"t(10)"	0.99	accept	0.87949	0.022989
"S\&P, 1999"	"t(10)"	0.99	reject	2.1168e-50	222.89
"S\&P, 2000"	"t(10) "	0.99	accept	0.89052	0.018948
"S\&P, 2001"	"t(10)"	0.99	accept	0.92088	0.0098664
'S\&P, 2002"	"t(10)"	0.99	reject	3.5974e-05	17.073

Multiple Models

Similar to the esbacktestbysim object, the esbacktestbyde object accepts only one distribution at a time. If you need to test different models side by side, then you must create different instances of the class.

In this example you run the test for a normal distribution assumption and t distributions with 5 and 10 degrees of freedom. You then concatenate the test results to generate a single report.

The data in the ESBacktestDistributionData.mat file has returns, VaR and ES data, and distribution information for three models: normal, and t with 5 and 10 degrees of freedom. The data spans multiple years from January 1996 to July 2003, for a total of 1966 observations. For simplicity, this example uses only data from 1998.

```
load ESBacktestDistributionData.mat
TargetYear = 1998;
Ind = year(Dates)==TargetYear;
rng('default'); % For reproducibility
```

Create an instance of an esbacktestbyde object for the normal distribution.

```
ebtdeNormal = esbacktestbyde(Returns(Ind),"normal",...
'Mean',0,...
'StandardDeviation',NormalStd(Ind),...
'VaRLevel',VaRLevel,...
'PortfolioID',strcat("S&P, ",string(TargetYear)),...
'VaRID',"normal");
disp(ebtdeNormal)
    esbacktestbyde with properties:
    PortfolioData: [261x1 double]
            VaRData: [261x3 double]
            ESData: [261x3 double]
            Distribution: [1x1 struct]
            PortfolioID: "S&P, 1998"
                VaRID: ["normal" "normal" "normal"]
            VaRLevel: [0.9500 0.9750 0.9900]
disp(ebtdeNormal.Distribution)
```

```
    Name: "normal"
    Mean: 0
StandardDeviation: [261x1 double]
```

Create an instance of an esbacktestbyde object for the t distribution with 10 degrees of freedom.

```
ebtdeT10 = esbacktestbyde(Returns(Ind),"t",...
```

'Degrees0fFreedom',10,...
'Location',0,...
'Scale',T10Scale(Ind),...
'VaRLevel', VaRLevel,...
'PortfolioID',strcat("S\&P, ",string(TargetYear)),...
'VaRID',"t(10)");
disp(ebtdeT10)
esbacktestbyde with properties:
PortfolioData: [261x1 double]
VaRData: [261x3 double]
ESData: [261x3 double]
Distribution: [1x1 struct]
PortfolioID: "S\&P, 1998"
VaRID: ["t(10)" "t(10)" "t(10)"]
VaRLevel: [0.9500 0.9750 0.9900]
disp(ebtdeT10.Distribution)

```
                            Name: "t"
    DegreesOfFreedom: 10
        Location: 0
            Scale: [261x1 double]
```

Create an instance of an esbacktestbyde object for the t distribution with 5 degrees of freedom.

```
ebtdeT5 = esbacktestbyde(Returns(Ind),"t",...
'Degrees0fFreedom',5,...
'Location',0,...
'Scale',T5Scale(Ind),...
'VaRLevel',VaRLevel,...
'PortfolioID',strcat("S&P, ",string(TargetYear)),...
'VaRID',"t(5)");
disp(ebtdeT5)
    esbacktestbyde with properties:
        PortfolioData: [261x1 double]
            VaRData: [261x3 double]
            ESData: [261x3 double]
            Distribution: [1x1 struct]
                PortfolioID: "S&P, 1998"
                        VaRID: ["t(5)" "t(5)" "t(5)"]
            VaRLevel: [0.9500 0.9750 0.9900]
disp(ebtdeT5.Distribution)
                                    Name: "t"
    DegreesOfFreedom: 5
```

```
Location: 0
    Scale: [261x1 double]
```

Run the tests and then concatenate the results.

```
testResults = [runtests(ebtdeNormal); runtests(ebtdeT10); runtests(ebtdeT5)];
disp(testResults)
```

PortfolioID	VaRID		VaRLevel		ConditionalDE

Display the results for a VaR level of 0.99.
TargetVaRLevel = 0.99;
disp(testResults(testResults.VaRLevel == TargetVaRLevel,:))

PortfolioID	VaRID	VaRLevel	ConditionalDE	UnconditionalDE
"S\&P, 1998"	"normal"	0.99	accept	reject
"S\&P, 1998"	"t(10)"	0.99	accept	accept
"S\&P, 1998"	"t(5)"	0.99	accept	accept

See Also

esbacktestbyde | esbacktest | esbacktestbysim | varbacktest

Related Examples

- "VaR Backtesting Workflow" on page 2-6
- "Value-at-Risk Estimation and Backtesting" on page 2-10
- "Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information" on page 2-30
- "Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
- "Expected Shortfall Estimation and Backtesting" on page 2-44
- "Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-63

Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

- "Overview of Binning Explorer" on page 3-2
- "Common Binning Explorer Tasks" on page 3-4
- "Bin Data to Create Credit Scorecards Using Binning Explorer" on page 3-23
- "Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36
- "compactCreditScorecard Object Workflow" on page 3-57
- "Feature Screening with screenpredictors" on page 3-64
- "Use Reject Inference Techniques with Credit Scorecards" on page 3-69
- "Credit Scoring Using Logistic Regression and Decision Trees" on page 3-87
- "Explore Fairness Metrics for Credit Scoring Model" on page 3-98
- "Bias Mitigation in Credit Scoring by Reweighting" on page 3-110
- "Bias Mitigation in Credit Scoring by Disparate Impact Removal" on page 3-119
- "Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle" on page 3-131

Overview of Binning Explorer

The Binning Explorer app enables you to interactively bin credit scorecard data. Use the Binning Explorer to:

- Select an automatic binning algorithm with an option to bin missing data. (For more information on algorithms for automatic binning, see autobinning.)
- Shift bin boundaries.
- Split bins.
- Merge bins.
- Save and export a creditscorecard object.

Binning Explorer complements the overall workflow for developing a credit scorecard model. Use screenpredictors to pare down a potentially large set of predictors to a subset that is most predictive of the credit score card response variable. You can then use this subset of predictors when using Binning Explorer to create the creditscorecard object.

Using Binning Explorer:

1.	Open the Binning Explorer app. - MATLAB ${ }^{\circledR}$ toolstrip: On the Apps tab, under Computational Finance, click the app icon. - MATLAB command prompt: - Enter binningExplorer to open the Binning Explorer app. - Enter binningExplorer(data) or binningExplorer(data, Name, Value) to open a table in the Binning Explorer app by specifying a table (data) as input. - Enter binningExplorer(sc) to open a creditscorecard object in the Binning Explorer app by specifying a creditscorecard object (sc) as input.
2.	Import the data into the app. You can import data into Binning Explorer by either starting directly from a data set or by loading an existing creditscorecard object from the MATLAB workspace.
3.	Use Binning Explorer to work interactively with the binning assignments for a scorecard.
4.	Export the scorecard to a new creditscorecard object. Continue the workflow from the MATLAB command line using creditscorecard object functions from Financial Toolbox. For more information, see creditscorecard.
Using creditscorecard Object Functions in Financial Toolbox:	
5.	Fit a logistic regression model.
6.	Review and format the credit scorecard points.
7.	Score the data.
8.	Calculate the probabilities of default for the data.
9.	Validate the quality of the credit scorecard model.

For more detailed information on this workflow, see "Bin Data to Create Credit Scorecards Using Binning Explorer" on page 3-23.

See Also

Apps

Binning Explorer
Classes
creditscorecard

Related Examples

- "Common Binning Explorer Tasks" on page 3-4
- "Bin Data to Create Credit Scorecards Using Binning Explorer" on page 3-23
- "Case Study for Credit Scorecard Analysis"

More About

- "Credit Scorecard Modeling Workflow"

External Websites

- Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

Common Binning Explorer Tasks

The Binning Explorer app supports the following tasks:

In this section...

"Import Data" on page 3-4
"Change Predictor Type" on page 3-5
"Change Binning Algorithm for One or More Predictors" on page 3-6
"Change Algorithm Options for Binning Algorithms" on page 3-7
"Split Bins for a Numeric Predictor" on page 3-11
"Split Bins for a Categorical Predictor" on page 3-13
"Manual Binning to Merge Bins for a Numeric or Categorical Predictor" on page 3-15
"Change Bin Boundaries for a Single Predictor" on page 3-16
"Change Bin Boundaries for Multiple Predictors" on page 3-17
"Set Options for Display" on page 3-18
"Export and Save the Binning" on page 3-19
"Troubleshoot the Binning" on page 3-19

Import Data

Binning Explorer enables you to import data by either starting directly from the data stored in a MATLAB table or by loading an existing creditscorecard object.

Clean Start from Data

To start directly from data:
1 Place the credit scorecard data in your MATLAB workspace. The data must be in a MATLAB table, where each column of data can be any one of the following data types:

- Numeric
- Logical
- Cell array of character vectors
- Character array
- Categorical

In addition, the table must contain a binary response variable.
2 Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under Computational Finance, click the app icon.
3 Click Import Data and select the data from the Step 1 pane of the Import Data window.
4 From the Step 2 pane, set the Variable Type for each of the predictors, as needed. If the input MATLAB table contains a column for weights, from the Step 2 pane, using the Variable Type column, click the drop-down to select Weights. If the data contains missing values, from the Step 2 pane, set Bin missing data: to Yes. For more information on working with missing data, see "Credit Scorecard Modeling with Missing Values".

5 From the Step 3 pane, select an initial binning algorithm and click Import Data. The bins are plotted and displayed for each predictor. By clicking an individual predictor plot in the Overview pane, the details for that predictor plot display in the main pane with additional information in the Bin Information and Predictor Information panes.

Start from an Existing creditscorecard Object

To start using an existing creditscorecard object:
1 Place the creditscorecard object in your MATLAB workspace. Create the creditscorecard object either by using creditscorecard or by clicking Export in the Binning Explorer to export and save a creditscorecard object to the MATLAB workspace.
2 Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under Computational Finance, click the app icon.
3 Click Import Data and from Step 1 pane of the Import Data window, select the creditscorecard object.
4 From the Step 3 pane, select a binning algorithm. When using an existing creditscorecard object, it is recommended to select the No Binning option. To display the predictor plots, click Import Data.

The bins are plotted and displayed for each predictor. By clicking an individual predictor plot in the Overview pane, the predictor plot displays in the main pane and associated information displays in the Bin Information and Predictor Information panes.

Start from MATLAB Command Line Using Data or an Existing creditscorecard Object

To start Binning Explorer from the MATLAB command line:
1 Place the credit scorecard data or existing creditscorecard object in your MATLAB workspace.
2 At the MATLAB command prompt:

- Enter binningExplorer(data) or binningExplorer(data, Name, Value) to open a table in the Binning Explorer app by specifying a table (data) as input.
- Enter binningExplorer(sc) to open an existing creditscorecard object in the Binning Explorer app by specifying a creditscorecard object (sc) as input.

The bins are plotted and displayed for each predictor. By clicking an individual predictor plot in the Overview pane, the details for that predictor plot display in the main pane and the associated details display in the Bin Information and Predictor Information panes.

Change Predictor Type

After you import data or a creditscorecard object into Binning Explorer, you can change the predictor type.

1 Click any predictor plot. The name of the selected predictor displays on the Binning Explorer toolstrip under Selected Predictor.

On the Binning Explorer toolstrip, the predictor type for the selected predictor displays under Predictor Type.

2 To change the predictor type, under Predictor Type, select: Numeric, Categorical, or Ordinal. The predictor plot is updated and the details in the Bin Information and Predictor Information panes are also updated.

Change Binning Algorithm for One or More Predictors

After you import data or a creditscorecard object into Binning Explorer, you can change the binning algorithm for an individual predictor or for multiple predictors.

1 Click any predictor plot in the Overview pane. The selected predictor plot displays in the main pane.

Tip When you select a predictor plot, a status message appears above Bin Information that displays the last binning information for that predictor. Use this information to determine which binning algorithm is most recently applied to an individual predictor plot.
2 On the Binning Explorer toolstrip, click to select Monotone, Split, Merge, Equal Frequency, or Equal Width. The predictor plot is updated with a change of algorithm. The details in the Bin Information and Predictor Information panes are also updated.
3 To change the binning algorithm for multiple predictors, multiselect more than one predictor plot by using Ctrl + click or Shift + click to highlight each predictor plot with a blue outline.

4 Click to select Monotone, Split, Merge, Equal Frequency, or Equal Width. All the selected predictor plots are updated for a change of algorithm.

Change Algorithm Options for Binning Algorithms

After you import data or a creditscorecard object into Binning Explorer, you can change the binning algorithm options for an individual predictor or for multiple predictors.

1 Click any predictor plot in the Overview pane. The predictor plot displays with a blue outline and displays in the main pane.

Tip When you select a predictor plot with the blue outline, a status message appears above Bin Information that displays the last binning information for that predictor. Use this information to determine which binning algorithm is most recently applied to an individual predictor plot.
2 On the Binning Explorer toolstrip, click Options to open a list of options for the Monotone, Split, Merge, Equal Frequency, and Equal Width algorithms. Click an option to open the associated Algorithm options dialog box. For example, clicking Monotone Options opens the Algorithm options dialog box for Monotone.

3 From the associated Algorithm options dialog box:

- Monotone

- For Trend, select one of the following:
- Auto (default) - Automatically determines if the WOE trend is increasing or decreasing.
- Increasing - Looks for an increasing WOE trend.
- Decreasing - Looks for a decreasing WOE trend.

The value of Trend does not necessarily reflect that of the resulting WOE curve. The Trend option tells the algorithm to look for an increasing or decreasing trend, but the outcome might not show the desired trend. For example, the algorithm cannot find a decreasing trend when the data actually has an increasing WOE trend. For more information on the Trend option, see "Monotone".

- For Initial number of bins, enter an initial number of bins (default is 10). The initial number of bins must be an integer >2. Used for numeric predictors only.
- For Category Sorting, used for categorical predictors only, select one of the following:
- Odds (default) - The categories are sorted by order of increasing values of odds, defined as the ratio of "Good" to "Bad" observations, for the given category.
- Goods - The categories are sorted by order of increasing values of "Good."
- Bads - The categories are sorted by order of increasing values of "Bad."
- Totals - The categories are sorted by order of increasing values of the total number of observations ("Good" plus "Bad").
- None - No sorting is applied. The existing order of the categories is unchanged before applying the algorithm.

For more information, see Sort Categories

- Split

- For Measure, select one of the following: Gini (default), Chi2, InfoValue, or Entropy.
- For Tolerance, specify a tolerance value above which the gain in the information value has to be for the split to be accepted. The default is $1 \mathrm{e}-4$.
- For Significance, only for the Chi2 measure, specify a significance level threshold for the chi-square statistic, above which splitting happens. Values are in the interval [0,1]. Default is 0.9 (90% significance level).
- For Bin distribution, specify values for
- MinBad - Specifies the minimum number $n(n>=0)$ of Bads per bin. The default value is 1 , to avoid pure bins.
- MaxBad - Specifies the maximum number $n(n>=0)$ of Bads per bin. The default value is Inf.
- MinGood - Specifies the minimum number $n(n>=0)$ of Goods per bin. The default value is 1 , to avoid pure bins.
- MaxGood - Specifies the maximum number $n(n>=0)$ of Goods per bin. The default value is Inf.
- MinCount - Specifies the minimum number $n(n>=0)$ of observations per bin. The default value is 1 , to avoid empty bins.
- MaxCount - Specifies the maximum number $n(n>=0)$ of observations per bin. The default value is Inf.
- MaxNumBins - Specifies the maximum number $n(n>=2)$ of bins resulting from the splitting. The default value is 5 .
- For Initial number bins, specify an integer that determines the number ($n>0$) of bins that the predictor is initially binned into before splitting. Valid for numeric predictors only. Default is 50 .
- For Category sorting, used for categorical predictors only, select a value:
- Goods - The categories are sorted by order of increasing values of "Good."
- Bads - The categories are sorted by order of increasing values of "Bad."
- Odds - (default) The categories are sorted by order of increasing values of odds, defined as the ratio of "Good" to "Bad" observations, for the given category.
- Totals - The categories are sorted by order of increasing values of total number of observations ("Good" plus "Bad").
- None - No sorting is applied. The existing order of the categories is unchanged before applying the algorithm. (The existing order of the categories can be seen in the category grouping optional output from bininfo.)

For more information, see Sort Categories

- Merge

- For Measure, select one of the following: Chi2 (default), Gini, InfoValue, or Entropy.
- For Tolerance, specify the minimum threshold below which merging happens for the information value and entropy statistics. Valid values are in the interval (0.1). Default is 1e-3.
- For Significance, specify the significance level threshold for the chi-square statistic, below which merging happens. Values are in the interval [0,1]. Default is 0.9 (90% significance level).
- For Bin distribution, specify the following:
- MinNumBins - Specifies the minimum number $n(n>=2)$ of bins that result from merging. The default value is 2 .
- MaxNumBins - Specifies the maximum number $n(n>=2)$ of bins that result from merging. The default value is 5 .
- For Initial number of bins, specify an integer that determines the number ($n>0$) of bins that the predictor is initially binned into before merging. Valid for numeric predictors only. Default is 50 .
- For Category sorting, used for categorical predictors only. Select a value:
- Goods - The categories are sorted by order of increasing values of "Good."
- Bads - The categories are sorted by order of increasing values of "Bad."
- Odds - (default) The categories are sorted by order of increasing values of odds, defined as the ratio of "Good" to "Bad" observations, for the given category.
- Totals - The categories are sorted by order of increasing values of total number of observations ("Good" plus "Bad").
- None - No sorting is applied. The existing order of the categories is unchanged before applying the algorithm. (The existing order of the categories can be seen in the category grouping optional output from bininfo.)

For more information, see Sort Categories

- Equal Frequency

- For Number of bins, enter the number of bins. The default is 5 , and the number of bins must be a positive number.
- For Category Sorting, select one of the following:
- Odds (default) - The categories are sorted by order of increasing values of odds, defined as the ratio of "Good" to "Bad" observations, for the given category.
- Goods - The categories are sorted by order of increasing values of "Good."
- Bads - The categories are sorted by order of increasing values of "Bad."
- Totals - The categories are sorted by order of increasing values of the total number of observations ("Good" plus "Bad").
- None - No sorting is applied. The existing order of the categories is unchanged before applying the algorithm.

Note You can use Category Sorting with categorical predictors only.

- Equal Width

- For Number of bins, enter the number of bins. The default is 5 and the number of bins must be a positive number.
- For Category Sorting, select one of the following:
- Odds (default) - The categories are sorted by order of increasing values of odds, defined as the ratio of "Good" to "Bad" observations, for the given category.
- Goods - The categories are sorted by order of increasing values of "Good."
- Bads - The categories are sorted by order of increasing values of "Bad."
- Totals - The categories are sorted by order of increasing values of the total number of observations ("Good" plus "Bad").
- None - No sorting is applied. The existing order of the categories is unchanged before applying the algorithm.

Note You can use Category Sorting with categorical predictors only.
Click OK. The selected predictor plot is updated with the change of algorithm options. The details in the Bin Information and Predictor Information panes are also updated. In addition, the updated algorithm options apply to any subsequent application of that algorithm to other predictors as described in "Change Binning Algorithm for One or More Predictors" on page 3-6.
4 To change the binning algorithm option for multiple predictors, multiselect more than one predictor plot by using Ctrl+ click or Shift + click to highlight each predictor plot with a blue outline.

5 On the Binning Explorer toolstrip, click Options to open a list of options for the Monotone, Split, Merge, Equal Frequency, and Equal Width algorithms. Click an option to open the associated Algorithm options dialog box. Make your selection from the respective Algorithm Options dialog box and click $\mathbf{O K}$. The selected predictor plots are updated for the change of algorithm.

Split Bins for a Numeric Predictor

After you import data or a creditscorecard object into Binning Explorer, you can split bins for a numeric predictor.

1 Click any numeric predictor plot in the Overview pane. The predictor plot displays in the main pane.

2 On the Binning Explorer toolstrip, the Split button is enabled. From the main pane, click a bin to apply the Split operation. To deselect a bin, use Ctrl+ click.

3 On the Binning Explorer toolstrip, the Edges text boxes display values for the edges of the selected bin. Click Split to open the Split dialog box.

4 Use the Number of bins control to split the selected bin into multiple bins. Click $\mathbf{O K}$ to complete the split operation.

The plot for the selected numeric predictor is updated with the new bin information. The details in the Bin Information and Predictor Information panes are also updated.

Split Bins for a Categorical Predictor

After you import data or a creditscorecard object into Binning Explorer, you can split bins for a categorical predictor.

1 Click any categorical predictor plot in the Overview pane. The predictor plot displays in the main pane.

2 From the main pane, click a bin to enable the Split button for that bin. To deselect a bin, use Ctrl+ click.

On the Binning Explorer toolstrip, click Split to open the Split dialog for the selected bin.

Note The Split button is enabled when the selected bin has more than one unique category in it.

Use the Number of bins control to split the selected bin into multiple bins.
Use the arrow controls on the Split dialog box to control the contents for each of the bins that you are splitting the selected bin into.
3 Click $\mathbf{O K}$ to complete the split operation.
The plot for the selected categorical predictor is updated with the new bin information. The details in the Bin Information and Predictor Information panes are also updated.

Manual Binning to Merge Bins for a Numeric or Categorical Predictor

After you import data or a creditscorecard object into Binning Explorer, you can split or merge bins for a predictor.

1 Click any predictor plot in the Overview pane. The selected predictor plot displays in the main pane.

2 From the main pane, to merge bins, select two or more bins for merging by using Ctrl + click or Shift + click to multiselect bins to display with blue outlines. To change your bin selection, use Ctrl+ click to deselect a bin.

Note The Merge button is active only when more than one bin is selected. Only adjacent bins can be merged for numeric or ordinal predictors. Nonadjacent bins can be merged for categorical predictors.

3 Click Merge to complete the merge operation. The plot for the selected predictor is updated with the new bin information. The details in the Bin Information and Predictor Information panes are also updated.

Change Bin Boundaries for a Single Predictor

After you import data or a creditscorecard object into Binning Explorer, you can change the bin boundaries for a single predictor.

1 Click any numeric predictor plot in the Overview pane. The selected predictor plot displays with a blue outline and the predictor plot displays in the main pane.
2 From the main pane, click to select a specific bin where you want to change the bin dimensions. The selected bin displays with a blue outline.

3 On the Binning Explorer toolstrip, the Edges text boxes display values for the edges of the selected bin.

$$
\text { Edges: } 40 \mid \quad 46
$$

Edit the values in the Edges text boxes to change the selected bin's dimensions.
4 Click the main pane to complete the operation. The plot for the predictor is updated with the updated bin's dimension information. The details in the Bin Information and Predictor Information panes are also updated.

Change Bin Boundaries for Multiple Predictors

After you import data or a creditscorecard object into Binning Explorer, you can change the algorithm applied to one or more predictors and you can also redefine the number of bins.

1 From the Overview pane, click any predictor plot. The predictor plot displays with a blue outline.

Alternatively, select two or more predictors by using Ctrl + click or Shift + click to multiselect predictors to display with blue outlines.

2 On the Binning Explorer toolstrip, click Options to open a list of options for the Monotone, Split, Merge, Equal Frequency, and Equal Width algorithms. Click an option to open the associated Algorithm options dialog box. Make your selection from the respective Algorithm Options dialog box and click OK. The selected predictor plots are updated for the change of algorithm and the plots for the selected predictors are updated with the new bin information. The details in the Bin Information and Predictor Information panes are also updated.

Set Options for Display

Binning Explorer has options for displaying predictor plots and plot options and the associated tables displayed in Bin Information.

Plot Options

1 From the Binning Explorer toolstrip item for Plot Options, select any of the following predictor plot options:

- No labels (default)
- Bin count
- \% Bin level
- \% Data level
- \% Total count

2 The selected label is applied to all predictor plots.

Table Options

You can set the table display options for predictor information displayed in Bin Information.
1 From the Binning Explorer toolstrip item for Table Columns, select any of the following options:

- Odds
- WOE
- InfoValue
- Entropy
- Gini
- Chi2
- Members (option is enabled for categorical predictors)

2 When selected, these options are applied to all predictors for the information displayed in Bin Information.

Export and Save the Binning

Binning Explorer enables you to export and save your credit scorecard binning definitions to a creditscorecard object.

1 Click Export and then click Export Scorecard and provide a creditscorecard object name. The creditscorecard object is saved to the MATLAB workspace.

Note If you export a previously existing creditscorecard object that was fit (using fitmodel), all fitting settings in the creditscorecard object are lost. You must rerun fitmodel on the updated creditscorecard object.
2 To reopen a previously saved creditscorecard object, click Import Data and select the creditscorecard object from the Step 1 pane of the Import Data window.

Troubleshoot the Binning

- "Numeric Predictor Converted to Categorical Predictor Does Not Display Split Data Properly" on page 3-19
- "Predictor Plot Appears Distorted" on page 3-20

This topic shows some of the results when using Binning Explorer with credit scorecards that need troubleshooting. For details on the overall process of creating and developing credit scorecards, see "Overview of Binning Explorer" on page 3-2 and "Bin Data to Create Credit Scorecards Using Binning Explorer" on page 3-23.

Numeric Predictor Converted to Categorical Predictor Does Not Display Split Data Properly

When you convert a numeric predictor with hundreds of values (for example, continuous data) to categorical data, the resulting data has hundreds of categories. The following example illustrates this scenario.
load CreditCardData
Open the Binning Explorer and select the numeric predictor AMBalance from the Overview pane. From the Binning Explorer toolstrip, change the predictor type to Categorical.

From the Binning Explorer toolstrip and click Split. The Split dialog box displays as follows:

The predictor has too many categories to display properly.
Solution: If you have a categorical predictor with a large number of categories, use the Algorithm Options to change the binning algorithm for that predictor to Equal Frequency, with the Number of bins set to 100 (or another smaller value). The Split dialog box then displays properly.

Predictor Plot Appears Distorted

When using the Binning Explorer, if you import data that has not been previously binned and you select No Binning from the Import Data window, the resulting plots might be distorted. For example,
if you load the following data set into the MATLAB workspace and use Binning Explorer to import the data using No Binning, the following plot displays for the TmAtAddress predictor.
load CreditCardData

Solution: When you import data that has not been previously binned, select Monotone from the Import Data window instead. The following plot displays for the TmAtAddress predictor.

See Also

Apps

Binning Explorer

Classes

creditscorecard

Related Examples

- "Bin Data to Create Credit Scorecards Using Binning Explorer" on page 3-23
- "Case Study for Credit Scorecard Analysis"
- "Credit Scorecard Modeling with Missing Values"

More About

- "Overview of Binning Explorer" on page 3-2
- "Credit Scorecard Modeling Workflow"

External Websites

- Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

Bin Data to Create Credit Scorecards Using Binning Explorer

Create a credit scorecard using the Binning Explorer app. Use the Binning Explorer to bin the data, plot the binned data information, and export a creditscorecard object. Then use the creditscorecard object with functions from Financial Toolbox to fit a logistic regression model, determine a score for the data, determine the probabilities of default, and validate the credit scorecard model using three different metrics.

Step 1. Load credit scorecard data into the MATLAB workspace.

Use the CreditCardData.mat file to load the data into the MATLAB workspace (using a dataset from Refaat 2011).

```
load CreditCardData
disp(data(1:10,:))
```

CustID	CustAge	TmAtAddress	ResStatus	EmpStatus	CustIncome	TmWBank	OtherCC	AMBalance	UtilRate	status
1	53	62	Tenant	Unknown	50000	55	Yes	1055.9	0.22	0
2	61	22	Home Owner	Employed	52000	25	Yes	1161.6	0.24	0
3	47	30	Tenant	Employed	37000	61	No	877.23	0.29	0
4	50	75	Home Owner	Employed	53000	20	Yes	157.37	0.08	0
5	68	56	Home Owner	Employed	53000	14	Yes	561.84	0.11	0
6	65	13	Home Owner	Employed	48000	59	Yes	968.18	0.15	0
7	34	32	Home Owner	Unknown	32000	26	Yes	717.82	0.02	1
8	50	57	Other	Employed	51000	33	No	3041.2	0.13	0
9	50	10	Tenant	Unknown	52000	25	Yes	115.56	0.02	1
10	49	30	Home Owner	Unknown	53000	23	Yes	718.5	0.17	1

Step 2. Import the data into Binning Explorer.

Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under Computational Finance, click the app icon. Alternatively, you can enter binningExplorer on the MATLAB command line. For more information on starting the Binning Explorer from the command line, see "Start from MATLAB Command Line Using Data or an Existing creditscorecard Object" on page 3-5.

From the Binning Explorer toolstrip, select Import Data to open the Import Data window.

Under Step 1, select data.
Under Step 2, optionally set the Variable Type for each of the predictors. By default, the last column in the data ('status' in this example) is set to 'Response'. All other variables are considered predictors. However, in this example, because 'CustID ' (customer identification number) is not a useful predictor, set the Variable Type column for 'CustID' to Do not include.

Note If the input MATLAB table contains a column for weights, from the Step 2 pane, using the Variable Type column, click the drop-down to select Weights. For more information on using observation weights with a creditscorecard object, see "Credit Scorecard Modeling Using Observation Weights".

If the data contains missing values, from the Step 2 pane, set Bin missing data: to Yes. For more information on working with missing data, see "Credit Scorecard Modeling with Missing Values".

Under Step 3, leave Monotone as the default initial binning algorithm.
Click Import Data to complete the import operation. Automatic binning using the selected algorithm is applied to all predictors as they are imported into Binning Explorer.

The bins are plotted and displayed for each predictor. By clicking to select an individual predictor plot from the Overview pane, the details for that predictor plot display in the main pane and in the Bin Information and Predictor Information panes at the bottom of the app.

Binning Explorer performs automatic binning for every predictor variable, using the default 'Monotone ' algorithm with default algorithm options. A monotonic, ideally linear trend in the Weight of Evidence (WOE) is often desirable for credit scorecards because this translates into linear points for a given predictor. WOE trends are visualized on the plots for each predictor in Binning Explorer.

Perform some initial data exploration. Inquire about predictor statistics for the 'ResStatus ' categorical variable.

Click the ResStatus plot. The Bin Information pane contains the "Good" and "Bad" frequencies and other bin statistics such as weight of evidence (WOE).

Bin Information						
Bin	Good	Bad	Odds	WOE	InfoValue	
Tenant	307	167	1.8383	-0.0956	0.0037	-
Home Owner	365	177	2.0621	0.0193	0.0002	
Other	131	53	2.4717	0.2005	0.0059	-

For numeric data, the same statistics are displayed. Click the CustIncome plot. The Bin Information is updated with the information about CustIncome.

Bin Information					
Bin	Good	Bad	Odds	WOE	InfoValue
[-Inf,29000)	53	58	0.9138	-0.7946	0.0636 -
[29000,33000)	74	49	1.5102	-0.2922	0.0091
[33000,35000)	68	36	1.8889	-0.0684	0.0004
[35000,40000)	193	98	1.9694	-0.0267	0.0002
[40000,42000)	68	34	2.0000	-0.0113	0.0000
reanan atana	-acr	- ar	a man	anara	a 0 OTn

Step 3. Fine-tune the bins using manual binning in Binning Explorer.

Click the CustAge predictor plot. Notice that bins 1 and 2 have similar WOEs, as do bins 5 and 6 .

To merge bins 1 and 2, from the main pane, click Ctrl + click or Shift + click to multiselect bin 1 and 2 to display with blue outlines for merging.

On the Binning Explorer toolstrip, use the read-only display for the Edges text boxes to verify values for the edges of the selected bins to merge.

Click Merge to finish merging bins 1 and 2. The CustAge predictor plot is updated for the new bin information and the details in the Bin Information and Predictor Information panes are also updated.

Next, merge bins 4 and 5, because they also have similar WOEs.

The CustAge predictor plot is updated with the new bin information. The details in the Bin Information and Predictor Information panes are also updated.

Repeat this merge operation for the following bins that have similar WOEs:

- For CustIncome, merge bins 3, 4 and 5.
- For TmWBank, merge bins 2 and 3.
- For AMBalance, merge bins 2 and 3.

Now the bins for all predictors have close-to-linear WOE trends.

Step 4. Export the creditscorecard object from Binning Explorer.

After you complete your binning assignments, using Binning Explorer, click Export and then click Export Scorecard and provide a creditscorecard object name. The creditscorecard object (sc) is saved to the MATLAB workspace.

Step 5. Fit a logistic regression model.

Use the fitmodel function to fit a logistic regression model to the WOE data. fitmodel internally bins the training data, transforms it into WOE values, maps the response variable so that 'Good ' is 1, and fits a linear logistic regression model. By default, fitmodel uses a stepwise procedure to determine which predictors belong in the model.

```
sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8954, Chi2Stat = 32.545914, PValue = 1.1640961e-08
2. Adding TmWBank, Deviance = 1467.3249, Chi2Stat = 23.570535, PValue = 1.2041739e-06
3. Adding AMBalance, Deviance = 1455.858, Chi2Stat = 11.466846, PValue = 0.00070848829
4. Adding EmpStatus, Deviance = 1447.6148, Chi2Stat = 8.2432677, PValue = 0.0040903428
5. Adding CustAge, Deviance = 1442.06, Chi2Stat = 5.5547849, PValue = 0.018430237
6. Adding ResStatus, Deviance = 1437.9435, Chi2Stat = 4.1164321, PValue = 0.042468555
7. Adding OtherCC, Deviance = 1433.7372, Chi2Stat = 4.2063597, PValue = 0.040272676
Generalized Linear regression model:
    logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
    Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline 0.7024 & 0.064 & 10.975 & 5.0407e-28 \\
\hline 0.61562 & 0.24783 & 2.4841 & 0.012988 \\
\hline 1.3776 & 0.65266 & 2.1107 & 0.034799 \\
\hline 0.88592 & 0.29296 & 3.024 & 0.0024946 \\
\hline 0.69836 & 0.21715 & 3.216 & 0.0013001 \\
\hline 1.106 & 0.23266 & 4.7538 & \(1.9958 \mathrm{e}-06\) \\
\hline 1.0933 & 0.52911 & 2.0662 & 0.038806 \\
\hline 1.0437 & 0.32292 & 3.2322 & 0.0012285 \\
\hline
\end{tabular}
1200 observations, }1192\mathrm{ error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.42e-16
```


Step 6. Review and format scorecard points.

After fitting the logistic model, the points are unscaled by default and come directly from the combination of WOE values and model coefficients. Use the displaypoints function to summarize the scorecard points.

'AMBalance'	'[558.88,1597.44)'	-0.026797
'AMBalance'	'[1597.44,Inf]'	-0.21168

Use modifybins to give the bins more descriptive labels.

```
sc = modifybins(sc,'CustAge','BinLabels',...
{'Up to 36' '37 to 39' '40 to 45' '46 to 57' '58 and up'});
sc = modifybins(sc,'CustIncome','BinLabels',...
{'Up to 28999' '29000 to 32999''33000 to 41999' '42000 to 46999' '47000 and up'});
sc = modifybins(sc,'TmWBank','BinLabels',...
{'Up to 11' '12 to 44' '45 to 70' '71 and up'});
sc = modifybins(sc,'AMBalance','BinLabels',...
{'Up to 558.87' '558.88 to 1597.43' '1597.44 and up'});
p1 = displaypoints(sc);
disp(p1)
\begin{tabular}{|c|c|c|}
\hline Predictors & Bin & Points \\
\hline 'CustAge' & 'Up to 36' & -0.15314 \\
\hline 'CustAge' & '37 to 39' & -0.062247 \\
\hline 'CustAge' & '40 to 45' & 0.045763 \\
\hline 'CustAge' & '46 to 57' & 0.22888 \\
\hline 'CustAge' & '58 and up' & 0.48354 \\
\hline 'ResStatus' & 'Tenant' & -0.031302 \\
\hline 'ResStatus' & 'Home Owner' & 0.12697 \\
\hline 'ResStatus' & 'Other' & 0.37652 \\
\hline 'EmpStatus' & 'Unknown' & -0.076369 \\
\hline 'EmpStatus' & 'Employed' & 0.31456 \\
\hline 'CustIncome' & 'Up to 28999' & -0.45455 \\
\hline 'CustIncome' & '29000 to 32999' & -0.1037 \\
\hline 'CustIncome' & '33000 to 41999' & 0.077768 \\
\hline 'CustIncome' & '42000 to 46999' & 0.24406 \\
\hline 'CustIncome' & '47000 and up' & 0.43536 \\
\hline 'TmWBank' & 'Up to 11' & -0.18221 \\
\hline 'TmWBank' & '12 to 44' & -0.038279 \\
\hline 'TmWBank' & '45 to 70' & 0.39569 \\
\hline 'TmWBank' & '71 and up' & 0.95074 \\
\hline 'OtherCC' & 'No' & -0.193 \\
\hline ' OtherCC' & 'Yes' & 0.15868 \\
\hline 'AMBalance' & 'Up to 558.87' & 0.3552 \\
\hline 'AMBalance' & '558.88 to 1597.43' & -0.026797 \\
\hline 'AMBalance' & '1597.44 and up' & -0.21168 \\
\hline
\end{tabular}
```

Points are scaled and are also often rounded. To round and scale the points, use the formatpoints function. For example, you can set a target level of points corresponding to a target odds level and also set the required points-to-double-the-odds (PDO).

```
TargetPoints = 500;
TargetOdds = 2;
PDO = 50; % Points to double the odds
sc = formatpoints(sc,'PointsOddsAndPDO',[TargetPoints TargetOdds PDO]);
p2 = displaypoints(sc);
disp(p2)
\begin{tabular}{llll} 
Predictors & \multicolumn{2}{c}{ Bin } & Points \\
& & & \\
'CustAge' & & \\
'Up to 36' & & 53.239 \\
'CustAge' & '37 to 39' & & 59.796
\end{tabular}
```

'CustAge'	'40 to 45'	67.587
'CustAge'	'46 to 57'	80.796
'CustAge'	'58 and up'	99.166
'ResStatus'	'Tenant'	62.028
'ResStatus'	'Home Owner'	73.445
'ResStatus'	'Other'	91.446
'EmpStatus'	'Unknown'	58.777
'EmpStatus'	'Employed'	86.976
'CustIncome'	'Up to 28999'	31.497
'CustIncome'	'29000 to 32999'	56.805
'CustIncome'	'33000 to 41999'	69.896
'CustIncome'	'42000 to 46999'	81.891
'CustIncome'	'47000 and up'	95.69
'TmWBank'	'Up to 11'	51.142
'TmWBank'	'12 to 44'	61.524
'TmWBank'	'45 to 70'	92.829
'TmWBank'	'71 and up'	132.87
'OtherCC'	'No'	50.364
'OtherCC'	'Yes'	75.732
'AMBalance'	'Up to 558.87'	89.908
'AMBalance'	'558.88 to 1597.43'	62.353
'AMBalance'	'1597.44 and up'	49.016

Step 7. Score the data.

Use the score function to compute the scores for the training data. You can also pass an optional data input to score, for example, validation data. The points per predictor for each customer are provided as an optional output.

```
[Scores,Points] = score(sc);
disp(Scores(1:10))
disp(Points(1:10,:))
```

528.2044
554.8861
505.2406
564.0717
554.8861
586.1904
441.8755
515.8125
524.4553
508.3169

| CustAge | ResStatus | | EmpStatus | | CustIncome | | TmWBank | | OtherCC |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | AMBalance

Step 8. Calculate the probability of default.

To calculate the probability of default, use the probdefault function.

Define the probability of being "Good" and plot the predicted odds versus the formatted scores.
Visually analyze that the target points and target odds match and that the points-to-double-the-odds (PDO) relationship holds.

```
ProbGood = 1-pd;
PredictedOdds = ProbGood./pd;
figure
scatter(Scores,PredictedOdds)
title('Predicted Odds vs. Score')
xlabel('Score')
ylabel('Predicted Odds')
hold on
xLimits = xlim;
yLimits = ylim;
% Target points and odds
plot([TargetPoints TargetPoints],[yLimits(1) TargetOdds],'k:')
plot([xLimits(1) TargetPoints],[Target0dds Target0dds],'k:')
% Target points plus PDO
plot([TargetPoints+PDO TargetPoints+PD0],[yLimits(1) 2*TargetOdds],'k:')
plot([xLimits(1) TargetPoints+PD0],[2*Target0dds 2*Target0dds],'k:')
% Target points minus PDO
plot([TargetPoints-PDO TargetPoints-PDO],[yLimits(1) TargetOdds/2],'k:')
plot([xLimits(1) TargetPoints-PD0],[Target0dds/2 Target0dds/2],'k:')
hold off
```


Step 9. Validate the credit scorecard model using the CAP, ROC, and Kolmogorov-Smirnov statistic

The creditscorecard object supports three validation methods, the Cumulative Accuracy Profile (CAP), the Receiver Operating Characteristic (ROC), and the Kolmogorov-Smirnov (KS) statistic. For more information on CAP, ROC, and KS, see validatemodel.

```
[Stats,T] = validatemodel(sc,'Plot',{'CAP','ROC','KS'});
disp(Stats)
disp(T(1:15,:))
```

Measure		Value						
'Accura	Ratio'	0.32225						
'Area und	ROC curve'	0.66113						
'KS sta	tic'	0.22324						
'KS sco		499.18						
Scores	ProbDefault	TrueBads	FalseBads	TrueGoods	FalseGoods	Sensitivity	FalseAlarm	Pct0bs
369.4	0.7535	0	1	802	397	0	0.0012453	0.00083333
377.86	0.73107	1	1	802	396	0.0025189	0.0012453	0.0016667
379.78	0.7258	2	1	802	395	0.0050378	0.0012453	0.0025
391.81	0.69139	3	1	802	394	0.0075567	0.0012453	0.0033333
394.77	0.68259	3	2	801	394	0.0075567	0.0024907	0.0041667
395.78	0.67954	4	2	801	393	0.010076	0.0024907	0.005
396.95	0.67598	5	2	801	392	0.012594	0.0024907	0.0058333
398.37	0.67167	6	2	801	391	0.015113	0.0024907	0.0066667
401.26	0.66276	7	2	801	390	0.017632	0.0024907	0.0075
403.23	0.65664	8	2	801	389	0.020151	0.0024907	0.0083333
405.09	0.65081	8	3	800	389	0.020151	0.003736	0.0091667
405.15	0.65062	11	5	798	386	0.027708	0.0062267	0.013333
405.37	0.64991	11	6	797	386	0.027708	0.007472	0.014167
406.18	0.64735	12	6	797	385	0.030227	0.007472	0.015
407.14	0.64433	13	6	797	384	0.032746	0.007472	0.015833

See Also

creditscorecard|screenpredictors | autobinning|bininfo|predictorinfo| modifypredictor|modifybins|bindata|plotbins|fitmodel|displaypoints| formatpoints | score | setmodel| probdefault | validatemodel|
compactCreditScorecard

Related Examples

- "Common Binning Explorer Tasks" on page 3-4
- "Credit Scorecard Modeling with Missing Values"
- "Feature Screening with screenpredictors" on page 3-64
- "Troubleshooting Credit Scorecard Results"
- "Credit Rating by Bagging Decision Trees"
- "Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36

More About

- "Overview of Binning Explorer" on page 3-2
- "About Credit Scorecards"
- "Credit Scorecard Modeling Workflow"
- Monotone Adjacent Pooling Algorithm (MAPA)
- "Credit Scorecard Modeling Using Observation Weights"

External Websites

- Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

Stress Testing of Consumer Credit Default Probabilities Using Panel Data

This example shows how to work with consumer (retail) credit panel data to visualize observed default rates at different levels. It also shows how to fit a model to predict probabilities of default (PD) and lifetime PD values, and perform a stress-testing analysis.

The panel data set of consumer loans enables you to identify default rate patterns for loans of different ages, or years on books. You can use information about a score group to distinguish default rates for different score levels. In addition, you can use macroeconomic information to assess how the state of the economy affects consumer loan default rates.

A standard logistic regression model, a type of generalized linear model, is fitted to the retail credit panel data with and without macroeconomic predictors, using fitLifetimePDModel from Risk Management Toolbox ${ }^{\mathrm{TM}}$. Although the same model can be fitted using the fitglm function from Statistics and Machine Learning Toolbox ${ }^{\mathrm{TM}}$, the lifetime probability of default (PD) version of the model is designed for credit applications, and supports lifetime PD prediction and model validation tools, including the discrimination and accuracy plots shown in this example. The example also describes how to fit a more advanced model to account for panel data effects, a generalized linear mixed effects model. However, the panel effects are negligible for the data set in this example and the standard logistic model is preferred for efficiency.

The logistic regression model predicts probabilities of default for all score levels, years on books, and macroeconomic variable scenarios. There is a brief discussion on how to predict lifetime PD values, with pointers to additional functionality. The example shows model discrimination and model accuracy tools to validate and compare models. In the last section of this example, the logistic model is used for a stress-testing analysis, the model predicts probabilities of default for a given baseline, as well as default probabilities for adverse and severely adverse macroeconomic scenarios.

For additional information, refer to "Overview of Lifetime Probability of Default Models" on page 125. See also the example "Modeling Probabilities of Default with Cox Proportional Hazards" on page 4-28, which follows the same workflow but uses Cox regression instead of logistic regression and also has information on the computation of lifetime PD and lifetime Expected Credit Loss (ECL).

Panel Data Description

The main data set (data) contains the following variables:

- ID: Loan identifier.
- ScoreGroup: Credit score at the beginning of the loan, discretized into three groups: High Risk, Medium Risk, and Low Risk.
- YOB: Years on books.
- Default: Default indicator. This is the response variable.
- Year: Calendar year.

There is also a small data set (dataMacro) with macroeconomic data for the corresponding calendar years:

- Year: Calendar year.
- GDP: Gross domestic product growth (year over year).
- Market: Market return (year over year).

The variables YOB, Year, GDP, and Market are observed at the end of the corresponding calendar year. The score group is a discretization of the original credit score when the loan started. A value of 1 for Default means that the loan defaulted in the corresponding calendar year.

There is also a third data set (dataMacroStress) with baseline, adverse, and severely adverse scenarios for the macroeconomic variables. This table is used for the stress-testing analysis.

This example uses simulated data, but the same approach has been successfully applied to real data sets.

Load the Panel Data

Load the data and view the first 10 and last 10 rows of the table. The panel data is stacked, in the sense that observations for the same ID are stored in contiguous rows, creating a tall, thin table. The panel is unbalanced, because not all IDs have the same number of observations.

```
load RetailCreditPanelData.mat
fprintf('\nFirst ten rows:\n')
First ten rows:
disp(data(1:10,:))
\begin{tabular}{|c|c|c|c|c|}
\hline ID & ScoreGroup & YOB & Default & Year \\
\hline 1 & Low Risk & 1 & 0 & 1997 \\
\hline 1 & Low Risk & 2 & 0 & 1998 \\
\hline 1 & Low Risk & 3 & 0 & 1999 \\
\hline 1 & Low Risk & 4 & 0 & 2000 \\
\hline 1 & Low Risk & 5 & 0 & 2001 \\
\hline 1 & Low Risk & 6 & 0 & 2002 \\
\hline 1 & Low Risk & 7 & 0 & 2003 \\
\hline 1 & Low Risk & 8 & 0 & 2004 \\
\hline 2 & Medium Risk & 1 & 0 & 1997 \\
\hline 2 & Medium Risk & 2 & 0 & 1998 \\
\hline
\end{tabular}
fprintf('Last ten rows:\n')
Last ten rows:
disp(data(end-9:end,:))
\begin{tabular}{cllccc} 
ID & ScoreGroup & & YOB & & Default
\end{tabular}
```

```
nRows = height(data);
UniqueIDs = unique(data.ID);
nIDs = length(UniqueIDs);
fprintf('Total number of IDs: %d\n',nIDs)
Total number of IDs: 96820
fprintf('Total number of rows: %d\n',nRows)
Total number of rows: 646724
```


Default Rates by Score Groups and Years on Books

Use the credit score group as a grouping variable to compute the observed default rate for each score group. For this, use the groupsummary function to compute the mean of the Default variable, grouping by the ScoreGroup variable. Plot the results on a bar chart. As expected, the default rate goes down as the credit quality improves.

```
DefRateByScore = groupsummary(data,'ScoreGroup','mean','Default');
NumScoreGroups = height(DefRateByScore);
disp(DefRateByScore)
    ScoreGroup GroupCount mean_Default
    High Risk 2.0999e+05 0.017167
    Medium Risk 2.1743e+05 0.0086006
    Low Risk 2.193e+05 0.0046784
bar(DefRateByScore.ScoreGroup,DefRateByScore.mean_Default*100)
title('Default Rate vs. Score Group')
xlabel('Score Group')
ylabel('Observed Default Rate (%)')
grid on
```


Next, compute default rates grouping by years on books (represented by the YOB variable). The resulting rates are conditional one-year default rates. For example, the default rate for the third year on books is the proportion of loans defaulting in the third year, relative to the number of loans that are in the portfolio past the second year. In other words, the default rate for the third year is the number of rows with $Y O B=3$ and Default $=1$, divided by the number of rows with $Y O B=3$.

Plot the results. There is a clear downward trend, with default rates going down as the number of years on books increases. Years three and four have similar default rates. However, it is unclear from this plot whether this is a characteristic of the loan product or an effect of the macroeconomic environment.

```
DefRateByYOB = groupsummary(data,'YOB','mean','Default');
NumYOB = height(DefRateByYOB);
disp(DefRateByYOB)
\begin{tabular}{|c|c|c|}
\hline YOB & GroupCount & mean_Default \\
\hline 1 & 96820 & 0.017507 \\
\hline 2 & 94535 & 0.012704 \\
\hline 3 & 92497 & 0.011168 \\
\hline 4 & 91068 & 0.010728 \\
\hline 5 & 89588 & 0.0085949 \\
\hline 6 & 88570 & 0.006413 \\
\hline 7 & 61689 & 0.0033231 \\
\hline 8 & 31957 & 0.0016272 \\
\hline
\end{tabular}
```

plot(double(DefRateByYOB.YOB), DefRateByYOB.mean_Default*100, ' - *')
title('Default Rate vs. Years on Books')
xlabel('Years on Books')
ylabel('Observed Default Rate (\%)')
grid on

Now, group both by the score group and number of years on books and then plot the results. The plot shows that all score groups behave similarly as time progresses, with a general downward trend. Years three and four are an exception to the downward trend: the rates flatten for the High Risk group, and go up in year three for the Low Risk group.

```
DefRateByScoreYOB = groupsummary(data,{'ScoreGroup','YOB'},'mean','Default');
% Display output table to show the way it is structured
% Display only the first 10 rows, for brevity
disp(DefRateByScoreYOB(1:10,:))
```

ScoreGroup	YOB	GroupCount	mean_Default
High Risk	1	32601	0.029692
High Risk	2	31338	0.021252
High Risk	3	30138	0.018448
High Risk	4	29438	0.018276
High Risk	5	28661	0.014794
High Risk	6	28117	0.011168
High Risk	7	19606	0.0056615
High Risk	8	10094	0.0027739

```
Medium Risk 1 32373 0.014302
Medium Risk 2 31775 0.011676
DefRateByScoreYOB2 = reshape(DefRateByScoreYOB.mean_Default,...
    NumYOB,NumScoreGroups);
plot(DefRateByScoreYOB2*100,' -*')
title('Default Rate vs. Years on Books')
xlabel('Years on Books')
ylabel('Observed Default Rate (%)')
legend(categories(data.ScoreGroup))
grid on
```


Years on Books Versus Calendar Years

The data contains three cohorts, or vintages: loans started in 1997, 1998, and 1999. No loan in the panel data started after 1999.

This section shows how to visualize the default rate for each cohort separately. The default rates for all cohorts are plotted, both against the number of years on books and against the calendar year. Patterns in the years on books suggest the loan product characteristics. Patterns in the calendar years suggest the influence of the macroeconomic environment.

From years two through four on books, the curves show different patterns for the three cohorts. When plotted against the calendar year, however, the three cohorts show similar behavior from 2000 through 2002. The curves flatten during that period.

```
% Get IDs of 1997, 1998, and 1999 cohorts
IDs1997 = data.ID(data.YOB==1&data.Year==1997);
IDs1998 = data.ID(data.YOB==1&data.Year==1998);
IDs1999 = data.ID(data.YOB==1&data.Year==1999);
% IDs2000AndUp is unused, it is only computed to show that this is empty,
% no loans started after 1999
IDs2000AndUp = data.ID(data.YOB==1&data.Year>1999);
% Get default rates for each cohort separately
ObsDefRate1997 = groupsummary(data(ismember(data.ID,IDs1997),:),...
    'YOB','mean','Default');
ObsDefRate1998 = groupsummary(data(ismember(data.ID,IDs1998),:),...
    'YOB','mean','Default');
ObsDefRate1999 = groupsummary(data(ismember(data.ID,IDs1999),:),...
    'YOB','mean','Default');
% Plot against the years on books
plot(ObsDefRate1997.YOB,ObsDefRate1997.mean_Default*100,' -*')
hold on
plot(ObsDefRate1998.YOB,ObsDefRate1998.mean Default*100,' -*')
plot(ObsDefRate1999.YOB,ObsDefRate1999.mean_Default*100,' -*')
hold off
title('Default Rate vs. Years on Books')
xlabel('Years on Books')
ylabel('Default Rate (%)')
legend('Cohort 97','Cohort 98','Cohort 99')
grid on
```



```
% Plot against the calendar year
Year = unique(data.Year);
plot(Year,ObsDefRate1997.mean_Default*100,' -*')
hold on
plot(Year(2:end),0bsDefRate1998.mean Default*100,' -*')
plot(Year(3:end),ObsDefRate1999.mean_Default*100,' -*')
hold off
title('Default Rate vs. Calendar Year')
xlabel('Calendar Year')
ylabel('Default Rate (%)')
legend('Cohort 97','Cohort 98','Cohort 99')
grid on
```


Model of Default Rates Using Score Group and Years on Books

After you visualize the data, you can build predictive models for the default rates.
Split the panel data into training and testing sets, defining these sets based on ID numbers.

```
NumTraining = floor(0.6*nIDs);
rng('default'); % for reproducibility
TrainIDInd = randsample(nIDs,NumTraining);
TrainDataInd = ismember(data.ID,UniqueIDs(TrainIDInd));
TestDataInd = ~TrainDataInd;
```

The first model uses only score group and number of years on books as predictors of the default rate p. The odds of defaulting are defined as $p /(1-p)$. The logistic model relates the logarithm of the odds, or \log odds, to the predictors as follows:

$$
\log \left(\frac{p}{1-p}\right)=a_{H}+a_{M} 1_{M}+a_{L} 1_{L}+b_{Y O B} Y O B+\epsilon
$$

1 M is an indicator with a value 1 for Medium Risk loans and 0 otherwise, and similarly for $1 L$ for Low Risk loans. This is a standard way of handling a categorical predictor such as ScoreGroup. There is effectively a different constant for each risk level: $a H$ for High Risk, $a H+a M$ for Medium Risk, and $a H+a L$ for Low Risk.

ModelNoMacro = fitLifetimePDModel(data(TrainDataInd,:),'logistic',...
'ModelID','No Macro','Description','Logistic model with YOB and score group, but no macro var.

```
    'IDVar','ID','LoanVars','ScoreGroup','AgeVar','YOB','ResponseVar','Default');
disp(ModelNoMacro.UnderlyingModel)
Compact generalized linear regression model:
    logit(Default) ~ 1 + ScoreGroup + YOB
    Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|c|}
\hline & Estimate & SE & tStat & pValue \\
\hline (Intercept) & -3.2453 & 0.033768 & -96.106 & 0 \\
\hline ScoreGroup_Medium Risk & -0.7058 & 0.037103 & -19.023 & 1.1014e-80 \\
\hline ScoreGroup_Low Risk & -1.2893 & 0.045635 & -28.253 & 1.3076e-175 \\
\hline YOB & -0.22693 & 0.008437 & -26.897 & 2.3578e-159 \\
\hline
\end{tabular}
```

388018 observations, 388014 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.83e+03, p-value = 0
For any row in the data, the value of p is not observed, only a 0 or 1 default indicator is observed. The calibration finds model coefficients, and the predicted values of p for individual rows can be recovered with the predict function.

The Intercept coefficient is the constant for the High Risk level (the $a H$ term), and the ScoreGroup_Medium Risk and ScoreGroup_Low Risk coefficients are the adjustments for Medium Risk and Low Risk levels (the $a M$ and $a L$ terms).

The default probability p and the log odds (the left side of the model) move in the same direction when the predictors change. Therefore, because the adjustments for Medium Risk and Low Risk are negative, the default rates are lower for better risk levels, as expected. The coefficient for number of years on books is also negative, consistent with the overall downward trend for number of years on books observed in the data.

An alternative way to fit the model is using the fitglm function from Statistics and Machine Learning Toolbox ${ }^{\text {TM }}$. The formula above is expressed as

Default ~ 1 + ScoreGroup + YOB
The $1+$ ScoreGroup terms account for the baseline constant and the adjustments for risk level. Set the optional argument Distribution to binomial to indicate that a logistic model is desired (that is, a model with log odds on the left side), as follows:

```
ModelNoMacro = fitglm(data(TrainDataInd,:), 'Default ~ 1 + ScoreGroup +
YOB','Distribution','binomial');
```

As mentioned in the introduction, the advantage of the lifetime PD version of the model fitted with fitLifetimePDModel is that it is designed for credit applications, and it can predict lifetime PD and supports model validation tools, including the discrimination and accuracy plots. For more information, see "Overview of Lifetime Probability of Default Models" on page 1-25.

To account for panel data effects, a more advanced model using mixed effects can be fitted using the fitglme function from Statistics and Machine Learning Toolbox ${ }^{\mathrm{TM}}$. Although this model is not fitted in this example, the code is very similar:

ModelNoMacro = fitglme(data(TrainDataInd,:),'Default ~ 1 + ScoreGroup + YOB + (1|ID)','Distribution','binomial');

The ($1 \mid$ ID) term in the formula adds a random effect to the model. This effect is a predictor whose values are not given in the data, but fitted together with the model coefficients. A random value is fit for each ID. This additional fitting requirement substantially increases the computational time to fit the model in this case, because of the very large number of IDs. For the panel data set in this example, the random term has a negligible effect. The variance of the random effects is very small and the model coefficients barely change when the random effect is introduced. The simpler logistic regression model is preferred, because it is faster to fit and to predict, and the default rates predicted with both models are essentially the same.

Predict the probability of default for training and testing data. The predict function predicts conditional PD values, row by row. We store the data to compare the predictions against the macro model in the next section.

```
data.PDNoMacro = zeros(height(data),1);
% Predict in-sample
data.PDNoMacro(TrainDataInd) = predict(ModelNoMacro,data(TrainDataInd,:));
% Predict out-of-sample
data.PDNoMacro(TestDataInd) = predict(ModelNoMacro,data(TestDataInd,:));
```

To make lifetime PD predictions, use the predictLifetime function. For lifetime predictions, projected values of the predictors are required for each ID value in the prediction data set. For example, predict the survival probability for the first two IDs in the dataset. See how the conditional PD (PDNoMacro column) and the lifetime PD (LifetimePD column) match for the first year of each ID. After that year, the lifetime PD increases because it is a cumulative probability. For more information, see predictLifetime. See also the "Expected Credit Loss Computation" on page 4124 example.
datal = data(1:16,:);
datal.LifetimePD = predictLifetime(ModelNoMacro,data1);
disp(datal)

ID	ScoreGroup	YOB	Default	Year	PDNoMacro	LifetimePD
1	Low Risk	1	0	1997	0.0084797	0.0084797
1	Low Risk	2	0	1998	0.0067697	0.015192
1	Low Risk	3	0	1999	0.0054027	0.020513
1	Low Risk	4	0	2000	0.0043105	0.024735
1	Low Risk	5	0	2001	0.0034384	0.028088
1	Low Risk	6	0	2002	0.0027422	0.030753
1	Low Risk	7	0	2003	0.0021867	0.032873
1	Low Risk	8	0	2004	0.0017435	0.034559
2	Medium Risk	1	0	1997	0.015097	0.015097
2	Medium Risk	2	0	1998	0.012069	0.026984
2	Medium Risk	3	0	1999	0.0096422	0.036366
2	Medium Risk	4	0	2000	0.0076996	0.043785
2	Medium Risk	5	0	2001	0.006146	0.049662
2	Medium Risk	6	0	2002	0.0049043	0.054323
2	Medium Risk	7	0	2003	0.0039125	0.058023
2	Medium Risk	8	0	2004	0.0031207	0.060962

Visualize the in-sample (training) or out-of-sample (test) fit using modelCalibrationPlot. It requires a grouping variable to compute default rates and average predicted PD values for each group. Use the years on books as grouping variable here.

```
DataSetChoice = Test - *
if DataSetChoice=="Training"
    Ind = TrainDataInd;
else
    Ind = TestDataInd;
end
modelCalibrationPlot(ModelNoMacro,data(Ind,:),'YOB','DataID',DataSetChoice)
```


The score group can be input as a second grouping variable to visualize the fit by score groups.

```
modelCalibrationPlot(ModelNoMacro,data(Ind,:),{'YOB' 'ScoreGroup'},'DataID',DataSetChoice)
```


Lifetime PD models also support validation tools for model discrimination. In particular, the modelDiscriminationPlot function creates the receiver operating characteristic (ROC) curve plot. Here a separate ROC curve is requested for each score group. For more information, see modelDiscriminationPlot.
modelDiscriminationPlot(ModelNoMacro,data(Ind,:), 'SegmentBy','ScoreGroup','DataID',DataSetChoice

Model of Default Rates Including Macroeconomic Variables

The trend predicted with the previous model, as a function of years on books, has a very regular decreasing pattern. The data, however, shows some deviations from that trend. To try to account for those deviations, add the gross domestic product annual growth (represented by the GDP variable) and stock market annual returns (represented by the Market variable) to the model.

$$
\log \left(\frac{p}{1-p}\right)=a_{H}+a_{M} 1_{M}+a_{L} 1_{L}+b_{Y O B} Y O B+b_{G D P} G D P+b_{\text {Market }} M a r k e t+\epsilon
$$

Expand the data set to add one column for GDP and one for Market, using the data from the dataMacro table.

```
data = join(data,dataMacro);
disp(data(1:10,:))
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ID & ScoreGroup & YOB & Default & Year & PDNoMacro & GDP & Market \\
\hline 1 & Low Risk & 1 & 0 & 1997 & 0.0084797 & 2.72 & 7.61 \\
\hline 1 & Low Risk & 2 & 0 & 1998 & 0.0067697 & 3.57 & 26.24 \\
\hline 1 & Low Risk & 3 & 0 & 1999 & 0.0054027 & 2.86 & 18.1 \\
\hline 1 & Low Risk & 4 & 0 & 2000 & 0.0043105 & 2.43 & 3.19 \\
\hline 1 & Low Risk & 5 & 0 & 2001 & 0.0034384 & 1.26 & -10.51 \\
\hline 1 & Low Risk & 6 & 0 & 2002 & 0.0027422 & -0.59 & -22.95 \\
\hline 1 & Low Risk & 7 & 0 & 2003 & 0.0021867 & 0.63 & 2.78 \\
\hline 1 & Low Risk & 8 & 0 & 2004 & 0.0017435 & 1.85 & 9.48 \\
\hline
\end{tabular}
```

2	Medium Risk	1	0	1997	0.015097	2.72	7.61
2	Medium Risk	2	0	1998	0.012069	3.57	26.24

Fit the model with the macroeconomic variables, or macro model, by expanding the model formula to include the GDP and the Market variables.

```
ModelMacro = fitLifetimePDModel(data(TrainDataInd,:),'logistic',...
    'ModelID','Macro','Description','Logistic model with YOB, score group and macro variables',..
    'IDVar','ID','LoanVars','ScoreGroup','AgeVar','YOB',...
    'MacroVars',{'GDP','Market'},'ResponseVar','Default');
disp(ModelMacro.UnderlyingModel)
Compact generalized linear regression model:
    logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
    Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -2.667 & 0.10146 & -26.287 & 2.6919e-152 \\
\hline -0.70751 & 0.037108 & -19.066 & 4.8223e-81 \\
\hline -1.2895 & 0.045639 & -28.253 & 1.2892e-175 \\
\hline -0.32082 & 0.013636 & -23.528 & 2.0867e-122 \\
\hline -0.12295 & 0.039725 & -3.095 & 0.0019681 \\
\hline -0.0071812 & 0.0028298 & -2.5377 & 0.011159 \\
\hline
\end{tabular}
388018 observations, 388012 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.97e+03, p -value \(=0\)
```

Both macroeconomic variables show a negative coefficient, consistent with the intuition that higher economic growth reduces default rates.

Use the predict function to predict the conditional PD. For illustration, here is how to predict the conditional PD on training and testing data using the macro model. The results are stored as a new column in the data table. Lifetime PD prediction is also supported with the predictLifetime function, as shown in the Model of Default Rates Using Score Group and Years on Books on page 3-44 section.

```
data.PDMacro = zeros(height(data),1);
% Predict in-sample
data.PDMacro(TrainDataInd) = predict(ModelMacro,data(TrainDataInd,:));
% Predict out-of-sample
data.PDMacro(TestDataInd) = predict(ModelMacro,data(TestDataInd,:));
```

The model accuracy and discrimination plots offer readily available comparison tools for the models.
Visualize the in-sample or out of sample fit using modelCalibrationPlot. Pass the predictions from the model without macroeconomic variables as a reference model. Plot both using years on books as the single grouping variable first, and then using score group as a second grouping variable.

```
DataSetChoice = Test * ;
if DataSetChoice=="Training"
    Ind = TrainDataInd;
```

else
Ind = TestDataInd;
end
modelCalibrationPlot(ModelMacro,data(Ind, :), 'YOB','ReferencePD',data.PDNoMacro(Ind), 'ReferenceID

modelCalibrationPlot(ModelMacro,data(Ind, :) , \{'YOB','ScoreGroup'\},'ReferencePD',data.PDNoMacro(In

The accuracy of the predictions significantly improves compared to the model with no macroeconomic variables. The predicted conditional PD values more closely follow the pattern of the observed default rates and the root mean square error (RMSE) reported is significantly smaller when the macroeconomic variables are included in the model.

Plot the ROC curve of the macro model and the model without macroeconomic variables to compare their performance with regards to model discrimination.

```
modelDiscriminationPlot(ModelMacro,data(Ind,:),'ReferencePD',data.PDNoMacro(Ind),'ReferenceID',M
```


Discrimination measures the ranking of customers by risk. Both models perform similarly, with only a slight improvement when the macroeconomic variables are added to the model. This means both models do a similar job separating low risk, medium risk and high risk customers by assigning higher PD values to customers with higher risk.

Although the discrimination performance of both models is similar, the predicted PD values are more accurate for the macro model. Using both discrimination and accuracy tools is important for model validation and model comparison.

Stress Testing of Probability of Default

Use the fitted macro model to stress-test the predicted probabilities of default.
Assume the following are stress scenarios for the macroeconomic variables provided, for example, by a regulator.

```
disp(dataMacroStress)
    GDP Market
\begin{tabular}{lrr} 
Baseline & 2.27 & 15.02 \\
Adverse & 1.31 & 4.56 \\
Severe & -0.22 & -5.64
\end{tabular}
```

Set up a basic data table for predicting the probabilities of default. This is a dummy data table, with one row for each combination of score group and number of years on books.

```
dataBaseline = table;
[ScoreGroup,Y0B]=meshgrid(1:NumScoreGroups,1:NumYOB);
dataBaseline.ScoreGroup = categorical(ScoreGroup(:),1:NumScoreGroups,...
    categories(data.ScoreGroup),'Ordinal',true);
dataBaseline.YOB = YOB(:);
dataBaseline.ID = ones(height(dataBaseline),1);
dataBaseline.GDP = zeros(height(dataBaseline),1);
dataBaseline.Market = zeros(height(dataBaseline),1);
```

To make the predictions, set the same macroeconomic conditions (baseline, adverse, or severely adverse) for all combinations of score groups and number of years on books.

```
% Predict baseline the probabilities of default
dataBaseline.GDP(:) = dataMacroStress.GDP('Baseline');
dataBaseline.Market(:) = dataMacroStress.Market('Baseline');
dataBaseline.PD = predict(ModelMacro,dataBaseline);
% Predict the probabilities of default in the adverse scenario
dataAdverse = dataBaseline;
dataAdverse.GDP(:) = dataMacroStress.GDP('Adverse');
dataAdverse.Market(:) = dataMacroStress.Market('Adverse');
dataAdverse.PD = predict(ModelMacro,dataAdverse);
% Predict the probabilities of default in the severely adverse scenario
dataSevere = dataBaseline;
dataSevere.GDP(:) = dataMacroStress.GDP('Severe');
dataSevere.Market(:) = dataMacroStress.Market('Severe');
dataSevere.PD = predict(ModelMacro,dataSevere);
```

Visualize the average predicted probability of default across score groups under the three alternative regulatory scenarios. Here, all score groups are implicitly weighted equally. However, predictions can also be made at a loan level for any given portfolio to make the predicted default rates consistent with the actual distribution of loans in the portfolio. The same visualization can be produced for each score group separately.

```
PredPDYOB = zeros(NumYOB,3);
PredPDYOB(:,1) = mean(reshape(dataBaseline.PD,NumYOB,NumScoreGroups),2);
PredPDYOB(:,2) = mean(reshape(dataAdverse.PD,NumYOB,NumScoreGroups),2);
PredPDYOB(:,3) = mean(reshape(dataSevere.PD,NumYOB,NumScoreGroups),2);
figure;
bar(PredPDYOB*100);
xlabel('Years on Books')
ylabel('Predicted Default Rate (%)')
legend('Baseline','Adverse','Severe')
title('Stress Test, Probability of Default')
grid on
```


References

1 Generalized Linear Models documentation, see "Generalized Linear Models".
2 Generalized Linear Mixed Effects Models documentation, see "Generalized Linear Mixed-Effects Models".

3 Federal Reserve, Comprehensive Capital Analysis and Review (CCAR): https:// www.federalreserve.gov/bankinforeg/ccar.htm
4 Bank of England, Stress Testing: https://www.bankofengland.co.uk/financial-stability
5 European Banking Authority, EU-Wide Stress Testing: https://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing

See Also

fitglm|fitglme|fitLifetimePDModel|predict|predictLifetime| modelDiscrimination | modelDiscriminationPlot|modelCalibration| modelCalibrationPlot|Logistic|Probit

Related Examples

- "Credit Rating by Bagging Decision Trees"
- "Credit Scorecard Modeling with Missing Values"
- "Basic Lifetime PD Model Validation" on page 4-129
- "Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
- "Compare Lifetime PD Models Using Cross-Validation" on page 4-121
- "Expected Credit Loss Computation" on page 4-124

More About

- "Overview of Lifetime Probability of Default Models" on page 1-25

compactCreditScorecard Object Workflow

This example shows a workflow for creating a compactCreditScorecard object from a creditscorecard object.

Step 1. Create a creditscorecard object

To create a compactCreditScorecard object, you must first create a creditscorecard object. Create a creditscorecard object with the CreditCardData.mat file, and set the name-value pair argument 'BinMissingData' to true because the dataMissing data set contains missing data.

```
load CreditCardData.mat
sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);
sc = modifybins(sc,'CustAge','MinValue',0);
sc = modifybins(sc,'CustIncome','MinValue',0);
```


Step 2. Fit a logistic regression model for the creditscorecard object

Use fitmodel to fit a logistic regression model using the Weight of Evidence (WOE) data.

```
[sc, mdl] = fitmodel(sc);
```

1. Adding CustIncome, Deviance $=1490.8527$, Chi2Stat $=32.588614$, $\mathrm{PValue}=1.1387992 \mathrm{e}-08$
2. Adding TmWBank, Deviance $=1467.1415$, Chi2Stat $=23.711203$, PValue $=1.1192909 \mathrm{e}-06$
3. Adding AMBalance, Deviance $=1455.5715$, Chi2Stat $=11.569967$, PValue $=0.00067025601$
4. Adding EmpStatus, Deviance $=1447.3451$, Chi2Stat $=8.2264038$, PValue $=0.0041285257$
5. Adding CustAge, Deviance $=1442.8477$, Chi2Stat $=4.4974731$, $\mathrm{PValue}=0.033944979$
6. Adding ResStatus, Deviance $=1438.9783$, Chi2Stat $=3.86941$, $\mathrm{PValue}=0.049173805$
7. Adding OtherCC, Deviance $=1434.9751$, Chi2Stat $=4.0031966$, PValue $=0.045414057$
Generalized linear regression model:
logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBald
Distribution = Binomial

Estimated Coefficients:

Estimate	SE	tStat	pValue
0.70229	0.063959	10.98	4.7498e-28
0.57421	0.25708	2.2335	0.025513
1.3629	0.66952	2.0356	0.04179
0.88373	0.2929	3.0172	0.002551
0.73535	0.2159	3.406	0.00065929
1.1065	0.23267	4.7556	1.9783e-06
1.0648	0.52826	2.0156	0.043841
1.0446	0.32197	3.2443	0.0011775

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 88.5, p-value $=2.55 \mathrm{e}-16$

Step 3. Create a new data set for scoring the creditscorecard object

Create a new data set that is used for scoring based on the previously created creditscorecard object.

```
tdata = data(1:10, mdl.PredictorNames);
tdata.CustAge(2) = NaN;
tdata.CustAge(5) = -5;
tdata.ResStatus(1) = '<undefined>';
tdata.ResStatus(3) = 'Landlord';
tdata.EmpStatus(3) = '<undefined>';
tdata.CustIncome(4) = NaN;
tdata.EmpStatus(7) = 'Freelancer';
tdata.CustIncome(8) = -1;
tdata.CustIncome(4) = NaN;
disp(tdata);
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CustAge & ResStatus & EmpStatus & CustIncome & TmWBank & OtherCC & AMBalance \\
\hline 53 & <undefined> & Unknown & 50000 & 55 & Yes & 1055.9 \\
\hline NaN & Home Owner & Employed & 52000 & 25 & Yes & 1161.6 \\
\hline 47 & Landlord & <undefined> & 37000 & 61 & No & 877.23 \\
\hline 50 & Home Owner & Employed & NaN & 20 & Yes & 157.37 \\
\hline -5 & Home Owner & Employed & 53000 & 14 & Yes & 561.84 \\
\hline 65 & Home Owner & Employed & 48000 & 59 & Yes & 968.18 \\
\hline 34 & Home Owner & Freelancer & 32000 & 26 & Yes & 717.82 \\
\hline 50 & Other & Employed & -1 & 33 & No & 3041.2 \\
\hline 50 & Tenant & Unknown & 52000 & 25 & Yes & 115.56 \\
\hline 49 & Home Owner & Unknown & 53000 & 23 & Yes & 718.5 \\
\hline
\end{tabular}
```

Use displaypoints to display the points per predictor. Use score to compute the credit scores using the new data (tdata). Then use probdefault with the new data (tdata) to calculate probability of default. When using formatpoints, the 'Missing ' name-value pair argument is set to 'minpoints' because tdata contains missing data.

PointsInfo = displaypoints(sc)

PointsInfo=38×3 Predictors	Bin	Points
\{'CustAge' \}	\{'[0,33)' ${ }^{\text {' }}$,	-0.14173
\{'CustAge' \}	\{'[33,37)' \}	-0.11095
\{'CustAge' \}	\{'[37,40)' \}	-0.059244
\{'CustAge' \}	\{'[40,46)' \}	0.074167
\{'CustAge' \}	\{'[46,48)' \}	0.1889
\{'CustAge' \}	\{'[48,51)' \}	0.20204
\{'CustAge' \}	\{'[51,58)' \}	0.22935
\{'CustAge' \}	\{'[58,Inf]' \}	0.45019
\{'CustAge' \}	\{'<missing>' \}	0.0096749
\{'ResStatus'\}	\{'Tenant' \}	-0.029778
\{'ResStatus'\}	\{'Home Owner'\}	0.12425
\{'ResStatus'\}	\{'Other' \}	0.36796
\{'ResStatus'\}	\{'<missing>'	0.1364
\{'EmpStatus'\}	\{'Unknown'	-0.075948
\{'EmpStatus'\}	\{'Employed' \}	0.31401
\{'EmpStatus'\}	\{'<missing>' \}	NaN

[Scores, Points] = score(sc, tdata)

Scores $=10 \times 1$
1.2784
1.0071

NaN
NaN
0.9960
1.8771

NaN
NaN
1.0283
0.8095

| Points=10×7 table
 CustAge | ResStatus | | EmpStatus | | CustIncome | | TmWBank | OtherCC |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | AMBalance

```
pd = probdefault(sc, tdata)
pd = 10\times1
    0.2178
    0.2676
        NaN
        NaN
    0.2697
    0.1327
        NaN
        NaN
    0.2634
    0.3080
```

sc = formatpoints(sc,'BasePoints',true,'Missing','minpoints','Round','finalscore','Points0ddsAnd
PointsInfol = displaypoints(sc)

PointsInfol=39×3 Predictors	Bin	Points
\{'BasePoints'\}	\{'BasePoints'\}	500.66
\{'CustAge' \}	\{'[0,33)' \}	-17.461
\{'CustAge' \}	\{'[33,37)' \}	-15.24
\{'CustAge' \}	\{'[37,40)'	-11.511
\{'CustAge' \}	\{'[40,46)'	-1.8871
\{'CustAge' \}	\{'[46,48)'	6.3888

CustAge'	\{'[48,51)'	7.3367
\{'CustAge'	\{'[51,58)'	9.3068
\{'CustAge'	\{'[58,Inf]'	25.238
\{'CustAge'	\{'<missing>'	-6.5392
\{'ResStatus'	\{'Tenant'	-9.3852
\{'ResStatus'	\{'Home Owner'\}	1.7253
\{'ResStatus'	\{'Other'	19.305
\{'ResStatus'	\{'<missing>'	2.6022
\{'EmpStatus'	\{'Unknown'	-12.716
\{'EmpStatus'	\{'Employed'	15.414

[Scores1, Points1] = score(sc, tdata)
Scores1 = 10×1
542
523
488
495
522
585
445
448
524
508

BasePoints	CustAge	ResStatus	EmpStatus	CustIncome	TmWBank	OtherCC	AMBal
500.66	9.3068	2.6022	-12.716	25.446	21.314	4.0988	-8.
500.66	-6.5392	1.7253	15.414	25.446	-9.6646	4.0988	-8.
500.66	6.3888	2.6022	-12.716	-1.4161	21.314	-20.609	- 8 .
500.66	7.3367	1.7253	15.414	-42.148	-10.462	4.0988	18
500.66	-6.5392	1.7253	15.414	25.446	-10.462	4.0988	-8
500.66	25.238	1.7253	15.414	25.446	21.314	4.0988	-8.
500.66	-15.24	1.7253	-12.716	-15.498	-9.6646	4.0988	-8.
500.66	7.3367	19.305	15.414	-42.148	-9.6646	-20.609	-22.
500.66	7.3367	-9.3852	-12.716	25.446	-9.6646	4.0988	18
500.66	7.3367	1.7253	-12.716	25.446	-9.6646	4.0988	-8

pd1 = probdefault(sc, tdata)
pd1 $=10 \times 1$
0.2178
0.2676
0.3721
0.3488
0.2697
0.1327
0.5178
0.5077
0.2634
0.3080

Step 4. Create a compactCreditScorecard object from the creditscorecard object

Create a compactCreditScorecard object using the creditscorecard object as the input. Alternatively, you can create the compactCreditScorecard object using the compact function in Financial Toolbox ${ }^{\mathrm{TM}}$.

```
csc = compactCreditScorecard(sc)
CSC =
    compactCreditScorecard with properties:
                    Description: ''
                        GoodLabel: 0
                    ResponseVar: 'status'
                WeightsVar:
            NumericPredictors: {'CustAge' 'CustIncome' 'TmWBank' 'AMBalance'}
        CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
                        PredictorVars: {'CustAge' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'Other
```

Step 5. Use associated functions to analyze the compactCreditScorecard object
You can analyze the compactCreditScorecard object with displaypoints, score, and probdefault from Risk Management Toolbox ${ }^{\mathrm{TM}}$.

```
PointsInfo2 = displaypoints(csc)
```

PointsInfo2=39×3 table
Predictors Bin Points
'BasePoints'\}

\{'BasePoints'\}	500.66	
\{'[0,33)'	\}	-17.461
\{'[33,37)'	$\}$	-15.24
\{'[37, 40)'	$\}$	-11.511
\{'[40, 46)'	$\}$	-1.8871
\{'[46, 48)'	$\}$	6.3888
\{'[48,51)'	$\}$	7.3367
\{'[51,58)'	$\}$	9.3068
\{'[58,Inf]'	$\}$	25.238
\{'<missing>'	\}	-6.5392
\{'Tenant'	\}	-9.3852
\{'Home Owner'\}	1.7253	
\{'Other'	$\}$	19.305
\{'<missing>' $\}$	2.6022	
\{'Unknown'	$\}$	-12.716
\{'Employed'	$\}$	15.414

[Scores2, Points2] = score(csc, tdata)
Scores2 = 10×1
542
523

```
    4 8 8
    4 9 5
    522
    585
    4 4 5
    448
    524
    508
```

Points2=10×8 table

BasePoints	CustAge	ResStatus	EmpStatus	CustIncome	TmWBank	OtherCC
500.66	9.3068	2.6022	-12.716	25.446	21.314	4.0988
500.66	-6.5392	1.7253	15.414	25.446	-9.6646	4.0988
500.66	6.3888	2.6022	-12.716	-1.4161	21.314	-20.609
500.66	7.3367	1.7253	15.414	-42.148	-10.462	4.0988
500.66	-6.5392	1.7253	15.414	25.446	-10.462	4.0988
500.66	25.238	1.7253	15.414	25.446	21.314	4.0988
500.66	-15.24	1.7253	-12.716	-15.498	-9.6646	4.0988
500.66	7.3367	19.305	15.414	-42.148	-9.6646	-20.609
500.66	7.3367	-9.3852	-12.716	25.446	-9.6646	4.0988
500.66	7.3367	1.7253	-12.716	25.446	-9.6646	4.0988

```
pd2 = probdefault(csc, tdata)
pd2 = 10\times1
    0.2178
    0.2676
    0.3721
    0.3488
    0.2697
    0.1327
    0.5178
    0.5077
    0.2634
    0.3080
```

Compare the size of the creditscorecard and compactCreditScorecard objects.

```
whos('dataMissing','sc','csc')
\begin{tabular}{lcrll} 
Name & Size & Bytes & Class & Attributes \\
& & & & \\
csc & \(1 \times 1\) & 39598 & compactCreditScorecard & \\
dataMissing & \(1200 \times 11\) & 84603 & table & \\
sc & \(1 \times 1\) & 166575 & creditscorecard
\end{tabular}
```

The size of the compactCreditScorecard object is lightweight compared to the creditscorecard object. However, the compactCreditScorecard object cannot be directly modified. If you need to change a compactCreditScorecard object, you must change the starting
creditscorecard object, and then reconvert that object to create the compactCreditScorecard object again.

See Also

creditscorecard|screenpredictors|autobinning|bininfo|predictorinfo| modifypredictor|modifybins|bindata|plotbins|fitmodel|displaypoints| formatpoints|score| setmodel|probdefault|validatemodel

Related Examples

- "Common Binning Explorer Tasks" on page 3-4
- "Credit Scorecard Modeling with Missing Values"
- "Feature Screening with screenpredictors" on page 3-64
- "Troubleshooting Credit Scorecard Results"
- "Credit Rating by Bagging Decision Trees"
- "Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36

More About

- "Overview of Binning Explorer" on page 3-2
- "About Credit Scorecards"
- "Credit Scorecard Modeling Workflow"
- Monotone Adjacent Pooling Algorithm (MAPA)
- "Credit Scorecard Modeling Using Observation Weights"

External Websites

- Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

Feature Screening with screenpredictors

This example shows how to perform predictor screening using screenpredictors and then set predictor thresholds using the Threshold Predictors live task. Predictor screening using screenpredictors is a type of univariate analysis performed as an early step in the "Credit Scorecard Modeling Workflow". Predictor screening is an important preprocessing step when you work with credit scorecards, as data sets can be prohibitively large and have dozens or hundreds of potential predictors.

The goal of screening predictors is to pare down the set of predictors to a subset that is more useful in predicting the response variable based on the calculated metrics. You can set predictor thresholds using the Threshold Predictors live task to select the top predictors as ranked by a given metric to train your credit scorecards.

Load Data

The credit card data table contains a customer ID (CustID), nine predictors, and the response variable (status). Some of the risk factors are more useful in predicting the probability of a loan default, whereas others are less useful. The screening process helps you select the best subset of predictors.

Although the data set in this example contains only a few predictors, in practice, credit scorecard data sets can be very large. The predictor screening process is important as data sets grow to contain dozens or hundreds of predictors.

```
% Load credit card data.
load CreditCardData.mat
% Use the dataMissing data set, which contains some missing values.
data = dataMissing;
% Identify the ID and response variables.
idvar = 'CustID';
responsevar = 'status';
% Examine the structure of the table.
disp(head(data));
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CustID & CustAge & TmAtAddress & ResStatus & EmpStatus & CustIncome & TmWBank \\
\hline 1 & 53 & 62 & <undefined> & Unknown & 50000 & 55 \\
\hline 2 & 61 & 22 & Home Owner & Employed & 52000 & 25 \\
\hline 3 & 47 & 30 & Tenant & Employed & 37000 & 61 \\
\hline 4 & NaN & 75 & Home Owner & Employed & 53000 & 20 \\
\hline 5 & 68 & 56 & Home Owner & Employed & 53000 & 14 \\
\hline 6 & 65 & 13 & Home Owner & Employed & 48000 & 59 \\
\hline 7 & 34 & 32 & Home Owner & Unknown & 32000 & 26 \\
\hline 8 & 50 & 57 & Other & Employed & 51000 & 33 \\
\hline
\end{tabular}
```


Add Additional Derived Predictors

Often, derivative predictors can capture additional information or produce better metrics results; for example, the ratio of two predictors or a predictor transformation for predictor x, such as $x^{\wedge} 2$ or $\log (x)$. To demonstrate this, create two derived predictors and add them to the data set.

```
data.BalanceUtilRatio = data.AMBalance ./ data.UtilRate;
data.BalanceIncomeRatio = data.AMBalance ./ data.CustIncome;
```


Compute Metrics

Use screenpredictors to compute several measures of risk factor predictiveness. The columns of the output table contain the metrics values for the predictors. The table is sorted by the information value (InfoValue).

T = screenpredictors(data,'IDVar',idvar,'ResponseVar', responsevar)
$\mathrm{T}=11 \times 7$ table

InfoValue	AccuracyRatio	AUROC	Entropy	Gini	Chi2PVa
0.17698	0.1672	0.5836	0.88795	0.42645	0.0020
0.15719	0.13612	0.56806	0.89167	0.42864	0.0054
0.15572	0.17758	0.58879	0.891	0.42731	0.0018
0.097073	0.1278	0.5639	0.90024	0.43303	0.11
0.094574	0.010421	0.50521	0.90089	0.43377	0.
0.075086	0.035914	0.51796	0.90405	0.43575	0.45
0.07159	0.087142	0.54357	0.90446	0.43592	0.48
0.068955	0.026538	0.51327	0.90486	0.43614	0.52
0.048038	0.10886	0.55443	0.90814	0.4381	0.00037
0.014301	0.044459	0.52223	0.91347	0.44132	0.047
0.0095558	0.049855	0.52493	0.91446	0.44198	0.29

Set Threshold Metrics

Set thresholds for the predictors based on one or more metrics. Use the Threshold Predictors live task to interactively select thresholds for one or more predictors. In the plot displayed for Predictors, green bars indicate predictors that pass the threshold and red bars indicate predictors that do not pass the threshold. You can omit predictors that do not "pass" the threshold from the final data set.

Use the Threshold Predictors live task to select predictors based on their information value (InfoValue) and accuracy ratio (AccuracyRatio). Additional thresholds can be set by adding the desired metric using the Select threshold metrics drop-down control.

Threshold Predictors
predictorThresholds, labelTable $=$ Thresholds and labels for T
Select data
Predictor metrics T
Select thresholded metrics

Display results
Display label table
labelTable=11×2 table

> InfoValue AccuracyRatio

CustAge	Pass	Pass
TmWBank	Pass	Pass
CustIncome	Pass	Pass
BalanceIncomeRatio	Pass	Pass
TmAtAddress	Pass	Fail
UtilRate	Fail	Fail
AMBalance	Fail	Pass
BalanceUtilRatio	Fail	Fail
EmpStatus	Fail	Pass
OtherCC	Fail	Fail
ResStatus	Fail	Fail

Screening Summary

Summarize the thresholding results in table form. The lableTable output from the live task indicates which of the predictors passed each of the threshold tests.

```
disp(labelTable)
```

InfoValue AccuracyRatio

```
CustAge
TmWBank
CustIncome
BalanceIncomeRatio
TmAtAddress
UtilRate
AMBalance
```

Pass	Pass
Pass	Pass
Pass	Pass
Pass	Pass
Pass	Fail
Fail	Fail
Fail	Pass

BalanceUtilRatio	Fail	Fail
EmpStatus	Fail	Pass
0therCC	Fail	Fail
ResStatus	Fail	Fail

Reduce Table

Create a reduced table that contains only the passing predictors. Select only the predictors that pass both of the threshold tests and create a reduced data set.

```
% Select predictors that pass at least 2 metric threshold tests.
all_passes = labelTable.Variables == "Pass";
pass_both_idx = 2 <= sum(all_passes,2);
selected_predictors = T.Row(pass_both_idx);
% Trim the data table to contain only the ID, passing predictors, and
% response.
top_predictor_table = data(:,[idvar; selected_predictors; responsevar]);
```

Use creditscorecard to create a creditscorecard object using the reduced data set.

```
% Create the credit scorecard using the screened predictors.
sc = creditscorecard(top_predictor_table,'IDVar',idvar,'ResponseVar',responsevar,...
    'BinMissingData', true)
SC =
    creditscorecard with properties:
                    GoodLabel: 0
            ResponseVar: 'status'
                WeightsVar: ''
                    VarNames: {'CustID' 'CustAge' 'TmWBank' 'CustIncome' 'BalanceIncomeRatio'
        NumericPredictors: {'CustAge' 'TmWBank' 'CustIncome' 'BalanceIncomeRatio'}
        CategoricalPredictors: {1x0 cell}
                BinMissingData: 1
                            IDVar: 'CustID'
            PredictorVars: {'CustAge' 'TmWBank' 'CustIncome' 'BalanceIncomeRatio'}
                Data: [1200x6 table]
```

For more information on developing credit scorecards, see "Create Credit Scorecards".

See Also

creditscorecard|screenpredictors |autobinning|bininfo|predictorinfo| modifypredictor|modifybins|bindata|plotbins|fitmodel|displaypoints| formatpoints|score|setmodel|probdefault|validatemodel

Related Examples

- "Common Binning Explorer Tasks" on page 3-4
- "Credit Scorecard Modeling with Missing Values"
- "Troubleshooting Credit Scorecard Results"
- "Credit Rating by Bagging Decision Trees"
- "Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36

More About

- "Overview of Binning Explorer" on page 3-2
- "About Credit Scorecards"
- "Credit Scorecard Modeling Workflow"
- Monotone Adjacent Pooling Algorithm (MAPA)
- "Credit Scorecard Modeling Using Observation Weights"

External Websites

- Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

Use Reject Inference Techniques with Credit Scorecards

This example demonstrates the hard-cutoff and fuzzy augmentation approaches to reject inference.
Reject inference is a method for improving the quality of a credit scorecard by incorporating data from rejected loan applications. Bias can result if a credit scorecard model is built only on accepts and does not account for applications rejected because of past denials for credit or unknown nondefault status. By using the reject inference method, you can infer the performance of rejects and include them in your credit scorecard model to remedy this bias.

To develop a credit scorecard, you must identify each borrower as either "good" or "bad". For rejected applications, information to identify borrowers as "good" or "bad" is not available. You cannot tell for sure to which group a borrower would have belonged had they been granted a loan. The reject inference method allows you to infer whether a borrower would likely be "good" or "bad" enabling you to incorporate the rejected application data into the data set that you use to build a credit scorecard.

As the diagram shows, reject inference requires that you determine the threshold (cutoff point) below which rejects are considered as "bad." This example demonstrates the hard-cutoff and the fuzzy augmentation approaches to calculate this threshold.

The following diagram shows the typical process for building a scorecard model. The red box represents the reject inference process, where the performance of the previously rejected applications is estimated and then used to re-train the credit scorecard model.

The workflow for the reject inference process is:
1 Build a logistic regression model based on the accepts.
2 Infer the class of rejects using one of the reject inference techniques.
3 Combine the accepts and rejects into a single data set.
4 Create a new scorecard, bin the expanded data set, and build a new logistic model.
5 Validate the final model.
There are two types of reject inference:

- Simple assignment does not use a reject inference process and either ignores rejects or assigns all rejects to the "bad" class.
- Augmentation uses a reject inference process to handle rejects based on a scoring model by combining the original data set with the rejects data.

This example focuses on augmentation techniques. The most popular techniques for augmentation are:

- Simple augmentation - Using a cutoff value, this method assigns rejects with scores below and above the value to the "bad" or "good" class, respectively. The cutoff value must reflect that the rate of bads in the rejects is higher than in the accepted population. After the class ("good" or "bad") is assigned to the rejects, the entire population of accepts and rejects are fitted in the credit scorecard model and then scored. This approach is also called the hard-cutoff technique.
- Fuzzy augmentation - This method scores the rejects by using a credit scorecard model based on the accepts. These rejects are duplicated into two observations, where each is assigned a probability of being "good" or "bad," and then aggregated to the accepts. A new credit scorecard model is then estimated on the new data set.

In this example, the following workflows are presented:

- Hard-cutoff on page 3-71
- Fuzzy augmentation on page 3-78

Both of these approaches use the binning rules preserved from the original scorecard and apply them to the new scorecard that is based on the combined data set.

Note: The data sets in this example are technically through-the-door (TTD) observations. That is, accepts and rejects are lumped together and differentiated based on their accept or reject decision. A rejects data set is then created from the TTD observations.

Hard-Cutoff Technique Workflow

The hard-cutoff technique uses a predefined cutoff value and assigns rejects below the cutoff as "bad" and above the cutoff as "good." The cutoff value must reflect that the rate of "bads" in the rejects is higher than in the accepts. After each reject is assigned a class ("good" or "bad"), the entire population of accepts and rejects is fitted in a credit scorecard model, and then that model is scored and validated. This approach is also called the simple augmentation technique. The main challenge in this approach is choosing the cutoff value.

First, visualize the data for accepts and rejects for a selected predictor.

```
% Load the data
load CreditCardData.mat
load RejectsCreditCardData.mat
Predictor = CustAge * ;
figure;
h1 = histogram(data.(Predictor));
hold on
h2 = histogram(Rejects.(Predictor));
h1.Normalization = 'probability';
h2.Normalization = 'probability';
title(Predictor)
xlabel('Predictor Values')
ylabel('Normalized Count by Probability')
hold off
legend({'Accepts','Rejects'},'Location','best');
```


Create a creditscorecard Object for the Accepts and Score the Data

Use creditscorecard to create a creditscorecard object that you can use to bin, fit, and then score the accepts.

```
scHC = creditscorecard(data,'IDVar','CustID');
scHC = autobinning(scHC);
scHC = fitmodel(scHC);
```

1. Adding CustIncome, Deviance $=1490.8527$, Chi2Stat $=32.588614$, $\operatorname{PValue}=1.1387992 \mathrm{e}-08$
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance $=1455.5715$, Chi2Stat $=11.569967$, PValue $=0.00067025601$
4. Adding EmpStatus, Deviance $=1447.3451$, Chi2Stat $=8.2264038$, $\operatorname{PValue}=0.0041285257$
5. Adding CustAge, Deviance $=1441.994$, Chi2Stat $=5.3511754$, $\mathrm{PValue}=0.020708306$
6. Adding ResStatus, Deviance $=1437.8756$, Chi2Stat $=4.118404$, PValue $=0.042419078$
7. Adding OtherCC, Deviance $=1433.707$, Chi2Stat $=4.1686018$, PValue $=0.041179769$

Generalized linear regression model:
logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBal Distribution = Binomial

Estimated Coefficients:

Estimate	SE	tStat	pValue
0.70239	0.064001	10.975	5.0538e-28
0.60833	0.24932	2.44	0.014687
1.377	0.65272	2.1097	0.034888

EmpStatus	0.88565	0.293	3.0227	0.0025055
CustIncome	0.70164	0.21844	3.2121	0.0013179
TmWBank	1.1074	0.23271	4.7589	$1.9464 \mathrm{e}-06$
OtherCC	1.0883	0.52912	2.0569	0.039696
AMBalance	1.045	0.32214	3.2439	0.0011792

```
1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16
ScoreRange = [300 850];
scHC = formatpoints(scHC,'WorstAndBestScores',ScoreRange);
ScoresAccepts = score(scHC);
```


Choose a Bad Rate and Score the Rejects

A reject is "good" or "bad" based on the specified bad rate (BR) value. In general, the credit scoring industry assumes that rejects have a BR of 75%. This is a subjective evaluation that is usually based on an unknown value. In this example, you can adjust the value of BR.

The CreditCardData.mat input data has 'status' as response. Assume that GoodLabel (which means a nondefault) is the class that has a higher count in the response. In this example, GoodLabel is 0 , which means that default only happens when the response is equal to 1 .

```
% Define the BR
BR =
    0.75 
% Sort rejects by ascending CustID order
N = height(Rejects);
Rejects = sortrows(Rejects);
ScoresRejects = score(scHC,Rejects);
% Find the lowest quantile based on the BR and set the corresponding observations to bad
BadLabel = setdiff(unique(scHC.Data.(scHC.ResponseVar)),scHC.GoodLabel);
ScoreThres = quantile(ScoresRejects,BR);
ResponseRejects = zeros(N,1);
ResponseRejects(ScoresRejects < ScoreThres) = BadLabel;
ResponseRejects(ScoresRejects >= ScoreThres) = scHC.GoodLabel;
% Create the rejects table
RejectsTable = [Rejects table(ResponseRejects,'VariableNames',{scHC.ResponseVar})];
```


Combine Accepts and Rejects Into a New Data Set, Score, and Validate

To draw a more accurate comparison between the accepts and the combined data set, use the same binning rules from the initial accepts credit scorecard and copy them to the creditscorecard object built on the combined dataset. This ensures that the binning assignment does not affect the later comparison of the two credit scorecard models. Also, you can visualize how the rejects are spread out in the data range of each predictor.

```
% Create the final combined scorecard
CombinedData = [data(:,2:end);RejectsTable(:,2:end)];
scNewHC = creditscorecard(CombinedData,'GoodLabel',0);
% Bin using the same binning rules as the base scorecard
Predictors = scHC.PredictorVars;
```

```
Edges = struct();
for i = 1 : length(Predictors)
    Pred = Predictors{i};
    [bi,cp] = bininfo(scHC,Pred);
    if ismember(Pred,scHC.NumericPredictors)
        scNewHC = modifybins(scNewHC,Pred,'CutPoints',cp);
    else
        scNewHC = modifybins(scNewHC,Pred,'CatGrouping',cp);
    end
    Edges.(Pred) = bi.Bin(1:end-1);
end
% Visualize the rejects distribution in each bin
bdl = bindata(scHC,data);
bd2 = bindata(scHC,CombinedData);
Predictor = CustAge * ;
figure;
bar(categorical(Edges.(Predictor)),histcounts(bdl.(Predictor)))
hold on
bar(categorical(Edges.(Predictor)),histcounts(bd2.(Predictor)), 'FaceAlpha',0.25)
hold off
xlabel('Bins')
ylabel('Counts')
legend({'Accepts Only','Combined'},'Location','best')
```


Compare the initial creditscorecard object (scHC) to the new creditscorecard object (scNewHC) for the distribution of "goods" and "bads" for the selected predictor.
plotbins(scHC,Predictor);

plotbins(scNewHC,Predictor);

Fit a logistic regression model for the creditscorecard object scNewHC and then score scNewHC.

```
scNewHC = fitmodel(scNewHC);
```

1. Adding CustIncome, Deviance = 1693.9882, Chi2Stat $=114.39516$, PValue $=1.0676416 e-26$
2. Adding TmWBank, Deviance $=1650.6615$, Chi2Stat $=43.326628$, PValue $=4.6323638 \mathrm{e}-11$
3. Adding AMBalance, Deviance $=1623.0668$, Chi2Stat $=27.594773$, PValue $=1.4958244 \mathrm{e}-07$
4. Adding EmpStatus, Deviance $=1603.603$, Chi2Stat $=19.463733$, PValue $=1.0252802 \mathrm{e}-05$
5. Adding CustAge, Deviance $=1592.3467$, Chi2Stat $=11.256272$, PV alue $=0.00079354409$
6. Adding ResStatus, Deviance $=1582.0086$, Chi2Stat $=10.338134$, PValue $=0.0013030966$
7. Adding OtherCC, Deviance = 1572.1, Chi2Stat $=9.9086387$, PValue $=0.0016450476$

Generalized linear regression model:
logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBal Distribution = Binomial

Estimated Coefficients:

Estimate	SE	tStat	pValue
0.48115	0.061301	7.849	4.1925e-15
0.50857	0.14449	3.5197	0.00043207
1.151	0.34773	3.3101	0.00093262
0.78527	0.17826	4.4051	1.0572e-05
0.68743	0.12372	5.5563	2.7555e-08
1.0001	0.16731	5.9779	2.2607e-09
0.97659	0.30956	3.1548	0.0016062
0.91563	0.19073	4.8006	1.5819e-06

```
1 3 6 1 \text { observations, 1353 error degrees of freedom}
Dispersion: 1
Chi^2-statistic vs. constant model: 236, p-value = 2.29e-47
scNewHC = formatpoints(scNewHC,'WorstAndBestScores',ScoreRange);
Scores = score(scNewHC);
% Visualize the score distribution
histogram(ScoresAccepts)
hold on
histogram(Scores,'FaceAlpha',0.25)
hold off
ylabel('Counts')
xlabel('Scores')
title(sprintf('Score Distribution for a BR = %.2f',BR))
legend({'Accepts Only','Combined'},'Location','best')
```


Validate the Model on the Combined Data Set

Before validation, you must adjust the data set. To adjust the data set, you can either:

- Validate the accepts for both scorecards
- Validate the combined data set for both scorecards
\% Get statistics for the accepts
StatsA1 = validatemodel(scHC);

```
StatsA2 = validatemodel(scNewHC,data);
% Get the statistics for the combined data set
StatsC1 = validatemodel(scHC,CombinedData);
StatsC2 = validatemodel(scNewHC);
s1 = table(StatsA1.Value,StatsA2.Value,'VariableNames',{'BaseScorecard','CombinedScorecard'});
s2 = table(StatsC1.Value,StatsC2.Value,'VariableNames',{'BaseScorecard','CombinedScorecard'});
Stats = table(StatsA1.Measure,s1,s2,'VariableNames',{'Measure','Accepts','Combined'});
disp(Stats)
```

Measure

0.32258	0.31695
0.66129	0.65848
0.2246	0.22946
550.72	576.57

BaseScorecard Combined CombinedS

0.47022	0.46
0.73511	0.73
0.34528	0.33
512.44	542

Fuzzy Augmentation Technique Workflow

The Fuzzy augmentation technique starts by building a scorecard using the accepts only and then this scorecard model is used to score the rejects. Unlike the hard-cutoff technique, the fuzzy augmentation approach does not assign "good" or "bad" classes. Rather, each reject is duplicated into two observations and assigned a weighted "good" or "bad" value, based on a probability of being "good" or "bad." The weighted rejects are then added to the accepts data set and the combined data set is used to create a scorecard that is then fit and validated.

First, visualize the data for accepts and rejects for a selected predictor.

```
% Load the data
matFileName = fullfile(matlabroot,'toolbox','finance','findemos','CreditCardData');
load(matFileName)
load RejectsCreditCardData.mat
Predictor = CustAge - ;
figure;
h1 = histogram(data.(Predictor));
hold on
h2 = histogram(Rejects.(Predictor));
h1.Normalization = 'probability';
h2.Normalization = 'probability';
title(Predictor)
xlabel('Predictor values')
ylabel('Normalized Count by Probability')
hold off
legend({'Accepts','Rejects'},'Location','best');
```


Create a creditscorecard Object for the Accepts and Score the Data

Use creditscorecard to create a creditscorecard object for the accepts, which you can bin, fit, and then score.

```
scFA = creditscorecard(data,'IDVar','CustID');
scFA = autobinning(scFA);
scFA = fitmodel(scFA);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769
Generalized linear regression model:
    logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBal
    Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline 0.70239 & 0.064001 & 10.975 & 5.0538e-28 \\
\hline 0.60833 & 0.24932 & 2.44 & 0.014687 \\
\hline 1.377 & 0.65272 & 2.1097 & 0.034888 \\
\hline
\end{tabular}
```

EmpStatus	0.88565	0.293	3.0227	0.0025055
CustIncome	0.70164	0.21844	3.2121	0.0013179
TmWBank	1.1074	0.23271	4.7589	$1.9464 \mathrm{e}-06$
OtherCC	1.0883	0.52912	2.0569	0.039696
AMBalance	1.045	0.32214	3.2439	0.0011792

```
1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16
ScoreRange = [300 850];
scFA = formatpoints(scFA,'WorstAndBestScores',ScoreRange);
ScoresAccepts = score(scFA);
```


Score the Rejects and Create the Combined Data Set

```
% Load the rejects dataset and score the observations
load RejectsCreditCardData.mat
ScoresRejects = score(scFA,Rejects);
% Compute the probabilities of default and use as weights
pdRejects = probdefault(scFA,Rejects);
% Assign bad status to pd (probability of default) and good status to 1-pd weights
BadLabel = setdiff(unique(scFA.Data.(scFA.ResponseVar)),scFA.GoodLabel);
Weights = zeros(2*length(pdRejects),1);
Response = zeros(2*length(pdRejects),1);
Weights(1:2:end) = pdRejects;
Response(1:2:end) = BadLabel;
Weights(2:2:end) = 1-pdRejects;
Response(2:2:end) = scFA.GoodLabel;
% Rearrange the response so that each two rows correspond to the same
% observation from rejects
RejectsTable = repelem(Rejects(:,2:end),2,1);
RejectsTable = addvars(RejectsTable,Weights,Response,'NewVariableNames',...
    {'Weights',scFA.ResponseVar});
% Combine accepts and rejects
AcceptsData = addvars(data,ones(height(data),1),'Before',scFA.ResponseVar,...
    'NewVariableNames','Weights');
CombinedData = [AcceptsData(:,2:end);RejectsTable];
```


Combine Accepts and Rejects into a New Data Set, Score, and Validate

To draw a more accurate comparison between the accepts and the combined data set, use the same binning rules from the initial accepts credit scorecard and copy them to the creditscorecard object built on the combined dataset. This ensures that the binning assignments does not affect the later comparison of the two credit scorecard models. Also, you can visualize how the rejects are spread out in the data range of each predictor.

```
scNewFA = creditscorecard(CombinedData,'GoodLabel',0,'WeightsVar','Weights');
% Bin using the same binning rules as the base scorecard
Predictors = scFA.PredictorVars;
Edges = struct();
```

```
for i = 1 : length(Predictors)
    Pred = Predictors{i};
    [bi,cp] = bininfo(scFA,Pred);
    if ismember(Pred,scFA.NumericPredictors)
        scNewFA = modifybins(scNewFA,Pred,'CutPoints',cp);
    else
        scNewFA = modifybins(scNewFA,Pred,'CatGrouping',cp);
    end
    Edges.(Pred) = bi.Bin(1:end-1);
end
% Visualize the rejects distribution in each bin
bdl = bindata(scFA,data);
bd2 = bindata(scFA,CombinedData);
Predictor = CustAge - ;
figure;
bar(categorical(Edges.(Predictor)),histcounts(bd1.(Predictor)))
hold on
bar(categorical(Edges.(Predictor)),histcounts(bd2.(Predictor)),''FaceAlpha',0.25)
hold off
xlabel('Bins')
ylabel('Counts')
legend({'Accepts Only','Combined'},'Location','best')
```


Compare the initial creditscorecard object (scFA) to the new creditscorecard object ($s c N e w F A$) for the distribution of "goods" and "bads" for the selected predictor.
plotbins(scFA,Predictor);

plotbins(scNewFA,Predictor);

Fit a logistic regression model for the creditscorecard object scNewFA and then score scNewFA.

```
scNewFA = fitmodel(scNewFA);
```

1. Adding CustIncome, Deviance $=1711.3102$, Chi2Stat $=54.160619$, PValue $=1.8475277 \mathrm{e}-13$
2. Adding TmWBank, Deviance $=1682.5353$, Chi2Stat $=28.774866$, PValue $=8.1299351 \mathrm{e}-08$
3. Adding AMBalance, Deviance $=1668.2956$, Chi2Stat $=14.239727$, PValue $=0.00016093686$
4. Adding EmpStatus, Deviance $=1658.2944$, Chi2Stat $=10.001236$, PValue $=0.001564352$
5. Adding CustAge, Deviance $=1652.3976$, Chi2Stat $=5.8967925$, PValue $=0.015168483$
6. Adding OtherCC, Deviance $=1647.7632$, Chi2Stat $=4.6344022$, PValue $=0.031337059$
7. Adding ResStatus, Deviance $=1642.8332$, Chi2Stat $=4.9299914$, PValue $=0.026394448$

Generalized linear regression model:
logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBal Distribution = Binomial

Estimated Coefficients:

Estimate	SE	tStat	pValue
0.60838	0.059654	10.198	2.0142e-24
0.50755	0.20092	2.5262	0.011532
1.082	0.48919	2.2119	0.026971
0.74776	0.23526	3.1784	0.0014809
0.6372	0.17519	3.6371	0.00027567
0.96561	0.19664	4.9106	9.0815e-07
0.90699	0.40476	2.2408	0.025039
0.87642	0.25404	3.4499	0.00056077

```
1522 observations, 1514 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 123, p-value = 2.16e-23
scNewFA = formatpoints(scNewFA,'WorstAndBestScores',ScoreRange);
Scores = score(scNewFA);
pd = probdefault(scNewFA);
% Visualize the score distribution
histogram(ScoresAccepts)
hold on
histogram(Scores,'FaceAlpha',0.25)
hold off
ylabel('Counts')
xlabel('Scores')
title('Score Distribution Using Fuzzy Augmentation')
legend({'Accepts Only','Combined'},'Location','best')
```


Validate the Model on the Combined Data Set

Before validation, you must adjust the data set. To adjust the data set, you can either:

- Validate the accepts for both scorecards
- Validate the combined data set for both scorecards

```
% Get statistics for the accepts
data.Weights = ones(height(data),1);
StatsA1 = validatemodel(scFA);
StatsA2 = validatemodel(scNewFA,data);
% Get the statistics for the combined data set
StatsC1 = validatemodel(scFA,CombinedData);
StatsC2 = validatemodel(scNewFA);
s1 = table(StatsA1.Value,StatsA2.Value,'VariableNames',{'BaseScorecard','CombinedScorecard'});
s2 = table(StatsC1.Value,StatsC2.Value,'VariableNames',{'BaseScorecard','CombinedScorecard'});
Stats = table(StatsA1.Measure,s1,s2,'VariableNames',{'Measure','Accepts','Combined'});
disp(Stats)
```

Measure	Accepts		Combined	
	BaseScorecard	CombinedScorecard	BaseScorecard	CombinedS
\{'Accuracy Ratio' \}	0.32258	0.32088	0.29419	0.35
\{'Area under ROC curve'\}	0.66129	0.66044	0.64709	0.67
\{'KS statistic' \}	0.2246	0.22799	0.22596	0.25
\{'KS score' \}	550.72	554.84	512.44	520

Summary

This example demonstrates how to use a reject inference process within the framework of the credit scorecard workflow. The Hard-Cutoff and the Fuzzy Augmentation techniques show how you can bin the data, fit a model, integrate the rejects with the accepts into a new credit scorecard model, and then validate the new credit scorecard model.

There is no clear-cut conclusion for which of these reject inference approaches is the best. This example is intended to illustrate how to use the features of creditscorecard to implement two different reject inference approaches.

References

1 Baesesn, B., D. Rösch, and H. Scheule. Credit Risk Analytics: Measurement Techniques, Applications and Examples in SAS. Wiley and SAS Business Series, 2016.
2 Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also

creditscorecard|screenpredictors|autobinning|bininfo|predictorinfo| modifypredictor|modifybins|bindata|plotbins|fitmodel|displaypoints| formatpoints | score | setmodel | probdefault | validatemodel

Related Examples

- "Common Binning Explorer Tasks" on page 3-4
- "Credit Scorecard Modeling with Missing Values"
- "Feature Screening with screenpredictors" on page 3-64
- "Troubleshooting Credit Scorecard Results"
- "Credit Rating by Bagging Decision Trees"
- "Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36

More About

- "Overview of Binning Explorer" on page 3-2
- "About Credit Scorecards"
- "Credit Scorecard Modeling Workflow"
- Monotone Adjacent Pooling Algorithm (MAPA)
- "Credit Scorecard Modeling Using Observation Weights"

External Websites

- Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

Credit Scoring Using Logistic Regression and Decision Trees

Create and compare two credit scoring models, one based on logistic regression and the other based on decision trees.

Credit rating agencies and banks use challenger models to test the credibility and goodness of a credit scoring model. In this example, the base model is a logistic regression model and the challenger model is a decision tree model.

Logistic regression links the score and probability of default (PD) through the logistic regression function, and is the default fitting and scoring model when you work with creditscorecard objects. However, decision trees have gained popularity in credit scoring and are now commonly used to fit data and predict default. The algorithms in decision trees follow a top-down approach where, at each step, the variable that splits the dataset "best" is chosen. "Best" can be defined by any one of several metrics, including the Gini index, information value, or entropy. For more information, see "Decision Trees".

In this example, you:

- Use both a logistic regression model and a decision tree model to extract PDs.
- Validate the challenger model by comparing the values of key metrics between the challenger model and the base model.

Compute Probabilities of Default Using Logistic Regression

First, create the base model by using a creditscorecard object and the default logistic regression function fitmodel. Fit the creditscorecard object by using the full model, which includes all predictors for the generalized linear regression model fitting algorithm. Then, compute the PDs using probdefault. For a detailed description of this workflow, see "Case Study for Credit Scorecard Analysis".

```
% Create a creditscorecard object, bin data, and fit a logistic regression model
load CreditCardData.mat
scl = creditscorecard(data,'IDVar','CustID');
scl = autobinning(scl);
scl = fitmodel(scl,'VariableSelection','fullmodel');
Generalized linear regression model:
    logit(status) ~ 1 + CustAge + TmAtAddress + ResStatus + EmpStatus + CustIncome + TmWBank + 0
    Distribution = Binomial
Estimated Coefficients:
    Estimate SE tStat pValue
\begin{tabular}{lrrrr} 
(Intercept) & 0.70246 & 0.064039 & 10.969 & \(5.3719 \mathrm{e}-28\) \\
CustAge & 0.6057 & 0.24934 & 2.4292 & 0.015131 \\
TmAtAddress & 1.0381 & 0.94042 & 1.1039 & 0.26963 \\
ResStatus & 1.3794 & 0.6526 & 2.1137 & 0.034538 \\
EmpStatus & 0.89648 & 0.29339 & 3.0556 & 0.0022458 \\
CustIncome & 0.70179 & 0.21866 & 3.2095 & 0.0013295 \\
TmWBank & 1.1132 & 0.23346 & 4.7683 & \(1.8579 \mathrm{e}-06\) \\
OtherCC & 1.0598 & 0.53005 & 1.9994 & 0.045568 \\
AMBalance & 1.0572 & 0.36601 & 2.8884 & 0.0038718
\end{tabular}
```

$\begin{array}{lllll}\text { UtilRate } & -0.047597 & 0.61133 & -0.077858 & 0.93794\end{array}$

```
1200 observations, 1190 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 91, p-value = 1.05e-15
% Compute the corresponding probabilities of default
pdL = probdefault(scl);
```


Compute Probabilities of Default Using Decision Trees

Next, create the challenger model. Use the Statistics and Machine Learning Toolbox ${ }^{T M}$ method fitctree to fit a Decision Tree (DT) to the data. By default, the splitting criterion is Gini's diversity index. In this example, the model is an input argument to the function, and the response 'status' comprises all predictors when the algorithm starts. For this example, see the name-value pairs in fitctree to the maximum number of splits to avoid overfitting and specify the predictors as categorical.

```
% Create and view classification tree
CategoricalPreds = {'ResStatus','EmpStatus','OtherCC'};
dt = fitctree(data,'status~CustAge+TmAtAddress+ResStatus+EmpStatus+CustIncome+TmWBank+0therCC+Ut
    'MaxNumSplits',30,'CategoricalPredictors',CategoricalPreds);
disp(dt)
ClassificationTree
                            PredictorNames: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'Tr
                ResponseName: 'status'
    CategoricalPredictors: [3 4 7]
                ClassNames: [0 1]
            ScoreTransform: 'none'
                NumObservations: 1200
```

The decision tree is shown below. You can also use the view function with the name-value pair argument 'mode' set to 'graph' to visualize the tree as a graph.

```
view(dt)
Decision tree for classification
    if CustIncome<30500 then node 2 elseif CustIncome>=30500 then node 3 else 0
    if TmWBank<60 then node 4 elseif TmWBank>=60 then node 5 else 1
    if TmWBank<32.5 then node 6 elseif TmWBank>=32.5 then node 7 else 0
    if TmAtAddress<13.5 then node 8 elseif TmAtAddress>=13.5 then node 9 else 1
    if UtilRate<0.255 then node 10 elseif UtilRate>=0.255 then node 11 else 0
    if CustAge<60.5 then node 12 elseif CustAge>=60.5 then node 13 else 0
    if CustAge<46.5 then node 14 elseif CustAge>=46.5 then node 15 else 0
    if CustIncome<24500 then node 16 elseif CustIncome>=24500 then node 17 else 1
    if TmWBank<56.5 then node 18 elseif TmWBank>=56.5 then node 19 else 1
    if CustAge<21.5 then node 20 elseif CustAge>=21.5 then node 21 else 0
    class = 1
    if EmpStatus=Employed then node 22 elseif EmpStatus=Unknown then node 23 else 0
    if TmAtAddress<131 then node 24 elseif TmAtAddress>=131 then node 25 else 0
    if TmAtAddress<97.5 then node 26 elseif TmAtAddress>=97.5 then node 27 else 0
    class = 0
    class = 0
    if ResStatus in {Home Owner Tenant} then node 28 elseif ResStatus=Other then node 29 else 1
    if TmWBank<52.5 then node 30 elseif TmWBank>=52.5 then node 31 else 0
    class = 1
```

```
class = 1
class = 0
if UtilRate<0.375 then node 32 elseif UtilRate>=0.375 then node 33 else 0
if UtilRate<0.005 then node 34 elseif UtilRate>=0.005 then node 35 else 0
if CustIncome<39500 then node 36 elseif CustIncome>=39500 then node 37 else 0
class = 1
if UtilRate<0.595 then node 38 elseif UtilRate>=0.595 then node 39 else 0
class = 1
class = 1
class = 0
class = 1
class = 0
class = 0
if UtilRate<0.635 then node 40 elseif UtilRate>=0.635 then node 41 else 0
if CustAge<49 then node 42 elseif CustAge>=49 then node 43 else 1
if CustIncome<57000 then node 44 elseif CustIncome>=57000 then node 45 else 0
class = 1
class = 0
class = 0
if CustIncome<34500 then node 46 elseif CustIncome>=34500 then node 47 else 1
class = 1
class = 0
class = 1
class = 0
class = 0
class = 1
class = 0
class = 1
```

When you use fitctree, you can adjust the "Name-Value Pair Arguments" depending on your use case. For example, you can set a small minimum leaf size, which yields a better accuracy ratio (see Model Validation on page 3-94) but can result in an overfitted model.

The decision tree has a predict function that, when used with a second and third output argument, gives valuable information.

```
% Extract probabilities of default
[~,ObservationClassProb,Node] = predict(dt,data);
pdDT = ObservationClassProb(:,2);
```

This syntax has the following outputs:

- ObservationClassProb returns a Num0bs-by-2 array with class probability at all observations. The order of the classes is the same as in dt. ClassName. In this example, the class names are [0 1] and the good label, by choice, based on which class has the highest count in the raw data, is 0 . Therefore, the first column corresponds to nondefaults and the second column to the actual PDs. The PDs are needed later in the workflow for scoring or validation.
- Node returns a Num0bs-by-1 vector containing the node numbers corresponding to the given observations.

Predictor Importance

In predictor (or variable) selection, the goal is to select as few predictors as possible while retaining as much information (predictive accuracy) about the data as possible. In the creditscorecard class, the fitmodel function internally selects predictors and returns p-values for each predictor. The analyst can then, outside the creditscorecard workflow, set a threshold for these p-values and
choose the predictors worth keeping and the predictors to discard. This step is useful when the number of predictors is large.

Typically, training datasets are used to perform predictor selection. The key objective is to find the best set of predictors for ranking customers based on their likelihood of default and estimating their PDs.

Using Logistic Regression for Predictor Importance

Predictor importance is related to the notion of predictor weights, since the weight of a predictor determines how important it is in the assignment of the final score, and therefore, in the PD. Computing predictor weights is a back-of-the-envelope technique whereby the weights are determined by dividing the range of points for each predictor by the total range of points for the entire creditscorecard object. For more information on this workflow, see "Case Study for Credit Scorecard Analysis".

For this example, use formatpoints with the option Points0ddsandPDO for scaling. This is not a necessary step, but it helps ensure that all points fall within a desired range (that is, nonnegative points). The Points0ddsandPDO scaling means that for a given value of TargetPoints and Target0dds (usually 2), the odds are "double", and then formatpoints solves for the scaling parameters such that PDO points are needed to double the odds.

```
% Choose target points, target odds, and PDO values
TargetPoints = 500;
TargetOdds = 2;
PDO = 50;
% Format points and compute points range
scl = formatpoints(scl,'PointsOddsAndPDO',[TargetPoints Target0dds PDO]);
[PointsTable,MinPts,MaxPts] = displaypoints(scl);
PtsRange = MaxPts - MinPts;
disp(PointsTable(1:10,:))
    Predictors Bin Points
    {'CustAge' } {'[-Inf,33)'} 37.008
    {'CustAge' } {'[33,37)' } 38.342
    {'CustAge' } {'[37,40)' } 44.091
    {'CustAge' } {'[40,46)' } 51.757
    {'CustAge' } {'[46,48)' }}63.82
    {'CustAge' } {'[48,58)' } 64.97
    {'CustAge' } {'[58,Inf]' } 82.826
    {'CustAge' } {'<missing>'} NaN
    {'TmAtAddress'} {'[-Inf,23)'} 49.058
    {'TmAtAddress'} {'[23,83)' } 57.325
fprintf('Minimum points: %g, Maximum points: %g\n',MinPts,MaxPts)
Minimum points: 348.705, Maximum points: 683.668
```

The weights are defined as the range of points, for any given predictor, divided by the range of points for the entire scorecard.

```
Predictor = unique(PointsTable.Predictors,'stable');
NumPred = length(Predictor);
```

```
Weight = zeros(NumPred,1);
for ii = 1 : NumPred
    Ind = strcmpi(Predictor{ii},PointsTable.Predictors);
    MaxPtsPred = max(PointsTable.Points(Ind));
    MinPtsPred = min(PointsTable.Points(Ind));
    Weight(ii) = 100*(MaxPtsPred-MinPtsPred)/PtsRange;
end
PredictorWeights = table(Predictor,Weight);
PredictorWeights(end+1,:) = PredictorWeights(end,:);
PredictorWeights.Predictor{end} = 'Total';
PredictorWeights.Weight(end) = sum(Weight);
disp(PredictorWeights)
    Predictor Weight
    {'CustAge' } 13.679
    {'TmAtAddress'} 5.1564
    {'ResStatus' } 8.7945
    {'EmpStatus' } 8.519
    {'CustIncome' } 19.259
    {'TmWBank' } 24.557
    {'OtherCC' } 7.3414
    {'AMBalance' } 12.365
    {'UtilRate' } 0.32919
    {'Total' } 100
% Plot a histogram of the weights
figure
bar(PredictorWeights.Weight(1:end-1))
title('Predictor Importance Estimates Using Logit');
ylabel('Estimates (%)');
xlabel('Predictors');
xticklabels(PredictorWeights.Predictor(1:end-1));
```


Using Decision Trees for Predictor Importance

When you use decision trees, you can investigate predictor importance using the predictorImportance function. On every predictor, the function sums and normalizes changes in the risks due to splits by using the number of branch nodes. A high value in the output array indicates a strong predictor.

```
imp = predictorImportance(dt);
figure;
bar(100*imp/sum(imp)); % to normalize on a 0-100% scale
title('Predictor Importance Estimates Using Decision Trees');
ylabel('Estimates (%)');
xlabel('Predictors');
xticklabels(dt.PredictorNames);
```


Predictors
In this case, 'CustIncome' (parent node) is the most important predictor, followed by 'UtilRate', where the second split happens, and so on. The predictor importance step can help in predictor screening for datasets with a large number of predictors.

Notice that not only are the weights across models different, but the selected predictors in each model also diverge. The predictors 'AMBalance' and 'OtherCC' are missing from the decision tree model, and 'UtilRate' is missing from the logistic regression model.

Normalize the predictor importance for decision trees using a percent from 0 through 100%, then compare the two models in a combined histogram.

```
Ind = ismember(Predictor,dt.PredictorNames);
w = zeros(size(Weight));
w(Ind) = 100*imp'/sum(imp);
figure
bar([Weight,w]);
title('Predictor Importance Estimates');
ylabel('Estimates (%)');
xlabel('Predictors');
h = gca;
xticklabels(Predictor)
legend({'logit','DT'})
```


Note that these results depend on the binning algorithm you choose for the creditscorecard object and the parameters used in fitctree to build the decision tree.

Model Validation

The creditscorecard function validatemodel attempts to compute scores based on internally computed points. When you use decision trees, you cannot directly run a validation because the model coefficients are unknown and cannot be mapped from the PDs.

To validate the creditscorecard object using logistic regression, use the validatemodel function.

```
% Model validation for the creditscorecard
[StatsL,tL] = validatemodel(scl);
```

To validate decision trees, you can directly compute the statistics needed for validation.

```
% Compute the Area under the ROC
[x,y,t,AUC] = perfcurve(data.status,pdDT,1);
KSValue = max(y - x);
AR = 2 * AUC - 1;
% Create Stats table output
Measure = {'Accuracy Ratio','Area Under ROC Curve','KS Statistic'}';
Value = [AR;AUC;KSValue];
StatsDT = table(Measure,Value);
```


ROC Curve

The area under the receiver operating characteristic (AUROC) curve is a performance metric for classification problems. AUROC measures the degree of separability - that is, how much the model can distinguish between classes. In this example, the classes to distinguish are defaulters and nondefaulters. A high AUROC indicates good predictive capability.

The ROC curve is plotted with the true positive rate (also known as the sensitivity or recall) plotted against the false positive rate (also known as the fallout or specificity). When AUROC = 0.7, the model has a 70% chance of correctly distinguishing between the classes. When AUROC $=0.5$, the model has no discrimination power.

This plot compares the ROC curves for both models using the same dataset.

```
figure
plot([0;tL.FalseAlarm],[0;tL.Sensitivity],'s')
hold on
plot(x,y,'-v')
xlabel('Fraction of nondefaulters')
ylabel('Fraction of defaulters')
legend({'logit','DT'},'Location','best')
title('Receiver Operating Characteristic (ROC) Curve')
```


tValidation = table(Measure, StatsL.Value(1:end-1), StatsDT.Value,'VariableNames',...
\{'Measure','logit','DT'\});
disp(tValidation)

Measure	logit	DT
\{'Accuracy Ratio' \}	0.32515	0.38903
\{'Area Under ROC Curve'\}	0.66258	0.69451
\{'KS Statistic'	0.23204	0.29666

As the AUROC values show, given the dataset and selected binning algorithm for the creditscorecard object, the decision tree model has better predictive power than the logistic regression model.

Summary

This example compares the logistic regression and decision tree scoring models using the CreditCardData.mat dataset. A workflow is presented to compute and compare PDs using decision trees. The decision tree model is validated and contrasted with the logistic regression model.

When reviewing the results, remember that these results depend on the choice of the dataset and the default binning algorithm (monotone adjacent pooling algorithm) in the logistic regression workflow.

- Whether a logistic regression or decision tree model is a better scoring model depends on the dataset and the choice of binning algorithm. Although the decision tree model in this example is a better scoring model, the logistic regression model produces higher accuracy ratio (0.42), AUROC (0.71), and KS statistic (0.30) values if the binning algorithm for the creditscorecard object is set as 'Split' with Gini as the split criterion.
- The validatemodel function requires scaled scores to compute validation metrics and values. If you use a decision tree model, scaled scores are unavailable and you must perform the computations outside the creditscorecard object.
- To demonstrate the workflow, this example uses the same dataset for training the models and for testing. However, to validate a model, using a separate testing dataset is ideal.
- Scaling options for decision trees are unavailable. To use scaling, choose a model other than decision trees.

See Also

creditscorecard|screenpredictors|autobinning|bininfo|predictorinfo| modifypredictor|modifybins|bindata|plotbins|fitmodel|displaypoints| formatpoints|score|setmodel|probdefault|validatemodel

Related Examples

- "Common Binning Explorer Tasks" on page 3-4
- "Credit Scorecard Modeling with Missing Values"
- "Feature Screening with screenpredictors" on page 3-64
- "Troubleshooting Credit Scorecard Results"
- "Credit Rating by Bagging Decision Trees"
- "Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36

More About

- "Overview of Binning Explorer" on page 3-2
- "About Credit Scorecards"
- "Credit Scorecard Modeling Workflow"
- Monotone Adjacent Pooling Algorithm (MAPA)
- "Credit Scorecard Modeling Using Observation Weights"

External Websites

- Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

Explore Fairness Metrics for Credit Scoring Model

This example shows how to calculate and display fairness metrics for two sensitive attributes. You can use these metrics to test data and the model for fairness and then determine the thresholds to apply for your situation. You can also use the metrics to understand the biases in your model, the levels of disparity between groups, and how to assess the fairness of the model. This example uses the fairnessMetrics class in the Statistics and Machine Learning Toolbox ${ }^{\mathrm{TM}}$ to compute, display, and plot the various fairness metrics.

Fairness Metrics Calculations

Fairness metrics are a set of measures that enable you to detect the presence of bias in your data or model. Bias refers to the preference of one group over another group, implicitly or explicitly. When you detect bias in your data or model, you can decide to take action to mitigate the bias. Bias detection is a set of measures that enable you to see the presence of unfairness toward one group or another. Bias mitigation is a set of tools to reduce the amount of bias that occurs in the data or model for the current analysis.

A set of metrics exists for the data and a set of metrics also exists for the model. Group metrics measure information within the group, whereas bias metrics measure differences across groups. The example calculates two bias metrics (Statistical Parity Difference (SPD) and Disparate Impact (DI)) and a group metric (group count) at the data level. In this example, you calculate four bias metrics and 17 group metrics at the model level.

Bias metrics:

- Statistical Parity Difference (SPD) measures the difference that the majority and protected classes receive a favorable outcome. This measure must be equal to 0 to be fair.

$$
\mathrm{SPD}=P(\widehat{Y}=1 \mid A=\text { minority })-P(\widehat{Y}=1 \mid A=\text { majority }),
$$

where \widehat{Y} are the model predictions and A is the group of the sensitive attribute.

- Disparate Impact (DI) compares the proportion of individuals that receive a favorable outcome for two groups, a majority group and a minority group. This measure must be equal to 1 to be fair.

$$
\text { DI }=P(\widehat{Y}=1 \mid A=\text { minority }) / P(\widehat{Y}=1 \mid A=\text { majority }),
$$

where \widehat{Y} are the model predictions and A is the group of the sensitive attribute.

- Equal Opportunity Difference (EOD) measures the deviation from the equality of opportunity, which means that the same proportion of each population receives the favorable outcome. This measure must be equal to 0 to be fair.

$$
\mathrm{EOD}=P(\widehat{Y}=1 \mid A=\text { minority }, Y=1)-P(\widehat{Y}=1 \mid A=\text { majority, } Y=1) \text {, }
$$

where \widehat{Y} are the model predictions, A is the group of the sensitive attribute, and Y are the true labels.

- Average Absolute Odds Difference (AAOD) measures bias by using the false positive rate and true positive rate. This measure must be equal to 0 to be fair.

$$
\mathrm{AAOD}=\frac{1}{2}\left[\mid F P R_{A}=\text { minority }-F P R_{A}=\text { majority }|+| T P R_{A}=\text { minority }-T P R_{A}=\text { majority } \mid\right],
$$

where A is the group of the sensitive attribute.
Group metrics:

- True Positives (TP) is the total number of outcomes where the model correctly predicts the positive class.
- True Negatives (TN) is the total number of outcomes where the model correctly predicts the negative class.
- False Positives (FP) is the total number of outcomes where the model incorrectly predicts the positive class.
- False Negatives (FN) is the total number of outcomes where the model incorrectly predicts the negative class.
- True Positive Rate (TPR) is the sensitivity.

$$
\mathrm{TPR}=\frac{\mathrm{TP}}{(\mathrm{TP}+\mathrm{FN})}
$$

- True Negative Rate (TNR) is the specificity or selectivity.

$$
\mathrm{TNR}=\frac{\mathrm{TN}}{(\mathrm{TN}+\mathrm{FP})}
$$

- False Positive Rate (FPR) is the Type-I error.

$$
\mathrm{FPR}=\frac{\mathrm{FP}}{(\mathrm{FP}+\mathrm{TN})}
$$

- False Negative Rate (FNR) is the Type-II error.

$$
\mathrm{FNR}=\frac{\mathrm{FN}}{(\mathrm{FN}+\mathrm{TP})}
$$

- False Discovery Rate (FDR) is the ratio of the number of false positive results to the number of total positive test results.

$$
\mathrm{FDR}=\frac{\mathrm{FP}}{(\mathrm{FP}+\mathrm{TP})}
$$

- False Omission Rate (FOR) is the ratio of the number of individuals with a negative predicted value for which the true label is positive.

$$
\mathrm{FOR}=\frac{\mathrm{FN}}{(\mathrm{FN}+\mathrm{TN})}
$$

- Positive Predictive Value (PPV) is the ratio of the number of true positives to the number of true positives and false positives.

$$
\mathrm{PPV}=\frac{\mathrm{TP}}{(\mathrm{TP}+\mathrm{FP})}
$$

- Negative Predictive Value (NPV) is the ratio of the number of true negatives to the number of true positives and false positives.

$$
\mathrm{NPV}=\frac{\mathrm{TN}}{(\mathrm{TN}+\mathrm{FN})}
$$

- Rate of Positive Predictions (RPP) or Acceptance Rate is the ratio of the number of false and true positives to the total observations.

$$
\mathrm{RPP}=\frac{(\mathrm{FP}+\mathrm{TP})}{(\mathrm{TN}+\mathrm{TP}+\mathrm{FN}+\mathrm{FP})}
$$

- Rate of Negative Predictions (RNP) is the ratio of the number of false and true negatives to the total observations.

$$
\mathrm{RNP}=\frac{(\mathrm{FN}+\mathrm{TN})}{(\mathrm{TN}+\mathrm{TP}+\mathrm{FN}+\mathrm{FP})}
$$

- Accuracy (ACC) is the ratio of the number of true negatives and true positives to the total observations.

$$
\mathrm{ACC}=\frac{(\mathrm{TN}+\mathrm{TP})}{(\mathrm{TN}+\mathrm{TP}+\mathrm{FN}+\mathrm{FP})}
$$

- Group Count is the number of individuals in the group.
- Group Size Ratio is the ratio of the number of individuals in that group to the total number of individuals.

The example focuses on bias detection in credit card data and explores bias metrics and group metrics based on the sensitive attributes of customer age (CustAge) and residential status (ResStatus). The data contains the residential status as a categorical variable and the customer age as a numeric variable. To create predictions and analyze the data for fairness, you group the customer age variable into bins.

Visualize Sensitive Attributes in Credit Card Data

Load the credit card data set. Group the customer age into bins. Use the discretize function for a numeric variable to create groups that identify age groups of interest for comparison on fairness. Retrieve the counts for both sensitive attributes of customer age and residential status.

```
load CreditCardData.mat
AgeGroup = discretize(data.CustAge,[min(data.CustAge) 30 45 60 max(data.CustAge)], ...
    'categorical',{'Age < 30','30 <= Age < 45','45 <= Age < 60','Age >= 60'});
data = addvars(data,AgeGroup,'After','CustAge');
gs_data_ResStatus = groupsummary(data,{'ResStatus','status'});
gs_data_AgeGroup = groupsummary(data,{'AgeGroup','status'});
```

Plot the count of customers who have defaulted on their credit card payments and who have not defaulted by age.

```
Attribute = AgeGroup - ;
figure
bar(unique(data.(Attribute)), ...
    [eval("gs_data_"+Attribute+".GroupCount(1:2:end)"), ...
    eval("gs_data_"+Attribute+".GroupCount(2:2:end)")]');
title(Attribute +" True Counts");
```

```
ylabel('Counts')
legend({'Nondefaults','Defaults'})
```


Calculate Fairness Metrics for Data

Calculate fairness metrics for the residential status and customer age data. The fairnessMetrics class returns a fairnessMetrics object, whichis then passed into the report method to obtain a table with bias metrics and group metrics. Bias metrics take into account two classes (the majority and minority) at a time, while group metrics are within the individual group. In the data set, if you use residential status as the sensitive attribute, then the Home Owner group is the majority class because this class contains the largest number of individuals. Based on the SPD and DI metrics, the data set does not show a significant presence of bias for residential status. For the customer age data, the age group between 45 and 60 is the majority class because this class contains the largest number of individuals. Compared to the residential status, based on the SPD and DI metrics, the age group that is greater than 60 shows a slightly larger presence of bias.

```
dataMetricsObj = fairnessMetrics(data, 'status', 'SensitiveAttributeNames',{'ResStatus','AgeGrou
dataMetricsObj =
    fairnessMetrics with properties:
        SensitiveAttributeNames: {'ResStatus' 'AgeGroup'}
            ReferenceGroup: {'Home Owner' '45 <= Age < 60'}
            ResponseName: 'status'
            PositiveClass: 1
                BiasMetrics: [7x4 table]
                GroupMetrics: [7x4 table]
```

Properties, Methods

```
dataMetricsTable = report(dataMetricsObj,'GroupMetrics','GroupCount')
dataMetricsTable=7\times5 table
    SensitiveAttributeNames
                Groups StatisticalParityDifference
                            DisparateImpact
```

\qquad

```
                ResStatus
                ResStatus
                ResStatus
                AgeGroup
                AgeGroup
                AgeGroup 45<= Age < 60
                AgeGroup
1.0789
0.88203
    1.2759
    1.3516
    -0.14783
        1
    0.497
```

Groups
Home Owner
Tenant
Other
Age < 30
$30<=$ Age < 45
$45<=$ Age < 60
Age $>=60$
0
0.025752
-0.038525
0.0811
0.10333
0
-0.147831

Create Credit Scorecard Model and Generate Predictions

Create a credit scorecard model using the creditscorecard function. Perform automatic binning of the predictors using the autobinning function. Fit a logistic regression model to the Weight of Evidence (WOE) data using the fitmodel function. Store the predictor names and corresponding coefficients in the credit scorecard model.

```
PredictorVars = setdiff(data.Properties.VariableNames, ...
    {'AgeGroup','CustID','status'});
sc = creditscorecard(data,'IDVar','CustID', ...
    'PredictorVars',PredictorVars);
sc = autobinning(sc);
sc = fitmodel(sc);
```

1. Adding CustIncome, Deviance $=1490.8527$, Chi2Stat $=32.588614$, PValue $=1.1387992 \mathrm{e}-08$
2. Adding TmWBank, Deviance $=1467.1415$, Chi2Stat $=23.711203$, PValue $=1.1192909 \mathrm{e}-06$
3. Adding AMBalance, Deviance $=1455.5715$, Chi2Stat $=11.569967$, PValue $=0.00067025601$
4. Adding EmpStatus, Deviance $=1447.3451$, Chi2Stat $=8.2264038$, PValue $=0.0041285257$
5. Adding CustAge, Deviance $=1441.994$, Chi2Stat $=5.3511754$, PValue $=0.020708306$
6. Adding ResStatus, Deviance $=1437.8756$, Chi2Stat $=4.118404$, PValue $=0.042419078$
7. Adding OtherCC, Deviance $=1433.707$, Chi2Stat $=4.1686018$, PValue $=0.041179769$
Generalized linear regression model:
logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBal
Distribution = Binomial
Estimated Coefficients:

Estimate	SE	tStat	pValue
0.70239	0.064001	10.975	5.0538e-28
0.60833	0.24932	2.44	0.014687
1.377	0.65272	2.1097	0.034888
0.88565	0.293	3.0227	0.0025055
0.70164	0.21844	3.2121	0.0013179
1.1074	0.23271	4.7589	1.9464e-06
1.0883	0.52912	2.0569	0.039696
1.045	0.32214	3.2439	0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value $=1.4 \mathrm{e}-16$
Display unscaled points for predictors retained in the model using the displaypoints function.

For details about creating a more in depth credit scoring model, see the "Bin Data to Create Credit Scorecards Using Binning Explorer" on page 3-23.

Calculate the probability of default for the credit scorecard model using the probdefault function. Define the threshold for the probability of default as 0.35 . Create an array of predictions where each value is greater than the threshold.

```
pd = probdefault(sc);
threshold = 0.35;
predictions = double(pd>threshold);
```

Add the resulting predictions to the data output table. To calculate bias metrics, you can set aside a set of validation data. Retrieve the counts for the residential status and customer age predictions.
Plot the customer age predictions.

```
data = addvars(data,predictions,'After','status');
gs_predictions_ResStatus = groupsummary(data,{'ResStatus','predictions'}, ...
    'IncludeEmptyGroups',true);
gs_predictions_AgeGroup = groupsummary(data,{'AgeGroup','predictions'}, ...
    'IncludeEmptyGroups',true);
Attribute = AgeGroup *;
figure
bar(unique(data.(Attribute)), ...
```

```
    [eval("gs_predictions_"+Attribute+".GroupCount(1:2:end)"), ...
    eval("gs_predictions_"+Attribute+".GroupCount(2:2:end)")]');
title(Attribute +" Predic
ylabel('Counts')
legend({'Nondefaults','Defaults'})
```


Calculate and Visualize Fairness Metrics for Credit Scorecard Model

Calculate model bias and group metrics for residential status and customer age. For the DI model metric, the commonly used range to assess fairness is between 0.8 and 1.25 [3 on page 3-109]. A value of less than 0.8 indicates the presence of bias. However, a value greater than 1.25 indicates that something is incorrect and additional investigation might be required. The model bias metrics in this example show a greater effect on fairness than the data bias metrics. After the model has been fitted, the negative SPD and EOD values mean that the Other group shows a slight presence of bias. In the group metrics, the FPR group metric of 39.7% is higher for tenants than home owners, which means that tenants are more likely to be falsely labeled as defaults. The FDR, FOR, PPV, and NPV group metrics show a very minimal presence of bias.

Looking at the model bias metrics SPD, DI, EOD, and AAOD for customer age, the 30 and under group has the greatest variance from the majority class and might require further investigation. Further, the age group over 60 shows the presence of bias based on the negative SPD and EOD values and the very low DI value. Also, based on the DI metrics, additional model bias mitigation might be required.

In the group metrics, the FPR group metric of 80% is much higher for the 30 and under group than the majority class, which means that those individuals whose age is 30 and under are more likely to
be falsely labeled as defaults. The FDR group metric of 83.3% is much higher for the over 60 group than the majority class, which means that 83.3% of individuals whose age is over 60 and identified as defaults by the model are false positives. The Accuracy metric shows the highest accuracy for the over 60 group at 80.9\%.

```
modelMetricsObj = fairnessMetrics(data, 'status', 'SensitiveAttributeNames',{'ResStatus','AgeGro
modelMetricsObj =
    fairnessMetrics with properties:
        SensitiveAttributeNames: {'ResStatus' 'AgeGroup'}
                        ReferenceGroup: {'Home Owner' '45 <= Age < 60'}
                                ResponseName: 'status'
                                PositiveClass: 1
                                BiasMetrics: [7x7 table]
                                GroupMetrics: [7x20 table]
                                    ModelNames: 'Model1'
    Properties, Methods
```

modelMetricsTable $=$ report(modelMetrics0bj,'GroupMetrics','all')
modelMetricsTable=7×24 table
ModelNames SensitiveAttributeNames Groups StatisticalParityDifference Di
Model1 ResStatus Home Owner 0
Model1 ResStatus Tenant 0.10173
Model1 ResStatus Other -0.11541
Model1 AgeGroup Age < 30 0.55389
$\begin{array}{lll}\text { Model1 } & \text { AgeGroup } & 30<=\text { Age }<45 \\ 0.35169\end{array}$
$\begin{array}{lllr}\text { Model1 } & \text { AgeGroup } & 45<=\text { Age }<60 & 0 \\ \text { Model1 } & \text { AgeGroup } & \text { Age >= 60 } & -0.15994\end{array}$

Choose the bias metric and sensitive attribute and plot it. This code selects AAOD and AgeGroup by default.

```
BiasMetric = AverageAbsoluteO... - ;
SensitiveAttribute = AgeGroup - ;
plot(modelMetricsObj, BiasMetric, "SensitiveAttributeNames", SensitiveAttribute);
```


For the same sensitive attribute, choose the group metric and plot it. This code selects the group count by default. The resulting plots show the metric values for the selected sensitive attribute.

```
GroupMetric = GroupCount `;
plot(modelMetrics0bj, GroupMetric, "SensitiveAttributeNames", SensitiveAttribute);
```

Plot the SPD, DI, EOD, and AAOD bias metrics for the two sensitive attributes.
MetricsShort = ["spd" "di" "eod" "aaod"];
tiledlayout $(2,4)$

Bias preserving metrics seek to keep the historic performance in the outputs of a target model with equivalent error rates for each group as shown in the training data. These metrics do not alter the status quo that exists in society. A fairness metric is classified as bias preserving when a perfect classifier exactly satisfies the metric. In contrast, bias transforming metrics require the explicit decision regarding which biases the system should exhibit. These metrics do not accept the status quo and acknowledge that protected groups start from different points that are not equal. The main difference between these two types of metrics is that most bias transforming metrics are satisfied by matching decision rates between groups, whereas bias preserving metrics require matching error rates instead. To assess the fairness of a decision-making system, use both bias preserving and transforming metrics to create the broadest possible view of the bias in the system.

Evaluating whether a metric is bias preserving is straightforward with a perfect classifier. In the absence of a perfect classifier, you can substitute the predictions with the classifier response and observe if the formula is trivially true. EOD and AAOD are bias preserving metrics because they have no variance; however, SPD and DI are bias transforming metrics as they show a variance from the majority classes.

```
biasMetrics_ResStatus10bj = fairnessMetrics(data, 'status', 'SensitiveAttributeNames' ,'ResStatus
report(biasMetrics_ResStatus10bj)
```

ans=3×7 table
ModelNames
SensitiveAttributeNames
ResStatus
ResStatus

Groups
StatisticalParityDifference
Dispar
ModelNames
SensitiveAttributeNames

ResStatus
status
ResStatus
Home Owner Tenant
0
0.025752

```
biasMetrics_AgeGroup10bj = fairnessMetrics(data, 'status', 'SensitiveAttributeNames', 'AgeGroup'
report(biasM\overline{Metrics_AgeGroup10bj)}
ans=4\times7 table
    ModelNames SensitiveAttributeNames Groups StatisticalParityDifference
        status
        status AgeGroup
        AgeGroup
        AgeGroup
\begin{tabular}{lr} 
Age < 30 & 0.0811 \\
\(30<=\) Age < 45 & 0.10333 \\
\(45<=\) Age < 60 & 0 \\
Age >= 60 & -0.14783
\end{tabular}
```


References

1 Schmidt, Nicolas, Sue Shay, Steve Dickerson, Patrick Haggerty, Arjun R. Kannan, Kostas Kotsiopoulos, Raghu Kulkarni, Alexey Miroshnikov, Kate Prochaska, Melanie Wiwczaroski, Benjamin Cox, Patrick Hall, and Josephine Wang. Machine Learning: Considerations for Fairly and Transparently Expanding Access to Credit. Mountain View, CA: H2O.ai, Inc., July 2020.
2 Mehrabi, Ninareh, et al. "A Survey on Bias and Fairness in Machine Learning." ArXiv:1908.09635 [Cs], Sept. 2019. arXiv.org, https://arxiv.org/abs/1908.09635.
3 Saleiro, Pedro, et al. "Aequitas: A Bias and Fairness Audit Toolkit." ArXiv:1811.05577 [Cs], Apr. 2019. arXiv.org, https://arxiv.org/abs/1811.05577.

4 Wachter, Sandra, et al. Bias Preservation in Machine Learning: The Legality of Fairness Metrics Under EU Non-Discrimination Law. SSRN Scholarly Paper, ID 3792772, Social Science Research Network, 15 Jan. 2021. papers.ssrn.com, https://papers.ssrn.com/sol3/papers.cfm? abstract_id=3792772.

See Also

creditscorecard|autobinning|fitmodel|displaypoints|probdefault

Related Examples

- "Bin Data to Create Credit Scorecards Using Binning Explorer" on page 3-23
- "Bias Mitigation in Credit Scoring by Reweighting" on page 3-110
- "Bias Mitigation in Credit Scoring by Disparate Impact Removal" on page 3-119

Bias Mitigation in Credit Scoring by Reweighting

Bias mitigation is the process of removing bias from a data set or a model in order to make it fair. Bias mitigation usually follows a bias detection step, where a series of metrics are computed based on a data set or model predictions. Bias mitigation has three stages: pre-processing, in-processing, and post-processing. This example demonstates a pre-processing method to mitigate bias in a credit scoring workflow. The example uses bias detection and bias mitigation functionality from the Statistics and Machine Learning Toolbox ${ }^{\mathrm{TM}}$. For a detailed example on bias detection, see the following example: "Explore Fairness Metrics for Credit Scoring Model" on page 3-98.

The bias mitigation method in this example is Reweighting which essentially reweights observations within a data set to guarantee fairness between different subgroups within a sensitive attribute. As a result of reweighting, the Statistical Parity Difference (SPD) of all subgroups goes to 0 and the Disparate Impact metric becomes 1. This example demonstrates how reweighting works in a credit scoring workflow.

Load Data

Load the CreditCardData data set and discretize the 'CustAge ' predictor.
load CreditCardData.mat

```
AgeGroup = discretize(data.CustAge,[min(data.CustAge) 30 45 60 max(data.CustAge)], ...
    'categorical',{'Age < 30','30 <= Age < 45','45 <= Age < 60','Age >= 60'});
data = addvars(data,AgeGroup,'After','CustAge');
head(data)
\begin{tabular}{cccccccccc} 
CustID & CustAge & \multicolumn{2}{c}{ AgeGroup } & & TmAtAddress & & ResStatus & & EmpStatus
\end{tabular} CustIncome
```

Split the data set into training and testing data. Use the training data to fit the model and the testing data to predict from the model.

```
rng('default');
c = cvpartition(size(data,1),'HoldOut',0.3);
data_Train = data(c.training(),:);
data_Test = data(c.test(),:);
```


Compute Fairness Metrics at Predictor and Model Level

Compute the fairness metrics for the training data by creating a fairnessMetrics object and then generating a metrics report using report. Since you are only working with data and there is no fitted model, only two bias metrics are computed for StatisticalParityDifference and DisparateImpact. The two group metrics computed are GroupCount and GroupSizeRatio. The
fairness metrics are computed for two sensitive attributes, Age ('AgeGroup ') and Residential Status ('ResStatus').
trainingDataMetrics = fairnessMetrics(data_Train, 'status', 'SensitiveAttributeNames',\{'AgeGroup tdmReport = report(trainingDataMetrics)
tdmReport=7×4 table

SensitiveAttributeNames
\qquad
AgeGroup
AgeGroup
AgeGroup
AgeGroup
ResStatus
ResStatus
ResStatus

Groups

```
Age < 30
30 <= Age < 45
45 <= Age < 60
Age >= 60
Home Owner
```

Tenant 0.01689
Other -0.02108

StatisticalParityDifference

DisparateImpact

0.039827	1.1357
0.096324	1.3282
0	1
-0.19181	0.34648
0	1
0.01689	1.0529
-0.02108	0.93404

figure
tiledlayout(2,1)
nexttile
plot(trainingDataMetrics,'spd')
nexttile
plot(trainingDataMetrics,'di')

Statistical Parity Difference

Disparate Impact

Looking at the DisparateImpact bias metric for both AgeGroup and ResStatus, you can see that there is a much larger variance in the AgeGroup predictor as compared to the ResStatus predictor.

This suggests that users are treated more unfairly when it comes to their age as compared to their residential status. This example focuses on the AgeGroup predictor and attempts to reduce bias among its subgroups.

To begin, fit a credit scoring model and compute the model-level bias metrics. This provides a baseline for comparison.

Since CustAge and AgeGroup are essentially the same predictor and this is a sensitive attribute, you can exclude it from the model. Additionally, you can use 'status ' as the response variable and 'CustID' as the ID variable.

```
PredictorVars = setdiff(data_Train.Properties.VariableNames, ...
    {'CustAge','AgeGroup','CustID','FairWeights','status'});
sc1 = creditscorecard(data_Train,'IDVar','CustID', ...
    'PredictorVars',PredictorVars,'ResponseVar','status');
scl = autobinning(scl);
sc1 = fitmodel(sc1,'VariableSelection','fullmodel');
Generalized linear regression model:
    logit(status) ~ 1 + TmAtAddress + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + Al
    Distribution = Binomial
Estimated Coefficients
            Estimate SE tStat pValue
\begin{tabular}{lrrrr} 
(Intercept) & 0.73924 & 0.077237 & 9.5711 & \(1.058 \mathrm{e}-21\) \\
TmAtAddress & 1.2577 & 0.99118 & 1.2689 & 0.20448 \\
ResStatus & 1.755 & 1.295 & 1.3552 & 0.17535 \\
EmpStatus & 0.88652 & 0.32232 & 2.7504 & 0.0059516 \\
CustIncome & 0.95991 & 0.19645 & 4.8862 & \(1.0281 \mathrm{e}-06\) \\
TmWBank & 1.132 & 0.3157 & 3.5856 & 0.00033637 \\
OtherCC & 0.85227 & 2.1198 & 0.40204 & 0.68765 \\
AMBalance & 1.0773 & 0.31969 & 3.3698 & 0.00075232 \\
UtilRate & -0.19784 & 0.59565 & -0.33214 & 0.73978
\end{tabular}
```

840 observations, 831 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 66.5, p-value $=2.44 \mathrm{e}-11$
pointsinfol $=$ displaypoints(sc1)
pointsinfol=38×3 table
Predictors Bin Points

\{'TmAtAddress'\}	\{'[-Inf,9)'	$\}$	-0.17538
\{'TmAtAddress'\}	\{'[9,16)'	$\}$	0.05434
\{'TmAtAddress'\}	\{'[16,23)'	$\}$	0.096897
\{'TmAtAddress'\}	\{'[23,Inf]'	$\}$	0.13984
\{'TmAtAddress'\}	\{'<missing>'	$\}$	NaN
\{'ResStatus' \}	\{'Tenant'	$\}$	-0.017688
\{'ResStatus' \}	\{'Home Owner'	$\}$	0.11681
\{'ResStatus' \}	\{'0ther'	$\}$	0.29011
\{'ResStatus' \}	\{'<missing>'	$\}$	NaN
\{'EmpStatus' \}	\{'Unknown'	$\}$	-0.097582
\{'EmpStatus' \}	\{'Employed'	$\}$	0.33162

```
    {'EmpStatus' } {'<missing>' } NaN
    {'CustIncome' } {'[-Inf,30000)' } -0.61962
    {'CustIncome' } {'[30000,36000)'} -0.10695
    {'CustIncome' } {'[36000,40000)'} 0.0010845
    {'CustIncome' } {'[40000,42000)'} 0.065532
pd1 = probdefault(sc1,data_Test);
```

Set the threshold value that controls the allocation of "goods" and "bads."
threshold =
$0.35 \longrightarrow$
predictions1 = double(pdl>threshold);
Create a fairnessMetrics object to compute fairness metrics at the model level and then generate a metrics report using report.

```
modelMetrics1 = fairnessMetrics(data_Test, 'status', 'Predictions', predictions1, 'SensitiveAttr:
```

mmReportl $=$ report(modelMetrics1)
mmReport1=4×7 table
ModelNames SensitiveAttributeNames Groups StatisticalParityDifference Di

Model1
Model1
Model1 AgeGroup
Model1 AgeGroup

Groups

Age < 30
30 <= Age < 45
$45<=$ Age < 60
Age >= 60

StatisticalParityDifference
0.54312
0.19922
0.15385

Measure accuracy of model using validatemodel.

```
validatemodel(sc1)
```

ans $=4 \times 2$ table
Measure Value
\{'Accuracy Ratio' \} 0.33751
\{'Area under ROC curve'\} 0.66876
\{'KS statistic' \} 0.26418
\{'KS score' \} 1.0403
figure
tiledlayout (2,1)
nexttile
plot(modelMetricsl,'spd')
nexttile
plot(modelMetrics1,'di')

Reweight Data at Predictor and Model Level

Use fairnessWeights to reweight the training data to remove bias for the sensitive attribute
'AgeGroup'.
fairWeights = fairnessWeights(data_Train, 'AgeGroup', 'status'); data_Train.FairWeights = fairWeights; head(data_Train)

CustID	CustAge	AgeGroup	TmAtAddress	ResStatus	EmpStatus	CustIncome
1	53	$45<=$ Age < 60	62	Tenant	Unknown	50000
2	61	Age >= 60	22	Home Owner	Employed	52000
3	47	45 <= Age < 60	30	Tenant	Employed	37000
4	50	45 <= Age < 60	75	Home Owner	Employed	53000
7	34	30 <= Age < 45	32	Home Owner	Unknown	32000
8	50	45 <= Age < 60	57	Other	Employed	51000
9	50	45 <= Age < 60	10	Tenant	Unknown	52000
10	49	45 <= Age < 60	30	Home Owner	Unknown	53000

Use fairnessMetrics to compute fairness metrics for the training data after reweighting and use report to generate a fairness metrics report..
trainingDataMetrics_AfterReweighting = fairnessMetrics(data_Train, 'status', 'SensitiveAttributel tdmrReport $=$ report(trainingDataMetrics_AfterReweighting)
tdmrReport=4×4 table

SensitiveAttributeNames	Groups	StatisticalParityDifference	DisparateImpact
AgeGroup	Age < 30	-2.9976e-15	1
AgeGroup	30 <= Age < 45	-5.5511e-16	1
AgeGroup	45 <= Age < 60	0	1
AgeGroup	Age >= 60	-2.9421e-15	1

By applying the reweighting algorithm to the AgeGroup predictor, you can completely remove the disparate impact for AgeGroup. Then use this debiased data to fit a model to produce predictions with an overall reduced disparate impact at the model level.

Use creditscorecard to fit a new credit scoring model with the new fair weights and compute model-level bias metrics.

```
sc2 = creditscorecard(data_Train,'IDVar','CustID', ...
    'PredictorVars',PredictorVars,'WeightsVar','FairWeights','ResponseVar','status');
sc2 = autobinning(sc2);
sc2 = fitmodel(sc2,'VariableSelection','fullmodel');
Generalized linear regression model:
    logit(status) ~ 1 + TmAtAddress + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + Al
    Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline 0.74055 & 0.076222 & 9.7158 & 2.5817e-22 \\
\hline 1.3416 & 0.9108 & 1.473 & 0.14075 \\
\hline 2.0467 & 1.7669 & 1.1584 & 0.24672 \\
\hline 0.91879 & 0.32197 & 2.8536 & 0.0043222 \\
\hline 0.91038 & 0.33216 & 2.7407 & 0.00613 \\
\hline 1.1067 & 0.30826 & 3.5901 & 0.0003305 \\
\hline 0.42264 & 3.5078 & 0.12049 & 0.9041 \\
\hline 1.1347 & 0.3447 & 3.2919 & 0.00099504 \\
\hline -0.39861 & 0.77284 & -0.51577 & 0.60601 \\
\hline
\end{tabular}
```

840 observations, 831 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 46.6, p-value = 1.85e-07
pointsinfo2 = displaypoints(sc2)
pointsinfo2=34×3 table
Predictors Bin Points

\{'TmAtAddress'\}	\{'[-Inf,9)'	$\}$	-0.21328
\{'TmAtAddress'\}	\{'[9,23)'	$\}$	0.07168
\{'TmAtAddress'\}	\{'[23,Inf]'	$\}$	0.14763
\{'TmAtAddress'\}	\{'<missing>'	$\}$	NaN
\{'ResStatus' \}	\{'Tenant'	$\}$	0.016048
\{'ResStatus' \}	\{'Home Owner'	$\}$	0.091092
\{'ResStatus' \}	\{'Other'	$\}$	0.28326

\{'ResStatus'	\{'<missing>' \}	NaN
\{'EmpStatus'	\{'Unknown' \}	-0.10352
\{'EmpStatus'	\{'Employed' \}	0.33653
\{'EmpStatus'	\{'<missing>' \}	NaN
\{'CustIncome'	\{'[-Inf,30000)' \}	-0.37618
\{'CustIncome'	\{'[30000, 40000)'\}	0.047483
\{'CustIncome'	\{'[40000, 42000)' $\}$	0.10244
\{'CustIncome'	\{'[42000, 47000)' $\}$	0.14652
\{'CustIncome'	\{'[47000,Inf]' \}	0.40015

```
pd2 = probdefault(sc2,data Test);
predictions2 = double(pd2>threshold);
```

Use fairnessMetrics to compute fairness metrics at the model level and report to generate a fairness metrics report.

```
modelMetrics2 = fairnessMetrics(data_Test, 'status', 'Predictions', predictions2, 'SensitiveAttr
mmReport2 = report(modelMetrics2)
mmReport2=4\times7 table
    ModelNames SensitiveAttributeNames Groups StatisticalParityDifference
\begin{tabular}{lllr} 
Model1 & AgeGroup & Age < 30 & 0.39394 \\
Model1 & AgeGroup & \(30<=\) Age \(<45\) & 0.094298 \\
Model1 & AgeGroup & \(45<=\) Age \(<60\) & 0 \\
Modell & AgeGroup & Age \(>=60\) & -0.13333
\end{tabular}
```

Measure accuracy of model using validatemodel.
validatemodel(sc2)

ans $=4 \times 2$ table		
Measure		
\{'Accuracy Ratio'	Value	
\{'Area under ROC curve' $\}$		0.27735
\{'KS statistic'	\}	0.63868
\{'KS score'	$\}$	0.92702

```
figure
tiledlayout(2,1)
nexttile
plot(modelMetrics2,'spd')
nexttile
plot(modelMetrics2,'di')
```


The process of reweighting removed all the bias from the training data. When you use the new data to fit a model, the overall bias in the model is reduced when compared to a model trained with biased data. As a consequence of this reduction in bias, there is a drop in model accuracy. You can choose to make tradeoff to improve fairness.

References

[1] Nielsen, Aileen. "Chapter 4. Fairness PreProcessing." Practical Fairness. O'Reilly Media, Inc., Dec. 2020.
[2] Mehrabi, Ninareh, et al. "A Survey on Bias and Fairness in Machine Learning." ArXiv:1908.09635 [Cs], Sept. 2019. arXiv.org, https://arxiv.org/abs/1908.09635.
[3] Wachter, Sandra, et al. Bias Preservation in Machine Learning: The Legality of Fairness Metrics Under EU Non-Discrimination Law. SSRN Scholarly Paper, ID 3792772, Social Science Research Network, 15 Jan. 2021. papers.ssrn.com, https://papers.ssrn.com/sol3/papers.cfm? abstract_id=3792772.

See Also

creditscorecard|autobinning|fitmodel|displaypoints|probdefault

Related Examples

- "Bin Data to Create Credit Scorecards Using Binning Explorer" on page 3-23
- "Explore Fairness Metrics for Credit Scoring Model" on page 3-98
- "Bias Mitigation in Credit Scoring by Disparate Impact Removal" on page 3-119

Bias Mitigation in Credit Scoring by Disparate Impact Removal

Disparate impact removal is a pre-processing technique in bias mitigation. Using this technique, you modify the original credit score data to increase group fairness, while still preserving rank ordering within groups. Using a disparate impact removal technique reduces the bias introduced by the credit scoring model more than if you use the original data to train the credit scoring model. You perform the disparate impact removal technique using the disparateImpactRemover class from the Statistics and Machine Learning Toolbox ${ }^{\mathrm{TM}}$. This class returns a remover object along with a table containing the new predictor values. However, you need to use the transform method with the remover object on the test data before you can predict using the fitted credit scoring model.

The disparate impact removal technique works only with the distribution of data within a numeric predictor for each subgroup of a sensitive attribute. The disparateImpactRemover class has no knowledge of, or relation to, the response variable. In this example, you treat all the numeric predictors, time at address (TmAtAddress), customer income (CustIncome), time with Bank (TmWBank), average monthly balance (AMBalance), and utilization rate (UtilRate), with respect to the sensitive attribute, customer age (AgeGroup).

Original Credit Scoring Model

This example uses a credit scoring workflow. Load the CreditCardData.mat and use the 'data' data set.
load CreditCardData.mat
AgeGroup $=$ discretize(data.CustAge,[min(data.CustAge) $304560 \max (d a t a . C u s t A g e)], .$.
'categorical', \{'Age < 30','30 <= Age < 45','45 <= Age < 60','Age >= 60'\}); data = addvars(data,AgeGroup,'After','CustAge');
head(data)

ResStatus	EmpStatus	CustIncome
Tenant	Unknown	50000
Home Owner	Employed	52000
Tenant	Employed	37000
Home Owner	Employed	53000
Home Owner	Employed	53000
Home Owner	Employed	48000
Home Owner	Unknown	32000
Other	Employed	51000

rng('default')
Split the data set into training and testing data.

```
c = cvpartition(size(data,1),'HoldOut',0.3);
data_Train = data(c.training(),:);
data_Test = data(c.test(),:);
head(data_Train)
```


2	61	Age $>=60$	22		Home Owner	Employed
3	47	$45<=$ Age <60	30	Tenant	Employed	37000
4	50	$45<=$ Age <60	75	Home Owner	Employed	53000
7	34	$30<=$ Age <45	32	Home Owner	Unknown	32000
8	50	$45<=$ Age <60	57	Other	Employed	51000
9	50	$45<=$ Age <60	10	Tenant	Unknown	52000
10	49	$45<=$ Age <60	30	Home Owner	Unknown	53000

```
Use creditscorecard to create a creditscorecard object and use fitmodel to fit a credit scoring model with the the training data (data_Train).
```

Estimate	SE	tStat	pValue
0.73924	0.077237	9.5711	1.058e-21
1.2577	0.99118	1.2689	0.20448
1.755	1.295	1.3552	0.17535
0.88652	0.32232	2.7504	0.0059516
0.95991	0.19645	4.8862	1.0281e-06
1.132	0.3157	3.5856	0.00033637
0.85227	2.1198	0.40204	0.68765
1.0773	0.31969	3.3698	0.00075232
-0.19784	0.59565	-0.33214	0.73978

```
```

PredictorVars = setdiff(data_Train.Properties.VariableNames, ...

```
PredictorVars = setdiff(data_Train.Properties.VariableNames, ...
    {'CustAge','AgeGroup','CustID','status'});
    {'CustAge','AgeGroup','CustID','status'});
sc1 = creditscorecard(data_Train,'IDVar','CustID', ...
sc1 = creditscorecard(data_Train,'IDVar','CustID', ...
    'PredictorVars',Predic\overline{torVars,'ResponseVar','status');}
    'PredictorVars',Predic\overline{torVars,'ResponseVar','status');}
scl = autobinning(sc1);
scl = autobinning(sc1);
scl = fitmodel(scl,'VariableSelection','fullmodel');
scl = fitmodel(scl,'VariableSelection','fullmodel');
Generalized linear regression model:
Generalized linear regression model:
    logit(status) ~ 1 + TmAtAddress + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + Al
    logit(status) ~ 1 + TmAtAddress + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + Al
    Distribution = Binomial
    Distribution = Binomial
Estimated Coefficients:
Estimated Coefficients:
840 observations, 831 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 66.5, p -value \(=2.44 \mathrm{e}-11\)
```

Use displaypoints to compute the points per predictor per bin for the creditscorecard model (sc1).

```
pointsinfol = displaypoints(sc1)
pointsinfol=38\times3 table
    Predictors Bin Points
    {'TmAtAddress'}
```

ResStatus'	\{'<missing>' \}	NaN
\{'EmpStatus'	\{'Unknown' \}	-0.097582
\{'EmpStatus'	\{'Employed' \}	0.33162
\{'EmpStatus'	\{'<missing>' \}	NaN
\{'CustIncome'	\{'[-Inf,30000)' \}	-0.61962
\{'CustIncome'	\{'[30000, 36000)' $\}$	-0.10695
\{'CustIncome'	\{'[36000, 40000)' $\}$	0.0010845
\{'CustIncome'	\{'[40000, 42000)'\}	0.065532

Use probdefault to determine the likelihood of default for the data_Test data set and the creditscorecard model (sc1).

```
pd1 = probdefault(sc1,data_Test);
threshold = 0.35;
predictions1 = double(pdl>threshold);
```

Use fairnessMetrics to compute fairness metrics at the model level as a baseline. Use report to generate the fairness metrics report.

```
modelMetrics1 = fairnessMetrics(data_Test,'status','Predictions',predictions1,'SensitiveAttribut
mmReport1 = report(modelMetrics1,'GroupMetrics','GroupCount')
mmReportl=4\times8 table
    ModelNames SensitiveAttributeNames Groups StatisticalParityDifference Di
        Model1 
        Morel1 
```

Use plot to visualize the statistical parity difference ('spd') and disparate impact ('di') bias metrics.

```
figure
tiledlayout(2,1)
nexttile
plot(modelMetrics1,'spd')
nexttile
plot(modelMetrics1,'di')
```


Bias Mitigation by Disparate Impact Removal

For each of the five continuous predictors, 'TmAtAddress', 'CustIncome', 'TmWBank', 'AMBalance', and 'UtilRate' plot the original distributions of data within each age group.

Choose a numeric predictor to plot.

```
predictor = CustIncome * ;
[f1, xil] = ksdensity(data_Train.(predictor)(data_Train.AgeGroup=='Age < 30'));
[f2, xi2] = ksdensity(data_Train.(predictor)(data_Train.AgeGroup=='30 <= Age < 45'));
[f3, xi3] = ksdensity(data_Train.(predictor)(data_Train.AgeGroup=='45 <= Age < 60'));
[f4, xi4] = ksdensity(data_Train.(predictor)(data_Train.AgeGroup=='Age >= 60'));
```

Create a disparateImpactRemover object and return the newTrainTbl table with the new predictor values.
[remover, newTrainTbl] = disparateImpactRemover(data_Train, 'AgeGroup' , 'PredictorNames', \{'TmA
remover =
disparateImpactRemover with properties:
RepairFraction: 1
PredictorNames: \{'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'\}
SensitiveAttribute: 'AgeGroup'
newTrainTbl=840×12 table
CustID CustAge AgeGroup TmAtAddress ResStatus EmpStatus CustIncome

1
2
3
4
7
8
9
10
11
12
14
17
20
21
22
24
\vdots

53
61
47
50
34
50
50
49
52
48
44
39
52
37
51
43

$\begin{aligned} & 45<=\text { Age < } 60 \\ & \text { Age >= } 60 \\ & 45<=\text { Age < } 60 \\ & 45<=\text { Age < } 60 \\ & 30<=A g e ~<~ \end{aligned} 5$	

58.599
24
30.5
68.622
30.5
53.39
9
30.5
24
77.291
68.622
9
51.442
10.343
12.087
40

Tenant
Home Owner
Tenant
Home Owner
Home Owner
Other
Tenant
Home Owner
Tenant
Other
Other
Tenant
Other
Tenant
Home Owner
Tenant

Unknown		47000
Employed		41500
Employed		33500
Employed		49401
Unknown		35500
Employed	47000	
Unknown	49401	
Unknown	49401	
Unknown	30500	
Unknown	40500	
Unknown	44500	
Employed	37500	
Unknown	38500	
Unknown	36500	
Employed	31500	
Employed	33500	

```
[nf1, nxil] = ksdensity(newTrainTbl.(predictor)(newTrainTbl.AgeGroup=='Age < 30'));
[nf2, nxi2] = ksdensity(newTrainTbl.(predictor)(newTrainTbl.AgeGroup=='30 <= Age < 45'));
[nf3, nxi3] = ksdensity(newTrainTbl.(predictor)(newTrainTbl.AgeGroup=='45 <= Age < 60'));
[nf4, nxi4] = ksdensity(newTrainTbl.(predictor)(newTrainTbl.AgeGroup=='Age >= 60'));
```

Plot the original and the repaired distributions.

```
figure;
tiledlayout(2,1)
ax1 = nexttile;
plot(xil, f1, 'LineWidth', 1.5)
hold on
plot(xi2, f2, 'LineWidth', 1.5)
plot(xi3, f3, 'LineWidth', 1.5)
plot(xi4, f4, 'LineWidth', 1.5)
legend(["Age < 30"; "30 <= Age < 45"; "45 <= Age < 60"; "Age >= 60"],'Location','northwest')
ax1.Title.String = "Original Distribution of " + predictor;
xlabel(predictor)
ylabel('pdf')
grid on
ax2 = nexttile;
plot(nxil, nf1, 'LineWidth', 1.5)
hold on
plot(nxi2, nf2, 'LineWidth', 1.5)
plot(nxi3, nf3, 'LineWidth', 1.5)
plot(nxi4, nf4, 'LineWidth', 1.5)
legend(["Age < 30"; "30 <= Age < 45"; "45 <= Age < 60"; "Age >= 60"],'Location','northwest')
ax2.Title.String = "Repaired Distribution of " + predictor;
xlabel(predictor)
ylabel('pdf')
grid on
linkaxes([ax1, ax2], 'xy')
```


This plot demonstrates that the initial distributions of CustIncome of each group within the AgeGroup predictor are different. Younger people seem to have a lower income on average and more variation than older people. This difference introduces bias, which the fitted model then reflects. The disparateImpactRemover function modifies the data so that the distributions of all the subgroups are more similar. You see this distribution in the second subplot Repaired Distribution of CustIncome. Using this new data, you can fit a logistic regression model and then measure the model-level metrics and compare these with the model-level metrics from the original creditscorecard model (sc1).

New Credit Scoring Model

Use creditscorecard to create a creditscorecard object and use fitmodel to fit a credit scoring model with the the new data (newTrainTbl). Then, you can compute model-level bias metrics using fairnessMetrics.

```
sc2 = creditscorecard(newTrainTbl,'IDVar','CustID', ...
    'PredictorVars',PredictorVars,'ResponseVar','status');
sc2 = autobinning(sc2);
sc2 = fitmodel(sc2,'VariableSelection','fullmodel');
Generalized linear regression model:
    logit(status) ~ 1 + TmAtAddress + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + Al
    Distribution = Binomial
\begin{tabular}{lrrrr} 
(Intercept) & 0.74041 & 0.07641 & 9.6899 & \(3.327 \mathrm{e}-22\) \\
TmAtAddress & 1.1658 & 0.87564 & 1.3313 & 0.18308 \\
ResStatus & 1.8719 & 1.2848 & 1.4569 & 0.14513 \\
EmpStatus & 0.88699 & 0.31991 & 2.7727 & 0.00556 \\
CustIncome & 0.98269 & 0.28725 & 3.421 & 0.00062396 \\
TmWBank & 1.1392 & 0.30677 & 3.7135 & 0.00020442 \\
OtherCC & 0.55005 & 2.0969 & 0.26231 & 0.79308 \\
AMBalance & 1.0478 & 0.3607 & 2.9049 & 0.0036734 \\
UtilRate & -0.071972 & 0.58704 & -0.1226 & 0.90242
\end{tabular}
```

840 observations, 831 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 50.4, p-value = 3.36e-08

```

Use displaypoints to compute the points per predictor per bin for the creditscorecard model (sc2).
```

pointsinfo2 = displaypoints(sc2)
pointsinfo2=35\times3 table
Predictors Bin Points
{'TmAtAddress'} {'[-Inf,9)' } -0.11003
{'TmAtAddress'} {'[9,15.1453)' } -0.091424
{'TmAtAddress'} {'[15.1453,Inf]'} 0.14546
{'TmAtAddress'} {'<missing>' } NaN
{'ResStatus' } {'Tenant' } -0.024878
{'ResStatus' } {'Home Owner' } 0.11858
{'ResStatus' } {'Other' 0.30343
{'ResStatus' } {'<missing>' } NaN
{'EmpStatus' } {'Unknown' } -0.097539
{'EmpStatus' } {'Employed' } 0.3319
{'EmpStatus' } {'<missing>' } NaN
{'CustIncome' } {'[-Inf,31500)' }
{'CustIncome' } {'[31500,38500)'} -0.09789
{'CustIncome' } {'[38500,45000)'} 0.21233
{'CustIncome' } {'[45000,Inf]' } 0.494
{'CustIncome' } {'<missing>' } NaN

```

Before computing probabilities of default with the test data, you need to transform the test data using the same transformation as for the training data. To make this transformation, use the transform method of the remover object and pass it in the data_Test data set. Then, use probdefault to compute the likelihood of default of the data_Test dàta set.
```

newTestTbl = transform(remover,data_Test);
pd2 = probdefault(sc2,newTestTbl);
predictions2 = double(pd2>threshold);

```

Use fairnessMetrics to compute fairness metrics at the model level and use report to generate a fairness metrics report.
```

modelMetrics2 = fairnessMetrics(newTestTbl,'status','Predictions',predictions2,'SensitiveAttribu
mmReport2 = report(modelMetrics2,'GroupMetrics','GroupCount')

```
mmReport2=4×8 table
ModelNames SensitiveAttributeNames

Model1
AgeGroup
AgeGroup
AgeGroup
AgeGroup
```

Age < 30
45 <= Age < 60
Age >= 60

```
\(30<=\) Age < 45 -0.0033738

StatisticalParityDifference
0.082751
-0.0033738
0.028205

Use plot to visualize the statistical parity difference ('spd') and disparate impact ('di') bias metrics.
```

figure
tiledlayout(2,1)
nexttile
plot(modelMetrics2,'spd')
nexttile
plot(modelMetrics2,'di')

```


\section*{Plot Disparate Impact and Accuracy for Different Repair Fraction Values}

In this example, the bias mitigation process uses disparateImpactRemover to set RepairFraction = 1 in order to mitigate bias. However, it is useful to see how the disparate impact and accuracy varies with a change in the RepairFraction value. For example, use the AgeGroup predictor and plot the disparate impact and accuracy of the different subgroups for different values of RepairFraction.
```

subgroup = Age >=60 * ;
r = 0:0.1:1;
Accuracy = zeros(11,1);
di = zeros(11,1);
for i = 0:1:10
[rmvr, trainTbl] = disparateImpactRemover(data_Train, 'AgeGroup' , ...
'PredictorNames', {'TmAtAddress','CustIncome','TmWBank','AMBalance','UtilRate'},'Repa
testTbl = transform(rmvr, data_Test);
sc = creditscorecard(trainTbl,'IDVar','CustID', ...
'PredictorVars',PredictorVars,'ResponseVar','status');
sc = autobinning(sc);
sc = fitmodel(sc,'VariableSelection','fullmodel','Display','off');
pd = probdefault(sc,testTbl);
predictions = double(pd>threshold);
modelMetrics = fairnessMetrics(newTestTbl, 'status', 'Predictions', predictions, 'SensitiveA
mmReport = report(modelMetrics,'BiasMetrics','di','GroupMetrics','accuracy');
di(i+1) = mmReport.DisparateImpact(subgroup);
Accuracy(i+1) = mmReport.Accuracy(subgroup);
end
figure
yyaxis left
plot(r, di,'LineWidth', 1.5)
title('Bias Mitigation in AgeGroup ')
xlabel('Repair Fraction')
ylabel('Disparate Impact')
yyaxis right
plot(r, Accuracy,'LineWidth', 1.5)
ylabel('Accuracy')
grid on

```


If you select the subgroup 'Age < 30 ' from this plot, you can see that the accuracy increases as the RepairFraction value increases. Although this seems counterintuitive, looking further at the GroupCount of that age group in the mmReport2 table, this group has only 22 observations. This small number of observations explains the anomaly in this plot.

One way to mitigate this issue of not having enough data for a subgroup is to combine all unprivileged groups and compare them as one group against the privileged group. The following code shows you how by setting the majority group ( \(45<=\) Age \(<60\) ) as the privileged group and then by combining every other group into one and setting that group as the unprivliged group.
```

privilegedGroup = '45 <= Age < 60';
twoAgeGroups_TrainTbl = data_Train;
twoAgeGroups_TrainTbl.AgeGroup = addcats(twoAgeGroups_TrainTbl.AgeGroup,'Other','After','Age >=
twoAgeGroups_TrainTbl.AgeGroup(twoAgeGroups_TrainTbl.AgeGroup ~= privilegedGroup) = 'Other';
twoAgeGroups_TestTbl = data_Test;
twoAgeGroups_TestTbl.AgeGroup = addcats(twoAgeGroups_TestTbl.AgeGroup,'Other','After','Age >= 60
twoAgeGroups_TestTbl.AgeGroup(twoAgeGroups_TestTbl.AgeGroup ~= privilegedGroup) = 'Other';
r = 0:0.1:1;
Accuracy = zeros(11,1);
di = zeros(11,1);
for i = 0:1:10
[rmvr, trainTbl] = disparateImpactRemover(twoAgeGroups_TrainTbl, 'AgeGroup' , ...
'PredictorNames', {'TmAtAddress','CustIncome','TmWBank','AMBalance','UtilRate'},'Repai
testTbl = transform(rmvr, twoAgeGroups_TestTbl);
sc = creditscorecard(trainTbl,'IDVar','CustID', ...

```
```

 'PredictorVars',PredictorVars,'ResponseVar','status');
 sc = autobinning(sc);
 sc = fitmodel(sc,'VariableSelection','fullmodel','Display','off');
 pd = probdefault(sc,testTbl);
 predictions = double(pd>threshold);
 modelMetrics = fairnessMetrics(twoAgeGroups_TestTbl, 'status', 'Predictions', predictions, ..
 'SensitiveAttributeNames','AgeGroup','ReferenceGroup','45 <= Age < 60');
 mmReport = report(modelMetrics,'BiasMetrics','di','GroupMetrics','accuracy');
 di(i+1) = mmReport.DisparateImpact(2);
 Accuracy(i+1) = mmReport.Accuracy(2);
 end
figure
yyaxis left
plot(r, di,'LineWidth', 1.5)
title('Bias Mitigation in AgeGroup ')
xlabel('Repair Fraction')
ylabel('Disparate Impact')
yyaxis right
plot(r, Accuracy,'LineWidth', 1.5)
ylabel('Accuracy')
grid on

```


You can use this privileged group and unprivliged group method if the goal is not to measure the bias of each individual group against the privileged group, but rather to measure the overall fairness of all customers who are not part of the privileged group.

\section*{References}
[1] Nielsen, Aileen. "Chapter 4. Fairness PreProcessing." Practical Fairness. O'Reilly Media, Inc., Dec. 2020.
[2] Mehrabi, Ninareh, et al. "A Survey on Bias and Fairness in Machine Learning." ArXiv:1908.09635 [Cs], Sept. 2019. arXiv.org, https://arxiv.org/abs/1908.09635.
[3] Wachter, Sandra, et al. Bias Preservation in Machine Learning: The Legality of Fairness Metrics Under EU Non-Discrimination Law. SSRN Scholarly Paper, ID 3792772, Social Science Research Network, 15 Jan. 2021. papers.ssrn.com, https://papers.ssrn.com/sol3/papers.cfm? abstract_id=3792772.

\section*{See Also}
creditscorecard|autobinning|fitmodel|displaypoints|probdefault

\section*{Related Examples}
- "Bin Data to Create Credit Scorecards Using Binning Explorer" on page 3-23
- "Explore Fairness Metrics for Credit Scoring Model" on page 3-98
- "Bias Mitigation in Credit Scoring by Reweighting" on page 3-110

\section*{Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle}

This example shows how to use customLifetimePDModel to create a lifetime model for the probability of default. Using a retail credit data in panel format, you can create a credit scorecard model and then use a function handle with customLifetimePDModel to create a lifetime PD model.

\section*{Fit Credit Scorecard Model}

Load the data set.
```

load RetailCreditPanelData.mat
data = join(data,dataMacro);
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

```

Use creditscorecard to create a creditscorecard object and then use autobinning to bin the data. Alternativeliy, you can bin the data using the Binning Explorer. You can fit the model using fitmodel.
```

sc = creditscorecard(data(TrainDataInd,:),'IDVar','ID','PredictorVars',{'ScoreGroup' 'YOB' 'GDP'
SC =
creditscorecard with properties:
GoodLabel: 0
ResponseVar: 'Default'
WeightsVar:
VarNames: {'ID' 'ScoreGroup' 'YOB' 'Default' 'Year' 'GDP' 'Market'}
NumericPredictors: {'YOB' 'GDP' 'Market'}
CategoricalPredictors: {'ScoreGroup'}
BinMissingData: 0
IDVar: 'ID'
PredictorVars: {'ScoreGroup' 'YOB' 'GDP' 'Market'}
Data: [388097x7 table]

```
sc = autobinning(sc);
sc = autobinning(sc,'YOB','Algorithm','Split');
sc = fitmodel(sc);
1. Adding ScoreGroup, Deviance \(=42417.8562\), Chi2Stat \(=986.130141\), PValue \(=1.85820778 \mathrm{e}-216\)
2. Adding YOB, Deviance \(=41644.7594\), Chi2Stat \(=773.096796\), PValue \(=3.81440566 \mathrm{e}-170\)
3. Adding Market, Deviance \(=41616.8646\), Chi2Stat \(=27.8948108\), PValue \(=1.28092837 \mathrm{e}-07\)
4. Adding GDP, Deviance \(=41612.2361\), Chi2Stat \(=4.62852205\), PValue \(=0.0314446396\)
```

Generalized linear regression model:
logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
Distribution = Binomial
Estimated Coefficients:
Estimate SE tStat pValue

(Intercept)	4.6006	0.017273	266.35	0
ScoreGroup	0.98953	0.033117	29.88	$3.5837 \mathrm{e}-196$
YOB	1.0439	0.04216	24.76	$2.4054 \mathrm{e}-135$
GDP	4.5496	2.1012	2.1652	0.03037
Market	1.6892	0.44761	3.7738	0.00016076

```
388097 observations, 388092 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.79e+03, p-value \(=0\)
displaypoints(sc)
ans=16×3 table
        Predictors Bin Points
\begin{tabular}{|c|c|c|}
\hline \{'ScoreGroup'\} & \{'High Risk' \} & 0.61946 \\
\hline \{'ScoreGroup'\} & \{'Medium Risk'\} & 1.3073 \\
\hline \{'ScoreGroup'\} & \{'Low Risk' \} & 1.8816 \\
\hline \{'ScoreGroup'\} & \{'<missing>' \} & NaN \\
\hline \{'YOB' \} & \{'[-Inf,2)' \} & 0.56097 \\
\hline \{'YOB' \} & \{'[2,5)' \} & 1.0021 \\
\hline \{'YOB' \} & \{'[5,7)' \(\}\) & 1.4673 \\
\hline \{'YOB' \} & \{'[7,Inf]' \} & 2.4996 \\
\hline \{'YOB' \} & \{'<missing>' \} & NaN \\
\hline \{'GDP' \} & \{'[-Inf,0.63)' \(\}\) & 1.051 \\
\hline \{'GDP' \} & \{'[0.63,Inf]' \} & 1.1664 \\
\hline \{'GDP' \} & \{'<missing>' \} & NaN \\
\hline \{'Market' \} & \{'[-Inf,2.78)' \(\}\) & 1.0661 \\
\hline \{'Market' \} & \{'[2.78, 9.48)'\} & 1.1262 \\
\hline \{'Market' \} & \{'[9.48,Inf]' \} & 1.2358 \\
\hline 'Market' \} & \{'<missing>' & Na \\
\hline
\end{tabular}

Validate the creditscorecard model using validatemodel.
figure;
```

s = validatemodel(sc,data(TestDataInd,:),'Plot','roc');

```

disp(s)
Measure Value
\begin{tabular}{lrr} 
\{'Accuracy Ratio' & \} & 0.39124 \\
\{'Area under ROC curve'\} & 0.69562 \\
\{'KS statistic' & \} & 0.28409 \\
\{'KS score' & \(\}\) & 4.6019
\end{tabular}

\section*{Wrap Credit Scorecard Model as Lifetime PD Model}

Create a function handle for the probdefault function of the creditscorecard object. The only variable in the function handle (predictFcnHandle) is the data. The creditscorecard object (sc) is a fixed parameter of the probdefault function.

Use customLifetimePDModel to create an instance of a custom lifetime PD model using the function handle predictFcnHandle. Also, set up variable names for the model. The base class LifetimePDModel uses those variable names for different validations and computations.
```

predictFcnHandle = @(data)probdefault(sc,data);
pdModel = customLifetimePDModel(predictFcnHandle,'ModelID','MyScorecardModel','IDVar','ID','AgeV
pdModel =
CustomLifetimePD with properties:

```
                    ModelID: "MyScorecardModel"
                Description: ""
```

UnderlyingModel: @(data)probdefault(sc,data)
IDVar: "ID"
AgeVar: "YOB"
LoanVars: "ScoreGroup"
MacroVars: ["GDP" "Market"]
ResponseVar: "Default"

```
pdModel.UnderlyingModel
ans \(=\) function handle with value:
    @(data) prō̄default(sc, data)

\section*{Predict and Validate Scores Using Custom Lifetime PD Model}

You can use pdModel like any other lifetime PD model. The training and test data sets are in panel data format and can be passed to either predict or predictLifetime. The predict function returns the conditional PD, the same prediction as the probdefault function for the credit scorecard. The predictLifetime function returns the cumulative probability of default for each ID. Here, the first ID in the test data set spans the first eight rows. The conditional PD can go up or down, but the cumulative PD always increases from one period to the next.

CondPD = predict(pdModel, data(TestDataInd,:));
LifetimePD = predictLifetime(pdModel,data(TestDataInd,:));
disp([CondPD(1:8) LifetimePD(1:8)])
\begin{tabular}{ll}
0.0154 & 0.0154 \\
0.0089 & 0.0241 \\
0.0089 & 0.0328 \\
0.0099 & 0.0424 \\
0.0066 & 0.0488 \\
0.0075 & 0.0559 \\
0.0022 & 0.0580 \\
0.0020 & 0.0599
\end{tabular}

By wrapping the credit scorecard as a lifetime PD model object (pdModel), you can use all the validation capabilities of lifetime PD models are available. Use modelCalibrationPlot to plot observed default rates compared to the predicted PDs on grouped data.
```

figure;
modelCalibrationPlot(pdModel,data(TestDataInd,:),'YOB')

```


Use modelDiscriminationPlot to plot the ROC curve.
figure;
modelDiscriminationPlot(pdModel,data(TestDataInd,:))


Use modelDiscriminationPlot to plot the ROC curve and segment the data by ScoreGroup. figure;
modelDiscriminationPlot(pdModel,data(TestDataInd,:),'SegmentBy','ScoreGroup')

ROC
Segmented by ScoreGroup


\section*{See Also}
customLifetimePDModel|fitLifetimePDModel|predict|predictLifetime| modelDiscrimination|modelDiscriminationPlot|modelCalibration| modelCalibrationPlot

\section*{Related Examples}
- "Create Custom Lifetime PD Model for Decision Tree Model with Function Handle" on page 4224
- "Credit Scorecard Modeling with Missing Values"

\section*{More About}
- "Overview of Binning Explorer" on page 3-2
- "About Credit Scorecards"
- "Credit Scorecard Modeling Workflow"

\section*{External Websites}
- Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec )

\section*{Corporate Credit Risk Simulations for Portfolios}
- "Credit Simulation Using Copulas" on page 4-2
- "creditDefaultCopula Simulation Workflow" on page 4-5
- "creditMigrationCopula Simulation Workflow" on page 4-10
- "Modeling Correlated Defaults with Copulas" on page 4-18
- "Modeling Probabilities of Default with Cox Proportional Hazards" on page 4-28
- "Analyze the Sensitivity of Concentration to a Given Exposure" on page 4-49
- "Compare Concentration Indices for Random Portfolios" on page 4-51
- "Comparison of the Merton Model Single-Point Approach to the Time-Series Approach" on page 4-54
- "Calculating Regulatory Capital with the ASRF Model" on page 4-59
- "One-Factor Model Calibration" on page 4-64
- "Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 4-75
- "Model Loss Given Default" on page 4-90
- "Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
- "Compare Lifetime PD Models Using Cross-Validation" on page 4-121
- "Expected Credit Loss Computation" on page 4-124
- "Basic Lifetime PD Model Validation" on page 4-129
- "Basic Loss Given Default Model Validation" on page 4-131
- "Compare Tobit LGD Model to Benchmark Model" on page 4-133
- "Compare Loss Given Default Models Using Cross-Validation" on page 4-140
- "Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
- "Compare Results for Regression and Tobit EAD Models" on page 4-151
- "Mean Square Error of Prediction for Estimated Ultimate Claims" on page 4-161
- "Bootstrap Using Chain Ladder Method" on page 4-168
- "Interpret and Stress-Test Deep Learning Networks for Probability of Default" on page 4-178
- "Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations" on page 4-195
- "Create Custom Lifetime PD Model for Decision Tree Model with Function Handle" on page 4-224
- "Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios" on page 4-231
- "Assess Physical and Transition Risk for Mortgages" on page 4-248
- "Analyze Transition Scenarios for Climate-Related Financial Risks" on page 4-267
- "Interpretability and Explainability for Credit Scoring" on page 4-287

\section*{Credit Simulation Using Copulas}
```

In this section...
"Factor Models" on page 4-2
"Supported Simulations" on page 4-3

```

Predicting the credit losses for a counterparty depends on three main elements:
- Probability of default (PD)
- Exposure at default (EAD), the value of the instrument at some future time
- Loss given default (LGD), which is defined as 1 - Recovery

If these quantities are known at future time \(t\), then the expected loss is PD \(\times\) EAD \(\times\) LGD. In this case, you can model the expected loss for a single counterparty by using a binomial distribution. The difficulty arises when you model a portfolio of these counterparties and you want to simulate them with some default correlation.

To simulate correlated defaults, the copula model associates each counterparty with a random variable, called a "latent" variable. These latent variables are correlated using some proxy for their credit worthiness, for example, their stock price. These latent variables are then mapped to default or nondefault outcomes such that the default occurs with probability PD.

This figure summarizes the copula simulation approach.


The random variable \(A_{i}\) associated to the \(i\) th counterparty falls in the default shaded region with probability PDi. If the simulated value falls in that region, it is interpreted as a default. The \(j\) th counterparty follows a similar pattern. If the \(A_{i}\) and \(A_{j}\) random variables are highly correlated, they tend to both have high values (no default), or both have low values (fall in the default region). Therefore, there is a default correlation.

\section*{Factor Models}

For \(M\) issuers, \(M(M-1) / 2\) correlation parameters are required. For \(M=1000\), this is about half a million correlations. One practical variation of the approach is the one-factor model, which makes all the latent variables dependent on a single factor. This factor \(Z\) represents the underlying systemic credit quality in the economy. This model also includes a random idiosyncratic error.
\[
A_{i}=w_{i} Z+\sqrt{1-w_{i}^{2}} \varepsilon_{i}
\]

This significantly reduces the input-data requirements, because now you need only the \(M\) sensitivities, that is, the weights \(\mathrm{w} 1, \ldots, \mathrm{w} M\). If \(Z\) and \(\varepsilon_{i}\) are standard normal variables, then \(A i\) is also a standard normal.

An extension of the one-factor model is a multifactor model.
\[
A_{i}=w_{i 1} Z_{1}+\ldots+w_{i K} Z_{K}+w_{i \varepsilon} \varepsilon_{i}
\]

This model has several factors, each one associated with some underlying credit driver. For example, you can have factors for different regions or countries, or for different industries. Each latent variable is now a combination of several random variables plus the idiosyncratic error (epsilon) again.

When the latent variables \(A i\) are normally distributed, there is a Gaussian copula. A common alternative is to let the latent variables follow a \(t\) distribution, which leads to a \(t\) copula. \(t\) copulas result in heavier tails than Gaussian copulas. Implied credit correlations are also larger with \(t\) copulas. Switching between these two copula approaches can provide important information on model risk.

\section*{Supported Simulations}

Risk Management Toolbox supports simulations for counterparty credit defaults and counterparty credit rating migrations.

\section*{Credit Default Simulation}

The creditDefaultCopula object is used to simulate and analyze multifactor credit default simulations. These simulations assume that you calculated the main inputs to this model on your own. The main inputs to this model are:
- PD - Probability of default
- EAD - Exposure at default
- LGD - Loss given default (1 - Recovery)
- Weights - Factor and idiosyncratic weights
- FactorCorrelation - An optional factor correlation matrix for multifactor models

The creditDefaultCopula object enables you to simulate defaults using the multifactor copula and return the results as a distribution of losses on a portfolio and counterparty level. You can also use the creditDefaultCopula object to calculate several risk measures at the portfolio level and the risk contributions from individual obligors. The outputs of the creditDefaultCopula model and the associated functions are:
- The full simulated distribution of portfolio losses across scenarios and the losses on each counterparty across scenarios. For more information, see creditDefaultCopula object properties and simulate.
- Risk measures (VaR, CVaR, EL, Std) with confidence intervals. See portfolioRisk.
- Risk contributions per counterparty (for EL and CVaR). See riskContribution.
- Risk measures and associated confidence bands. See confidenceBands.
- Counterparty scenario details for individual losses for each counterparty. See getScenarios.

\section*{Credit Rating Migration Simulation}

The creditMigrationCopula object enables you to simulate changes in credit rating for each counterparty.

The creditMigrationCopula object is used to simulate counterparty credit migrations. These simulations assume that you calculated the main inputs to this model on your own. The main inputs to this model are:
- migrationValues - Values of the counterparty positions for each credit rating.
- ratings - Current credit rating for each counterparty.
- transitionMatrix - Matrix of credit rating transition probabilities.
- LGD - Loss given default (1 - Recovery)
- Weights - Factor and idiosyncratic model weights

You can also use the creditMigrationCopula object to calculate several risk measures at the portfolio level and the risk contributions from individual obligors. The outputs of the creditMigrationCopula model and the associated functions are:
- The full simulated distribution of portfolio values. For more information, see creditMigrationCopula object properties and simulate.
- Risk measures (VaR, CVaR, EL, Std) with confidence intervals. See portfolioRisk.
- Risk contributions per counterparty (for EL and CVaR). See riskContribution.
- Risk measures and associated confidence bands. See confidenceBands.
- Counterparty scenario details for each counterparty. See getScenarios.

\section*{See Also}
creditDefaultCopula|creditMigrationCopula|asrf

\section*{Related Examples}
- "creditDefaultCopula Simulation Workflow" on page 4-5
- "creditMigrationCopula Simulation Workflow" on page 4-10
- "Modeling Correlated Defaults with Copulas" on page 4-18
- "One-Factor Model Calibration" on page 4-64

\section*{More About}
- "Corporate Credit Risk" on page 1-3
- "Credit Rating Migration Risk" on page 1-10

\section*{creditDefaultCopula Simulation Workflow}

This example shows a common workflow for using a creditDefaultCopula object for a portfolio of credit instruments.

For an example of an advanced workflow using the creditDefaultCopula object, see "Modeling Correlated Defaults with Copulas" on page 4-18.

\section*{Step 1. Create a creditDefaultCopula object with a two-factor model.}

Load the saved portfolio data. Create a creditDefaultCopula object with a two-factor model using with the values EAD, PD, LGD, and Weights2F.
```

load CreditPortfolioData.mat;
cdc = creditDefaultCopula(EAD, PD, LGD,Weights2F,'FactorCorrelation',FactorCorr2F);
disp(cdc)

```
    creditDefaultCopula with properties:
            Portfolio: [100x5 table]
    FactorCorrelation: [2x2 double]
            VaRLevel: 0.9500
            UseParallel: 0
        PortfolioLosses: []
disp(cdc.Portfolio(1:10:100,:))
\begin{tabular}{ll} 
ID & \(\quad\) \\
\hline
\end{tabular}
\begin{tabular}{ll} 
PD & LGD \\
\hline
\end{tabular}
Weights
\begin{tabular}{rr}
1 & 21.627 \\
11 & 29.338 \\
21 & 3.8275 \\
31 & 26.286 \\
41 & 42.868 \\
51 & 7.1259 \\
61 & 10.678 \\
71 & 2.395 \\
81 & 26.445 \\
91 & 7.1637
\end{tabular}
\begin{tabular}{rr}
0.0050092 & 0.35 \\
0.0050092 & 0.55 \\
0.0020125 & 0.25 \\
0.0020125 & 0.55 \\
0.0050092 & 0.55 \\
0.00099791 & 0.25 \\
0.0020125 & 0.35 \\
0.00099791 & 0.55 \\
0.060185 & 0.55 \\
0.11015 & 0.25
\end{tabular}
\begin{tabular}{rrr}
0.35 & 0 & 0.65 \\
0.35 & 0 & 0.65 \\
0.1125 & 0.3375 & 0.55 \\
0.1125 & 0.0375 & 0.85 \\
0.25 & 0 & 0.75 \\
0 & 0.25 & 0.75 \\
0 & 0.15 & 0.85 \\
0 & 0.15 & 0.85 \\
0 & 0.45 & 0.55 \\
0.35 & 0 & 0.65
\end{tabular}

\section*{Step 2. Set the VaRLevel to 99\%.}

Set the VarLevel property for the creditDefaultCopula object to \(99 \%\) (the default is 95\%). cdc.VaRLevel = 0.99;

\section*{Step 3. Run a simulation.}

Use the simulate function to run a simulation on the creditDefaultCopula object for 100,000 scenarios.
```

cdc = simulate(cdc,1e5)
cdc =
creditDefaultCopula with properties:

```
```

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
VaRLevel: 0.9900
UseParallel: 0
PortfolioLosses: [30.1008 3.6910 3.2895 19.2151 7.5761 44.5088 19.5419 1.7909 72.1443 12.6

```

\section*{Step 4. Generate a report for the portfolio risk.}

Use the portfolioRisk function to obtain a report for risk measures and confidence intervals for EL, Std, VaR, and CVaR.
```

[portRisk,RiskConfidenceInterval] = portfolioRisk(cdc)
portRisk=1\times4 table
EL Std VaR CVaR
24.876 23.778 102.4 121.28
RiskConfidenceInterval=1\times4 table

EL		Std				CVaR	
24.729	25.023	23.674	23.883				
201.19	103.5		120.13	122.42			

```

\section*{Step 5. Visualize the distribution.}

Use the histogram function to display the distribution for \(\mathrm{EL}, \mathrm{VaR}\), and CVaR.
histogram(cdc.PortfolioLosses);
title('Distribution of Portfolio Losses');


\section*{Step 6. Generate a risk contributions report.}

Use the riskContribution function to display the risk contribution. The risk contributions, EL and CVaR, are additive. If you sum each of these two metrics over all the counterparties, you get the values reported for the entire portfolio in the portfolioRisk table.
```

rc = riskContribution(cdc);

```
\(\operatorname{disp}(r c(1: 10,:))\)
\begin{tabular}{|c|c|c|c|c|}
\hline ID & EL & Std & VaR & CVaR \\
\hline 1 & 0.036031 & 0.022762 & 0.083828 & 0.13625 \\
\hline 2 & 0.068357 & 0.039295 & 0.23373 & 0.24984 \\
\hline 3 & 1.2228 & 0.60699 & 2.3184 & 2.3775 \\
\hline 4 & 0.002877 & 0.00079014 & 0.0024248 & 0.0013137 \\
\hline 5 & 0.12127 & 0.037144 & 0.18474 & 0.24622 \\
\hline 6 & 0.12638 & 0.078506 & 0.39779 & 0.48334 \\
\hline 7 & 0.84284 & 0.3541 & 1.6221 & 1.8183 \\
\hline 8 & 0.00090088 & 0.00011379 & 0.0016463 & 0.00089197 \\
\hline 9 & 0.93117 & 0.87638 & 3.3868 & 3.9936 \\
\hline 10 & 0.26054 & 0.37918 & 1.7399 & 2.3042 \\
\hline
\end{tabular}

\section*{Step 7. Simulate the risk exposure with a t copula.}

Use the simulate function with optional input arguments for Copula and \(t\). Save the results to a new creditDefaultCopula object (cct).
```

cdct = simulate(cdc,1e5,'Copula','t','Degrees0fFreedom',10)
cdct =
creditDefaultCopula with properties:
Portfolio: [100x5 table]
FactorCorrelation: [2x2 double]
VaRLevel: 0.9900
UseParallel: 0
PortfolioLosses: [3.6910 1.9775 128.4550 2.1852 4.8512 0 26.2682 0 54.8980 24.3618 16.8483

```

\section*{Step 8. Compare confidence bands for different copulas.}

Use the confidenceBands function to compare confidence bands for the two different copulas.
```

confidenceBands(cdc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.90,'NumPoints',10)
ans=10\times4 table

NumScenarios	Lower	Std	

10000	23.525	23.799	24.079
20000	23.564	23.758	23.955
30000	23.543	23.701	23.861
40000	23.621	23.758	23.897
50000	23.565	23.687	23.811
60000	23.604	23.716	23.829
70000	23.688	23.792	23.897
80000	23.663	23.76	23.858
90000	23.639	23.73	23.823
$1 e+05$	23.691	23.778	23.866

```
confidenceBands(cdct,'RiskMeasure','Std','ConfidenceIntervalLevel', 0.90, 'NumPoints',10)
ans=10×4 table
\begin{tabular}{|c|c|c|c|}
\hline NumScenarios & Lower & Std & Upper \\
\hline 10000 & 31.923 & 32.294 & 32.675 \\
\hline 20000 & 31.775 & 32.036 & 32.302 \\
\hline 30000 & 31.759 & 31.972 & 32.188 \\
\hline 40000 & 31.922 & 32.107 & 32.295 \\
\hline 50000 & 32.012 & 32.179 & 32.347 \\
\hline 60000 & 31.911 & 32.062 & 32.216 \\
\hline 70000 & 31.879 & 32.019 & 32.161 \\
\hline 80000 & 31.909 & 32.04 & 32.173 \\
\hline 90000 & 31.866 & 31.99 & 32.114 \\
\hline \(1 \mathrm{e}+05\) & 31.933 & 32.05 & 32.169 \\
\hline
\end{tabular}

\section*{See Also}
creditDefaultCopula|simulate | portfolioRisk|riskContribution|confidenceBands | getScenarios|asrf

\section*{Related Examples}
- "Credit Simulation Using Copulas" on page 4-2
- "creditMigrationCopula Simulation Workflow" on page 4-10
- "Modeling Correlated Defaults with Copulas" on page 4-18
- "One-Factor Model Calibration" on page 4-64

\section*{More About}
- "Risk Modeling with Risk Management Toolbox" on page 1-3

\section*{creditMigrationCopula Simulation Workflow}

This example shows a common workflow for using a creditMigrationCopula object for a portfolio of counterparty credit ratings.

\section*{Step 1. Create a creditMigrationCopula object with a 4-factor model}

Load the saved portfolio data.
load CreditMigrationData.mat;
Scale the bond prices for portfolio positions for each bond.
migrationValues = migrationPrices .* numBonds;
Create a creditMigrationCopula object with a 4-factor model using creditMigrationCopula.
```

cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)
cmc =
creditMigrationCopula with properties:
Portfolio: [250x5 table]
FactorCorrelation: [4x4 double]
RatingLabels: [8x1 string]
TransitionMatrix: [8x8 double]
VaRLevel: 0.9500
UseParallel: 0
PortfolioValues: []

```

\section*{Step 2. Set the VaRLevel to 99\%.}

Set the VarLevel property for the creditMigrationCopula object to \(99 \%\) (the default is \(95 \%\) ).
```

cmc.VaRLevel = 0.99;

```

Step 3. Display the Portfolio property for information about migration values, ratings, LGDs, and weights.

Display the Portfolio property containing information about migration values, ratings, LGDs, and weights. The columns in the migration values are in the same order of the ratings, with the default rating in the last column.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ID & MigrationValues & Rating & LGD & \multicolumn{5}{|c|}{Weights} \\
\hline 1 & \(1 \times 8\) double & "A" & 0.6509 & 0 & 0 & 0 & 0.5 & 0.5 \\
\hline 2 & \(1 \times 8\) double & "BBB" & 0.8283 & 0 & 0.55 & 0 & 0 & 0.45 \\
\hline 3 & 1x8 double & "AA" & 0.6041 & 0 & 0.7 & 0 & 0 & 0.3 \\
\hline 4 & \(1 \times 8\) double & "BB" & 0.6509 & 0 & 0.55 & 0 & 0 & 0.45 \\
\hline 5 & \(1 \times 8\) double & "BBB" & 0.4966 & 0 & 0 & 0.75 & 0 & 0.25 \\
\hline 6 & 1x8 double & "BB" & 0.8283 & 0 & 0 & 0 & 0.65 & 0.35 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrr}
7 & \(1 \times 8\) double & "BB" & 0.6041 & 0 & 0 & 0 & 0.65 & 0.35 \\
8 & \(1 \times 8\) double & "BB" & 0.4873 & 0.5 & 0 & 0 & 0 & 0.5
\end{tabular}

\section*{Step 4. Display migration values for a counterparty.}

For example, you can display the migration values for the first counterparty. Note that the value for default is higher than some of the non-default ratings. This is because the migration value for the default rating is a reference value (for example, face value, forward value at current rating, or other) that is multiplied by the recovery rate during the simulation to get the value of the asset in the event of default. The recovery rate is \(1-L G D\) when the LGD input to creditMigrationCopula is a constant LGD value (the LGD input has one column). The recovery rate is a random quantity when the LGD input to creditMigrationCopula is specified as a mean and standard deviation for a beta distribution (the LGD input has two columns).
```

bar(cmc.Portfolio.MigrationValues(1,:))
xticklabels(cmc.RatingLabels)
title('Migration Values for First Company')

```


\section*{Step 5. Run a simulation.}

Use the simulate function to simulate 100,000 scenarios.
```

cmc = simulate(cmc,le5)
cmc =
creditMigrationCopula with properties:

```

Portfolio: [250x5 table]
FactorCorrelation: [4×4 double]
RatingLabels: [8x1 string]
TransitionMatrix: [8x8 double]
VaRLevel: 0.9900
UseParallel: 0
PortfolioValues: [2.0082e+06 1.9950e+06 1.9933e+06 2.0009e+06 1.9819e+06 1.9955e+06 1.9962

\section*{Step 6. Generate a report for the portfolio risk.}

Use the portfolioRisk function to obtain a report for risk measures and confidence intervals for EL, Std, VaR, and CVaR.
[portRisk,RiskConfidenceInterval] = portfolioRisk(cmc)



\section*{Step 7. Visualize the distribution.}

View a histogram of the portfolio values.
figure
h = histogram(cmc.PortfolioValues,125);
title('Distribution of Portfolio Values');


Step 8. Overlay the value if all counterparties maintain current credit ratings.
Overlay the value that the portfolio object (cmc) takes if all counterparties maintain their current credit ratings.

CurrentRatingValue = portRisk.EL + mean(cmc.PortfolioValues);
hold on
plot([CurrentRatingValue CurrentRatingValue],[0 max(h.Values)],'LineWidth',2); grid on


\section*{Step 9. Generate a risk contributions report.}

Use the riskContribution function to display the risk contribution. The risk contributions, EL and CVaR, are additive. If you sum each of these two metrics over all the counterparties, you get the values reported for the entire portfolio in the portfolioRisk table.
\begin{tabular}{|c|c|c|c|c|}
\hline ID & EL & Std & VaR & CVaR \\
\hline 1 & 15.521 & 41.153 & 238.72 & 279.18 \\
\hline 2 & 8.49 & 18.838 & 92.074 & 122.19 \\
\hline 3 & 6.0937 & 20.069 & 113.22 & 181.53 \\
\hline 4 & 6.6964 & 55.885 & 272.23 & 313.25 \\
\hline 5 & 23.583 & 73.905 & 360.32 & 573.39 \\
\hline 6 & 10.722 & 114.97 & 445.94 & 728.38 \\
\hline 7 & 1.8393 & 84.754 & 262.32 & 490.39 \\
\hline 8 & 11.711 & 39.768 & 175.84 & 253.29 \\
\hline 9 & 2.2154 & 4.4038 & 22.797 & 31.039 \\
\hline 10 & 1.7453 & 2.5545 & 9.8801 & 17.603 \\
\hline
\end{tabular}

\section*{Step 10. Simulate the risk exposure with a t copula.}

To use a \(t\) copula with 10 degrees of freedom, use the simulate function with optional input arguments. Save the results to a new creditMigrationCopula object (cmct).
```

cmct = simulate(cmc,le5,'Copula','t','DegreesOfFreedom',10)
cmct =
creditMigrationCopula with properties:
Portfolio: [250x5 table]
FactorCorrelation: [4x4 double]
RatingLabels: [8x1 string]
TransitionMatrix: [8x8 double]
VaRLevel: 0.9900
UseParallel: 0
PortfolioValues: [2.0021e+06 2.0007e+06 1.9834e+06 2.0025e+06 2.0002e+06 2.0021e+06 2.0039

```

\section*{Step 11. Generate a report for the portfolio risk for the \(\mathbf{t}\) copula.}

Use the portfolioRisk function to obtain a report for risk measures and confidence intervals for EL, Std, VaR, and CVaR.
[portRisk2,RiskConfidenceInterval2] = portfolioRisk(cmct)



\section*{Step 12. Visualize the distribution for the \(t\) copula.}

View a histogram of the portfolio values.
figure
h = histogram(cmct. PortfolioValues,125);
title('Distribution of Portfolio Values for t Copula');


Step 13. Overlay the value if all counterparties maintain current credit ratings for \(\mathbf{t}\) copula.
Overlay the value that the portfolio object (cmct) takes if all counterparties maintain their current credit ratings.
```

CurrentRatingValue2 = portRisk2.EL + mean(cmct.PortfolioValues);
hold on
plot([CurrentRatingValue2 CurrentRatingValue2],[0 max(h.Values)],'LineWidth',2);
grid on

```


\section*{See Also}
creditMigrationCopula|simulate|portfolioRisk|riskContribution| confidenceBands|getScenarios|asrf

\section*{Related Examples}
- "Credit Simulation Using Copulas" on page 4-2
- "creditDefaultCopula Simulation Workflow" on page 4-5
- "Modeling Correlated Defaults with Copulas" on page 4-18
- "One-Factor Model Calibration" on page 4-64

\section*{More About}
- "Credit Rating Migration Risk" on page 1-10

\section*{Modeling Correlated Defaults with Copulas}

This example explores how to simulate correlated counterparty defaults using a multifactor copula model.

Potential losses are estimated for a portfolio of counterparties, given their exposure at default, default probability, and loss given default information. A creditDefaultCopula object is used to model each obligor's credit worthiness with latent variables. Latent variables are composed of a series of weighted underlying credit factors, as well as, each obligor's idiosyncratic credit factor. The latent variables are mapped to an obligor's default or nondefault state for each scenario based on their probability of default. Portfolio risk measures, risk contributions at a counterparty level, and simulation convergence information are supported in the creditDefaultCopula object.

This example also explores the sensitivity of the risk measures to the type of copula (Gaussian copula versus \(t\) copula) used for the simulation.

\section*{Load and Examine Portfolio Data}

The portfolio contains 100 counterparties and their associated credit exposures at default (EAD), probability of default (PD), and loss given default (LGD). Using a creditDefaultCopula object, you can simulate defaults and losses over some fixed time period (for example, one year). The EAD, PD, and LGD inputs must be specific to a particular time horizon.

In this example, each counterparty is mapped onto two underlying credit factors with a set of weights. The Weights \(2 F\) variable is a NumCounterparties-by-3 matrix, where each row contains the weights for a single counterparty. The first two columns are the weights for the two credit factors and the last column is the idiosyncratic weights for each counterparty. A correlation matrix for the two underlying factors is also provided in this example (FactorCorr2F).
```

load CreditPortfolioData.mat
whos EAD PD LGD Weights2F FactorCorr2F

Name	Size	Bytes	Class	Attributes
EAD	100×1	800	double	
FactorCorr2F	2×2	32	double	
LGD	100×1	800	double	
PD	100×1	800	double	
Weights2F	100×3	2400	double	

```

Initialize the creditDefaultCopula object with the portfolio information and the factor correlation.
```

rng('default');
cc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F);
% Change the VaR level to 99%.
cc.VaRLevel = 0.99;
disp(cc)
creditDefaultCopula with properties:
Portfolio: [100x5 table]
FactorCorrelation: [2x2 double]
VaRLevel: 0.9900

```

UseParallel: 0 PortfolioLosses: []
cc.Portfolio(1:5,:)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ID & EAD & PD & LGD & \multicolumn{3}{|c|}{Weights} \\
\hline 1 & 21.627 & 0.0050092 & 0.35 & 0.35 & 0 & 0.65 \\
\hline 2 & 3.2595 & 0.060185 & 0.35 & 0 & 0.45 & 0.55 \\
\hline 3 & 20.391 & 0.11015 & 0.55 & 0.15 & 0 & 0.85 \\
\hline 4 & 3.7534 & 0.0020125 & 0.35 & 0.25 & 0 & 0.75 \\
\hline 5 & 5.7193 & 0.060185 & 0.35 & 0.35 & 0 & 0.65 \\
\hline
\end{tabular}

\section*{Simulate the Model and Plot Potential Losses}

Simulate the multifactor model using the simulate function. By default, a Gaussian copula is used. This function internally maps realized latent variables to default states and computes the corresponding losses. After the simulation, the creditDefaultCopula object populates the PortfolioLosses and CounterpartyLosses properties with the simulation results.
```

cc = simulate(cc,le5);
disp(cc)
creditDefaultCopula with properties:
Portfolio: [100x5 table]
FactorCorrelation: [2x2 double]
VaRLevel: 0.9900
UseParallel: 0
PortfolioLosses: [30.1008 3.6910 3.2895 19.2151 7.5761 44.5088 19.5419 1.7909 72.1443 12.6

```

The portfolioRisk function returns risk measures for the total portfolio loss distribution, and optionally, their respective confidence intervals. The value-at-risk (VaR) and conditional value-at-risk (CVaR) are reported at the level set in the VaRLevel property for the creditDefaultCopula object.
```

[pr,pr_ci] = portfolioRisk(cc);
fprintf('Portfolio risk measures:\n');
Portfolio risk measures:
disp(pr)

EL	Std	VaR	CVaR
24.876	23.778	102.4	121. 28

fprintf('\n\nConfidence intervals for the risk measures:\n');
Confidence intervals for the risk measures:
disp(pr_ci)

```
\begin{tabular}{lllllll}
\multicolumn{2}{c}{ EL } & \multicolumn{2}{c}{ Std } & & & \multicolumn{2}{c}{ CVaR } \\
24.729 & 25.023 & & & & \\
23.674 & 23.883 & 101.19 & 103.5 & & 120.13 & 122.42
\end{tabular}

Look at the distribution of portfolio losses. The expected loss (EL), VaR, and CVaR are marked as the vertical lines. The economic capital, given by the difference between the VaR and the EL, is shown as the shaded area between the EL and the VaR.
```

histogram(cc.PortfolioLosses)
title('Portfolio Losses');
xlabel('Losses (\$)')
ylabel('Frequency')
hold on
% Overlay the risk measures on the histogram.
xlim([0 1.1 * pr.CVaR])
plotline = @(x,color) plot([x x],ylim,'LineWidth',2,'Color',color);
plotline(pr.EL,'b');
plotline(pr.VaR,'r');
cvarline = plotline(pr.CVaR,'m');
% Shade the areas of expected loss and economic capital.
plotband = @(x,color) patch([x fliplr(x)],[0 0 repmat(max(ylim),1,2)],...
color,'FaceAlpha',0.15);
elband = plotband([0 pr.EL],'blue');
ulband = plotband([pr.EL pr.VaR],'red');
legend([elband,ulband,cvarline],...
{'Expected Loss','Economic Capital','CVaR (99%)'},...
'Location','north');

```


\section*{Find Concentration Risk for Counterparties}

Find the concentration risk in the portfolio using the riskContribution function. riskContribution returns the contribution of each counterparty to the portfolio EL and CVaR. These additive contributions sum to the corresponding total portfolio risk measure.
```

rc = riskContribution(cc);
% Risk contributions are reported for EL and CVaR.
rc(1:5,:)

```


Find the riskiest counterparties by their CVaR contributions.
```

[rc_sorted,idx] = sortrows(rc,'CVaR','descend');
rc_sorted(1:5,:)

```
\begin{tabular}{|c|c|c|c|c|}
\hline ID & EL & Std & VaR & CVaR \\
\hline 89 & 2.2647 & 2.2063 & 8.2676 & 8.9997 \\
\hline 96 & 1.3515 & 1.6514 & 6.6157 & 7.7062 \\
\hline 66 & 0.90459 & 1.474 & 6.4168 & 7.5149 \\
\hline 22 & 1.5745 & 1.8663 & 6.0121 & 7.3814 \\
\hline 16 & 1.6352 & 1.5288 & 6.3404 & 7.3462 \\
\hline
\end{tabular}

Plot the counterparty exposures and CVaR contributions. The counterparties with the highest CVaR contributions are plotted in red and orange.

\section*{figure;}
pointSize = 50;
colorVector \(=\) rc sorted.CVaR;
scatter(cc.Portfolio(idx,:).EAD, rc_sorted.CVaR,...
pointSize, colorVector,'filled')
colormap('jet')
title('CVaR Contribution vs. Exposure')
xlabel('Exposure')
ylabel('CVaR Contribution')
grid on


\section*{Investigate Simulation Convergence with Confidence Bands}

Use the confidenceBands function to investigate the convergence of the simulation. By default, the CVaR confidence bands are reported, but confidence bands for all risk measures are supported using the optional RiskMeasure argument.
```

cb = confidenceBands(cc);
% The confidence bands are stored in a table.
cb(1:5,:)
ans=5\times4 table

NumScenarios	Lower	CVaR	Upper
1000	106.7	121.99	137.28
2000	109.18	117.28	125.38
3000	114.68	121.63	128.58
4000	114.02	120.06	126.11
5000	114.77	120.36	125.

```

Plot the confidence bands to see how quickly the estimates converge.
```

figure;
plot(...
cb.NumScenarios,...
cb{:,{'Upper' 'CVaR' 'Lower'}},...
'LineWidth',2);
title('CVaR: 95% Confidence Interval vs. \# of Scenarios');
xlabel('\# of Scenarios');
ylabel('CVaR + 95% CI')
legend('Upper Band','CVaR','Lower Band');
grid on

```


Find the necessary number of scenarios to achieve a particular width of the confidence bands.
```

width = (cb.Upper - cb.Lower) ./ cb.CVaR;
figure;
plot(cb.NumScenarios,width * 100,'LineWidth',2);
title('CVaR: 95% Confidence Interval Width vs. \# of Scenarios');
xlabel('\# of Scenarios');
ylabel('Width of CI as %ile of Value')
grid on
% Find point at which the confidence bands are within 1% (two sided) of the
% CVaR.
thresh = 0.02;
scenIdx = find(width <= thresh,1,'first');
scenValue = cb.NumScenarios(scenIdx);
widthValue = width(scenIdx);
hold on
plot(xlim,100 * [widthValue widthValue],...
[scenValue scenValue], ylim,...
'LineWidth',2);
title('Scenarios Required for Confidence Interval with 2% Width');

```


\section*{Compare Tail Risk for Gaussian and \(\boldsymbol{t}\) Copulas}

Switching to a \(t\) copula increases the default correlation between counterparties. This results in a fatter tail distribution of portfolio losses, and in higher potential losses in stressed scenarios.

Rerun the simulation using a \(t\) copula and compute the new portfolio risk measures. The default degrees of freedom (dof) for the \(t\) copula is five.
```

cc_t = simulate(cc,1e5,'Copula','t');
pr_t = portfolioRisk(cc_t);

```

See how the portfolio risk changes with the \(t\) copula.
```

fprintf('Portfolio risk with Gaussian copula:\n');
Portfolio risk with Gaussian copula:
disp(pr)

EL	Std	VaR	
24.876 23.778 102.4	CVaR 24.28		

fprintf('\n\nPortfolio risk with t copula (dof = 5):\n');
Portfolio risk with t copula (dof = 5):

```
```

disp(pr_t)

EL	Std	VaR	CVaR
24.808	38.749	186.08	250.59

```

Compare the tail losses of each model.
```

% Plot the Gaussian copula tail.
figure;
subplot(2,1,1)
p1 = histogram(cc.PortfolioLosses);
hold on
plotline(pr.VaR,[1 0.5 0.5])
plotline(pr.CVaR,[1 0 0])
xlim([0.8 * pr.VaR 1.2 * pr_t.CVaR]);
ylim([0 1000]);
grid on
legend('Loss Distribution','VaR','CVaR')
title('Portfolio Losses with Gaussian Copula');
xlabel('Losses ($)');
ylabel('Frequency');
% Plot the t copula tail.
subplot(2,1,2)
p2 = histogram(cc_t.PortfolioLosses);
hold on
plotline(pr_t.VaR,[1 0.5 0.5])
plotline(pr_t.CVaR,[1 0 0])
xlim([0.8 *-pr.VaR 1.2 * pr_t.CVaR]);
ylim([0 1000]);
grid on
legend('Loss Distribution','VaR','CVaR');
title('Portfolio Losses with t Copula (dof = 5)');
xlabel('Losses ($)');
ylabel('Frequency');

```


The tail risk measures VaR and CVaR are significantly higher using the \(t\) copula with five degrees of freedom. The default correlations are higher with \(t\) copulas, therefore there are more scenarios where multiple counterparties default. The number of degrees of freedom plays a significant role. For very high degrees of freedom, the results with the \(t\) copula are similar to the results with the Gaussian copula. Five is a very low number of degrees of freedom and, consequentially, the results show striking differences. Furthermore, these results highlight that the potential for extreme losses are very sensitive to the choice of copula and the number of degrees of freedom.

\section*{See Also}
creditDefaultCopula| simulate|portfolioRisk|riskContribution|confidenceBands | getScenarios

\section*{Related Examples}
- "Credit Simulation Using Copulas" on page 4-2
- "creditDefaultCopula Simulation Workflow" on page 4-5
- "One-Factor Model Calibration" on page 4-64

\section*{More About}
- "Risk Modeling with Risk Management Toolbox" on page 1-3

\section*{Modeling Probabilities of Default with Cox Proportional Hazards}

This example shows how to work with consumer (retail) credit panel data to visualize observed probabilities of default (PDs) at different levels. It also shows how to fit a Cox proportional hazards (PH) model, also known as Cox regression, to predict PDs. In addition, it shows how to perform a stress-testing analysis, how to model lifetime PDs, and how to calculate the lifetime expected credit loss (ECL) value using portfolioECL.

This example uses fitLifetimePDModel from Risk Management Toolbox \({ }^{\text {TM }}\) to fit the Cox PH model. Although the same model can be fitted using fitcox, the lifetime probability of default (PD) version of the Cox model is designed for credit applications, and supports conditional PD prediction, lifetime PD prediction, and model validation tools, including the discrimination and accuracy plots.

A similar example, "Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36, follows the same workflow, but it uses a Logistic regression model instead of a Cox model. The main differences in the two approaches are:
- Model fit - The Cox PH model has a nonparametric baseline hazard rate that can match patterns in the PDs more closely than the fully parametric Logistic model.
- Extrapolating beyond the observed ages in the data - The Cox PH model, because it is built on top of a nonparametric baseline hazard rate, needs additional rules or assumptions to extrapolate to loan ages that are not observed in the data set. For an example, see "Use Cox Lifetime PD Model to Predict Conditional PD" on page 6-329. Conversely, the Logistic model treats the age of the loan as a continuous variable; therefore, a Logistic model can seamlessly extrapolate to predict PDs for ages not observed in the data set.

\section*{Data Exploration with Survival Analysis Tools}

Start with some data visualizations, mainly the visualization of PDs as a function of age, which in this data set is the same as years-on-books (YOB). Because Cox PH is a survival analysis model, this example discusses some survival analysis tools and concepts and uses the empirical cumulative distribution function (ecdf) functionality for some of these computations and visualizations.

The main data set (data) contains the following variables:
- ID: Loan identifier.
- ScoreGroup: Credit score at the beginning of the loan, discretized into three groups, High Risk, Medium Risk, and Low Risk.
- YOB: Years on books.
- Default: Default indicator. This is the response variable.
- Year: Calendar year.

There is also a small data set (dataMacro) with macroeconomic data for the corresponding calendar years that contains the following variables:
- Year: Calendar year.
- GDP: Gross domestic product growth (year over year).
- Market: Market return (year over year).

The variables YOB, Year, GDP, and Market are observed at the end of the corresponding calendar year. The ScoreGroup is a discretization of the original credit score when the loan started. A value of 1 for Default means that the loan defaulted in the corresponding calendar year.

A third data set (dataMacroStress) contains baseline, adverse, and severely adverse scenarios for the macroeconomic variables. The stress-testing analysis on page 4-41 in this example uses this table.

Load the simulated data.
load RetailCreditPanelData.mat
disp(head(data,10))
\begin{tabular}{|c|c|c|c|c|}
\hline ID & ScoreGroup & YOB & Default & Year \\
\hline 1 & Low Risk & 1 & 0 & 1997 \\
\hline 1 & Low Risk & 2 & 0 & 1998 \\
\hline 1 & Low Risk & 3 & 0 & 1999 \\
\hline 1 & Low Risk & 4 & 0 & 2000 \\
\hline 1 & Low Risk & 5 & 0 & 2001 \\
\hline 1 & Low Risk & 6 & 0 & 2002 \\
\hline 1 & Low Risk & 7 & 0 & 2003 \\
\hline 1 & Low Risk & 8 & 0 & 2004 \\
\hline 2 & Medium Risk & 1 & 0 & 1997 \\
\hline 2 & Medium Risk & 2 & 0 & 1998 \\
\hline
\end{tabular}

Preprocess the panel data to put it in the format expected by some of the survival analysis tools.
```

% Use groupsummary to reduce data to one ID per row, and keep track of
% whether the loan defaulted or not.
dataSurvival = groupsummary(data,'ID','sum','Default');
disp(head(dataSurvival,10))

ID	GroupCount		sum_Default	
1	8	0		
2	8	0		
3	8	0		
4	6	0		
5	7	0		
6	7	0		
7	8	0		
8	6	0		
9	7	0		

% You can also get years observed from YOB, though in this example, the YOB always
% starts from 1 in the data, so the GroupCount equals the final YOB.
dataSurvival.Properties.VariableNames{2} = 'YearsObserved';
dataSurvival.Properties.VariableNames{3} = 'Default';
% If there is no default, it is a censored observation.
dataSurvival.Censored = ~dataSurvival.Default;
disp(head(dataSurvival,10))

```

ID YearsObserved Default Censored
\begin{tabular}{rlll}
1 & 8 & 0 & true \\
2 & 8 & 0 & true \\
3 & 8 & 0 & true \\
4 & 6 & 0 & true \\
5 & 7 & 0 & true \\
6 & 7 & 0 & true \\
7 & 8 & 0 & true \\
8 & 6 & 0 & true \\
9 & 7 & 0 & true \\
10 & 8 & 0 & true
\end{tabular}

The main variable is the amount of time each loan was observed (YearsObserved), which is the final value of the years-on-books (YOB) variable. This years observed is the number of years until default, or until the end of the observation period (eight years), or until the loan is removed from the sample due to prepayment. In this data set, the YOB information is the same as the age of the loan because all loans start with a YOB of 1. For other data sets, this case might true. For example, in a trading portfolio, the YOB and age may be different because a loan purchased in the third year of its life would have an age of 3 , but a YOB value of 1 .

The second required variable is the censoring variable (Censored). In this analysis, the event of interest is the loan default. If a loan is observed until default, you have all of the information about the time until default. Therefore, the lifetime information is uncensored or complete. Alternatively, the information is considered censored, or incomplete, if at the end of the observation period the loan has not defaulted. The loan could not default because it was prepaid or the loan had not defaulted by the end of the eight-year observation period in the sample.

Add the ScoreGroup and Vintage information to the data. The value of these variables remains constant throughout the life of the loan. The score given at origination determines the ScoreGroup and the origination year determines the Vintage or cohort.
```

% You can get ScoreGroup from YOB==1 because, in this data set,
% YOB always starts at 1 and the ID's order is the same in data and
% dataSurvival.
dataSurvival.ScoreGroup = data.ScoreGroup(data.YOB==1);
% Define vintages based on the year the loan started. All loans
% in this data set start in year 1 of their life.
dataSurvival.Vintage = data.Year(data.YOB==1);
disp(head(dataSurvival,10))

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline ID & Years0bserved & Default & Censored & ScoreGroup & Vintage \\
\hline 1 & 8 & 0 & true & Low Risk & 1997 \\
\hline 2 & 8 & 0 & true & Medium Risk & 1997 \\
\hline 3 & 8 & 0 & true & Medium Risk & 1997 \\
\hline 4 & 6 & 0 & true & Medium Risk & 1999 \\
\hline 5 & 7 & 0 & true & Medium Risk & 1998 \\
\hline 6 & 7 & 0 & true & Medium Risk & 1998 \\
\hline 7 & 8 & 0 & true & Medium Risk & 1997 \\
\hline 8 & 6 & 0 & true & Medium Risk & 1999 \\
\hline 9 & 7 & 0 & true & Low Risk & 1998 \\
\hline 10 & 8 & 0 & true & Low Risk & 1997 \\
\hline
\end{tabular}

Compare the number of rows in the original data set (in panel data format) and the aggregated data set (in the more traditional survival format).
```

fprintf('Number of rows original data: %d\n',height(data));
Number of rows original data: 646724
fprintf('Number of rows survival data: %d\n',height(dataSurvival));
Number of rows survival data: 96820

```

Plot the cumulative default probability against YOB for the entire portfolio (all score groups and vintages) using the empirical cumulative distribution function (ecdf).
```

ecdf(dataSurvival.YearsObserved,'Censoring',dataSurvival.Censored,'Bounds','on')
title('Cumulative Default Probability, All Score Groups')
xlabel('Years on Books')

```


Plot conditional one-year PDs against YOB. For example, the conditional one-year PD for a YOB of 3 is the conditional one-year PD for loans that are in their third year of life. In survival analysis, this value coincides with the discrete hazard rate, denoted by \(h\), since the number of defaults in a particular year is the number of "failures," and the number of loans still on books at the beginning of that same year is the same as the "number at risk." To compute \(h\), get the cumulative hazard function output, denoted by \(H\), and transform it to the hazard function \(h\). For more information, see "Kaplan-Meier Method".
```

[H,x] = ecdf(dataSurvival.YearsObserved,'Censoring',dataSurvival.Censored, ...
'Function','cumulative hazard');
% Take the diff of H to get the hazard h.
h = diff(H);
x(1) = [];

```
```

% In this example, the times observed (stored in variable x) do not change for
% different score groups, or for training vs. test sets. For other data sets,
% you may need to check the x and h variables after every call to the ecdf function before
% plotting or concatenating results. (For example, if data set has no defaults in a
% particular year for the test data.)
plot(x,h,'*')
grid on
title('Conditional One-Year PDs')
ylabel('PD')
xlabel('Years on Books')

```


You can also compute these probabilities directly with groupsummary using the original panel data format. For more information, see the companion example, "Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36. Alternatively, you can compute these probabilities with grpstats using the original panel data format. Either of these approaches gives the same conditional one-year PDs.
```

PDvsYOBByGroupsummary = groupsummary(data,'YOB','mean','Default');
PDvsYOBByGrpstats = grpstats(data.Default,data.YOB);
PDvsYOB = table((1:8)',h,PDvsYOBByGroupsummary.mean_Default,PDvsYOBByGrpstats, ...
'VariableNames',{'Y0B','ECDF','Groupsummary','Grpstats'});
disp(PDvsYOB)

```
\begin{tabular}{|c|c|c|c|}
\hline YOB & ECDF & Groupsummary & Grpstats \\
\hline 1 & 0.017507 & 0.017507 & 0. 017507 \\
\hline 2 & 0.012704 & 0.012704 & 0.012704 \\
\hline 3 & 0.011168 & 0.011168 & 0.011168 \\
\hline 4 & 0.010728 & 0.010728 & 0.010728 \\
\hline 5 & 0.0085949 & 0.0085949 & 0.0085949 \\
\hline 6 & 0.006413 & 0.006413 & 0.006413 \\
\hline 7 & 0.0033231 & 0.0033231 & 0.0033231 \\
\hline 8 & 0.0016272 & 0.0016272 & 0.0016272 \\
\hline
\end{tabular}

Segment the data by ScoreGroup to get the PDs disaggregated by ScoreGroup.
```

ScoreGroupLabels = categories(dataSurvival.ScoreGroup);
NumScoreGroups = length(ScoreGroupLabels);
hSG = zeros(length(h),NumScoreGroups);
for ii=1:NumScoreGroups
Ind = dataSurvival.ScoreGroup==ScoreGroupLabels{ii};
H = ecdf(dataSurvival.YearsObserved(Ind),'Censoring',dataSurvival.Censored(Ind));
hSG(:,ii) = diff(H);
end
plot(x,hSG,'*')
grid on
title('Conditional One-Year PDs, By Score Group')
xlabel('Years on Books')
ylabel('PD')
legend(ScoreGroupLabels)

```


You can also disaggregate PDs by Vintage information and segment the data in a similar way. You can plot these PDs against YOB or against calendar year. To see these visualizations, refer to "Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36.

\section*{Cox PH Model Without Macro Effects}

This section shows how to fit a Cox PH model without macro information. The model includes only the time-independent predictor ScoreGroup at the origination of the loans. Time-independent predictors contain information that remains constant throughout the life of the loan. This example uses only ScoreGroup, but other time-independent predictors could be added to the model (for example, Vintage information).

Cox proportional hazards regression is a semiparametric method for adjusting survival rate estimates to quantify the effect of predictor variables. The method represents the effects of explanatory variables as a multiplier of a common baseline hazard function, \(h_{0}(t)\). The hazard function is the nonparametric part of the Cox proportional hazards regression function, whereas the impact of the predictor variables is a loglinear regression. The Cox PH model is:
\[
h\left(X_{i}, t\right)=h_{0}(t) \exp \left(\sum_{j=1}^{p} x_{\mathrm{ij}} b_{j}\right)
\]
where:
- \(X_{i}=\left(x_{i 1}, \ldots, x_{\mathrm{ip}}\right)\) are the predictor variables for the \(i\) th subject.
- \(b_{j}\) is the coefficient of the \(j\) th predictor variable.
- \(h\left(X_{i}, t\right)\) is the hazard rate at time \(t\) for \(X_{i}\).
- \(h_{0}(t)\) is the baseline hazard rate function.

For more details, see the Cox and fitcox or "Cox Proportional Hazards Model" and the references therein.

The basic Cox PH model assumes that the predictor values do not change throughout the life of the loans. In this example, ScoreGroup does not change because it is the score given to borrowers at the beginning of the loan. Vintage is also constant throughout the life of the loan.

A Cox model could use time-dependent scores. For example, if the credit score information is updated every year, you model a time-dependent predictor in the Cox model similar to the way the macro variables are added to the model later in the Cox PH Model with Macro Effects on page 4-38 section.

To fit a Cox lifetime PD model using fitLifetimePDModel, use the original data table in panel data format. Although the survival data format in the dataSurvival table can be used with other survival functions such as ecdf or fitcox, the fitLifetimePDModel function always works with the panel data format. This simplifies the switch between models with, or without time-dependent models, and the same panel data format is used for the validation functions such as modelCalibrationPlot. When fitting Cox models, the fitLifetimePDModel function treats the age variable ('AgeVar' argument) as the time to event and it uses the response variable ('ResponseVar' argument) binary values to identify the censored observations.

In the fitted model that follows, the only predictor is the ScoreGroup variable. The fitLifetimePDModel function checks the periodicity of the data (the most common age
increments) and stores it in the 'TimeInterval ' property of the Cox lifetime PD model. The 'TimeInterval ' information is important for the prediction of conditional PD using predict.

Split the data into training and testing subsets and then fit the model using the training data.
```

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % For reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
pdModel = fitLifetimePDModel(data(TrainDataInd,:),'cox', ...
'IDVar','ID','AgeVar','YOB','LoanVars','ScoreGroup','ResponseVar','Default');
disp(pdModel)

```
    Cox with properties:
            TimeInterval: 1
        ExtrapolationFactor: 1
            ModelID: "Cox"
            Description: ""
            UnderlyingModel: [1x1 CoxModel]
                    IDVar: "ID"
                        AgeVar: "YOB"
                            LoanVars: "ScoreGroup"
                            MacroVars: ""
                    ResponseVar: "Default"
pdModel.UnderlyingModel
ans =
Cox Proportional Hazards regression model
\begin{tabular}{lrlllll} 
& \multicolumn{2}{c}{ Beta } & & SE & & \multicolumn{1}{c}{ zStat }
\end{tabular}
Log-likelihood: -41783.047

To predict the conditional PDs, use predict. For example, predict the PD for the first ID in the data.
```

PD_ID1 = predict(pdModel,data(1:8,:))

```
PD_ID1 \(=8 \times 1\)
0. 0083
0.0059
0.0055
0.0052
0.0039
0.0033
0.0016
0.0009

To compare the predicted PDs against the observed default rates in the training or test data, use modelCalibrationPlot. This plot is a visualization of the calibration of the predicted PD values (also known as predictive ability). A grouping variable is required for the PD model accuracy. By using YOB as the grouping variable, the observed default rates are the same as the default rates discussed in the Data Exploration with Survival Analysis Tools on page 4-28 section.
```

DataSetChoice = Testing * ;
if DataSetChoice=="Training"
Ind = TrainDataInd;
else
Ind = TestDataInd;
end
modelCalibrationPlot(pdModel,data(Ind,:),'YOB','DataID',DataSetChoice)

```


The calibration plot accepts a second grouping variable. For example, use ScoreGroup as a second grouping variable to visualize the PD predictions per ScoreGroup, against the YOB.
modelCalibrationPlot(pdModel, data(Ind,:), \{'YOB','ScoreGroup'\},'DataID', DataSetChoice)


The modelDiscriminationPlot returns the ROC curve. Use the optional 'SegmentBy ' argument to visualize the ROC for each ScoreGroup.
modelDiscriminationPlot(pdModel,data(Ind,:),'DataID',DataSetChoice,'SegmentBy','ScoreGroup')


The nonparametric part of the Cox model allows it to closely match the training data pattern, even though only ScoreGroup is included as a predictor in this model. The results on test data show larger errors than on the training data, but this result is still a good fit.

The addition of macro information is important because both the stress testing and the lifetime PD projections require an explicit dependency on macro information.

\section*{Cox PH Model with Macro Effects}

This section shows how to fit a Cox PH model that includes macro information, specifically, gross domestic product (GDP) growth, and stock market growth. The value of the macro variables changes every year, so the predictors are time dependent.

The extension of the Cox proportional hazards model to account for time-dependent variables is:
\[
h\left(X_{i}, t\right)=h_{0}(t) \exp \left(\sum_{j=1}^{\mathrm{p} 1} x_{\mathrm{ij}} b_{j}+\sum_{k=1}^{\mathrm{p} 2} x_{\mathrm{ik}}(t) c_{k}\right)
\]
where:
- \(x_{\mathrm{ij}}\) is the predictor variable value for the \(i\) th subject and the \(j\) th time-independent predictor.
- \(x_{\mathrm{ik}}(t)\) is the predictor variable value for the \(i\) th subject and the \(k\) th time-dependent predictor at time \(t\).
- \(b_{j}\) is the coefficient of the \(j\) th time-independent predictor variable.
- \(c_{k}\) is the coefficient of the \(k\) th time-dependent predictor variable.
- \(h\left(X_{i}(t), t\right)\) is the hazard rate at time \(t\) for \(X_{i}(t)\).
- \(h_{0}(t)\) is the baseline hazard rate function.

For more details, see Cox, fitcox, or "Cox Proportional Hazards Model" and the references therein.
Macro variables are treated as time-dependent variables. If the time-independent information, such as the initial ScoreGroup, provides a baseline level of risk through the life of the loan, it is reasonable to expect that changing macro conditions may increase or decrease the risk around that baseline level. Also, if the macro conditions change, you can expect that these variations in risk will be different from one year to the next. For example, years with low economic growth should make all loans more risky, independently of their initial ScoreGroup.

The data input for the Cox lifetime PD model with time-dependent predictors uses the original panel data with the addition of the macro information.

As mentioned earlier, when fitting Cox models, the fitLifetimePDModel function treats the age variable ('AgeVar' argument) as the time to event and it uses the response variable ('ResponseVar' argument) binary values to identify the censored observations. In the fitted model that follows, the predictors are ScoreGroup, GDP, and Market. The fitLifetimePDModel checks the periodicity of the data (the most common age increments) and stores it in the 'TimeInterval ' property of the Cox lifetime PD model. For time-dependent models, the 'TimeInterval ' value is used to define age intervals for each row where the predictor values are constant. For more information, see "Time Interval for Cox Models" on page 6-551. The 'TimeInterval' information is also important for the prediction of conditional PD when using predict.

Internally, the fitLifetimePDModel function uses fitcox. Using fitLifetimePDModel for credit models offers some advantages over fitcox. For example, when you work directly with fitcox, you need a survival version of the data for time-independent models and a "counting process" version of the data (similar to the panel data form, but with additional information) is needed for timedependent models. The fitLifetimePDModel function always takes the panel data form as input and peforms the data preprocessing before calling fitcox. Also, with the lifetime PD version of the Cox model, you have access to credit-specific prediction and validation functionality not directly supported in the underlying Cox model.
```

data = join(data,dataMacro);
head(data)

ID	ScoreGroup	YOB	Default	Year	GDP	Market
1	Low Risk	1	0	1997	2.72	7.61
1	Low Risk	2	0	1998	3.57	26.24
1	Low Risk	3	0	1999	2.86	18.1
1	Low Risk	4	0	2000	2.43	3.19
1	Low Risk	5	0	2001	1.26	-10.51
1	Low Risk	6	0	2002	-0.59	-22.95
1	Low Risk	7	0	2003	0.63	2.78
1	Low Risk	8	0	2004	1.85	9.48

pdModelMacro = fitLifetimePDModel(data(TrainDataInd,:), cox', ...
'IDVar','ID','AgeVar','YOB','LoanVars','ScoreGroup', ...
'MacroVars',{'GDP','Market'},'ResponseVar','Default');
disp(pdModelMacro)

```
```

Cox with properties:
TimeInterval: 1
ExtrapolationFactor: 1
ModelID: "Cox"
Description: ""
UnderlyingModel: [1x1 CoxModel]
IDVar: "ID"
AgeVar: "YOB"
LoanVars: "ScoreGroup"
MacroVars: ["GDP" "Market"]
ResponseVar: "Default"
disp(pdModelMacro.UnderlyingModel)
Cox Proportional Hazards regression model

```
\begin{tabular}{|c|c|c|c|}
\hline Beta & SE & zStat & pValue \\
\hline -0.6794 & 0.037029 & -18.348 & 3.4442e-75 \\
\hline -1.2442 & 0.045244 & -27.501 & 1.7116e-166 \\
\hline -0.084533 & 0.043687 & -1.935 & 0.052995 \\
\hline -0.0084411 & 0.0032221 & -2.6198 & 0.0087991 \\
\hline
\end{tabular}

Log-likelihood: -41742.871
Visualize the model calibration (also known as predictive ability) of the predicted PD values using modelCalibrationPlot.
```

DataSetChoice = Testing * ;
if DataSetChoice=="Training"
Ind = TrainDataInd;
else
Ind = TestDataInd;
end
modelCalibrationPlot(pdModelMacro,data(Ind,:),'YOB','DataID',DataSetChoice)

```


The macro effects help the model match the observed default rates even closer and the match to the training data looks like an interpolation for the macro model.

The accuracy plot by ScoreGroup and the ROC curve is created the same way as for the Cox model without macro variables.

\section*{Stress Testing}

This section shows how to perform a stress-testing analysis of PDs using the Cox macro model.
Assume that a regulator has provided the following stress scenarios for the macroeconomic variables GDP and Market.
```

disp(dataMacroStress)

```
GDP Market
\begin{tabular}{lrr} 
Baseline & 2.27 & 15.02 \\
Adverse & 1.31 & 4.56 \\
Severe & -0.22 & -5.64
\end{tabular}

The following code predicts PDs for each ScoreGroup and each macro scenario. For the visualization of each macro scenario, take the average over the ScoreGroups to aggregate the data into a single PD by YOB.
```

dataStress = table;
dataStress.YOB = repmat((1:8)',3,1);

```
```

dataStress.ScoreGroup = repmat("",size(dataStress.YOB));
dataStress.ScoreGroup(1:8) = ScoreGroupLabels{1};
dataStress.ScoreGroup(9:16) = ScoreGroupLabels{2};
dataStress.ScoreGroup(17:24) = ScoreGroupLabels{3};
dataStress.GDP = zeros(size(dataStress.YOB));
dataStress.Market = zeros(size(dataStress.YOB));
ScenarioLabels = dataMacroStress.Properties.RowNames;
NumScenarios = length(ScenarioLabels);
PDScenarios = zeros(length(x),NumScenarios);
for jj=1:NumScenarios
Scenario = ScenarioLabels{jj};
dataStress.GDP(:) = dataMacroStress.GDP(Scenario);
dataStress.Market(:) = dataMacroStress.Market(Scenario);
% Predict PD for each ScoreGroup for the current scenario.
dataStress.PD = predict(pdModelMacro,dataStress);
% Average PD over ScoreGroups, by age, to visualize in a single plot.
PDAvgTable = groupsummary(dataStress,"YOB","mean","PD");
PDScenarios(:,jj) = PDAvgTable.mean PD;
end
figure;
bar(x,PDScenarios)
title('Stress Test, Probability of Default')
xlabel('Years on Books')
ylabel('PD')
legend('Baseline','Adverse','Severe')
grid on

```


\section*{Lifetime PD and ECL}

This section shows how to compute lifetime PDs using the Cox macro model and how to compute lifetime expected credit losses (ECL).

For lifetime modeling, the PD model is the same, but it is used differently. You need the predicted PDs not just one period ahead, but for each year throughout the life of each particular loan. You also need macro scenarios throughout the life of the loans. This example sets up alternative long-term macro scenarios, computes lifetime PDs under each scenario, and computes the corresponding one-year PDs, marginal PDs, and survival probabilities. The lifetime and marginal PDs are visualized for each year, under each macro scenario. The ECL is then computed for each scenario and the weighted average lifetime ECL.

For concreteness, this example looks into an eight-year loan at the beginning of its third year and predicts the one-year PD from years 3 through 8 of the life of this loan. This example also computes the survival probability over the remaining life of the loan. The relationship between the survival probability \(S(t)\) and the one-year conditional PDs or hazard rates \(h(t)\), sometimes also called the forward PDs, is:
\[
\begin{aligned}
& S(0)=1 \\
& S(1)=(1-\operatorname{PD}(1)), \\
& \cdots \\
& S(t)=S(t-1)(1-\operatorname{PD}(t))=(1-\operatorname{PD}(1)) \cdots(1-\operatorname{PD}(t))
\end{aligned}
\]

The lifetime PD (LPD) is the cumulative PD over the life of the loan, given by the complement of the survival probability:
\[
\operatorname{LPD}(t)=1-S(t)
\]

Another quantity of interest is the marginal PD (MPD), which is the increase in the lifetime PD between two consecutive periods:
\[
\operatorname{MPD}(t+1)=\operatorname{LPD}(t+1)-\operatorname{LPD}(t)
\]

It follows that the marginal PD is also the decrease in survival probability between consecutive periods, and also the hazard rate multiplied by the survival probability:
\[
\operatorname{MPD}(t+1)=S(t)-S(t+1)=\operatorname{PD}(t+1) S(t)
\]

For more information, see predictLifetime and "Kaplan-Meier Method". The predictLifetime function supports lifetime PD, marginal PD, and survival probability formats.

Specify three macroeconomic scenarios, one baseline projection, and two simple shifts of \(20 \%\) higher or \(20 \%\) lower values for the baseline growth, which are called faster growth and slower growth, respectively. The scenarios in this example, and the corresponding probabilities, are simple scenarios for illustration purposes only. A more thorough set of scenarios can be constructed with more powerful models using Econometrics Toolbox \({ }^{\text {TM }}\) or Statistics and Machine Learning Toolbox \({ }^{\mathrm{TM}}\); see, for example, "Model the United States Economy" (Econometrics Toolbox). Automated methods can usually simulate large numbers of scenarios. In practice, only a small number of scenarios are required and these scenarios, and their corresponding probabilities, are selected combining quantitative tools and expert judgment. Also, see the "Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations" on page 4-195 example that shows a detailed workflow for ECL calculations, including the determination of macro scenarios.
```

CurrentAge = 3; % Currently starting third year of loan
Maturity = 8; % Loan ends at end of year 8
YOBLifetime = (CurrentAge:Maturity)';
NumYearsRemaining = length(YOBLifetime);
dataLifetime = table;
dataLifetime.ID = ones(NumYearsRemaining,1);
dataLifetime.YOB = YOBLifetime;
dataLifetime.ScoreGroup = repmat("High Risk",size(dataLifetime.YOB)); % High risk
dataLifetime.GDP = zeros(size(dataLifetime.YOB));
dataLifetime.Market = zeros(size(dataLifetime.YOB));
% Macro scenarios for lifetime analysis
GDPPredict = [2.3; 2.2; 2.1; 2.0; 1.9; 1.8];
GDPPredict = [0.8*GDPPredict GDPPredict 1.2*GDPPredict];
MarketPredict = [15; 13; 11; 9; 7; 5];
MarketPredict = [0.8*MarketPredict MarketPredict 1.2*MarketPredict];
ScenLabels = ["Slower growth" "Baseline" "Faster growth"];
NumMacroScen = size(GDPPredict,2);
% Scenario probabilities for the computation of lifetime ECL
PScenario = [0.2; 0.5; 0.3];
PDLifetime = zeros(size(GDPPredict));

```
```

PDMarginal = zeros(size(GDPPredict));
for ii = 1:NumMacroScen
dataLifetime.GDP = GDPPredict(:,ii);
dataLifetime.Market = MarketPredict(:,ii);
PDLifetime(:,ii) = predictLifetime(pdModelMacro,dataLifetime); % Returns lifetime PD by defa
PDMarginal(:,ii) = predictLifetime(pdModelMacro,dataLifetime,'ProbabilityType','marginal');
end
% Start lifetime PD at last year with value of 0 for visualization
% purposes.
tLifetime0 = (dataMacro.Year(end):dataMacro.Year(end)+NumYearsRemaining)';
PDLifetime = [zeros(1,NumMacroScen);PDLifetime];
tLifetime = tLifetime0(2:end);
figure;
subplot(2,1,1)
plot(tLifetime0,PDLifetime)
xticks(tLifetime0)
grid on
xlabel('Year')
ylabel('Lifetime PD')
title('Lifetime PD by Scenario')
legend(ScenLabels,'Location','best')
subplot(2,1,2)
bar(tLifetime,PDMarginal)
grid on
xlabel('Year')
ylabel('Marginal PD')
title('Marginal PD by Scenario')
legend(ScenLabels)

```


These lifetime PDs, by scenario, are one of the inputs for the computation of lifetime expected credit losses (ECL). ECL also requires lifetime values for loss given default (LGD) and exposure at default (EAD), for each scenario, and the scenario probabilities. For simplicity, this example assumes a constant LGD and EAD value, but these parameters for LGD and EAD models could vary by scenario and by time period. For more information, see fitLGDModel and fitEADModel. Use portfolioECL to compute the lifetime ECL.

The computation of lifetime ECL also requires the effective interest rate (EIR) for discounting purposes. In this example, the discount factors are computed at the end of the time periods, but other discount times may be used. For example, you might use the midpoint in between the time periods; that is, discount first-year amounts with a 6-month discount factor, discount second-year amounts with a 1.5-year discount factor, and so on).

With these inputs, the expected credit loss at time \(t\) for scenario \(s\) is defined as:
\[
\operatorname{ECL}(t ; s)=\operatorname{MPD}(t ; s) \operatorname{LGD}(t ; s) \operatorname{EAD}(t ; s) \operatorname{Disc}(t)
\]
where \(t\) denotes a time period, \(s\) denotes a scenario, and \(\operatorname{Disc}(t)=\frac{1}{(1+\operatorname{EIR})}\).
For each scenario, a lifetime ECL is computed by adding ECLs across time, from the fist time period in the analysis, to the expected life of the product denoted by \(T\). In this example, it is five years (this loan is a simple loan with five years remaining to maturity):
\[
\operatorname{ECL}(s)=\sum_{t}^{T}=1 \operatorname{ECL}(t ; s)
\]

Finally, compute the weighed average of these expected credit losses, across all scenarios, to get a single lifetime ECL value, where \(P(s)\) denotes the scenario probabilities:
\[
\mathrm{ECL}=\sum_{s=1}^{\text {NumScenarios }} \mathrm{ECL}(s) P(s)
\]

These computations are supported with the portfolioECL function.
```

LGD = 0.55; % Loss given default
EAD = 100; % Exposure at default
EIR = 0.045; % Effective interest rate
PDMarginalTable = table(dataLifetime.ID, PDMarginal(:,1), PDMarginal(:,2), PDMarginal(:,3),'Vari
LGDTable = table(dataLifetime.ID(1), LGD,'VariableNames',["ID","LGD"]);
EADTable = table(dataLifetime.ID(1), EAD,'VariableNames',["ID","EAD"]);
[totalECL, ECLByID, ECLByPeriod] = portfolioECL(PDMarginalTable, LGDTable, EADTable, 'InterestRa
'ScenarioNames',ScenLabels, 'ScenarioProbabilities',PScenario, 'IDVar','ID','Periodicity','aו
disp(ECLByID);

ID	ECL			
1	2.7441			
disp(ECLByPeriod);				
ID	TimePeriod	Slower growth	Baseline	Faster growth
1	1	0.95927	0.90012	0.8446
1	2	0.703	0.66366	0.62646
1	3	0.48217	0.45781	0.43463
1	4	0.40518	0.38686	0.36931
1	5	0.22384	0.21488	0.20624
1	6	0.13866	0.13381	0.1291

```
```

fprintf('Lifetime ECL: %g\n',totalECL)

```
fprintf('Lifetime ECL: %g\n',totalECL)
Lifetime ECL: 2.7441
```

When the LGD and EAD do not depend on the scenarios (even if they change with time), the weighted average of the lifetime PD curves is taken to get a single, average lifetime PD curve.

MarginalPDLifetimeWeightedAvg = PDMarginal*PScenario;
MarginalPDLifetimeWeightedAvgTable = table(dataLifetime.ID, MarginalPDLifetimeWeightedAvg,'Varial
totalECLByWeightedPD = portfolioECL(MarginalPDLifetimeWeightedAvgTable, LGDTable, EADTable, 'Int 'IDVar','ID','Periodicity', 'annual');
fprintf('Lifetime ECL, using weighted lifetime PD: \%g, same result because of constant LGD and E totalECLByWeightedPD)

Lifetime ECL, using weighted lifetime PD: 2.7441, same result because of constant LGD and EAD.
However, when the LGD and EAD values change with the scenarios, pass scenario-dependent inputs (the PDMarginalTable input) to the portfolioECL function to first compute the ECL values at scenario level. Then you can find the weighted average of the ECL values. For example, see "Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations" on page 4-195
where all inputs (marginal PD, LGD and EAD) change period-by-period and are sensitive to the macroeconomic scenarios.

Conclusion

This example showed how to fit a Cox model for PDs, how to perform stress testing of the PDs, and how to compute lifetime PDs and ECL. A similar example, "Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36, follows the same workflow but uses logistic regression, instead of Cox regression. The fitLifetimePDModel function supports Cox, Logistic, and Probit models. The computation of lifetime PDs and ECL at the end of this example can also be performed with logistic or probit models. For an example, see "Expected Credit Loss Computation" on page 4-124.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Federal Reserve, Comprehensive Capital Analysis and Review (CCAR): https:// www.federalreserve.gov/bankinforeg/ccar.htm
[4] Bank of England, Stress Testing: https://www.bankofengland.co.uk/financial-stability
[5] European Banking Authority, EU-Wide Stress Testing: https://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing

See Also

fitLifetimePDModel|predict|predictLifetime |modelDiscrimination| modelDiscriminationPlot|modelCalibration|modelCalibrationPlot|Logistic| Probit|Cox

Related Examples

- "Basic Lifetime PD Model Validation" on page 4-129
- "Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
- "Compare Lifetime PD Models Using Cross-Validation" on page 4-121
- "Expected Credit Loss Computation" on page 4-124
- "Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144

More About

- "Overview of Lifetime Probability of Default Models" on page 1-25

Analyze the Sensitivity of Concentration to a Given Exposure

This example shows how to sweep through a range of values for an existing exposure from 0 to double the current value and plot the corresponding values. This could be used as one criterion (among others) for assessing portfolio limits.

Load credit portfolio data and use exposure at default (EAD) as the portfolio values. Compute current values of concentration indices.

```
load CreditPortfolioData.mat
P = EAD;
CurrentConcentration = concentrationIndices(P)
CurrentConcentration=1\times8 table
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ID & CR & Deciles & Gini & HH & HK & HT \\
\hline "Portfolio" & 0.058745 & \(1 \times 11\) double & 0.55751 & 0.023919 & 0.013363 & 0.022599 \\
\hline
\end{tabular}
```

Choose an index of interest. For instance, select a loan with maximum exposure.

```
[~,IndMax] = max(P);
CurrentExposure = P(IndMax);
```

Sweep through a range of multipliers for the selected exposure and get the corresponding concentration measures.

```
Multiplier = 0.0:0.05:2;
% Compute concentration with selected exposure removed from portfolio
P(IndMax) = 0;
ciSensitivity = concentrationIndices(P,'ID','Multiplier 0.0');
ciSensitivity = repmat(ciSensitivity,length(Multiplier),1);
for ii=2:length(Multiplier)
    P(IndMax) = CurrentExposure*Multiplier(ii);
    ci = concentrationIndices(P,'ID',['Multiplier ' num2str(Multiplier(ii))]);
    ciSensitivity(ii,:) = ci;
end
% Display first five rows
disp(ciSensitivity(1:5,:))
```

ID	CR	Deciles	Gini	HH	HK	HT
"Multiplier 0.0"	0.059442	1×11 double	0.55051	0.023102	0.013314	0.022248
"Multiplier 0.05"	0.059257	1×11 double	0.5467	0.022968	0.013185	0.022061
"Multiplier 0.1"	0.059074	1×11 double	0.54456	0.022855	0.013156	0.021957
"Multiplier 0.15"	0.058891	1×11 double	0.54355	0.022762	0.013143	0.021908
"Multiplier 0.2"	0.058709	1×11 double	0.54313	0.022688	0.013139	0.021888

Plot the sensitivity to changes in exposure for a particular index.

```
IndexID = 'HH';
figure;
plot(Multiplier',ciSensitivity.(IndexID))
hold on
```

plot(1,CurrentConcentration.(IndexID), '*')
hold off
title(['Sensitivity of ' IndexID ' Index'])
xlabel('Exposure Multiplier')
ylabel('Concentration Index')
legend(IndexID,'Current')
grid on

See Also

concentrationIndices

Related Examples

- "Compare Concentration Indices for Random Portfolios" on page 4-51

More About

- "Concentration Indices" on page 1-15

Compare Concentration Indices for Random Portfolios

This example shows how to simulate random portfolios with different distributions and compare their concentration indices. For illustration purposes, a lognormal and Weibull distribution are used. The distribution parameters are chosen arbitrarily to get a similar range of values for both random portfolios.

Generate random portfolios with different distributions.

```
rng('default'); % for reproducibility
PLgn = lognrnd(1,1,1,300);
PWbl = wblrnd(2,0.5,1,300);
Display largest simulated loan value.
```

```
fprintf('\nLargest loan Lognormal: %g\n',max(PLgn));
```

fprintf('\nLargest loan Lognormal: %g\n',max(PLgn));
Largest loan Lognormal: 97.3582
Largest loan Lognormal: 97.3582
fprintf('Largest loan Weibull: %g\n',max(PWbl));
fprintf('Largest loan Weibull: %g\n',max(PWbl));
Largest loan Weibull: 91.5866

```
Largest loan Weibull: 91.5866
```

Plot the portfolio histograms.

```
figure;
histogram(PLgn,0:5:100)
hold on
histogram(PWbl,0:5:100)
hold off
title('Random Loan Histograms')
xlabel('Loan Amount')
ylabel('Frequency')
legend('Lognormal','Weibull')
```


Compute and display the concentration measures.

```
ciLgn = concentrationIndices(PLgn,'ID','Lognormal');
ciWbl = concentrationIndices(PWbl,'ID','Weibull');
disp([ciLgn;ciWbl])
```

ID	CR		Deciles			Gini		H

ProportionLoans = 0:0.1:1;
figure;
area(ProportionLoans',[ciWbl.Deciles; ciLgn.Deciles-ciWbl.Deciles; ProportionLoans-ciLgn.Deciles axis([0 1 0 1])
legend('Weibull','Lognormal','Diversified', 'Location', 'NorthWest')
title('Lorenz Curve (by Deciles)')
xlabel('Proportion of Loans')
ylabel('Proportion of Value')

See Also

concentrationIndices

Related Examples

- "Analyze the Sensitivity of Concentration to a Given Exposure" on page 4-49

More About

- "Concentration Indices" on page 1-15

Comparison of the Merton Model Single-Point Approach to the Time-Series Approach

This example shows how to compare the Merton model approach, where equity volatility is provided, to the time series approach.

Load the data from MertonData.mat.
load MertonData.mat
Dates = MertonDataTS.Dates;
Equity = MertonDataTS.Equity;
Liability = MertonDataTS.Liability;
Rate $=$ MertonDataTS.Rate;
For a given data point in the returns, the corresponding equity volatility is computed from the last preceding 30 days.

```
Returns = tick2ret(Equity);
DateReturns = Dates(2:end);
SampleSize = length(Returns);
EstimationWindowSize = 30;
TestWindowStart = EstimationWindowSize+1;
TestWindow = (TestWindowStart : SampleSize)';
EquityVol = zeros(length(TestWindow),1);
for i = 1 : length(TestWindow)
    t = TestWindow(i);
    EstimationWindow = t-EstimationWindowSize:t-1;
    EquityVol(i) = sqrt(250)*std(Returns(EstimationWindow));
end
```

Compare the probabilities of default and the estimated asset and asset volatility values using the test window only.

```
[PDTS,DDTS,ATS,SaTS] = mertonByTimeSeries(Equity(TestWindow),Liability(TestWindow),Rate(TestWind
[PDh,DDh,Ah,Sah] = mertonmodel(Equity(TestWindow),EquityVol,Liability(TestWindow),Rate(TestWindo
figure
plot(Dates(TestWindow),PDTS,Dates(TestWindow),PDh)
xlabel('Date')
ylabel('Probability of Default')
legend({'Time Series','With \sigma_E'},'Location','best')
```


The probabilities of default are essentially zero up to early 2016. At that point, both models start predicting positive default probabilities, but we observe some differences between the two models.

Both models calibrate asset values and asset volatilities. The asset values for both approaches match. However, the time-series method, by design, computes a single asset volatility for the entire time window, and the single-point version of the Merton model computes one volatility for each time period, as shown in the following figure.

```
figure
plot(Dates(TestWindow),SaTS*ones(size(TestWindow)),Dates(TestWindow),Sah)
xlabel('Date')
ylabel('Asset Volatility')
legend({'Time Series','With \sigma_E'},'Location','best')
```


Towards the end of the time window, the single-point probability of default is above the time-series probability of default when the single-point asset volatility is also above the time-series probability (and vice versa). However, before 2016 the volatility has no effect on the default probability. This means other factors must influence the sensitivity of the default probability to the asset volatility and the overall default probability level.

The firm's leverage ratio, defined as the ratio of liabilities to equity, is a key factor in understanding the default probability values in this example. Earlier in the time window, the leverage ratio is low. However, in the second half of the time window, the leverage ratio grows significantly as shown in the following figure.

```
Leverage = Liability(TestWindow)./Equity(TestWindow);
figure
plot(Dates(TestWindow),Leverage)
xlabel('Date')
ylabel('Leverage Ratio')
```


The following plot shows the default probability against the asset volatility for low and high leverage ratios. The leverage ratio is used to divide the points into two groups, depending on whether the leverage ratio is greater or smaller than a cut off value. In this example, a cut off value of 1 works well.

For low leverage, the probability of default is essentially zero, independently of the asset volatilities. For high leverage situations, such as the end of the time window, the probability of default is highly correlated with the asset volatility.

```
figure
subplot(2,1,1)
gscatter(Leverage,PDh,Leverage>1,'br','.*')
xlabel('Leverage')
ylabel('Probability of Default')
legend('Low Leverage','High Leverage','Location','northwest')
subplot(2,1,2)
gscatter(Sah,PDh,Leverage>1,'br','.*')
xlabel('Asset Volatility')
ylabel('Probability of Default')
legend('Low Leverage','High Leverage','Location','northwest')
```


See Also

mertonmodel |mertonByTimeSeries

More About

- "Default Probability by Using the Merton Model for Structural Credit Risk" on page 1-13

Calculating Regulatory Capital with the ASRF Model

This example shows how to calculate capital requirements and value-at-risk (VaR) for a credit sensitive portfolio of exposures using the asymptotic single risk factor (ASRF) model. This example also shows how to compute Basel capital requirements using an ASRF model.

The ASRF Model

The ASRF model defines capital as the credit value at risk (VaR) in excess of the expected loss (EL).

$$
\text { capital }=V a R-E L
$$

where the EL for a given counterparty is the exposure at default (EAD) multiplied by the probability of default (PD) and the loss given default (LGD).

$$
E L=E A D * P D * L G D
$$

To compute the credit VaR, the ASRF model assumes that obligor credit quality is modeled with a latent variable (A) using a one factor model where the single common factor (Z) represents systemic credit risk in the market.

$$
A_{i}=\sqrt{\rho_{i}} \cdot Z+\sqrt{1-\rho_{i}} \cdot \epsilon
$$

Under this model, default losses for a particular scenario are calculated as:

$$
L=E A D \cdot I \cdot L G D
$$

where I is the default indicator, and has a value of 1 if $A_{i}<\Phi_{A}^{-1}\left(P D_{i}\right)$ (meaning the latent variable has fallen below the threshold for default), and a value of 0 otherwise. The expected value of the default indicator conditional on the common factor is given by:

$$
E\left(I_{i} \mid Z\right)=\Phi_{\epsilon}\left(\frac{\Phi_{A}^{-1}\left(P D_{i}\right)-\sqrt{\rho_{i}} Z}{\sqrt{1-\rho_{i}}}\right)
$$

For well diversified and perfectly granular portfolios, the expected loss conditional on a value of the common factor is:

$$
L \left\lvert\, Z=\sum_{i} E A D_{i} \cdot L G D_{i} \cdot \Phi_{\epsilon}\left(\frac{\Phi_{A}^{-1}\left(P D_{i}\right)-\sqrt{\rho_{i}} Z}{\sqrt{1-\rho_{i}}}\right)\right.
$$

You can then directly compute particular percentiles of the distribution of losses using the cumulative distribution function of the common factor. This is the credit VaR, which we compute at the α confidence level:

$$
\operatorname{creditVaR}(\alpha)=\sum_{i} E A D_{i} \cdot L G D_{i} \cdot \Phi_{\epsilon}\left(\frac{\Phi_{A}^{-1}\left(P D_{i}\right)-\sqrt{\rho_{i}} \Phi_{Z}^{-1}(1-\alpha)}{\sqrt{1-\rho_{i}}}\right)
$$

It follows that the capital for a given level of confidence, α, is:

$$
\operatorname{capital}(\alpha)=\sum_{i} E A D_{i} \cdot L G D_{i} \cdot\left[\Phi_{\epsilon}\left(\frac{\Phi_{A}^{-1}\left(P D_{i}\right)-\sqrt{\rho}_{i} \Phi_{Z}^{-1}(1-\alpha)}{\sqrt{1-\rho_{i}}}\right)-P D_{i}\right]
$$

Basic ASRF

The portfolio contains 100 credit sensitive contracts and information about their exposure. This is simulated data.

The asset correlations (ρ) in the ASRF model define the correlation between similar assets. The square root of this value, $\sqrt{\rho}$, specifies the correlation between a counterparty's latent variable (A) and the systemic credit factor (Z). Asset correlations can be calibrated by observing correlations in the market or from historical default data. Correlations can also be set using regulatory guidelines (see Basel Capital Requirements section).

Because the ASRF model is a fast, analytical formula, it is convenient to perform sensitivity analysis for a counterparty by varying the exposure parameters and observing how the capital and VaR change.

The following plot shows the sensitivity to PD and asset correlation. The LGD and EAD parameters are scaling factors in the ASRF formula so the sensitivity is straightforward.

```
% Counterparty ID
id = 1;
% Set the default asset correlation to 0.2 as the baseline.
R = 0.2;
% Compute the baseline capital and VaR.
[capital0, var0] = asrf(portfolio.PD(id),portfolio.LGD(id),R,'EAD',portfolio.EAD(id));
% Stressed PD by 50%
[capital1, varl] = asrf(portfolio.PD(id) * 1.5,portfolio.LGD(id),R,'EAD',portfolio.EAD(id));
% Stressed Correlation by 50%
[capital2, var2] = asrf(portfolio.PD(id),portfolio.LGD(id),R * 1.5,'EAD',portfolio.EAD(id));
c = categorical({'ASRF Capital','VaR'});
bar(c,[capital0 capital1 capital2; var0 var1 var2]);
legend({'baseline','stressed PD','stressed R'},'Location','northwest')
title(sprintf('ID: %d, Baseline vs. Stressed Scenarios',id));
ylabel('USD ($)');
```


Basel Capital Requirements

When computing regulatory capital, the Basel documents have additional model specifications on top of the basic ASRF model. In particular, Basel II/III defines specific formulas for computing the asset correlation for exposures in various asset classes as a function of the default probability.

To set up the vector of correlations according to the definitions established in Basel II/III:

```
R = zeros(height(portfolio),1);
% Compute the correlations for corporate, sovereign, and bank exposures.
idx = portfolio.AssetClass == "Corporate" |...
    portfolio.AssetClass == "Sovereign" |...
    portfolio.AssetClass == "Bank";
R(idx) = 0.12 * (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50)) +...
    0.24 * (1 - (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50)));
% Compute the correlations for small and medium entities.
idx = portfolio.AssetClass == "Small Entity" |...
    portfolio.AssetClass == "Medium Entity";
R(idx) = 0.12 * (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50)) +...
    0.24 * (1 - (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50))) -...
    0.04 * (1 - (portfolio.Sales(idx)/1e6 - 5) / 45);
% Compute the correlations for unregulated financial institutions.
```

```
idx = portfolio.AssetClass == "Unregulated Financial";
R(idx) = 1.25 * (0.12 * (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50)) +...
    0.24 * (1 - (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50))));
```

Find the basic ASRF capital using the Basel-defined asset correlations. The default value for the VaR level is 99.9%.

```
asrfCapital = asrf(portfolio.PD,portfolio.LGD,R,'EAD',portfolio.EAD);
```

Additionally, the Basel documents specify a maturity adjustment to be added to each capital calculation. Here we compute the maturity adjustment and update the capital requirements.

```
maturityYears = years(portfolio.Maturity - settle);
b = (0.11852 - 0.05478 * log(portfolio.PD)).^2;
maturityAdj = (1 + (maturityYears - 2.5) .* b) ./ (1 - 1.5 .* b);
regulatoryCapital = asrfCapital .* maturityAdj;
fprintf('Portfolio Regulatory Capital : $%.2f\n',sum(regulatoryCapital));
Portfolio Regulatory Capital : $2371316.24
```

Risk weighted assets (RWA) are calculated as capital * 12.5.

```
RWA = regulatoryCapital * 12.5;
results = table(portfolio.ID,portfolio.AssetClass,RWA,regulatoryCapital,'VariableNames',...
    {'ID','AssetClass','RWA','Capital'});
% Results table
disp(results(1:5,:))
    AssetClass
\begin{tabular}{lrrr}
1 & "Bank" & \(4.7766 \mathrm{e}+05\) & 38213 \\
2 & "Bank" & 79985 & 6398.8 \\
3 & "Bank" & \(2.6313 \mathrm{e}+05\) & 21050 \\
4 & "Bank" & \(2.9449 \mathrm{e}+05\) & 23560 \\
5 & "Bank" & \(4.1544 \mathrm{e}+05\) & 33235
\end{tabular}
```

Aggregate the regulatory capital by asset class.

```
summary = groupsummary(results,"AssetClass","sum","Capital");
pie(summary.sum_Capital,summary.AssetClass)
title('Regulator
```


Regulatory Capital by Asset Class

disp(summary(:,["AssetClass" "sum_Capital"]))

AssetClass
"Bank"
"Corporate"
"Medium Entity"
"Small Entity"
"Sovereign"
"Unregulated Financial"
sum_Capital
$3.6894 \mathrm{e}+05$
3.5811e+05
3. $1466 \mathrm{e}+05$
$1.693 e+05$
$6.8711 e+05$
$4.732 \mathrm{e}+05$

References

1. Basel Committe on Banking Supervision. "International Convergence of Capital Measurement and Capital Standards." June 2006 (https://www.bis.org/publ/bcbs128.pdf).
2. Basel Committe on Banking Supervision. "An Explanatory Note on the Basel II IRB Risk Weight Functions." July 2005 (https://www.bis.org/bcbs/irbriskweight.pdf).
3. Gordy, M.B. "A Risk-Factor Model Foundation for Ratings-Based Bank Capital Rules." Journal of Financial Intermediation. Vol. 12, pp. 199-232, 2003.

See Also

asrf

One-Factor Model Calibration

This example demonstrates techniques to calibrate a one-factor model for estimating portfolio credit losses using the creditDefaultCopula or creditMigrationCopula classes.

This example uses equity return data as a proxy for credit fluctuations. With equity data, sensitivity to a single factor is estimated as a correlation between a stock and an index. The data set contains daily return data for a series of equities, but the one-factor model requires calibration on a year-over-year basis. Assuming that there is no autocorrelation, then the daily cross-correlation between a stock and the market index is equal to the annual cross-correlation. For stocks exhibiting autocorrelation, this example shows how to compute implied annual correlations incorporating the effect of autocorrelation.

Fitting a One-Factor Model

Since corporate defaults are rare, it is common to use a proxy for creditworthiness when calibrating default models. The one-factor copula models the credit worthiness of a company using a latent variable, A :

$$
A=w X+\sqrt{1-w^{2}} e
$$

where X is the systemic credit factor, w is the weight that defines the sensitivity of a company to the one factor, and ϵ is the idiosyncratic factor. w and ϵ have mean of 0 and variance of 1 and typically are assumed to be either Gaussian or else tistributions.

Compute the correlation between X and A :

$$
\operatorname{Corr}(A, X)=\frac{\operatorname{Cov}(A, X)}{\sigma_{A} \sigma_{X}}
$$

Since X and A have a variance of 1 by construction and ϵ is uncorrelated with X, then:

$$
\begin{aligned}
\operatorname{Corr}(A, X) & =\operatorname{Cov}(A, X)=\operatorname{Cov}\left(w X+\sqrt{1-w^{2}} \epsilon, X\right) \\
& =w \operatorname{Cov}(X, X)+\sqrt{1-w^{2}} \operatorname{Cov}(X, \epsilon)=w
\end{aligned}
$$

If you use stock returns as a proxy for A and the market index returns are a proxy for X, then the weight parameter, w, is the correlation between the stock and the index.

Prepare the Data

Use the returns of the Dow Jones Industrial Average (DJIA) as a signal for the overall credit movement of the market. The returns for the 30 component companies are used to calibrate the sensitivity of each company to the systemic credit movement. Weights for other companies in the stock market are estimated in the same way.

```
% Read one year of DJIA price data.
t = readtable('dowPortfolio.xlsx');
% The table contains dates and the prices for each company at market close
% as well as the DJIA.
disp(head(t(:,1:7)))
C
```

```
\begin{tabular}{lrrrrrr} 
03-Jan-2006 & 10847 & 28.72 & 68.41 & 51.53 & 68.63 & 45.26 \\
04-Jan-2006 & 10880 & 28.89 & 68.51 & 51.03 & 69.34 & 44.42 \\
05-Jan-2006 & 10882 & 29.12 & 68.6 & 51.57 & 68.53 & 44.65 \\
06-Jan-2006 & 10959 & 29.02 & 68.89 & 51.75 & 67.57 & 44.65 \\
09-Jan-2006 & 11012 & 29.37 & 68.57 & 53.04 & 67.01 & 44.43 \\
10-Jan-2006 & 11012 & 28.44 & 69.18 & 52.88 & 67.33 & 44.57 \\
11-Jan-2006 & 11043 & 28.05 & 69.6 & 52.59 & 68.3 & 44.98 \\
12-Jan-2006 & 10962 & 27.68 & 69.04 & 52.6 & 67.9 & 45.02
\end{tabular}
% We separate the dates and the index from the table and compute daily returns using
% tick2ret.
dates = t{2:end,1};
index_adj_close = t{:,2};
stocks_adj_close = t{:,3:end};
index_returns = tick2ret(index_adj_close);
stocks_returns = tick2ret(stoc\overline{ks_adj_close);}
```


Compute Single Factor Weights

Compute the single-factor weights from the correlation coefficients between the index returns and the stock returns for each company.
[C,daily_pval] = corr([index_returns stocks_returns]);
w_daily = C(2:end,1);
These values can be used directly when using a one-factor creditDefaultCopula or creditMigrationCopula.

Linear regression is often used in the context of factor models. For a one-factor model, a linear regression of the stock returns on the market returns is used by exploiting the fact that the correlation coefficient matches the square root of the coefficient of determination (R-squared) of a linear regression.

```
w_daily_regress = zeros(30,1);
for i = 1:30
    lm = fitlm(index_returns,stocks_returns(:,i));
    w_daily_regress(\overline{i}) = sqrt(lm.Rsquared.Ordinary);
end
% The regressed R values are equal to the index cross correlations.
fprintf('Max Abs Diff : %e\n',max(abs(w_daily_regress(:) - w_daily(:))))
Max Abs Diff : 8.326673e-16
```

This linear regression fits a model of the form $A=\alpha+\beta X+\epsilon$, which in general does not match the one-factor model specifications. For example, A and X do not have a zero mean and a standard deviation of 1. In general, there is no relationship between the coefficient β and the standard deviation of the error term ϵ. Linear regression is used above only as a tool to get the correlation coefficient between the variables given by the square root of the R-squared value.

For one-factor model calibration, a useful alternative is to fit a linear regression using the standardized stock and market return data \tilde{A} and \widetilde{X}. "Standardize" here means to subtract the mean and divide by the standard deviation. The model is $\widetilde{A}=\widetilde{\alpha}+\widetilde{\beta} \widetilde{X}+\widetilde{\epsilon}$. However, because both \widetilde{A} and \widetilde{X} have a zero mean, the intercept $\widetilde{\alpha}$ is always zero, and because both \widetilde{A} and \widetilde{X} have standard deviation
of 1 , the standard deviation of the error term satisfies $\operatorname{std}(\widetilde{\epsilon})=\sqrt{1-\widetilde{\beta^{2}}}$. This exactly matches the specifications of the coefficients of a one-factor model. The one-factor parameter w is set to the coefficient $\widetilde{\beta}$, and is the same as the value found directly through correlation earlier.

```
w_regress_std = zeros(30,1);
index_returns_std = zscore(index_returns);
stock}\overline{s}\mathrm{ returns std = zscore(stoc}\overline{k}s returns)
for i = 1:30
    lm = fitlm(index_returns_std,stocks_returns_std(:,i));
    w_regress_std(i) = lm.Coefficients{'xl','Estimate'};
end
% The regressed R values are equal to the index cross correlations.
fprintf('Max Abs Diff : %e\n',max(abs(w_regress_std(:) - w_daily(:))))
Max Abs Diff : 5.551115e-16
```

This approach makes it natural to explore the distributional assumptions of the variables. The creditDefaultCopula and creditMigrationCopula objects support either normal distributions, or t distributions for the underlying variables. For example, when using normplot the market returns have heavy tails, therefore a t-copula is more consistent with the data.

Estimating Correlations for Longer Periods

The weights are computed based on the daily correlation between the stocks and the index. However, the usual goal is to estimate potential losses from credit defaults at some time further in the future, often one year out.

To that end, it is necessary to calibrate the weights such that they correspond to the one-year correlations. It is not practical to calibrate directly against historical annual return data since any reasonable data set does not have enough data to be statistically significant due to the sparsity of the data points.

You then face the problem of computing annual return correlation from a more frequently sampled data set, for example, daily returns. One approach to solving this problem is to use an overlapping window. This way you can consider the set of all overlapping periods of a given length.

```
% As an example, consider an overlapping 1-week window.
index_overlapping_returns = index_adj_close(6:end) ./ index_adj_close(1:end-5) - 1;
stocks_overlapping_returns = stocks_adj_close(6:end,:) ./ stocks_adj_close(1:end-5,:) - 1;
C = corr([index_overlapping_returns stocks_overlapping_returns]);
w_weekly_overlapping = C(2:end,1);
% Compare the correlation with the daily correlation.
% Show the daily vs. the overlapping weekly correlations.
barh([w_daily w_weekly_overlapping])
yticks(1:30)
yticklabels(t.Properties.VariableNames(3:end))
title('Correlation with the Index');
legend('daily','overlapping weekly');
```


Correlation with the Index

The maximum cross-correlation p-value for daily returns show a strong statistical significance.

```
maxdailypvalue = max(daily_pval(2:end,1));
disp(table(maxdailypvalue,...
    'VariableNames',{'Daily'},...
    'rownames',{'Maximum p-value'}))
                            Daily
    Maximum p-value 1.5383e-08
```

Moving to an overlapping rolling-window-style weekly correlation gives slightly different correlations. This is a convenient way to estimate longer period correlations from daily data. However, the returns of adjacent overlapping windows are correlated so the corresponding p-values for the overlapping weekly returns are not valid since the p-value calculation in the corr function does not account for overlapping window data sets. For example, adjacent overlapping window returns are composed of many of the same datapoints. This tradeoff is necessary since moving to nonoverlapping windows could result is an unacceptably sparse sample.

```
% Compare to non-overlapping weekly returns
fridays = weekday(dates) == 6;
index_weekly_close = index_adj_close(fridays);
stocks
index_weekly_returns = tick2ret(index_weekly_close);
stocks_weekly__returns = tick2ret(stoc\overline{ks_weekl̄y_close);}
```

[C,weekly_pval] = corr([index_weekly_returns stocks_weekly_returns]); w_weekly_nonoverlapping = C(2:end,1); māxweeklȳpvalue $=$ max (weekly_pval(2:end,1));
\% Compare the correlation with the daily and overlapping.
barh([w_daily w_weekly_overlapping w_weekly_nonoverlapping])
yticks(1:30)
yticklabels(t.Properties.VariableNames(3:end))
title('Correlation with the Index');
legend('daily','overlapping weekly','non-overlapping weekly');

The p-values for the nonoverlapping weekly correlations are much higher, indicating a loss of statistical significance.
\% Compute the number of samples in each series.
numDaily = numel(index_returns);
numOverlapping = numel(index_overlapping_returns);
numWeekly = numel(index_week̄ㅟ_returns);
disp(table([maxdailypvalue; numDaily],[NaN; numOverlapping],[maxweeklypvalue; numWeekly],...
'VariableNames', \{'Daily','Overlapping', 'Non_Overlapping'\},...
'rownames',\{'Maximum p-value','Sample Size'\}))
Daily Overlapping Non_Overlapping

```
Maximum p-value 1.5383e-08
NaN
    0.66625
Sample Size 250 246 50
```


Extrapolating Annual Correlation

A common assumption with financial data is that asset returns are temporally uncorrelated. That is, the asset return at time T is uncorrelated to the previous return at time $T-1$. Under this assumption, the annual cross-correlation is exactly equal to the daily cross-correlation.

Let X_{t} be the daily log return of the market index on day t and A_{t} be the daily return of a correlated asset. Using CAPM, the relation is modeled as:

$$
A_{t}=\alpha+\beta X_{t}+\epsilon_{t}
$$

The one-factor model is a special case of this relationship.
Under the assumption that asset and index returns are each uncorrelated with their respective past, then:
$\mathrm{y}, \forall s \neq t$:

$$
\begin{aligned}
& \operatorname{cov}\left(X_{S}, X_{t}\right)=0 \\
& \operatorname{cov}\left(\epsilon_{S}, \epsilon_{t}\right)=0 \\
& \operatorname{cov}\left(A_{S}, A_{t}\right)=0
\end{aligned}
$$

Let the aggregate annual (log) return for each series be

$$
\begin{aligned}
& \bar{X}=\sum_{t=1}^{T} X_{t} \\
& \bar{A}=\sum_{t=1}^{T} A_{t}
\end{aligned}
$$

where T could be 252 depending on the underlying daily data.
Let $\sigma_{X}^{2}=\operatorname{var}\left(X_{t}\right)$ and $\sigma_{A}^{2}=\operatorname{var}\left(A_{t}\right)$ be the daily variances, which are estimated from the daily return data.

The daily covariance between X_{t} and A_{t} is:

$$
\operatorname{cov}\left(X_{t}, A_{t}\right)=\operatorname{cov}\left(X_{t}, \alpha+\beta X_{t}+\epsilon_{t}\right)=\beta \sigma_{X}^{2}
$$

The daily correlation between X_{t} and A_{t} is:

$$
\operatorname{corr}\left(X_{t}, A_{t}\right)=\frac{\operatorname{cov}\left(X_{t}, A_{t}\right)}{\sqrt{\sigma_{X}^{2} \sigma_{A}^{2}}}=\beta \frac{\sigma_{X}}{\sigma_{A}}
$$

Consider the variances and covariances for the aggregate year of returns. Under the assumption of no autocorrelation:

$$
\begin{aligned}
& \operatorname{var}(\bar{X})=\operatorname{var}\left(\sum_{t=1}^{T} X_{t}\right)=T \sigma_{X}^{2} \\
& \operatorname{var}(\bar{A})=\operatorname{var}\left(\sum_{t=1}^{T} A_{t}\right)=T \sigma_{A}^{2} \\
& \operatorname{cov}(\bar{X}, \bar{A})=\operatorname{cov}\left[\sum_{t=1}^{T} X_{t}, \sum_{t=1}^{T}\left(\alpha+\beta X_{t}+\epsilon_{t}\right)\right]=\beta \operatorname{cov}(\bar{X}, \bar{X})=\beta \operatorname{var}(\bar{X})=\beta T \sigma_{X}^{2}
\end{aligned}
$$

The annual correlation between the asset and the index is:

$$
\operatorname{corr}(\bar{X}, \bar{A})=\frac{\operatorname{cov}(\bar{X}, \bar{A})}{\sqrt{\operatorname{var}(\bar{X}) \operatorname{var}(\bar{A})}}=\frac{\beta T \sigma_{X}^{2}}{\sqrt{\operatorname{To}_{X}^{2} T \sigma_{A}^{2}}}=\beta \frac{\sigma_{X}}{\sigma_{A}}=w
$$

Under the assumption of no autocorrelation, notice that the daily cross-correlation is in fact equal to the annual cross-correlation. You can use this assumption directly in the one-factor model by setting the one-factor weights to the daily cross-correlation.

Handling Autocorrelation

If the assumption that assets have no autocorrelation is loosened, then the transformation from daily to annual cross-correlation between assets is not as straightforward. The $\operatorname{var}(\bar{X})$ now has additional terms.

First consider the simplest case of computing the variance of \bar{X} when T is equal to 2 .

$$
\operatorname{var}(\bar{X})=\left[\begin{array}{ll}
\sigma_{1} & \sigma_{2}
\end{array}\right]\left[\begin{array}{cc}
1 & \rho_{12} \\
\rho_{12} & 1
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2}
\end{array}\right]=\sigma_{1}^{2}+\sigma_{2}^{2}+2 \rho_{12} \sigma_{1} \sigma_{2}
$$

Since $\sigma_{1}=\sigma_{2}=\sigma_{X}$, then:

$$
\operatorname{var}(\bar{X})=\sigma_{X}^{2}\left(2+2 \rho_{12}\right)
$$

Consider $T=3$. Indicate the correlation between daily returns that are k days apart as $\rho_{\Delta k}$.

$$
\begin{aligned}
& \operatorname{var}(\bar{X})=\left[\begin{array}{lll}
\sigma_{1} & \sigma_{2} & \sigma_{3}
\end{array}\right]\left[\begin{array}{ccc}
1 & \rho_{\Delta 1} & \rho_{\Delta 2} \\
\rho_{\Delta 1} & 1 & \rho_{\Delta 1} \\
\rho_{\Delta 2} & \rho_{\Delta 1} & 1
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3}
\end{array}\right]=\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}+2 \rho_{\Delta 1} \sigma_{1} \sigma_{2}+2 \rho_{\Delta 1} \sigma_{2} \sigma_{3}+2 \rho_{\Delta 2} \sigma_{1} \sigma_{3}=\sigma_{X}^{2}(3 \\
& \left.+4 \rho_{\Delta 1}+2 \rho_{\Delta 2}\right)
\end{aligned}
$$

In the general case, for the variance of an aggregate T-day return with autocorrelation from trailing k days, there is:

$$
\operatorname{var}(\bar{X})=2 \sigma_{X}^{2}\left(T / 2+(T-1) \rho_{\Delta 1}^{X}+(T-2) \rho_{\Delta 2}^{X}+\ldots+(T-k) \rho_{\Delta k}^{X}\right)
$$

This is also the same formula for the asset variance:

$$
\operatorname{var}(\bar{A})=2 \sigma_{A}^{2}\left(T / 2+(T-1) \rho_{\Delta 1}^{A}+(T-2) \rho_{\Delta 2}^{A}+\ldots+(T-k) \rho_{\Delta k}^{A}\right)
$$

The covariance between \bar{X} and \bar{A} as shown earlier is equal to $\beta v a r(\bar{X})$.
Therefore, the cross-correlation between the index and the asset with autocorrelation from a trailing 1 through k days is:

$$
\begin{aligned}
& \operatorname{corr}(\bar{X}, \bar{A})=\frac{\operatorname{cov}(\bar{X}, \bar{A})}{\sqrt{\operatorname{var}(\bar{X}) \operatorname{var}(\bar{A})}}=\frac{\beta \operatorname{var}(\bar{X})}{\sqrt{\operatorname{var}(\bar{X}) \operatorname{var}(\bar{A})}}=\beta \sqrt{\frac{\operatorname{var}(\bar{X})}{\operatorname{var}(\bar{A})}}=\ldots \\
& \operatorname{corr}(\bar{X}, \bar{A})=\beta \sqrt{\frac{2 \sigma_{X}^{2}\left(T / 2+(T-1) \rho_{\Delta 1}^{X}+(T-2) \rho_{\Delta 2}^{X}+\ldots+(T-k) \rho_{\Delta k}^{X}\right)}{2 \sigma_{A}^{2}\left(T / 2+(T-1) \rho_{\Delta 1}^{A}+(T-2) \rho_{\Delta 2}^{A}+\ldots+(T-k) \rho_{\Delta k}^{A}\right)}} \\
& \operatorname{corr}(\bar{X}, \bar{A})=\beta \frac{\sigma_{X}}{\sigma_{A}} \sqrt{\frac{T / 2+(T-1) \rho_{\Delta 1}^{X}+(T-2) \rho_{\Delta 2}^{X}+\ldots+(T-k) \rho_{\Delta k}^{X}}{T / 2+(T-1) \rho_{\Delta 1}^{A}+(T-2) \rho_{\Delta 2}^{A}+\ldots+(T-k) \rho_{\Delta k}^{A}}}
\end{aligned}
$$

Note that $\beta \frac{\sigma_{X}}{\sigma_{A}}$ is the weight under the assumption of no autocorrelation. The square root term provides the adjustment to account for autocorrelation in the series. The adjustment depends more on the difference between the index autocorrelation and the stock autocorrelation, rather than the magnitudes of these autocorrelations. So the annual one-factor weight adjusted for autocorrelation is:

$$
w_{\text {adjusted }}=w_{\sqrt{\frac{T / 2+(T-1) \rho_{\Delta 1}^{X}+(T-2) \rho_{\Delta 2}^{X}+\ldots+(T-k) \rho_{\Delta k}^{X}}{T / 2+(T-1) \rho_{\Delta 1}^{A}+(T-2) \rho_{\Delta 2}^{A}+\ldots+(T-k) \rho_{\Delta k}^{A}}} ⿻ \sqrt{A}}^{\text {(2) }}
$$

Compute Weights with Autocorrelation

Look for autocorrelation in each of the stocks with the previous day's return, and adjust the weights to incorporate the effect of a one-day autocorrelation.

```
corr1 = zeros(30,1);
pv1 = zeros(30,1);
for stockidx = 1:30
    [corrl(stockidx),pv1(stockidx)] = corr(stocks_returns(2:end,stockidx),stocks_returns(1:end-1
end
autocorrIdx = find(pv1 < 0.05)
autocorrIdx = 4×1
    10
    18
    26
    2 7
```

There are four stocks with low p-values that may indicate the presence of autocorrelation. Estimate the annual cross-correlation with the index under this model, considering the one-day autocorrelation.
\% The weights based off of yearly cross correlation are equal to the daily cross \% correlation multiplied by an additional factor. $\mathrm{T}=252$;

```
w_yearly = w_daily;
[\overline{rho_index, \overline{pval_index] = corr(index_returns(1:end-1),index_returns(2:end));}}\mathbf{~}\mathrm{ ;}
% Check to see if the index has any significant autocorrelation.
fprintf('One day autocorrelation in the index p-value: %f\n',pval_index);
One day autocorrelation in the index p-value: 0.670196
if pval_index < 0.05
    % If the p-value indicates there is no significant autocorrelation in the index,
    % set its rho to 0.
    rho_index = 0;
end
w_yearly(autocorrIdx) = w_yearly(autocorrIdx) .*...
    sqrt((T/2 + (T-1) .* rho_index) ./ (T/2 + (T-1) .* corrl(autocorrIdx)));
% Compare the adjusted annual cross correlation values to the daily values.
barh([w_daily(autocorrIdx) w_yearly(autocorrIdx)])
yticks(1:4);
allNames = t.Properties.VariableNames(3:end);
yticklabels(allNames(autocorrIdx))
title('Annual One Factor Weights');
legend('No autocorrelation','With autocorrelation','location','southeast');
```

Annual One Factor Weights

See Also

creditDefaultCopula|simulate|portfolioRisk|riskContribution|confidenceBands | getScenarios

Related Examples

- "Credit Simulation Using Copulas" on page 4-2
- "creditDefaultCopula Simulation Workflow" on page 4-5

More About

- "Risk Modeling with Risk Management Toolbox" on page 1-3

Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models

This example shows how to work with consumer credit panel data to create through-the-cycle (TTC) and point-in-time (PIT) models and compare their respective probabilities of default (PD).

The PD of an obligor is a fundamental risk parameter in credit risk analysis. The PD of an obligor depends on customer-specific risk factors as well as macroeconomic risk factors. Because they incorporate macroeconomic conditions differently, TTC and PIT models produce different PD estimates.

A TTC credit risk measure primarily reflects the credit risk trend of a customer over the long term. Transient, short-term changes in credit risk that are likely to be reversed with the passage of time get smoothed out. The predominant features of TTC credit risk measures are their high degree of stability over the credit cycle and the smoothness of change over time.

A PIT credit risk measure utilizes all available and pertinent information as of a given date to estimate the PD of a customer over a given time horizon. The information set includes not just expectations about the credit risk trend of a customer over the long term but also geographic, macroeconomic, and macro-credit trends.

Previously, according to the Basel II rules, regulators called for the use of TTC PDs, losses given default (LGDs), and exposures at default (EADs). However, with to the new IFRS9 and proposed CECL accounting standards, regulators now require institutions to use PIT projections of PDs, LGDs, and EADs. By accounting for the current state of the credit cycle, PIT measures closely track the variations in default and loss rates over time.

Load Panel Data

The main data set in this example (data) contains the following variables:

- ID - Loan identifier.
- ScoreGroup - Credit score at the beginning of the loan, discretized into three groups: High Risk, Medium Risk, and Low Risk.
- YOB - Years on books.
- Default - Default indicator. This is the response variable.
- Year - Calendar year.

The data also includes a small data set (dataMacro) with macroeconomic data for the corresponding calendar years:

- Year - Calendar year.
- GDP - Gross domestic product growth (year over year).
- Market - Market return (year over year).

The variables YOB, Year, GDP, and Market are observed at the end of the corresponding calendar year. ScoreGroup is a discretization of the original credit score when the loan started. A value of 1 for Default means that the loan defaulted in the corresponding calendar year.

This example uses simulated data, but you can apply the same approach to real data sets.

Load the data and view the first 10 rows of the table. The panel data is stacked and the observations for the same ID are stored in contiguous rows, creating a tall, thin table. The panel is unbalanced because not all IDs have the same number of observations.

```
load RetailCreditPanelData.mat
disp(head(data,10));
\begin{tabular}{llllll} 
ID & ScoreGroup & & YOB & & Default
\end{tabular}
nRows = height(data);
UniqueIDs = unique(data.ID);
nIDs = length(UniqueIDs);
fprintf('Total number of IDs: %d\n',nIDs)
Total number of IDs: 96820
fprintf('Total number of rows: %d\n',nRows)
Total number of rows: 646724
```


Default Rates by Year

Use Year as a grouping variable to compute the observed default rate for each year. Use the groupsummary function to compute the mean of the Default variable, grouping by the Year variable. Plot the results on a scatter plot which shows that the default rate goes down as the years increase.

```
DefaultPerYear = groupsummary(data,'Year','mean','Default');
NumYears = height(DefaultPerYear);
disp(DefaultPerYear)
\begin{tabular}{|c|c|c|}
\hline Year & GroupCount & mean_Default \\
\hline 1997 & 35214 & 0.018629 \\
\hline 1998 & 66716 & 0.013355 \\
\hline 1999 & 94639 & 0.012733 \\
\hline 2000 & 92891 & 0.011379 \\
\hline 2001 & 91140 & 0.010742 \\
\hline 2002 & 89847 & 0.010295 \\
\hline 2003 & 88449 & 0.0056417 \\
\hline 2004 & 87828 & 0.0032905 \\
\hline
\end{tabular}
```

```
subplot(2,1,1)
```

subplot(2,1,1)
scatter(DefaultPerYear.Year, DefaultPerYear.mean_Default*100,'*');
scatter(DefaultPerYear.Year, DefaultPerYear.mean_Default*100,'*');
grid on
grid on
xlabel('Year')

```
xlabel('Year')
```

```
ylabel('Default Rate (%)')
title('Default Rate per Year')
% Get IDs of the 1997, 1998, and 1999 cohorts
IDs1997 = data.ID(data.YOB==1&data.Year==1997);
IDs1998 = data.ID(data.YOB==1&data.Year==1998);
IDs1999 = data.ID(data.YOB==1&data.Year==1999);
% Get default rates for each cohort separately
ObsDefRate1997 = groupsummary(data(ismember(data.ID,IDs1997),:),...
    'YOB','mean','Default');
ObsDefRate1998 = groupsummary(data(ismember(data.ID,IDs1998),:),...
    'YOB','mean','Default');
ObsDefRate1999 = groupsummary(data(ismember(data.ID,IDs1999), :),...
    'YOB','mean','Default');
% Plot against the calendar year
Year = unique(data.Year);
subplot(2,1,2)
plot(Year,ObsDefRate1997.mean_Default*100,' -*')
hold on
plot(Year(2:end),0bsDefRate1998.mean_Default*100,' -*')
plot(Year(3:end),ObsDefRate1999.mean_Default*100,' -*')
hold off
title('Default Rate vs. Calendar Year')
xlabel('Calendar Year')
ylabel('Default Rate (%)')
legend('Cohort 97','Cohort 98','Cohort 99')
grid on
```


The plot shows that the default rate decreases over time. Notice in the plot that loans starting in the years 1997, 1998, and 1999 form three cohorts. No loan in the panel data starts after 1999. This is depicted in more detail in the "Years on Books Versus Calendar Years" section of the example on "Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36. The decreasing trend in this plot is explained by the fact that there are only three cohorts in the data and that the pattern for each cohort is decreasing.

TTC Model Using ScoreGroup and Years on Books

TTC models are largely unaffected by economic conditions. The first TTC model in this example uses only ScoreGroup and YOB as predictors of the default rate.

Generate training and testing data sets by splitting the existing data into training and testing data sets that are used for model creation and validation, respectively.

```
NumTraining = floor(0.6*nIDs);
rng('default');
TrainIDInd = randsample(nIDs,NumTraining);
TrainDataInd = ismember(data.ID,UniqueIDs(TrainIDInd));
TestDataInd = ~TrainDataInd;
```

Use the fitLifetimePDModel function to fit a Logistic model.
TTCModel = fitLifetimePDModel(data(TrainDataInd,:), 'logistic',...
'ModelID', 'TTC','IDVar','ID','AgeVar','YOB','LoanVars','ScoreGroup',...

```
    'ResponseVar','Default');
disp(TTCModel.Model)
Compact generalized linear regression model:
        logit(Default) ~ 1 + ScoreGroup + YOB
        Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{rcccc} 
Estimate & SE & \multicolumn{2}{c}{ tStat } &
\end{tabular}
```

```
3 8 8 0 1 8 \text { observations, 388014 error degrees of freedom}
Dispersion: 1
Chi^2-statistic vs. constant model: 1.83e+03, p-value = 0
```

Predict the PD for the training and testing data sets using predict.

```
data.TTCPD = zeros(height(data),1);
% Predict the in-sample
data.TTCPD(TrainDataInd) = predict(TTCModel,data(TrainDataInd,:));
% Predict the out-of-sample
data.TTCPD(TestDataInd) = predict(TTCModel,data(TestDataInd,:));
```

Visualize the in-sample fit and out-of-sample fit using modelCalibrationPlot.

```
figure;
subplot(2,1,1)
modelCalibrationPlot(TTCModel,data(TrainDataInd,:),'Year','DataID',"Training Data")
subplot(2,1,2)
modelCalibrationPlot(TTCModel,data(TestDataInd,:),'Year','DataID',"Testing Data")
```


PIT Model Using ScoreGroup, Years on Books, GDP, and Market Returns

PIT models vary with the economic cycle. The PIT model in this example uses ScoreGroup, YOB, GDP, and Market as predictors of the default rate. Use the fitLifetimePDModel function to fit a Logistic model.
\% Add the GDP and Market returns columns to the original data data $=$ join(data, dataMacro); disp(head(data,10))

ID	ScoreGroup	YOB	Default	Year	TTCPD	GDP	Market
1	Low Risk	1	0	1997	0.0084797	2.72	7.61
1	Low Risk	2	0	1998	0.0067697	3.57	26.24
1	Low Risk	3	0	1999	0.0054027	2.86	18.1
1	Low Risk	4	0	2000	0.0043105	2.43	3.19
1	Low Risk	5	0	2001	0.0034384	1.26	-10.51
1	Low Risk	6	0	2002	0.0027422	-0.59	-22.95
1	Low Risk	7	0	2003	0.0021867	0.63	2.78
1	Low Risk	8	0	2004	0.0017435	1.85	9.48
2	Medium Risk	1	0	1997	0.015097	2.72	7.61
2	Medium Risk	2	0	1998	0.012069	3.57	26.24

PITModel = fitLifetimePDModel(data(TrainDataInd,:),'logistic',...
'ModelID','PIT','IDVar','ID','AgeVar','YOB','LoanVars','ScoreGroup',...

```
    'MacroVars',{'GDP' 'Market'},'ResponseVar','Default');
disp(PITModel.Model)
Compact generalized linear regression model:
    logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
    Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -2.667 & 0.10146 & -26.287 & 2.6919e-152 \\
\hline -0.70751 & 0.037108 & -19.066 & 4.8223e-81 \\
\hline -1.2895 & 0.045639 & -28.253 & 1.2892e-175 \\
\hline -0.32082 & 0.013636 & -23.528 & 2.0867e-122 \\
\hline -0.12295 & 0.039725 & -3.095 & 0.0019681 \\
\hline -0.0071812 & 0.0028298 & -2.5377 & 0.011159 \\
\hline
\end{tabular}
3 8 8 0 1 8 \text { observations, 388012 error degrees of freedom}
Dispersion: 1
Chi^2-statistic vs. constant model: 1.97e+03, p-value = 0
```

Predict the PD for training and testing data sets using predict.

```
data.PITPD = zeros(height(data),1);
% Predict in-sample
data.PITPD(TrainDataInd) = predict(PITModel,data(TrainDataInd,:));
% Predict out-of-sample
data.PITPD(TestDataInd) = predict(PITModel,data(TestDataInd,:));
```

Visualize the in-sample fit and out-of-sample fit using modelCalibrationPlot.
figure;
subplot(2,1,1)
modelCalibrationPlot(PITModel,data(TrainDataInd,:), 'Year','DataID',"Training Data") subplot(2,1,2)
modelCalibrationPlot(PITModel,data(TestDataInd,:),'Year','DataID',"Testing Data")

In the PIT model, as expected, the predictions match the observed default rates more closely than in the TTC model. Although this example uses simulated data, qualitatively, the same type of model improvement is expected when moving from TTC to PIT models for real world data, although the overall error might be larger than in this example. The PIT model fit is typically better than the TTC model fit and the predictions typically match the observed rates.

Calculate TTC PD Using the PIT Model

Another approach for calculating TTC PDs is to use the PIT model and then replace the GDP and Market returns with the respective average values. In this approach, you use the mean values over an entire economic cycle (or an even longer period) so that only baseline economic conditions influence the model, and any variability in default rates is due to other risk factors. You can also enter forecasted baseline values for the economy that are different from the mean observed for the most recent economic cycle. For example, using the median instead of the mean reduces the error.
You can also use this approach of calculating TTC PDs by using the PIT model as a tool for scenario analysis, however; this cannot be done in the first version of the TTC model. The added advantage of this approach is that you can use a single model for both the TTC and PIT predictions. This means that you need to validate and maintain only one model.

```
% Modify the data to replace the GDP and Market returns with the corresponding average values
data.GDP(:) = median(data.GDP);
data.Market = repmat(mean(data.Market), height(data), 1);
disp(head(data,10));
\begin{tabular}{llllllllll} 
ID ScoreGroup & YOB Default & Year & TTCPD & & GDP & Market & & PITPD \\
\hline
\end{tabular}
```

1	Low Risk	1	0	1997	0.0084797	1.85	3.2263	0.0093187
1	Low Risk	2	0	1998	0.0067697	1.85	3.2263	0.005349
1	Low Risk	3	0	1999	0.0054027	1.85	3.2263	0.0044938
1	Low Risk	4	0	2000	0.0043105	1.85	3.2263	0.0038285
1	Low Risk	5	0	2001	0.0034384	1.85	3.2263	0.0035402
1	Low Risk	6	0	2002	0.0027422	1.85	3.2263	0.0035259
1	Low Risk	7	0	2003	0.0021867	1.85	3.2263	0.0018336
1	Low Risk	8	0	2004	0.0017435	1.85	3.2263	0.0010921
2	Medium Risk	1	0	1997	0.015097	1.85	3.2263	0.016554
2	Medium Risk	2	0	1998	0.012069	1.85	3.2263	0.0095319

Predict the PD for training and testing data sets using predict.

```
data.TTCPD2 = zeros(height(data),1);
% Predict in-sample
data.TTCPD2(TrainDataInd) = predict(PITModel,data(TrainDataInd,:));
% Predict out-of-sample
data.TTCPD2(TestDataInd) = predict(PITModel,data(TestDataInd,:));
```

Visualize the in-sample fit and out-of-sample fit using modelCalibrationPlot.

```
f = figure;
subplot(2,1,1)
modelCalibrationPlot(PITModel,data(TrainDataInd,:),'Year','DataID',"Training, Macro Average")
subplot(2,1,2)
modelCalibrationPlot(PITModel,data(TestDataInd,:),'Year','DataID',"Testing, Macro Average")
```


Reset original values of the GDP and Market variables. The TTC PD values predicted using the PIT model and median or mean macro values are stored in the TTCPD2 column and that column is used to compare the predictions against other models below.

```
data.GDP = [];
data.Market = [];
data = join(data,dataMacro);
disp(head(data,10))
```

ID	ScoreGroup	YOB	Default	Year	TTCPD	PITPD	TTCPD2	GDP
1	Low Risk	1	0	1997	0.0084797	0.0093187	0.010688	2.72
1	Low Risk	2	0	1998	0.0067697	0.005349	0.0077772	3.57
1	Low Risk	3	0	1999	0.0054027	0.0044938	0.0056548	2.86
1	Low Risk	4	0	2000	0.0043105	0.0038285	0.0041093	2.43
1	Low Risk	5	0	2001	0.0034384	0.0035402	0.0029848	1.26
1	Low Risk	6	0	2002	0.0027422	0.0035259	0.0021674	-0.59
1	Low Risk	7	0	2003	0.0021867	0.0018336	0.0015735	0.63
1	Low Risk	8	0	2004	0.0017435	0.0010921	0.0011422	1.85
2	Medium Risk	1	0	1997	0.015097	0.016554	0.018966	2.72
2	Medium Risk	2	0	1998	0.012069	0.0095319	0.013833	3.57

Compare the Models

First, compare the two versions of the TTC model.
Compare the model discrimination using modelDiscriminationPlot. The two models have very similar performance ranking customers, as measured by the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUROC, or simply AUC) metric.
figure;
modelDiscriminationPlot(TTCModel,data(TestDataInd,:),"DataID", 'Testing data',"ReferencePD",data.

However, the TTC model is more accurate, the predicted PD values are closer to the observed default rates. The plot generated using modelCalibrationPlot demonstrates that the root mean squared error (RMSE) reported in the plot confirms the TTC model is more accurate for this data set.
modelCalibrationPlot(TTCModel,data(TestDataInd,:),'Year',"DataID",'Testing data',"ReferencePD",di

Scatter Grouped by Year Testing data

TTC, RMSE $=0.0019761$

Use modelDiscriminationPlot to compare the TTC model and the PIT model.
The AUROC is only slightly better for the PIT model, showing that both models are comparable regarding ranking customers by risk.
figure;
modelDiscriminationPlot(TTCModel,data(TestDataInd,:),"DataID",'Testing data',"ReferencePD",data.

Use modelCalibrationPlot to visualize the model accuracy, or model calibration. The plot shows that the PIT model performs much better, with predicted PD values much closer to the observed default rates. This is expected, since the predictions are sensitive to the macro variables, whereas the TTC model only uses the initial score and the age of the model to make predictions.
modelCalibrationPlot(TTCModel,data(TestDataInd,:),'Year',"DataID",'Testing data',"ReferencePD",di

Scatter Grouped by Year Testing data TTC, RMSE $=0.0019761$
 PIT, RMSE $=0.0006322$

You can use modelDiscrimination to programmatically access the AUROC and the RMSE without creating a plot.

DiscMeasure = modelDiscrimination(TTCModel,data(TestDataInd,:),"DataID",'Testing data',"Referenc disp(DiscMeasure)

AUROC

TTC, Testing data	0.68662
PIT, Testing data	0.69341

CalMeasure = modelCalibration(TTCModel,data(TestDataInd,:),'Year',"DataID",'Testing data',"Refer disp(CalMeasure)

```
    RMSE
```

 TTC, grouped by Year, Testing data 0.0019761
 PIT, grouped by Year, Testing data 0.0006322

Although all models have comparable discrimination power, the accuracy of the PIT model is much better. However, TTC and PIT models are often used for different purposes, and the TTC model may be preferred if having more stable predictions over time is important.

References

1 Generalized Linear Models documentation, see "Generalized Linear Models".
2 Baesens, B., D. Rosch, and H. Scheule. Credit Risk Analytics. Wiley, 2016.

Model Loss Given Default

This example shows how to fit different types of models to loss given default (LGD) data. This example demonstrates the following approaches:

- Basic nonparametric approach using mean values on page 4-94
- Simple regression model on page 4-96
- Tobit (censored) regression model on page 4-98
- Beta regression model on page 4-100
- Two-stage model on page 4-103

For all of these approaches, this example shows:

- How to fit a model using training data where the LGD is a function of other variables or predictors.
- How to predict on testing data.

The Model Comparison on page 4-106 section contains a detailed comparison that includes visualizations and several prediction error metrics for of all models in this example.

The Regression, Tobit, and Beta models are fitted using the fitLGDModel function from Risk Management Toolbox ${ }^{\text {TM }}$. For more information, see "Overview of Loss Given Default Models" on page 1-31.

Introduction

LGD is one of the main parameters for credit risk analysis. Although there are different approaches to estimate credit loss reserves and credit capital, common methodologies require the estimation of probabilities of default (PD), loss given default (LGD), and exposure at default (EAD). The reserves and capital requirements are computed using formulas or simulations that use these parameters. For example, the loss reserves are usually estimated as the expected loss (EL), given by the following formula:
$\mathrm{EL}=\mathrm{PD} * \mathrm{LGD} * E A D$.
Practitioners have decades of experience modeling and forecasting PDs. However, the modeling of LGD (and also EAD) started much later. One reason is the relative scarcity of LGD data compared to PD data. Credit default data (for example, missed payments) is easier to collect and more readily available than are the losses ultimately incurred in the event of a default. When an account is moved to the recovery stage, the information can be transferred to a different system, loans can get consolidated, the recovery process may take a long time, and multiple costs are incurred during the process, some which are hard to track in detail. However, banks have stepped up their efforts to collect data that can be used for LGD modeling, in part due to regulations that require the estimation of these risk parameters, and the modeling of LGD (and EAD) is now widespread in industry.

This example uses simulated LGD data, but the workflow has been applied to real data sets to fit LGD models, predict LGD values, and compare models. The focus of this example is not to suggest a particular approach, but to show how these different models can be fit, how the models are used to predict LGD values, and how to compare the models. This example is also a starting point for variations and extensions of these models; for example, you may want to use more advanced classification and regression tools as part of a two-stage model.

The three predictors in this example are loan specific. However, you can use the approaches described in this example with data sets that include multiple predictors and even macroeconomic variables. Also, you can use models that include macroeconomic predictors for stress testing or lifetime LGD modeling to support regulatory requirements such as CCAR, IFRS 9, and CECL. For more information, see "Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations" on page 4-195.

LGD Data Exploration

The data set in this example is simulated data that captures common features of LGD data. For example, a common feature is the distribution of LGD values, which has high frequencies at 0 (full recovery), and also many observations at 1 (no recovery at all). Another characteristic of LGD data is a significant amount of "noise" or "unexplained" data. You can visualize this "noise" in scatter plots of the response against the predictors, where the dots do not seem to follow a clear trend, and yet some underlying relationships can be detected. Also, it is common to get significant prediction errors for LGD models. Empirical studies show that LGD models have high prediction errors in general. For example, in [4 on page 4-112] the authors report R-squared values ranging from 4% to 43% for a range of models across different portfolios. In this example, all approaches get R-squared values just under 10%. Moreover, finding useful predictors in practice may require important insights into the lending environment of a specific portfolio, for example, knowledge of the legal framework and the collection process [2 on page 4-111]. The simulated data set includes only three predictors and these are variables frequently found in LGD models, namely, the loan-to-value ratio, the age of the loan, and whether the borrower lives in the property or if the borrower bought it for investment purposes.

Data preparation for LGD modeling is beyond the scope of this example. This example assumes the data has been previously prepared, since the focus of the example is on how to fit LGD models and how to use them for prediction. Data preparation for LGD modeling requires a significant amount of work in practice. Data preparation requires consolidation of account information, pulling data from multiple data sources, accounting for different costs and discount rates, and screening predictors [1 on page 4-111] [2 on page 4-111].

Load the data set from the LGDData.mat file. The data set is stored in the data table. It contains the three predictors and the LGD variable, which is the response variable.

Here is a preview of the data and the descriptions of the data set and the variables.

```
load('LGDData.mat')
disp(head(data))
\begin{tabular}{|c|c|c|c|}
\hline LTV & Age & Type & LGD \\
\hline 0.89101 & 0.39716 & residential & 0. 032659 \\
\hline 0.70176 & 2.0939 & residential & 0.43564 \\
\hline 0.72078 & 2.7948 & residential & 0.0064766 \\
\hline 0.37013 & 1.237 & residential & 0.007947 \\
\hline 0.36492 & 2.5818 & residential & 0 \\
\hline 0.796 & 1.5957 & residential & 0.14572 \\
\hline 0.60203 & 1.1599 & residential & 0.025688 \\
\hline 0.92005 & 0.50253 & investment & 0.063182 \\
\hline
\end{tabular}
```

```
disp(data.Properties.Description)
```

disp(data.Properties.Description)
Loss given default (LGD) data. This is a simulated data set.
Loss given default (LGD) data. This is a simulated data set.
disp([data.Properties.VariableNames' data.Properties.VariableDescriptions'])

```
disp([data.Properties.VariableNames' data.Properties.VariableDescriptions'])
```

```
{'LTV' } {'Loan-to-Value (LTV) ratio at the time of default' }
{'Age' } {'Age of the loan in years at the time of default' }
{'Type'} {'Type of property, either residential or investment'}
{'LGD' } {'Loss given default'
```

LGD data commonly has values of 0 (no losses, full recovery) or 1 (no recovery at all). The distribution of values in between 0 and 1 takes different shapes depending on the portfolio type and other characteristics.

```
histogram(data.LGD)
title('LGD Distribution')
ylabel('Frequency')
xlabel('Observed LGD')
```


Explore the relationships between the predictors and the response. The Spearman correlation between the selected predictor and the LGD is displayed first. The Spearman correlation is one of the rank order statistics commonly used for LGD modeling [5 on page 4-112].

```
SelectedPredictor = LTV - ;
fprintf('Spearman correlation between %s and LGD: %g',SelectedPredictor,corr(double(data.(Select
Spearman correlation between LTV and LGD: 0.271204
if isnumeric(data.(SelectedPredictor))
    scatter(data.(SelectedPredictor),data.LGD)
    X = [ones(height(data),1) data.(SelectedPredictor)];
```

b = X\data.LGD;
$\mathrm{y}=\mathrm{X} * \mathrm{~b}$;
hold on
plot(data.(SelectedPredictor), y)
ylim([0 1])
hold off
xlabel(SelectedPredictor)
ylabel('LGD')
end

For numeric predictors, there is a scatter plot of the LGD against the selected predictor values, with a superimposed linear fit. There is a significant amount of noise in the data, with points scattered all over the plot. This is a common situation for LGD data modeling. The density of the dots is sometimes different in different areas of the plot, suggesting relationships. The slope of the linear fit and the Spearman correlation give more information about the relationship between the selected predictor and the response.

Visually assessing the density of the points in a scatter plot might not be a reliable approach to understand the distribution of the data. To better understand the distribution of LGD values for different levels of a selected predictor, create a box plot.

```
% Choose the number of discretization levels for numeric predictors
NumLevels = 3
    ;
if isnumeric(data.(SelectedPredictor))
    PredictorEdges = linspace(min(data.(SelectedPredictor)),max(data.(SelectedPredictor)),NumLeve
    PredictorDiscretized = discretize(data.(SelectedPredictor),PredictorEdges,'Categorical',stri
```

```
    boxplot(data.LGD,PredictorDiscretized)
    xlabel([SelectedPredictor ' Discretized'])
    ylabel('LGD')
else
    boxplot(data.LGD,data.(SelectedPredictor))
    xlabel(SelectedPredictor)
    ylabel('LGD')
end
```


For categorical data, the box plot is straightforward since a small number of levels are already given. For numeric data, you can discretize the data first and then generate the box plot. Different box sizes and heights show that the distribution of LGD values changes for different predictor levels. A monotonic trend in the median (red horizontal line in the center of the boxes) shows a potential linear relationship between the predictor and the LGD (though possibly a mild relationship, due to the wide distributions).

Mean LGD Over Different Groups

The basic approach to predict LGD is to simply use the mean of the LGD data. Although this is a straightforward approach, easy to understand and use, the downside is that the mean is a constant value and this approach sheds no light on the sensitivity of LGD to other risk factors. In particular, the predictors in the data set are ignored.

To introduce sensitivity to predictors, the mean LGD values can be estimated over different groups or segments of the data, where the groups are defined using ranges of the predictor values. This approach is still a relatively straightforward approach, yet it can noticeably reduce the prediction error compared to a single mean LGD value for all observations.

To start, separate the data set into training and testing data. The same training and testing data sets are used for all approaches in this example.

```
NumObs = height(data);
% Reset the random stream state, for reproducibility
% Comment this line out to generate different data partitions each time the example is run
rng('default');
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```

In this example, the groups are defined using the three predictors. LTV is discretized into low and high levels. Age is discretized into young and old loans. Type already has two levels, namely, residential and investment. The groups are all the combinations of these values (for example, low LTV, young loan, residential, and so on).

The number of levels and the specific cut off points are for illustration purposes only, you can base other discretizations on different criteria. Also, using all predictors for the discretization may not be ideal when the data set contains many predictors. In some cases, using a single predictor, or a couple of predictors, may be enough to find useful groups with distinct mean LGD values. When the data includes macro information, the grouping may include a macro variable; for example, the mean LGD value should be different over recessions vs. economic expansions.

Compute the mean LGD over the eight data groups using the training data.

```
% Discretize LTV
LTVEdges = [0 0.5 max(data.LTV)];
data.LTVDiscretized = discretize(data.LTV,LTVEdges,'Categorical',{'low','high'});
% Discretize Age
AgeEdges = [0 2 max(data.Age)];
data.AgeDiscretized = discretize(data.Age,AgeEdges,'Categorical',{'young','old'});
% Find group means on training data
gs = groupsummary(data(TrainingInd,:),{'LTVDiscretized','AgeDiscretized','Type'},'mean','LGD');
disp(gs)
\begin{tabular}{|c|c|c|c|c|}
\hline LTVDiscretized & AgeDiscretized & Type & GroupCount & mean_LGD \\
\hline low & young & residential & 163 & 0.12166 \\
\hline low & young & investment & 26 & 0.087331 \\
\hline low & old & residential & 175 & 0.021776 \\
\hline low & old & investment & 23 & 0.16379 \\
\hline high & young & residential & 1134 & 0.16489 \\
\hline high & young & investment & 257 & 0.25977 \\
\hline high & old & residential & 265 & 0.066068 \\
\hline high & old & investment & 50 & 0.11779 \\
\hline
\end{tabular}
```

For prediction, the test data is mapped into the eight groups, and then the corresponding group mean is set as the predicted LGD value.

```
LGDGroupTest = findgroups(data(TestInd,{'LTVDiscretized' 'AgeDiscretized' 'Type'}));
LGDPredictedByGroupMeans = gs.mean_LGD(LGDGroupTest);
```

Store the observed LGD and the predicted LGD in a new table dataLGDPredicted. This table stores predicted LGD values for all other approaches in the example.

```
dataLGDPredicted = table;
dataLGDPredicted.Observed = data.LGD(TestInd);
```

```
dataLGDPredicted.GroupMeans = LGDPredictedByGroupMeans;
disp(head(dataLGDPredicted))
\begin{tabular}{rrr} 
Observed & & GroupMeans \\
0.0064766 & & 0.066068 \\
0.007947 & & 0.12166 \\
0.063182 & & 0.25977 \\
0 & & 0.066068 \\
0.10904 & & 0.16489 \\
0 & & 0.16489 \\
0.89463 & & 0.16489 \\
0 & & 0.021776
\end{tabular}
```

The Model Comparison on page 4-106 section has a more detailed comparison of all models that includes visualizations and prediction error metrics.

Simple Regression Model

A natural approach is to use a regression model to explicitly model a relationship between the LGD and some predictors. LGD data, however, is bounded in the unit interval, whereas the response variable for linear regression models is, in theory, unbounded.

To apply simple linear regression approaches, the LGD data can be transformed. A common transformation is the logit function, which leads to the following regression model:

$$
\log \left(\frac{\mathrm{LGD}}{1-\mathrm{LGD}}\right)=X \beta+\epsilon, \text { with } \epsilon \sim N\left(0, \sigma^{2}\right)
$$

LGD values of 0 or 1 cause the logit function to take infinite values, so the LGD data is typically truncated before applying the transformation.

```
data.LGDTruncated = data.LGD;
data.LGDTruncated(data.LGD==0) = 0.00001;
data.LGDTruncated(data.LGD==1) = 0.99999;
data.LGDLogit = log(data.LGDTruncated./(1-data.LGDTruncated));
```

Below is the histogram of the transformed LGD data that uses the logit function. The range of values spans positive and negative values, which is consistent with the linear regression requirements. The distribution still shows significant mass probability points at the ends of the distribution.

```
histogram(data.LGDLogit)
title('Logit Transformation of Truncated LGD Data')
```


Other transformations are suggested in the literature [1 on page 4-111]. For example, instead of the logit function, the truncated LGD values can be mapped with the inverse standard normal distribution (similar to a probit model).

Fit a regression model using the fitLGDModel function from Risk Management Toolbox ${ }^{\text {TM }}$ using the training data. By default, a logit transformation is applied to the LGD response data with a boundary tolerance of $1 \mathrm{e}-5$. For more information on the supported transformations and optional arguments, see Regression.

```
mdlRegression = fitLGDModel(data(TrainingInd,:),'regression','PredictorVars',{'LTV' 'Age' 'Type'.
disp(mdlRegression)
    Regression with properties:
    ResponseTransform: "logit"
    BoundaryTolerance: 1.0000e-05
            ModelID: "Regression"
            Description: ""
        UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
            PredictorVars: ["LTV" "Age" "Type"]
            ResponseVar: "LGD"
disp(mdlRegression.UnderlyingModel)
Compact linear regression model:
    LGD_logit ~ 1 + LTV + Age + Type
```

	Estimate	SE	tStat	pValue
(Intercept)	-4.7549	0.36041	-13.193	3.0997e-38
LTV	2.8565	0.41777	6.8377	1.0531e-11
Age	-1.5397	0.085716	-17.963	3.3172e-67
Type_investment	1.4358	0.2475	5.8012	7.587e-09
Number of observations: 2093, Error degrees of freedom: 2089				
Root Mean Squared Error: 4.24				
R-squared: 0.206, Adjusted R-Squared: 0.205				
tatistic vs. cons	nt model:	1, p-value	$2.42 \mathrm{e}-10$	

The model coefficients match the findings in the exploratory data analysis, with a positive coefficient for LTV, a negative coefficient for Age, and a positive coefficient for investment properties in the Type variable.

The Regression LGD models support prediction and apply the inverse transformation so the predicted LGD values are in the LGD scale. For example, for the model fitted above that uses the logit transformation, the inverse logit transformation (also known as the logistic, or sigmoid function) is applied by the predict function to return an LGD predicted value.

```
dataLGDPredicted.Regression = predict(mdlRegression,data(TestInd,:));
disp(head(dataLGDPredicted))
\begin{tabular}{|c|c|c|}
\hline Observed & GroupMeans & Regression \\
\hline 0.0064766 & 0. 066068 & 0.00091169 \\
\hline 0.007947 & 0.12166 & 0.0036758 \\
\hline 0.063182 & 0.25977 & 0.18774 \\
\hline 0 & 0.066068 & 0.0010877 \\
\hline 0.10904 & 0.16489 & 0.011213 \\
\hline 0 & 0.16489 & 0.041992 \\
\hline 0.89463 & 0. 16489 & 0.052947 \\
\hline 0 & 0.021776 & 3.7188e-0 \\
\hline
\end{tabular}
```

The Model Comparison on page 4-106 section at the end of this example has a more detailed comparison of all models that includes visualizations and prediction error metrics. In particular, the histogram of the predicted LGD values shows that the regression model predicts many LGD values near zero, even though the high probability near zero was not explicitly modeled.

Tobit Regression Model

Tobit or censored regression is designed for models where the response is bounded. The idea is that there is an underlying (latent) linear model but that the observed response values, in this case the LGD values, are truncated. For this example, use a model censored on both sides with a left limit at 0 and a right limit at 1 , corresponding to the following model formula

$$
\operatorname{LGD}_{i}=\min \left(\max \left(0, Y_{i}^{*}\right), 1\right)
$$

with:

$$
\begin{aligned}
& Y_{i}{ }^{*}=X_{i} \beta+\epsilon_{i} \\
& =\beta_{0}+\beta_{1} X^{1}{ }_{i}+\cdots+\beta_{k} X^{k}{ }_{i}+\epsilon_{i}, \\
& \text { with } \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

The model parameters are all the $\beta \mathrm{s}$ and the standard deviation of the error σ.
Fit the Tobit regression model with fitLGDModel using the training data. By default, a model censored on both sides is fitted with limits at 0 and 1. For more information on Tobit models, see Tobit.

```
mdlTobit = fitLGDModel(data(TrainingInd,:),'tobit','CensoringSide','both','PredictorVars',{'LTV'
disp(mdlTobit)
```

 Tobit with properties:
 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
 disp(mdlTobit.UnderlyingModel)
Tobit regression model:
$\operatorname{LGD}=\max \left(0, \min \left(Y^{*}, 1\right)\right)$
$Y^{*} \sim 1+$ LTV + Age + Type
Estimated coefficients:

Estimate	SE	tStat	pValue
0.058257	0.027265	2.1367	0.032737
0.20126	0.031354	6.4189	1.6932e-10
-0.095407	0.0072653	-13.132	0
0.10208	0.018058	5.6531	1.7915e-08
0.29288	0.0057036	51.35	0

Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1521
Number of right-censored observations: 25
Log-likelihood: -698.383
Tobit models predict using the unconditional expected value of the response, given the predictor values. For more information, see "Loss Given Default Tobit Models" on page 6-694.

```
dataLGDPredicted.Tobit = predict(mdlTobit,data(TestInd,:));
disp(head(dataLGDPredicted))
\begin{tabular}{rrrrrr} 
Observed & & GroupMeans & & Regression &
\end{tabular} Tobit
```

0.063182	0.25977	0.18774	0.32043
0	0.066068	0.0010877	0.093354
0.10904	0.16489	0.011213	0.16718
0	0.16489	0.041992	0.22382
0.89463	0.16489	0.052947	0.23695
0	0.021776	$3.7188 e-06$	0.010234

The Model Comparison on page 4-106 section at the end of this example has a more detailed comparison of all models that includes visualizations and prediction error with different metrics. The histogram of the predicted LGD values for the Tobit model does not have a U-shaped distribution, but it ranks well compared to other models.

Beta Regression Model

In a Beta regression model for LGD, the model does not directly predict a single LGD value, it predicts an entire distribution of LGDs (given the predictor values). From that distribution, a value must be determined to predict a single LGD value for a loan, typically the mean of that distribution.

Technically, given the predictor values X_{1}, X_{2}, \ldots and model coefficients b and c, you can:

- Compute values for the parameters μ (mean) and ϕ (precision, sometimes called the "sample size" of the beta distribution with the following formulas:

$$
\begin{aligned}
\mu & =\frac{1}{1+\exp \left(-b_{0}-b_{1} X_{1}-\cdots\right)} \\
\phi & =\exp \left(c_{0}+c_{1} X_{1}+\cdots\right)
\end{aligned}
$$

- Compute values for α and β, the typical parameters of the beta distribution, with these formulas:

$$
\begin{aligned}
& \alpha=\mu \phi \\
& \beta=(1-\mu) \phi
\end{aligned}
$$

- Evaluate the density function of the corresponding beta distribution for a given level of LGD, where Γ is the gamma function; see [1 on page 4-111] for details:

$$
f_{\text {beta }}(\mathrm{LGD} \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \mathrm{LGD}^{\alpha-1}(1-\mathrm{LGD})^{\beta-1}
$$

For fitting the model, once the density function is evaluated, you can update the likelihood function and find the optimal coefficients with a maximum likelihood approach.

For prediction, once the model coefficients are fit, a prediction can be made, typically using the mean of the distribution, that is, the μ parameter, as the predicted LGD value.

Fit a Beta regression model using the fitLGDModel function from Risk Management Toolbox ${ }^{\mathrm{TM}}$ using the training data. By default, a boundary tolerance of $1 e-5$ is applied for the LGD response data. For more information on Beta models, see Beta.

```
mdlBeta = fitLGDModel(data(TrainingInd,:),'beta','PredictorVars',{'LTV' 'Age' 'Type'},'ResponseV`
disp(mdlBeta)
    Beta with properties:
    BoundaryTolerance: 1.0000e-05
    ModelID: "Beta"
```

```
        Description: ""
    UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
    PredictorVars: ["LTV" "Age" "Type"]
            ResponseVar: "LGD"
disp(mdlBeta.UnderlyingModel)
Beta regression model:
    logit(LGD) ~ 1 mu + LTV mu + Age mu + Type mu
    log(LGD) ~ 1_phi + LTV_phi + Age_phi + Type_phi
Estimated coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -1.3772 & 0.13201 & -10.433 & 0 \\
\hline 0.60269 & 0.15087 & 3.9947 & 6.7023e-05 \\
\hline -0.47464 & 0.040264 & -11.788 & 0 \\
\hline 0.45372 & 0.085143 & 5.3289 & \(1.094 \mathrm{e}-07\) \\
\hline -0.16337 & 0.12591 & -1.2975 & 0.19462 \\
\hline 0.055892 & 0.14719 & 0.37973 & 0.70419 \\
\hline 0.22887 & 0.040335 & 5.6743 & 1.5863e-08 \\
\hline -0.14102 & 0.078155 & -1.8044 & 0.071311 \\
\hline
\end{tabular}
Number of observations: 2093
Log-likelihood: -5291.04
```

For prediction, recall that the beta regression links the predictors to an entire beta distribution. For example, suppose that a loan has an LTV of 0.7 and an Age of 1.1 years, and it is an investment property. The beta regression model gives us a prediction for the α and β parameters for this loan, and the model predicts that for this loan the range of possible LGD values follows the corresponding beta distribution.

```
Estimate = mdlBeta.UnderlyingModel.Coefficients.Estimate;
NumCols = mdlBeta.UnderlyingModel.NumCoefficients/2;
XExample = [1 0.7 1.1 1];
MuExample = 1/(1+exp(-XExample*Estimate(1:NumCols)));
NuExample = exp(XExample*Estimate(NumCols+1:end));
AlphaExample = MuExample*NuExample;
BetaExample = (1-MuExample)*NuExample;
xDomain = 0.01:0.01:0.99;
pBeta = betapdf(xDomain,AlphaExample,BetaExample);
plot(xDomain,pBeta)
title('Predicted Distribution, Single Loan')
xlabel('Possible LGD')
ylabel('Predicted Density')
```


The shape of the distribution has the U-shaped pattern of the data. However, this is a predicted distribution of LGD values for a single loan. This distribution can be very useful for simulation purposes. However, to predict an LGD value for this loan, a method is required that goes from an entire distribution to a single value.

One way to predict would be to randomly draw a value from the previous distribution. This would tend to give predicted values towards the ends of the unit interval, and the overall shape of the distribution for a data set would match the U-shaped patter of observed LGD values. However, even if the shape of the distribution looked correct, a random draw from the distribution does not work well for prediction purposes. Two points with the same predictor values would have two different predicted LGDs, which is counterintuitive. Moreover, the prediction error at the observation level could be large, since many loans with small observed LGDs could get random predictions of large LGDs, and vice versa.

To reduce the prediction error at the individual level, the expected value of the beta distribution is typically used to predict. The distribution of predicted values with this approach does not have the expected U-shaped pattern because the mean value tends to be away from the boundaries of the unit interval. However, by using the mean of the beta distribution, all observations with the same predictor values get the same predicted LGDs. Moreover, the mean may not be close to values that are on the ends of the distribution, but the average error might be smaller compared to the random draws from the previous approach.

Use predict with Beta models to predict using the mean of the beta distribution. Remember that the expected value of the distribution is the μ parameter, so the mean value prediction is straightforward.

```
dataLGDPredicted.Beta = predict(mdlBeta,data(TestInd,:));
disp(head(dataLGDPredicted))
\begin{tabular}{|c|c|c|c|c|}
\hline Observed & GroupMeans & Regression & Tobit & Beta \\
\hline 0.0064766 & 0.066068 & 0.00091169 & 0.087889 & 0.093695 \\
\hline 0.007947 & 0.12166 & 0.0036758 & 0.12432 & 0.14915 \\
\hline 0.063182 & 0.25977 & 0.18774 & 0.32043 & 0.35263 \\
\hline 0 & 0.066068 & 0.0010877 & 0.093354 & 0.096434 \\
\hline 0.10904 & 0.16489 & 0.011213 & 0.16718 & 0.18858 \\
\hline 0 & 0.16489 & 0.041992 & 0.22382 & 0.2595 \\
\hline 0.89463 & 0.16489 & 0.052947 & 0.23695 & 0.26767 \\
\hline 0 & 0.021776 & 3.7188e-06 & 0.010234 & 0.021315 \\
\hline
\end{tabular}
```

The Model Comparison on page 4-106 section at the end of this example has a more detailed comparison of all models that includes visualizations and prediction error metrics. In particular, the histogram of the predicted LGD values shows that the beta regression approach does not produce a U-shaped distribution. However, this approach does have good performance under the other metrics reported.

Two-Stage Model

Two-stage LGD models separate the case with no losses (LGD equal to 0) from the cases with actual losses (LGD greater than 0) and build two models. The stage 1 model is a classification model to predict whether the loan will have positive LGD. The stage 2 model a regression-type model to predict the actual LGD when the LGD is expected to be positive. The prediction is the expected value of the two combined models, which is the product of the probability of having a loss (stage 1 prediction) times the expected LGD value (stage 2 prediction).

In this example, a logistic regression model is used for the stage 1 . Stage two is a regression on a logit transformation of the positive LGD data, fitted using fitLGDModel. More sophisticated models can be used for stage 1 and stage 2 models, see for example [4 on page 4-112] or [6 on page 4-112]. Also, another extension is to explicitly handle the LGD = 1 boundary. The stage 1 model would produce probabilities of observing an LGD of 0 , an LGD of 1 , and an LGD value strictly between 0 and 1. The stage 2 model would predict LGD values when the LGD is expected to be strictly between 0 and 1.

Use fitglm to fit the stage 1 model using the training data. The response variable is an indicator with a value of 1 if the observed LGD is positive, and 0 if the observed LGD is zero.

```
IndLGDPositive = data.LGD>0;
data.LGDPositive = IndLGDPositive;
disp(head(data))
```

LTV	Age	Type	LGD	LTVDiscretized	AgeDiscretized	LGDTru
0.89101	0.39716	residential	0.032659	high	young	0.03
0.70176	2.0939	residential	0.43564	high	old	0.4
0.72078	2.7948	residential	0.0064766	high	old	0.006
0.37013	1.237	residential	0.007947	low	young	0.00
0.36492	2.5818	residential	0	low	old	
0.796	1.5957	residential	0.14572	high	young	0.1
0.60203	1.1599	residential	0.025688	high	young	0.02
0.92005	0.50253	investment	0.063182	high	young	0.06

```
mdll = fitglm(data(TrainingInd,:),"LGDPositive ~ 1 + LTV + Age + Type",'Distribution',"binomial"
disp(mdll)
Generalized linear regression model:
    logit(LGDPositive) ~ 1 + LTV + Age + Type
    Distribution = Binomial
Estimated Coefficients:
Estimate \(\quad\) SE \(\quad\) tStat \(\quad\) PValue
\begin{tabular}{lrrrr} 
(Intercept) & 1.3157 & 0.21193 & 6.2083 & \(5.3551 \mathrm{e}-10\) \\
LTV & 1.3159 & 0.25328 & 5.1954 & \(2.0433 \mathrm{e}-07\) \\
Age & -0.79597 & 0.053607 & -14.848 & \(7.1323 \mathrm{e}-50\) \\
Type_investment & 0.66784 & 0.17019 & 3.9241 & \(8.7051 \mathrm{e}-05\)
\end{tabular}
```

2093 observations, 2089 error degrees of freedom Dispersion: 1
Chi^2-statistic vs. constant model: 404, p-value $=2.68 \mathrm{e}-87$
A receiver operating characteristic (ROC) curve plot for the stage 1 model is commonly reported using test data, as well as the area under the ROC curve (AUROC or simply AUC).

PredictedProbLGDPositive = predict(mdll,data(TestInd,:));
$[x, y, \sim, A U C]=$ perfcurve(data.LGDPositive(TestInd), PredictedProbLGDPositive,1); plot (x,y)
title(sprintf('ROC Stage 1 Model (AUROC: \%g)',AUC))

Fit the stage 2 model with fitLGDModel using only the training data with a positive LGD. This is the same type of model used earlier in the Regression on page 4-100 section, however, this time it is fitted using only observations from the training data with positive LGDs.

```
dataLGDPositive = data(TrainingInd&IndLGDPositive,{'LTV','Age','Type','LGD'});
mdl2 = fitLGDModel(dataLGDPositive,'regression');
disp(mdl2.UnderlyingModel)
Compact linear regression model:
    LGD_logit ~ 1 + LTV + Age + Type
Estimated Coefficients:
\begin{tabular}{rrrrr} 
Estimate & \multicolumn{1}{c}{ SE } & \multicolumn{2}{c}{ tStat } &
\end{tabular} pValue
Number of observations: 1546, Error degrees of freedom: 1542
Root Mean Squared Error: 2.8
R-squared: 0.0521, Adjusted R-Squared: 0.0503
F-statistic vs. constant model: 28.3, p-value = 8.73e-18
```

Perform prediction on the test data using the combined models for stage 1 and stage 2 . The predicted LGD is the product of the probability of observing a positive LGD from the stage 1 model times the expected LGD value predicted by the stage 2 model. Recall that regression models fitted using fitLGDModel apply the inverse transformation during prediction, so the predicted value is a valid LGD value.

```
PredictedLGDPositive = predict(mdl2,data(TestInd,:));
```

\% PredictedProbLGDPositive is computed before the ROC curve above
\% Final LGD prediction is the product of stage 1 and stage 2 predictions
dataLGDPredicted.TwoStage = PredictedProbLGDPositive.*PredictedLGDPositive;
disp(head(dataLGDPredicted))

Observed	GroupMeans	Regression	Tobit	Beta	TwoStage
0.0064766	0.066068	0.00091169	0.087889	0.093695	0.020038
0.007947	0.12166	0.0036758	0.12432	0.14915	0.034025
0.063182	0.25977	0.18774	0.32043	0.35263	0.2388
0	0.066068	0.0010877	0.093354	0.096434	0.022818
0.10904	0.16489	0.011213	0.16718	0.18858	0.060072
0	0.16489	0.041992	0.22382	0.2595	0.097685
0.89463	0.16489	0.052947	0.23695	0.26767	0.11142
0	0.021776	3.7188e-06	0.010234	0.021315	0.0003689

The Model Comparison on page 4-106 section at the end of this example has a more detailed comparison of all models that includes visualizations and prediction error metrics. This approach also ranks well compared to other models and the histogram of the predicted LGD values shows high frequencies near 0 .

Model Comparison

To evaluate the performance of LGD models, different metrics are commonly used. One metric is the R -squared of the linear fit regressing the observed LGD values on the predicted values. A second metric is some correlation or rank order statistic; this example uses the Spearman correlation. For prediction error, root mean squared error (RMSE) is a common metric. Also, a simple metric sometimes reported is the difference between the mean LGD value in the data and the mean LGD value of the predictions.

The Regression, Tobit, and Beta models directly support these metrics with the modelCalibration function, including comparing against a reference model. For example, here is a report of these metrics for the regression model, passing the predictions of the simple nonparametric model as reference.

CalMeasure = modelCalibration(mdlRegression,data(TestInd,:),'DataID','Test','ReferenceLGD',dataL(disp(CalMeasure)

	RSquared	RMSE	Correlation	SampleMeanError
Regression, Test	0.070867	0.25988	0.42152	0.10759
Group Means, Test	0.041622	0.2406	0.33807	-0.0078124

A visualization is also directly supported with modelCalibrationPlot.
modelCalibrationPlot(mdlRegression, data(TestInd,:),'DataID', 'Test', 'ReferenceLGD',dataLGDPredict

In addition, Regression, Tobit and Beta models support model discrimination tools, with the modelDiscrimination and modelDiscriminationPlot functions. For model discrimination, the LGD data is discretized (high LGD vs. low LGD) and the ROC curve and the corresponding AUROC are computed in a standard way. For more information, see modelDiscrimination and modelDiscriminationPlot. For example, here is the ROC curve for the regression model, with the ROC curve of the nonparametric model as reference.
modelDiscriminationPlot(mdlRegression, data(TestInd,:),'DataID', 'Test', 'ReferenceLGD',dataLGDPred:
ROC Test

The rest of this model validation section works with the predicted LGD values from all the models to compute the metrics mentioned above (R-squared, Spearman correlation, RMSE and sample mean error). It also shows a scatter plot, a histogram, and a box plot to further analyze the performance of the models.

The four metrics are reported below, sorted by decreasing R-squared values.

```
ModelNames = dataLGDPredicted.Properties.VariableNames(2:end); % Remove 'Observed'
NumModels = length(ModelNames);
SampleMeanError = zeros(NumModels,1);
RSquared = zeros(NumModels,1);
Spearman = zeros(NumModels,1);
RMSE = zeros(NumModels,1);
lmAll = struct;
meanLGDTest = mean(dataLGDPredicted.Observed);
```

```
for ii=1:NumModels
    % R-squared, and store linear model fit for visualization section
    Formula = ['Observed ~ 1 + ' ModelNames{ii}];
    lmAll.(ModelNames{ii}) = fitlm(dataLGDPredicted,Formula);
    RSquared(ii) = lmAll.(ModelNames{ii}).Rsquared.Ordinary;
    % Spearman correlation
    Spearman(ii) = corr(dataLGDPredicted.Observed,dataLGDPredicted.(ModelNames{ii}),'type','Spea
    % Root mean square error
    RMSE(ii) = sqrt(mean((dataLGDPredicted.Observed-dataLGDPredicted.(ModelNames{ii})).^2));
    % Sample mean error
    SampleMeanError(ii) = meanLGDTest-mean(dataLGDPredicted.(ModelNames{ii}));
end
PerformanceMetrics = table(RSquared,Spearman,RMSE,SampleMeanError,'RowNames',ModelNames);
PerformanceMetrics = sortrows(PerformanceMetrics,'RSquared','descend');
disp(PerformanceMetrics)
\begin{tabular}{|c|c|c|c|c|}
\hline & RSquared & Spearman & RMSE & SampleMeanError \\
\hline TwoStage & 0.090814 & 0.41987 & 0.24197 & 0.060619 \\
\hline Tobit & 0.08527 & 0.42217 & 0.23712 & -0.034412 \\
\hline Beta & 0.080804 & 0.41557 & 0.24112 & -0.052396 \\
\hline Regression & 0.070867 & 0.42152 & 0.25988 & 0.10759 \\
\hline GroupMeans & 0.041622 & 0.33807 & 0.2406 & -0.0078124 \\
\hline
\end{tabular}
```

For the particular training vs. test partition used in this example, the two-stage model has the highest R-squared, although for other partitions, Tobit has the highest R-squared value. Even though the group means approach does not have a high R-squared value, it typically has the smallest sample mean error (mean of predicted LGD values minus mean LGD in the test data). The group means are also competitive for the RMSE metric.

Report the model performance one approach at a time, including visualizations. Display the metrics for the selected model.

Plot the regression fit (observed LGD vs. predicted LGD), which is a common visual tool to assess the model performance. This is essentially the same visualization as the modelCalibrationPlot function shown above, but using the plot function of the fitted linear models. The R-squared reported above is the R-squared of this regression. The plot shows a significant amount of error for all models. A good predictive model would have the points located mostly along the diagonal, and not be scattered all over the unit square. However, the metrics above do show some differences in predictive performance for different models that can be important in practice.
plot(lmAll.(ModelSelected))
xlim([0 1])
ylim([0 1])

Compare the histograms of the predicted and observed LGD values. For some models, the distribution of predicted values shows high frequencies near zero, similar to the U shape of the observed LGD distribution. However, matching the shape of the distribution does not mean high accuracy at the level of individual predictions; some models show better prediction error even though their histogram does not have a U shape.

```
LGDEdges = 0:0.1:1; % Ten bins to better show the distribution shape
y1 = histcounts(dataLGDPredicted.(ModelSelected),LGDEdges);
y2 = histcounts(dataLGDPredicted.Observed,LGDEdges);
bar((LGDEdges(1:end-1)+LGDEdges(2:end))/2,[y1; y2])
title(strcat(ModelSelected,' Model'))
ylabel('Frequency')
xlabel('LGD')
legend('Predicted','Observed')
grid on
```


Show the box plot of the observed LGD values for different ranges of predicted LGD values. A coarser discretization (five bins only) smooths some noise out and better summarizes the underlying relationship. Ideally, the median (red horizontal line in the middle) should have a monotonic trend and be clearly different from one level to the next. Tall boxes also mean that there is a significant amount of error around the predicted values, which in some cases may be due to very few observations in that level. For a good predictive model, the boxes should be short and be located near the diagonal as you move from one level to the next.

```
LGDEdges = linspace(min(dataLGDPredicted.(ModelSelected)),max(dataLGDPredicted.(ModelSelected)),
LGDDiscretized = discretize(dataLGDPredicted.(ModelSelected),LGDEdges,'Categorical',string(LGDEd
boxplot(dataLGDPredicted.Observed,LGDDiscretized)
ylim([0 1])
title(strcat(ModelSelected,' Model'))
xlabel('Predicted LGD, Discretized')
ylabel('Observed LGD')
```


Summary

This example shows multiple approaches for LGD modeling and prediction. The Regression, Tobit, and Beta models (including the regression model of the second stage in the two-stage model) are fitted using the fitLGDModel function from Risk Management Toolbox.

The workflow in this example can be adapted to further analyze the models discussed here or to implement and validate other modeling approaches. This example can be extended to perform a more thorough comparison of LGD models (see for example [3 on page 4-112] and [4 on page 4-112]).

The example can also be extended to perform a cross-validation analysis to either benchmark alternative models or to fine-tune hyperparameters. For example, better cut off points for the group means could be selected using cross-validation, or alternative transformations of the LGD response values (logit, probit) could be benchmarked to select the one with the best performance. This example can also be a starting point to perform a backtesting analysis using out-of-time data; see for example [5 on page 4-112].

References

[1] Baesens, B., D. Rosch, and H. Scheule. Credit Risk Analytics. Wiley, 2016.
[2] Johnston Ross, E., and L. Shibut. "What Drives Loss Given Default? Evidence from Commercial Real Estate Loans at Failed Banks." Federal Deposit Insurance Corporation, Center for Financial Research, Working Paper 2015-03, March 2015.
[3] Li, P., X. Zhang, and X. Zhao. "Modeling Loss Given Default. "Federal Deposit Insurance Corporation, Center for Financial Research, Working Paper 2018-03, July 2018.
[4] Loterman, G., I. Brown, D. Martens, C. Mues, and B. Baesens. "Benchmarking Regression Algorithms for Loss Given Default Modeling." International Journal of Forecasting. Vol. 28, No.1, pp. 161-170, 2012.
[5] Loterman, G., M. Debruyne, K. Vanden Branden, T. Van Gestel, and C. Mues. "A Proposed Framework for Backtesting Loss Given Default Models." Journal of Risk Model Validation. Vol. 8, No. 1, pp. 69-90, March 2014.
[6] Tanoue, Y., and S. Yamashita. "Loss Given Default Estimation: A Two-Stage Model with Classification Tree-Based Boosting and Support Vector Logistic Regression." Journal of Risk. Vol. 21 No. 4, pp. 19-37, 2019.

Compare Logistic Model for Lifetime PD to Champion Model

This example shows how to compare a new Logistic model for lifetime PD against a "champion" model.

Load Data

Load the portfolio data, which includes loan and macro information.


```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```


Fit Logistic Model

For this example, fit a new Logistic model using only score group information but no age information. First, you can validate this model in a standalone fashion. For more information, see "Basic Lifetime PD Model Validation" on page 4-129.

Age information is important in this data set. The new model does not perform as well as the champion model (which includes age, score group, and macro vars).

Fit a new Logistic model using fitLifetimePDModel.

```
ModelType = "logistic";
pdModel = fitLifetimePDModel(data(TrainDataInd,:),ModelType,...
    'ModelID','LogisticNoAge',...
    'IDVar','ID',...
    'LoanVars','ScoreGroup',...
    'MacroVars',{'GDP','Market'},...
    'ResponseVar','Default');
disp(pdModel)
```

```
Logistic with properties:
            ModelID: "LogisticNoAge"
    Description: ""
UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
            IDVar: "ID"
            AgeVar: ""
            LoanVars: "ScoreGroup"
    MacroVars: ["GDP" "Market"]
    ResponseVar: "Default"
```


Compare Performance of the Logistic Model to Champion Model

To compare the new Logistic model to a champion model, you need access to the predictions of the champion model. The champion model might even have different predictors, so the mapping between the data being used and the exact inputs of the champion model might require an intermediate preprocessing step. This example assumes that you have a black-box tool to get the predictions from the champion model.

Compare the model performance for both models using modelDiscrimination.

```
DataSetChoice = Testing - ;
if DataSetChoice=="Training"
    Ind = TrainDataInd;
else
    Ind = TestDataInd;
end
ChampionPD = getChampionModelPDs(data(Ind,:));
[DiscMeasure,DiscData] = modelDiscrimination(pdModel,data(Ind,:),'ShowDetails',true,'DataID',Dat
    'ReferencePD',ChampionPD, 'ReferenceID', "Champion");
disp(DiscMeasure)
```

	AUROC	Segment	SegmentCount
LogisticNoAge, Testing	0.66503	"all_data"	$2.5863 e+05$
Champion, Testing	0.70018	"all_data"	$2.5863 e+05$

```
disp(head(DiscData))
```

ModelID
"LogisticNoAge"
"LogisticNoAge" 0.04673
"LogisticNoAge" 0.064656
"LogisticNoAge" 0.10982
"LogisticNoAge" 0.14421
"LogisticNoAge"
"LogisticNoAge" 0.23558
"LogisticNoAge"
disp(tail(DiscData))
ModelID
0.19237

X
0.27979

X

Y
T
0.090978
0.149220 .022711
0.227640 .020553
0.3110 .018483
$0.41454 \quad 0.01722$
$0.43738 \quad 0.014125$
$0.52037 \quad 0.012812$
0.02287
0.02287
\qquad
\qquad
Y
T
\qquad
\qquad
\qquad
\qquad

"Champion"	0.88743	0.98021	0.0032242
"Champion"	0.90293	0.98477	0.0025583
"Champion"	0.91884	0.98896	0.0023801
"Champion"	0.93303	0.99239	0.0018756
"Champion"	0.94995	0.99391	0.0017711
"Champion"	0.96705	0.99695	0.0016436
"Champion"	0.98295	0.99886	0.0012847
"Champion"	1	1	0.00086887

Use modelDiscriminationPlot to plot the ROC.
modelDiscriminationPlot(pdModel, data(Ind, :), 'DataID', DataSetChoice, ...
'ReferencePD', ChampionPD, 'ReferenceID', "Champion");
ROC Testing
LogisticNoAge, AUROC $=\mathbf{0 . 6 6 5 0 3}$ Champion, AUROC $=0.70018$

[DiscMeasure,DiscData] = modelDiscrimination(pdModel,data(Ind,:),'ShowDetails',true,'SegmentBy',
'ReferencePD', ChampionPD, 'ReferenceID', "Champion");
disp(DiscMeasure)

	AUROC		Segment	

LogisticNoAge, YOB=4, Testing	0.62656	4	36418
Champion, YOB=4, Testing	0.66204	4	36418
LogisticNoAge, YOB=5, Testing	0.6205	5	35818
Champion, YOB=5, Testing	0.65439	5	35818
LogisticNoAge, YOB=6, Testing	0.61739	6	35384
Champion, YOB=6, Testing	0.63156	6	35384
LogisticNoAge, YOB=7, Testing	0.64016	7	24730
Champion, YOB=7, Testing	0.63117	7	24730
LogisticNoAge, YOB=8, Testing	0.63339	8	12764
Champion, YOB=8, Testing	0.63339	8	12764

disp(head(DiscData))

ModelID	YOB	X	Y	T
"LogisticNoAge"	1	0	0	0.022711
"LogisticNoAge"	1	0.12062	0.22401	0.022711
"LogisticNoAge"	1	0.23459	0.41435	0.018483
"LogisticNoAge"	1	0.33329	0.59151	0.01722
"LogisticNoAge"	1	0.45578	0.69107	0.01151
"LogisticNoAge"	1	0.5683	0.77452	0.009347
"LogisticNoAge"	1	0.67031	0.84919	0.0087028
"LogisticNoAge"	1	0.78943	0.9063	0.0064814

disp(tail(DiscData))

ModelID	YOB	X	Y	T
"LogisticNoAge"	8	0	0	0.014125
"LogisticNoAge"	8	0.31762	0.5625	0.014125
"LogisticNoAge"	8	0.65751	0.8125	0.0071273
"LogisticNoAge"	8	1	1	0.0040058
"Champion"	8	0	0	0.0040291
"Champion"	8	0.31762	0.5625	0.0040291
"Champion"	8	0.65751	0.8125	0.0017711
"Champion"	8	1	1	0.00086887

Compare Calibration Against Champion Model
Compare the calibration of the two models with modelCalibration.
GroupingVar = YOB \quad;
[CalMeasure,CalData] = modelCalibration(pdModel,data(Ind,:),GroupingVar,' DataID', DataSetChoice,. 'ReferencePD', ChampionPD, 'ReferenceID' , "Champion"); disp(CalMeasure)

| | RMSE |
| :--- | :--- | ---: |
| LogisticNoAge, grouped by YOB, Testing 0.0031021
 Champion, grouped by YOB, Testing 0.00046476
 disp(head(CalData))
 ModelID YOB PD | GroupCount |

"Observed"	1	0.017636	38728
"Observed"	2	0.013303	37812
"Observed"	3	0.010846	36973
"Observed"	4	0.010709	36418
"Observed"	5	0.0093528	35818
"Observed"	6	0.0060197	35384
"Observed"	7	0.0034776	24730
"Observed"	8	0.0012535	12764

disp(tail(CalData))				
ModelID	YOB	PD		GroupCount
"Champion"	1		0.017244	38728
"Champion"	2		0.012999	37812
"Champion"	3	0.011428	36973	
"Champion"	4	0.010693	36418	
"Champion"	5	0.0085574	35818	
"Champion"	6	0.005937	35384	
"Champion"	7	0.0035193	24730	
"Champion"	8	0.0021802	12764	

Use modelCalibrationPlot to visualize the model calibration.
modelCalibrationPlot(pdModel,data(Ind,:),GroupingVar,' DataID' ', DataSetChoice,...
'ReferencePD',ChampionPD, 'ReferenceID',"Champion");

[CalMeasure,CalData] = modelCalibration(pdModel,data(Ind, :), ["YOB", "ScoreGroup"],'DataID',DataSe 'ReferencePD', ChampionPD, 'ReferenceID', "Champion"); disp(CalMeasure)

Compare Two Models Under Development

You can also compare two new models under development.

```
pdModelTTC = fitLifetimePDModel(data(TrainDataInd,:),"probit",...
    'ModelID','ProbitTTC',...
    'AgeVar','YOB',...
    'IDVar','ID',...
    'LoanVars','ScoreGroup',...
```

```
    'ResponseVar','Default',...
    'Description',"TTC model, no macro variables, probit.");
disp(pdModelTTC)
```

 Probit with properties:
 ModelID: "ProbitTTC"
 Description: "TTC model, no macro variables, probit."
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ""
 ResponseVar: "Default"
 pdModelTTC.UnderlyingModel
ans =
Compact generalized linear regression model:
probit(Default) ~ 1 + ScoreGroup + YOB
Distribution = Binomial
Estimated Coefficients:

Estimate	SE		tStat	

388097 observations, 388093 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.7e+03, p-value = 0

Compare the calibrations.
[CalMeasureTTC,CalDataTTC] = modelCalibration(pdModelTTC,data(Ind,:), ["YOB","ScoreGroup"],'DataI 'ReferencePD', predict(pdModel,data(Ind,:)),'ReferenceID', pdModel.ModelID); disp(CalMeasureTTC)

				RMSE	
$\begin{aligned} & \text { Prob } \\ & \text { Logi } \end{aligned}$	tTTC, grouped ticNoAge, grou	YOB, ScoreG d by YOB, Sc	up, Testing Group, Testing	$\begin{aligned} & 0.0016726 \\ & 0.0036974 \end{aligned}$	
unstack	alDataTTC, 'PD'	odelID')			
ans $=24 \times 6$	table				
YOB	ScoreGroup	GroupCount	LogisticNoAge	Observed	ProbitTTC
1	High Risk	13084	0.019641	0.030877	0.028114
1	Medium Risk	12998	0.0099388	0.013541	0.014865
1	Low Risk	12646	0.0055911	0.0081449	0.0087364
2	High Risk	12567	0.019337	0.022838	0.023239
2	Medium Risk	12767	0.0098141	0.012376	0.012053

2	Low Risk	12478	0.0055194	0.0046482	0.0069786
3	High Risk	12067	0.020139	0.017651	0.019096
3	Medium Risk	12520	0.010179	0.0092652	0.0097145
3	Low Risk	12386	0.0057356	0.005813	0.0055406
4	High Risk	11798	0.019175	0.018562	0.015599
4	Medium Risk	12325	0.0096563	0.0094929	0.0077825
4	Low Risk	12295	0.0054292	0.004392	0.0043722
5	High Risk	11481	0.014806	0.016288	0.012666
5	Medium Risk	12120	0.007454	0.0080033	0.0061971
5	Low Risk	12217	0.0041822	0.0041745	0.0034292
6	High Risk	11250	0.012153	0.0096889	0.010223

Black-Box Champion Prediction Function

```
function PD = getChampionModelPDs(data)
m = load('LifetimeChampionModel.mat');
PD = predict(m.pdModel,data);
end
```


See Also

fitLifetimePDModel|predict|predictLifetime|modelDiscrimination | modelCalibration|modelCalibrationPlot|Logistic|Probit|Cox

Related Examples

- "Basic Lifetime PD Model Validation" on page 4-129
- "Expected Credit Loss Computation" on page 4-124
- "Compare Lifetime PD Models Using Cross-Validation" on page 4-121
- "Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
- "Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 475

Compare Lifetime PD Models Using Cross-Validation

This example shows how to compare three lifetime PD models using cross-validation.

Load Data

Load the portfolio data, which includes load and macro information. This is a simulated data set used for illustration purposes.

Cross Validation

Because the data is panel data, there are multiple rows for each customer. You set up cross validation partitions over the customer IDs, not over the rows of the data set. In this way, a customer can be in either a training set or a test set, but the rows corresponding to the same customer are not split between training and testing.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
NumFolds = 5;
rng('default'); % for reproducibility
c = cvpartition(nIDs,'KFold',NumFolds);
```

Compare Logistic, Probit, Cox lifetime PD models using the same variables.

```
CVModels = ["logistic";"probit";"cox"];
NumModels = length(CVModels);
AUROC = zeros(NumFolds,NumModels);
RMSE = zeros(NumFolds,NumModels);
for ii=1:NumFolds
    fprintf('Fitting models, fold %d\n',ii);
    % Get indices for ID partition
    TrainIDInd = training(c,ii);
    TestIDInd = test(c,ii);
    % Convert to row indices
    TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
```

```
    TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
    % For each model, fit with training data, measure with test data
    for jj=1:NumModels
    % Fit model with training data
    pdModel = fitLifetimePDModel(data(TrainDataInd,:),CVModels(jj),...
                'IDVar','ID','AgeVar','YOB','LoanVars','ScoreGroup',...
                'MacroVars',{'GDP','Market'},'ResponseVar','Default');
    % Measure discrimination on test data
    DiscMeasure = modelDiscrimination(pdModel,data(TestDataInd,:));
    AUROC(ii,jj) = DiscMeasure.AUROC;
    % Measure calibration on test data, grouping by YOB (age) and score group
    CalMeasure = modelCalibration(pdModel,data(TestDataInd,:),["YOB" "ScoreGroup"]);
    RMSE(ii,jj) = CalMeasure.RMSE;
    end
end
Fitting models, fold 1
Fitting models, fold 2
Fitting models, fold 3
Fitting models, fold 4
Fitting models, fold 5
```

Using the discrimination and accuracy measures for the different folds, you can compare the models. In this example, the metrics are displayed. You can also compare the mean AUROC or the mean RMSE by comparing the proportion of times a model is superior regarding discrimination or accuracy. The three models in this example are very comparable.

```
AUROCTable = array2table(AUROC,"RowNames",strcat("Fold ",string(1:NumFolds)),"VariableNames",str
AUROCTable=5\times3 table
    AUROC_logistic AUROC_probit AUROC_cox
\begin{tabular}{lrrr} 
Fold 1 & 0.69558 & 0.6957 & 0.69565 \\
Fold 2 & 0.70265 & 0.70335 & 0.70366 \\
Fold 3 & 0.69055 & 0.69037 & 0.69008 \\
Fold 4 & 0.70268 & 0.70232 & 0.70296 \\
Fold 5 & 0.68784 & 0.68781 & 0.68811
\end{tabular}
RMSETable = array2table(RMSE,"RowNames",strcat("Fold ",string(1:NumFolds)),"VariableNames",strca
RMSETable=5\times3 table
    RMSE_logistic RMSE_probit RMSE_cox
    Fold 1 0.0019412 0.0020972 0.0020048
    Fold 2 0.0011167 0.0011644 0.0011612
    Fold 3 0.0011536 0.0011802 0.0012766
    Fold 4 0.0010269 0.00097877 0.00099473
    Fold 5 0.0015965 0.001485 0.0015829
```


See Also

fitLifetimePDModel|predict|predictLifetime|modelDiscrimination| modelCalibration|modelCalibrationPlot|Logistic|Probit|Cox

Related Examples

- "Basic Lifetime PD Model Validation" on page 4-129
- "Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
- "Expected Credit Loss Computation" on page 4-124
- "Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
- "Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 475

Expected Credit Loss Computation

This example shows how to perform expected credit loss (ECL) computations with portfolioECL using simulated loan data, macro scenario data, and an existing lifetime probability of default (PD) model.

Load Data and Model

Load loan data ready for prediction, macro scenario data, and corresponding scenario probabilities.

disp(head(MultipleScenarios,10))				
ScenarioID	Year	GDP		Market
"Severe"		2020	-0.9	-5.5
"Severe"	2021	-0.5	-6.5	
"Severe"	2022		0.2	-1
"Severe"	2023		0.8	1.5
"Severe"	2024	1.4	4	
"Severe"	2025	1.8	6.5	
"Severe"	2026	1.8	6.5	
"Severe"	2027	1.8	6.5	
"Adverse"	2020	0.1	-0.5	
"Adverse"	2021	0.2	-2.5	

disp(ScenarioProbabilities)
Probability

Severe	0.1
Adverse	0.2
Baseline	0.3
Favorable	0.2
Excellent	0.2

load LifetimeChampionModel.mat disp(pdModel)

```
Probit with properties:
            ModelID: "Champion"
    Description: "A sample model used as champion model for illustration purposes."
    UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
            IDVar: "ID"
            AgeVar: "YOB"
        LoanVars: "ScoreGroup"
    MacroVars: ["GDP" "Market"]
    ResponseVar: "Default"
```


Visualize Lifetime PDs

For ECL computations, only the marginal PDs are required. However, first you can visualize the lifetime PDs.

```
CompanyIDChoice = 1304 - ;
CompanyID = str2double(CompanyIDChoice);
IndCompany = LoanData.ID == CompanyID;
Years = LoanData.Year(IndCompany);
NumYears = length(Years);
ScenarioID = unique(MultipleScenarios.ScenarioID,'stable');
NumScenarios = length(ScenarioID);
LifetimePD = zeros(NumYears,NumScenarios);
for ii=1:NumScenarios
    IndScenario = MultipleScenarios.ScenarioID==ScenarioID(ii);
    data = join(LoanData(IndCompany,:),MultipleScenarios(IndScenario,:));
    LifetimePD(:,ii) = predictLifetime(pdModel,data);
end
plot(Years,LifetimePD)
xticks(Years)
grid on
xlabel('Year')
ylabel('Lifetime PD')
title('Lifetime PD By Scenario')
legend(ScenarioID,'Location','best')
```


Compute ECL

The computation of ECL requires a marginal PD values, LGD values, and EAD values, effective interest rate, plus the scenarios and scenario probabilities.

Compute the lifetime ECL using the portfolioECL function. The inputs to this function are tables, where the first column is an ID variable that indicates which rows correspond to which loan. Because the projections cover multiple periods for each loan, and the remaining life of different loans may be different, the ID variable is an important input. For each ID, the credit projections must be provided, period-by-period, until the end of the life of each loan. Typically, the marginal PD has a multi-period and multi-scenario size. This example assumes constant LGD and EAD values. This means that the same LGD and EAD is used for all periods, and the LGD and EAD values are not sensitive to the scenarios. Hence, the marginal PD input has multiple rows and columns per ID, whereas the LGD and EAD inputs have one scalar value per ID. To offer flexibility for different input dimensions for marginal PD, LGD, and EAD inputs, these inputs are separated into three separate tables in the syntax of portfolioECL.

```
ScenarioID = unique(MultipleScenarios.ScenarioID,'stable');
NumScenarios = length(ScenarioID);
```

Predict marginal PD for each scenario. The predictLifetime function is called for the entire portfolio at once, and the marginal PDs for each scenario are stored as columns.

```
MarginalPD = zeros(height(LoanData),NumScenarios);
for ii=1:NumScenarios
    IndScenario = MultipleScenarios.ScenarioID==ScenarioID(ii);
```

```
    data = join(LoanData,MultipleScenarios(IndScenario,:));
    MarginalPD(:,ii) = predictLifetime(pdModel,data,'ProbabilityType','marginal');
end
Convert to the required table input format, with the ID column.
```

```
MarginalPDTable = array2table(MarginalPD);
```

MarginalPDTable = array2table(MarginalPD);
MarginalPDTable.Properties.VariableNames = ScenarioID;
MarginalPDTable.Properties.VariableNames = ScenarioID;
MarginalPDTable = addvars(MarginalPDTable,LoanData.ID,'Before',1,'NewVariableNames','ID');
MarginalPDTable = addvars(MarginalPDTable,LoanData.ID,'Before',1,'NewVariableNames','ID');
disp(MarginalPDTable)

```
disp(MarginalPDTable)
```

ID	Severe	Adverse	Baseline	Favorable	Excellent
1304	0.011316	0.0096361	0.0081783	0.006918	0.0058324
1304	0.0078277	0.0069482	0.0061554	0.0054425	0.0048028
1304	0.0048869	0.0044693	0.0040823	0.0037243	0.0033938
1304	0.0031017	0.0029321	0.0027698	0.0026147	0.0024668
1304	0.0019309	0.0018923	0.0018538	0.0018153	0.001777
1304	0.0012157	0.0012197	0.0012233	0.0012264	0.0012293
1304	0.00082053	0.00082322	0.00082562	0.00082775	0.00082964
2067	0.0022199	0.001832	0.0015067	0.001235	0.0010088
2067	0.0014464	0.0012534	0.0010841	0.00093599	0.00080662
2067	0.0008343	0.00074897	0.00067168	0.00060175	0.00053857
2067	0.00049107	0.00045839	0.00042769	0.00039887	0.00037183

The LGD and EAD table inputs are small tables with one row per ID.

```
UniqueIDs = unique(LoanData.ID,'stable');
NumIDs = length(UniqueIDs);
LGD = 0.55;
LGDTable = table(UniqueIDs, repmat(LGD,NumIDs,1),'VariableNames',{'ID','LGD'});
disp(LGDTable)
    ID LGD
1304 0.55
2067 0.55
EAD = 100000;
EADTable = table(UniqueIDs, repmat(EAD,NumIDs,1),'VariableNames',{'ID','EAD'});
disp(EADTable)
\begin{tabular}{ccc} 
ID & & EAD \\
\cline { 1 - 1 } & & \\
1304 & & \(1 e+05\) \\
2067 & & \(1 e+05\)
\end{tabular}
```

For simplicity, assume the same effective interest rate for both loans.
EffRate $=0.045$;
Call the portfolioECL function. The first output is the total ECL, or provisions, for the portfolio.
[totalECL, ECLByID, ECLByPeriod] = portfolioECL(MarginalPDTable, LGDTable, EADTable, 'InterestRa 'ScenarioNames', ScenarioID, 'ScenarioProbabilities',ScenarioProbabilities.Probability, 'IDVa

```
fprintf('Total portfolio lifetime ECL is: %.2f\n',totalECL)
Total portfolio lifetime ECL is: 1401.00
```

The second output, ECLByID, shows the ECL for each ID. The third output, ECLByPeriod, shows the ECL for each period, and each scenario. Use the dropdown to select an ID and display the corresponding ECL information.

CompanyIDChoice $=1304 \sim$ -						
CompanyID = str2double(CompanyIDChoice);						
disp(ECLByID(ECLByID.ID==CompanyID, :))						
ID	ECL					
1304	1217.3					
disp(ECLByPeriod(ECLByPeriod.ID==CompanyID, :))						
ID	TimePeriod	Severe	Adverse	Baseline	Favorable	Excellent
1304	1	595.58	507.16	430.44	364.11	306.97
1304	2	394.24	349.95	310.02	274.11	241.9
1304	3	235.53	215.4	196.75	179.5	163.57
1304	4	143.05	135.23	127.75	120.59	113.77
1304	5	85.219	83.517	81.816	80.118	78.429
1304	6	51.346	51.514	51.665	51.798	51.917
1304	7	33.162	33.271	33.368	33.454	33.531

For more information, see the "Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations" on page 4-195 example that shows a detailed workflow for ECL calculations, including the determination of macro scenarios, the use of lifetime PD, LGD and EAD models, and a visualization of credit projections and provisions for each ID to drill down to a loan level.

See Also

fitLifetimePDModel|predict|predictLifetime|modelDiscrimination| modelCalibration|modelCalibrationPlot|Logistic|Probit|Cox

Related Examples

- "Basic Lifetime PD Model Validation" on page 4-129
- "Compare Lifetime PD Models Using Cross-Validation" on page 4-121
- "Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
- "Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
- "Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 475

Basic Lifetime PD Model Validation

This example shows how to perform basic model validation on a lifetime probability of default (PD) model by viewing the fitted model, estimated coefficients, and p-values. For more information on model validation, see modelDiscrimination and modelCalibration.

Load Data

Load the portfolio data.

Fit Model and Review Model Goodness of Fit

Create training and test datasets to perform a basic model validation.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```

Fit the model using fitLifetimePDModel for a Logistic, Probit, or Cox model.

```
ModelType = probit - ;
pdModel = fitLifetimePDModel(data(TrainDataInd,:),ModelType,...
    'AgeVar','YOB',...
    'IDVar','ID',...
    'LoanVars','ScoreGroup',...
    'MacroVars',{'GDP','Market'},...
    'ResponseVar','Default');
disp(pdModel)
    Probit with properties:
    ModelID: "Probit"
```

```
    Description: ""
UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
            IDVar: "ID"
            AgeVar: "YOB"
            LoanVars: "ScoreGroup"
        MacroVars: ["GDP" "Market"]
ResponseVar: "Default"
```

Display the PD model and review the fit statistics, such as the p-values.

```
disp(pdModel.UnderlyingModel)
```

stimated Coefficients:	Estimate	SE	tStat	pValue
(Intercept)	-1.6267	0.03811	-42.685	0
ScoreGroup_Medium Risk	-0.26542	0.01419	-18.704	4.5503e-78
ScoreGroup_Low Risk	-0.46794	0.016364	-28.595	7.775e-180
YOB	-0.11421	0.0049724	-22.969	9.6208e-117
GDP	-0.041537	0.014807	-2.8052	0.0050291
Market	-0.0029609	0.0010618	-2.7885	0.0052954

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p -value $=0$
pdModel.UnderlyingModel.Coefficients
ans $=6 \times 4$ table

Estimate	SE	tStat	pValue
-1.6267	0.03811	-42.685	0
-0.26542	0.01419	-18.704	4.5503e-78
-0.46794	0.016364	-28.595	7.775e-180
-0.11421	0.0049724	-22.969	9.6208e-117
-0.041537	0.014807	-2.8052	0.0050291
-0.0029609	0.0010618	-2.7885	0.0052954

See Also

fitLifetimePDModel|predict|predictLifetime |modelDiscrimination | modelCalibration|modelCalibrationPlot|Logistic| Probit|Cox

Related Examples

- "Compare Lifetime PD Models Using Cross-Validation" on page 4-121
- "Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113

Basic Loss Given Default Model Validation

This example shows how to perform basic model validation on a loss given default (LGD) model by viewing the fitted model, estimated coefficients, and p-values. For more information on model validation, see modelDiscrimination and modelCalibration.

Load Data

Load the portfolio data.

load LGDData.mat head(data)			
LTV	Age	Type	LGD
0.89101	0.39716	residential	0.032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0.025688
0.92005	0.50253	investment	0.063182

Fit Model and Review Model Goodness of Fit

Create training and test datasets to perform a basic model validation.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```

Fit the model using fitLifetimePDModel.

```
ModelType = regression *;
lgdModel = fitLGDModel(data(TrainingInd,:),ModelType,...
    'ModelID','Example',...
        'Description','Example LGD regression model.',...
        'PredictorVars',{'LTV' 'Age' 'Type'},...
        ResponseVar','LGD');
disp(lgdModel)
    Regression with properties:
    ResponseTransform: "logit"
    BoundaryTolerance: 1.0000e-05
                            ModelID: "Example"
            Description: "Example LGD regression model."
            UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
            PredictorVars: ["LTV" "Age" "Type"]
                    ResponseVar: "LGD"
```

Display the underlying statistical model. The displayed information contains the coefficient estimates, as well as their standard errors, t-statistics and p-values. The underlying statistical model also shows the number of observations and other fit metrics.

```
lgdModel.UnderlyingModel
ans =
Compact linear regression model:
    LGD_logit ~ 1 + LTV + Age + Type
Estimated Coefficients:
            Estimate
\begin{tabular}{lrrrr} 
(Intercept) & -4.7549 & 0.36041 & -13.193 & \(3.0997 \mathrm{e}-38\) \\
LTV & 2.8565 & 0.41777 & 6.8377 & \(1.0531 \mathrm{e}-11\) \\
Age & -1.5397 & 0.085716 & -17.963 & \(3.3172 \mathrm{e}-67\) \\
Type_investment & 1.4358 & 0.2475 & 5.8012 & \(7.587 \mathrm{e}-09\)
\end{tabular}
Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value = 2.42e-104
```

In the case of the underlying statistical model for a Regression model, the underlying model is returned as a compact linear model object. The compact version of the underlying Regression model is an instance of the classreg.regr. CompactLinearModel class. For more information, see fitlm and CompactLinearModel.

See Also

fitLGDModel|predict|modelDiscrimination | modelDiscriminationPlot | modelCalibration|modelCalibartionPlot|Regression|Tobit

Related Examples

- "Model Loss Given Default" on page 4-90
- "Compare Tobit LGD Model to Benchmark Model" on page 4-133
- "Compare Loss Given Default Models Using Cross-Validation" on page 4-140

More About

- "Overview of Loss Given Default Models" on page 1-31

Compare Tobit LGD Model to Benchmark Model

This example shows how to compare a Tobit model for loss given default (LGD) against a benchmark model.
Load Data
Load the LGD data.
load LGDData.mat
lisp(head(data))
LTV

dis Age

Split the data into training and test sets.

```
NumObs = height(data);
rng('default'); % For reproducibility
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


Fit Tobit Model

Fit a Tobit LGD model with training data. By default, the last column of the data is used as a response variable and all other columns are used as predictor variables.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'tobit');
disp(lgdModel)
    Tobit with properties:
        CensoringSide: "both"
            LeftLimit: 0
            RightLimit: 1
            ModelID: "Tobit"
            Description: ""
    UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
            PredictorVars: ["LTV" "Age" "Type"]
            ResponseVar: "LGD"
disp(lgdModel.UnderlyingModel)
Tobit regression model:
    LGD = max(0,min(Y*,1))
    Y* ~ 1 + LTV + Age + Type
```

Estimated coefficients:

Estimate	SE	tStat	pValue
0.058257	0. 027265	2.1367	0.032737
0.20126	0.031354	6.4189	1.6932e-10
-0.095407	0.0072653	-13.132	0
0.10208	0.018058	5.6531	1.7915e-08
0.29288	0.0057036	51.35	0

Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1521
Number of right-censored observations: 25
Log-likelihood: -698.383
You can now use this model for prediction or validation. For example, use predict to predict LGD on test data and visualize the predictions with a histogram.
lgdPredTobit $=$ predict(lgdModel, data(TestInd,:)); histogram(lgdPredTobit)
title('Predicted LGD, Tobit Model')
xlabel('Predicted LGD')
ylabel('Frequency')

Predicted LGD, Tobit Model

Create Benchmark Model

In this example, the benchmark model is a lookup table model that segments the data into groups and assigns the mean LGD of the group to all group members. In practice, this common benchmarking approach is easy to understand and use.

The groups in this example are defined using the three predictors. LTV is discretized into low and high levels. Age is discretized into young and old loans. Type already has two levels, namely, residential and investment. The groups are all the combinations of these values (for example, low LTV, young loan, residential, and so on). The number of levels and the specific cutoff points are only for illustration purposes. The benchmark model uses the same predictors as the Tobit model in this example, but you can use other variables to define the groups. In fact, the benchmark model could be a black-box model as long as the predicted LGD values are available for the same customers as in this data set.

```
% Add the discretized variables as new colums in the table.
% Discretize the LTV.
LTVEdges = [0 0.5 max(data.LTV)];
data.LTVDiscretized = discretize(data.LTV,LTVEdges,'Categorical',{'low','high'});
% Discretize the Age.
AgeEdges = [0 2 max(data.Age)];
data.AgeDiscretized = discretize(data.Age,AgeEdges,'Categorical',{'young','old'});
% Type is already a categorical variable with two levels.
```

Finding the group means on the training data is effectively the fitting of the model. Note that the group counts are small for some groups. Adding many groups comes with reduced group counts for some groups and more unstable estimates.

```
% Find the group means on training data.
gs = groupsummary(data(TrainingInd,:),{'LTVDiscretized','AgeDiscretized','Type'},'mean','LGD');
disp(gs)
\begin{tabular}{|c|c|c|c|c|}
\hline LTVDiscretized & AgeDiscretized & Type & GroupCount & mean_LGD \\
\hline low & young & residential & 163 & 0.12166 \\
\hline low & young & investment & 26 & 0.087331 \\
\hline low & old & residential & 175 & 0.021776 \\
\hline low & old & investment & 23 & 0.16379 \\
\hline high & young & residential & 1134 & 0.16489 \\
\hline high & young & investment & 257 & 0.25977 \\
\hline high & old & residential & 265 & 0.066068 \\
\hline high & old & investment & 50 & 0.11779 \\
\hline
\end{tabular}
```

To predict an LGD for a new observation, you need to find its group and then assign the group mean as the predicted LGD. Use the findgroups function, which takes the discretized variables as input. For a completely new data point, the LTV and Age information needs to be discretized first by using the discretize function before you use the findgroups function.

```
LGDGroup = findgroups(data(TestInd,{'LTVDiscretized' 'AgeDiscretized' 'Type'}));
lgdPredMeansTest = gs.mean_LGD(LGDGroup);
```

There are eight unique values in the predictions, as expected, one for each group.

```
disp(unique(lgdPredMeansTest))
```

0.0218
0.0661

$$
0.0873
$$

0.1178
0.1217
0.1638
0.1649
0.2598

The histogram of the predictions also shows the discrete nature of the model.

```
histogram(lgdPredMeansTest)
title('Predicted LGD, Tobit Model')
xlabel('Predicted LGD')
ylabel('Frequency')
```


To have all the predictions available for both training and test sets to make comparisons, add a column with LGD predictions for the entire data set.

LGDGroup = findgroups(data(:,\{'LTVDiscretized' 'AgeDiscretized' 'Type'\})); data.lgdPredMeans = gs.mean_LGD(LGDGroup);

Compare Performance

Compare the performance of the Tobit model and the benchmark model using the validation functions in the Tobit model.

Start with the area under the receiver operating characteristic (ROC) curve, or AUROC metric, using modelDiscrimination.

```
DataSetChoice = Testing * ;
if DataSetChoice=="Training"
    Ind = TrainingInd;
else
    Ind = TestInd;
end
DiscMeasure = modelDiscrimination(lgdModel,data(Ind,:),'ShowDetails',true,'ReferenceLGD',data.lg
DiscMeasure=2×3 table
    AUROC Segment SegmentCount
    Tobit 0.67986 "all_data" 1394
    Group Means 0.61251 "all_data" 1394
```

Use modelDiscriminationPlot to visualize the ROC curve. modelDiscriminationPlot(lgdModel, data(Ind,:), 'ReferenceLGD',data.lgdPredMeans(Ind), 'ReferenceID'

ROC
Tobit, AUROC $=0.67986$ Group Means, AUROC $=0.61251$

Use modelCalibration to compute the calibration metrics.
CalMeasure = modelCalibration(lgdModel,data(Ind,:),'ReferenceLGD',data.lgdPredMeans(Ind),'Refere) CalMeasure=2×4 table
RSquared RMSE Correlation SampleMeanError

Tobit	0.08527	0.23712	0.29201	-0.034412
Group Means	0.041622	0.2406	0.20401	-0.0078124

Use modelCalibrationPlot to visualize the scatter plot of the observed LGD values against predicted LGD values.
modelCalibrationPlot(lgdModel, data(Ind,:), 'ReferenceLGD', data.lgdPredMeans(Ind), 'ReferenceID', 'G
Scatter
Tobit, R-Squared: 0.08527
Group Means, R-Squared: 0.041622

Then you can use modelCalibrationPlot to visualize the scatter plot of the predicted LGD values against the LTV values.
modelCalibrationPlot(lgdModel,data(Ind,:),'ReferenceLGD',data.lgdPredMeans(Ind), 'ReferenceID','G

Scatter

Tobit, R-Squared: $\mathbf{0 . 3 3 0 2 7}$ Group Means, R-Squared: 0.16852

See Also

fitLGDModel|predict|modelDiscrimination | modelDiscriminationPlot | modelCalibration|modelCalibartionPlot|Regression|Tobit

Related Examples

- "Model Loss Given Default" on page 4-90
- "Basic Loss Given Default Model Validation" on page 4-131
- "Compare Loss Given Default Models Using Cross-Validation" on page 4-140

More About

- "Overview of Loss Given Default Models" on page 1-31

Compare Loss Given Default Models Using Cross-Validation

This example shows how to compare loss given default (LGD) models using cross-validation.

Load Data

Load the LGD data. This data set is simulated for illustration purposes.

```
load LGDData.mat
disp(head(data))
```

LTV	Age	Type	LGD
0.89101	0.39716	residential	0.032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0. 025688
0.92005	0.50253	investment	0.063182

The histogram of LGD values for this data set shows a significant number of values at or near 0 (full recovery) and only a relatively small fraction of values at or near 1 (total loss).
histogram(data.LGD)
xlabel('LGD')
ylabel('Frequency')
title('LGD Histogram')

Cross-Validate Models

Compare three Tobit LGD models by varying the censoring side choice between the three supported options ("both", "left", and "right"). For more information, see the 'CensoringSide' namevalue argument for a Tobit object.

Use the cvpartition function to generate random partitions on the data for a k-fold crossvalidation. For each partition, fit a Tobit model on the training data with each of the censoring side options and then obtain two validation metrics using the test data. This example uses the validation metrics for area under the receiver operating characteristic curve (AUROC) and the R-squared metric. For more information, see modelDiscrimination and modelCalibration.

```
NumFolds = 10;
rng('default'); % For reproducibility
c = cvpartition(height(data),'KFold',NumFolds);
ModelCensoringSide = ["both" "left" "right"];
NumModels = length(ModelCensoringSide);
AUROC = zeros(NumFolds,NumModels);
RSquared = zeros(NumFolds,NumModels);
for ii=1:NumFolds
    fprintf('Fitting models, fold %d\n',ii);
```

```
    % Get the partition indices.
    TrainInd = training(c,ii);
    TestInd = test(c,ii);
    % For each model, fit with training data, measure with test data.
    for jj=1:NumModels
    % Fit the model with training data.
    lgdModel = fitLGDModel(data(TrainInd,:),'Tobit','CensoringSide',ModelCensoringSide(jj));
    % Measure the model discrimination on test data.
    DiscMeasure = modelDiscrimination(lgdModel,data(TestInd,:));
    AUROC(ii,jj) = DiscMeasure.AUROC;
    % Measure the model calibration on test data.
    CalMeasure = modelCalibration(lgdModel,data(TestInd,:));
    RSquared(ii,jj) = CalMeasure.RSquared;
end
end
Fitting models, fold 1
Fitting models, fold 2
Fitting models, fold 3
Fitting models, fold 4
Fitting models, fold 5
Fitting models, fold 6
Fitting models, fold 7
Fitting models, fold 8
Fitting models, fold 9
Fitting models, fold 10
```

Visualize the results for a selected metric for the three models side-by-side.

```
SelectedMetric = R-squared - ;
if SelectedMetric=="AUROC"
    PlotData = AUROC;
else
    PlotData = RSquared;
end
bar(1:NumFolds,PlotData)
xlabel('Fold')
ylabel(SelectedMetric)
title('Validation Metric by Fold')
legend(ModelCensoringSide,'Location','southeast')
grid on
```


The AUROC values for the three models are comparable across the folds, indicating that the three versions of the model effectively separate the low LGD and high LGD cases.

Regarding accuracy, the R-squared metric is low for the three models. However, the "right" censored model shows a lower R-squared metric than the other two models across the folds. The observed LGD data has many observations at or near 0 (total recovery). To improve the accuracy of the models, include an explicit limit at 0 when censoring on the "left" and on "both" sides.

See Also

fitLGDModel|predict|modelDiscrimination | modelDiscriminationPlot | modelCalibration|modelCalibartionPlot|Regression|Tobit

Related Examples

- "Model Loss Given Default" on page 4-90
- "Basic Loss Given Default Model Validation" on page 4-131
- "Compare Tobit LGD Model to Benchmark Model" on page 4-133

More About

- "Overview of Loss Given Default Models" on page 1-31

Compare Model Discrimination and Model Calibration to Validate of Probability of Default

This example shows some differences between discrimination and calibration metrics for the validation of probability of default (PD) models.

The lifetime PD models in Risk Management Toolbox ${ }^{\mathrm{TM}}$ (see fitLifetimePDModel) support the area under the receiver operating characteristic curve (AUROC) as a discrimination (rank-ordering performance) metric and the root mean squared error (RMSE) as a calibration (predictive ability) metric. The AUROC metric measures ranking, whereas the RMSE measures the precision of the predicted values. The example shows that it is possible to have:

- Same discrimination, different calibration
- Same calibration, different discrimination

Therefore, it is important to look at both discrimination and calibration as part of a model validation framework.

There are several different metrics for PD model discrimination and model calibration. For more information, see References on page 4-149. Different metrics may have different characteristics and the behavior demonstrated in this example does not necessarily generalize to other discrimination and calibration metrics. The goal of this example is to emphasize the importance of using both discrimination and calibration metrics to assess model predictions.

Load and Fit Data

Load credit data and fit a Logistic lifetime PD model using fitLifetimePDModel.

```
load RetailCreditPanelData.mat
data = join(data,dataMacro);
pdModel = fitLifetimePDModel(data,"logistic",...
    'AgeVar','YOB',...
    'IDVar','ID',...
    'LoanVars','ScoreGroup',...
    'MacroVars',{'GDP','Market'},...
    'ResponseVar','Default');
disp(pdModel)
    Logistic with properties:
                ModelID: "Logistic"
            Description:
        UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
                        IDVar: "ID"
                    AgeVar: "YOB"
                    LoanVars: "ScoreGroup"
                        MacroVars: ["GDP" "Market"]
            ResponseVar: "Default"
disp(pdModel.UnderlyingModel)
Compact generalized linear regression model:
    logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
    Distribution = Binomial
```

Estimated Coefficients:

| Estimate | SE | | tStat | |
| ---: | ---: | ---: | ---: | :--- | pValue

646724 observations, 646718 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 3.2e+03, p-value = 0

Same Discrimination, Different Calibration

Discrimination measures only ranking of customers, that is, whether riskier customers get assigned higher PDs than less risky customers. Therefore, if you scale the probabilities or apply another monotonic transformation that results in valid probabilities, the AUROC measure does not change.

For example, multiply the predicted PDs by a factor of 2, which preserves the ranking (where the worse customers have higher PDs). To compare the results, pass the modified PDs as reference PDs.

```
PD0 = predict(pdModel,data);
PD1 = 2*PD0;
disp([PD0(1:10) PD1(1:10)])
    0.0090 0.0181
    0.0052 0.0104
    0.0044 0.0088
    0.0038 0.0076
    0.0035 0.0071
    0.0036 0.0072
    0.0019 0.0037
    0.0011 0.0022
    0.0164 0.0328
    0.0094 0.0189
```

Verify that the discrimination measure is not affected using modelDiscriminationPlot.
modelDiscriminationPlot(pdModel,data,'DataID','in-sample','ReferencePD',PD1,'ReferenceID','Scaled

Use modelCalibrationPlot to visualize the observed default rates compared to the predicted probabilities of default (PD). The calibration, however, is severely affected by the change. The modified PDs are far away from the observed default rates and the RMSE for the modified PDs is orders of magnitude higher than the RMSE of the original PDs.
modelCalibrationPlot(pdModel, data, 'Year',"DataID", 'in-sample', 'ReferencePD', PD1, "ReferenceID", 'S

Same Calibration, Different Discrimination

On the other hand, you can also modify the predicted PDs to keep the calibration metric unchanged and worsen the discrimination metric.

One way to do this is to permute the PDs within a group. By doing this, the ranking within each group is affected, but the average PD for the group is unchanged.

```
rng('default'); % for reproducibility
PD1 = PD0;
for Year=1997:2004
    Ind = data.Year==Year;
    PDYear = PD0(Ind);
    PD1(Ind) = PDYear(randperm(length(PDYear)));
end
```

Verify that the discrimination measure is worse for the modified PDs using modelDiscriminationPlot.
modelDiscriminationPlot(pdModel, data, 'DataID','in-sample','ReferencePD', PD1, 'ReferenceID','Permu

The modelCalibrationPlot function measures model calibration for PDs on grouped data. As long as the average PD for the group is unchanged, the reported calibration using the same grouping variable does not change.
modelCalibrationPlot(pdModel, data, 'Year', "DataID", 'in-sample', 'ReferencePD', PD1, "ReferenceID", 'P

This example shows that discrimination and calibration metrics do not necessarily go hand in hand. Different predictions may have similar RMSE but much different AUROC, or similar AUROC but much different RMSE. Therefore, it is important to look at both discrimination and calibration as part of a model validation framework.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Basel Committee on Banking Supervision, "Studies on the Validation of Internal Rating Systems", Working Paper No. 14, 2005.

See Also

Probit| Logistic|Cox|modelCalibration|modelCalibrationPlot | modelDiscriminationPlot|modelDiscrimination|predictLifetime|predict| fitLifetimePDModel

Related Examples

- "Basic Lifetime PD Model Validation" on page 4-129
- "Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
- "Compare Lifetime PD Models Using Cross-Validation" on page 4-121
- "Expected Credit Loss Computation" on page 4-124
- "Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 475

More About

- "Overview of Lifetime Probability of Default Models" on page 1-25

Compare Results for Regression and Tobit EAD Models

This example shows how to use fitEADModel to create a Regression model and a Tobit model for exposure at default (EAD) and then compare the results.

Load EAD Data

Load the EAD data.

```
load EADData.mat
head(EADData)
```

UtilizationRate	Age		Marriage		Limit		Drawn

```
rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


Select Model Type

Select a Regression and a Tobit model type.

```
ModelTypeR \(=\) Regression \(\quad\);
ModelTypeT \(=\) Tobit \(\quad\);
```


Select Conversion Measure

Select the conversion measure for the EAD response values.
ConversionMeasure $=$ LCF ;

Create Regression EAD Model

Use fitEADModel to create a Regression model using the EADData.
eadModelRegression = fitEADModel(EADData,ModelTypeR,'PredictorVars',\{'UtilizationRate','Age','Ma
'ConversionMeasure', ConversionMeasure, 'DrawnVar', 'Drawn', 'LimitVar', 'Limit', 'ResponseVar', 'E/ disp(eadModelRegression);

Regression with properties:
ConversionTransform: "logit" BoundaryTolerance: 1.0000e-07

```
            ModelID: "Regression"
        Description:
    UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
    PredictorVars: ["UtilizationRate" "Age" "Marriage"]
        ResponseVar: "EAD"
            LimitVar: "Limit"
            DrawnVar: "Drawn"
ConversionMeasure: "lcf"
```

Display the underlying model. The underlying Regression model's response variable is the logit transformation of the EAD response data. Use the 'BoundaryTolerance', 'LimitVar', and 'DrawnVar' name-value arguments to modify the transformation.

```Compact linear regression model: EAD_lcf_logit ~ 1 + UtilizationRate + Age + Marriage```				
Estimated Coefficients:	Estimate	SE	tStat	pValue
(Intercept)	-2.4745	0.29892	-8.2781	1.6448e-16
UtilizationRate	6.0045	0.19901	30.172	7.703e-182
Age	-0.020095	0.0073019	-2.752	0.0059471
Marriage not married	-0.03509	0.13935	-0.2518	0.8012

Number of observations: 4378, Error degrees of freedom: 4374
Root Mean Squared Error: 4.48
R-squared: 0.173, Adjusted R-Squared: 0.173
F-statistic vs. constant model: 305, p-value = 5.7e-180

## Create Tobit EAD Model

Use fitEADModel to create a Tobit model using the EADData.
eadModelTobit = fitEADModel(EADData,ModelTypeT,'PredictorVars', \{'UtilizationRate','Age','Marriage
'ConversionMeasure', ConversionMeasure,'DrawnVar','Drawn', 'LimitVar','Limit', 'ResponseVar', 'El disp(eadModelTobit);

Tobit with properties:
CensoringSide: "right"
LeftLimit: 0.4000
RightLimit: 0.5000
ModelID: "Tobit"
Description: ""
UnderlyingModel: [1x1 risk.internal.credit. TobitModel]
PredictorVars: ["UtilizationRate" "Age" "Marriage"]
ResponseVar: "EAD"
LimitVar: "Limit"
DrawnVar: "Drawn"
ConversionMeasure: "lcf"
Display the underlying model. The underlying Tobit model's response variable is the complog transformation of the EAD response data. Use the 'LimitVar', 'DrawnVar', 'CensoringSide', 'RightLimit', 'LeftLimit', and 'SolverOptions' name-value arguments to modify the transformation.

```
disp(eadModelTobit.UnderlyingModel);
Tobit regression model, right-censored:
 EAD lcf = min(Y*,0.5)
 Y* ~ 1 + UtilizationRate + Age + Marriage
Estimated coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline 0.18088 & 0.021124 & 8.5628 & 0 \\
\hline 0.42381 & 0.013869 & 30.558 & 0 \\
\hline -0.0014564 & 0.00052238 & -2.788 & 0.005326 \\
\hline -0.0040197 & 0.0096584 & -0.41619 & 0.67729 \\
\hline 0.27917 & 0.0043245 & 64.555 & 0 \\
\hline
\end{tabular}
Number of observations: 4378
Number of left-censored observations: 0
Number of uncensored observations: 2802
Number of right-censored observations: 1576
Log-likelihood: -1756.98
```


## Predict EAD for Regression Model

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-vale argument.

```
predictedEADRegression = predict(eadModelRegression,EADData(TestInd,:),'ModelLevel','ead');
```

predictedConversionRegression = predict (eadModelRegression,EADData(TestInd,:),'ModelLevel','Conv

## Predict EAD for Tobit Model

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-vale argument.

```
predictedEADTobit = predict(eadModelTobit,EADData(TestInd,:),'ModelLevel','ead');
```

predictedConversionTobit = predict(eadModelTobit,EADData(TestInd,:),'ModelLevel','ConversionMeas

## Validate EAD Regression Model

For model validation of the Regression model, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.


0	0	0.95722
0	0.0027778	0.95722
0	0.0041667	0.9566
0	0.0055556	0.95639
0	0.0083333	0.95576
0.00096993	0.0097222	0.95555
0.00096993	0.016667	0.9549
0.0019399	0.016667	0.95474
0.0019399	0.018056	0.95468
0.0038797	0.018056	0.95403
0.0048497	0.019444	0.95381
0.0058196	0.019444	0.95314
0.0067895	0.020833	0.95291
0.0067895	0.022222	0.95233
0.0087294	0.026389	0.95224
0.0087294	0.031944	0.952

modelDiscriminationPlot(eadModelRegression, EADData(TestInd, :),'ModelLevel', ModelLevel,'SegmentB


Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the predictions.

YData $=$ Observed $\quad-$;
[CalMeasureRegression,CalDataRegression] = modelCalibration(eadModelRegression,EADData(TestInd,:
CalMeasureRegression=1×4 table

RSquared	RMSE	Correlation	SampleMeanError
0.16148	0.41023	0.40184	-0. 025994

CalDataRegression=1751×3 table
Observed Predicted_Regression Residuals_Regression
$\qquad$
$\qquad$
Ren
0.99919
0.17519
0.824
0.002063
0.17343
$-0.17137$
0.03741
0.7527
0.89867
$-0.71529$
0.75518
0.00076139
0.04238
-0. 14349
0.95153
-0.041628
0.9998
0.1338
0.048274
0.0056134
0.043424
-0. 12819
0.048451
0.059339
0.0050276
0.01448
-0.044858
0.95329
$0.67009 \quad 0.2832$
0.9784
$0.939 \quad 0.03947$
0.7189
0.8012
-0.082271
0.7909
0.379
0.41186
0.042816
0.5254
-0.4826
0.75979
0.36639
modelCalibrationPlot(eadModelRegression, EADData(TestInd,:), 'ModelLevel', ModelLevel, 'YData',

Scatter
Regression, R-Squared: 0.16148


## Validate EAD Tobit Model

For model validation of the Tobit model, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

```
ModelLevel = ConversionMeasure * ;
[DiscMeasureTobit,DiscDataTobit] = modelDiscrimination(eadModelTobit,EADData(TestInd,:),'ShowDet
DiscMeasureTobit=1\times3 table
 AUROC Segment SegmentCount
 Tobit 0.70909 "all_data" 1751
NiscDataTobit=1534\times3 table (Y T
\begin{tabular}{rrr}
& & 0 \\
0 & 0.0027778 & 0.42178 \\
0 & & 0.00416178 \\
0 & & 0.0055556 \\
0.4212 \\
0.42076 \\
0.00096993 & 0.0069444 & 0.42062 \\
0.00096993 & 0.0097222 & 0.42018
\end{tabular}
```

0.00096993	0.011111	0.42004
0.00096993	0.018056	0.4196
0.0019399	0.018056	0.4195
0.0029098	0.019444	0.41945
0.0048497	0.019444	0.41901
0.0058196	0.020833	0.41887
0.0058196	0.022222	0.41854
0.0067895	0.02222	0.41842
0.0067895	0.023611	0.41827
0.0067895	0.029167	0.41827

modelDiscriminationPlot(eadModelTobit, EADData(TestInd, :), 'ModelLevel', ModelLevel, 'SegmentBy', 'M


UsemodelCalibration and then modelCalibrationPlot. to show a scatter plot of the predictions.

YData $=$ Observed $\quad$;
[CalMeasureTobit,CalDataTobit] = modelCalibration(eadModelTobit,EADData(TestInd,:), 'ModelLevel' , CalMeasureTobit=1×4 table

RSquared RMSE Correlation SampleMeanError
$\begin{array}{lllll}\text { Tobit } 0.15929 & 0.39572 & 0.39911 & 0.13366\end{array}$

CalDataTobit=1751×3 table Observed Predicted Tobit

Residuals Tobit

0.99919	0.21657
0.0020632	0.21571
0.03741	0.35115
0.75518	0.39272
0.00076139	0.12184
0.9998	0.41744
0.0056134	0.19913
0.048451	0.12215
0.01448	0.14323
0.95329	0.33415
0.97847	0.41069
0.71895	0.3627
0.79096	0.27467
0.042816	0.30579
0.97169	0.23025
0.99182	0.32461
$\vdots$	

- 

$$
\begin{array}{r}
0.78261 \\
-0.21365 \\
-0.31374 \\
0.36245 \\
-0.12107 \\
0.58237 \\
-0.19351 \\
-0.073701 \\
-0.12875 \\
0.61914 \\
0.56778 \\
0.35624 \\
0.51629 \\
-0.26297 \\
0.74144 \\
0.66721
\end{array}
$$

modelCalibrationPlot(eadModelTobit,EADData(TestInd,:), 'ModelLevel' , ModelLevel, 'YData',YData);


Plot Histograms of Observed with Respect to Predicted EAD
Plot a histogram of observed with respect to the predicted EAD for the Regression model.
figure;
histogram(CalDataRegression.Observed);
hold on;
histogram(CalDataRegression.(('Predicted_' + ModelTypeR)));
legend('Observed','Predicted');


Plot a histogram of observed with respect to the predicted EAD for the Tobit model.
figure;
histogram(CalDataTobit.Observed);
hold on;
histogram(CalDataTobit.(('Predicted_' + ModelTypeT)));
legend('Observed','Predicted');


For both the Tobit and Regression models, the Age and UtilizationRate predictors are statistically significant, while the Marriage predictor is not statistically significant. Also, the Tobit and Regression models have different R-square values.

## See Also

Regression | Tobit | fitEADModel | predict | modelDiscrimination | modelDiscriminationPlot|modelCalibration|modelCalibrationPlot

## More About

- "Overview of Exposure at Default Models" on page 1-34


## Mean Square Error of Prediction for Estimated Ultimate Claims

This example shows a workflow for estimating ultimate claims using a developmentTriangle object with simulated reported claims and then calculating the corresponding mean square error of prediction (MSEP).

Actuaries use different techniques to estimate the ultimate claims for different years. In addition to the claim values, an actuary needs to know how well the estimates predict the outcomes of random variables and the uncertainties in the estimates for the ultimate claims. To measure the quality of the estimated ultimate claims, you can calculate the MSEP.

## Load Data

load('InsuranceClaimsData.mat'); disp(head(data));

OriginYear DevelopmentYear ReportedClaims PaidClaims

2010	12	3995.7	1893.9
2010	24	4635	3371.2
2010	36	4866.8	4079.1
2010	48	4964.1	4487
2010	60	5013.7	4711.4
2010	72	5038.8	4805.6
2010	84	5059	4853.7
2010	96	5074.1	4877.9

## Create developmentTriangle

Create a developmentTriangle object and use claimsPlot to visualize the developmentTriangle. For more information on unpaid claims estimation, see "Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

```
dTriangle = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Clai|
dTriangleTable = view(dTriangle);
% Visualize the development triangle
claimsPlot(dTriangle);
```



## Analyze developmentTriangle

Use linkRatios to calculate the age-to-age factors.
factorsTable $=$ linkRatios(dTriangle);
Use linkRatioAverages to calculate the averages of the age-to-age factors.
averageFactorsTable = linkRatioAverages(dTriangle);
dTriangle.SelectedLinkRatio = averageFactorsTable\{'Volume-weighted Average',:\}; dTriangle.TailFactor = 1; selectedFactorsTable = cdfSummary(dTriangle);

Display the full development triangle using the fullTriangle function.
fullTriangleTable = fullTriangle(dTriangle); disp(fullTriangleTable);

	12	24	36	48	60	72	84	96	108
2010	3995.7	4635	4866.8	4964.1	5013.7	5038.8	5059	5074.1	5084
2011	3968	4682.3	4963.2	5062.5	5113.1	5138.7	5154.1	5169.6	5179
2012	4217	5060.4	5364	5508.9	5558.4	5586.2	5608.6	5625.4	5636
2013	4374.2	5205.3	5517.7	5661.1	5740.4	5780.6	5803.7	5821.1	5832
2014	4499.7	5309.6	5628.2	5785.8	5849.4	5878.7	5900.8	5918.5	5930
2015	4530.2	5300.4	5565.4	5715.7	5772.8	5804.1	5825.9	5843.4	5855
2016	4572.6	5304.2	5569.5	5714.3	5775.4	5806.7	5828.6	5846.1	5857


2017	4680.6	5523.1	5854.4	6000.9	6065.1	6098	6120.9	6139.3	6151
2018	4696.7	5495.1	5804.4	5949.6	6013.3	6045.9	6068.6	6086.8	60
2019	4945.9	5819.2	6146.7	6300.5	6367.9	6402.4	6426.5	6445.8	6458

Compute the total reserves using ultimateClaims.

```
IBNR = ultimateClaims(dTriangle) - dTriangle.LatestDiagonal;
IBNR = array2table(IBNR, 'RowNames', dTriangleTable.Properties.RowNames, 'VariableNames', {'IBNR
IBNR{'Total',1} = sum(IBNR{:,:});
disp(IBNR);
```

    IBNR
    2010
$\begin{array}{rr}2011 & 5.1857 \\ 2012 & 16.89\end{array}$
$\begin{array}{rr}2011 & 5.1857 \\ 2012 & 16.89\end{array}$
$2013 \quad 34.886$
$2014 \quad 57.583$
$2015 \quad 88.148$
$2016 \quad 149.34$
$2017 \quad 303.29$
$2018 \quad 609.99$
2019 1519.3
Total 2784.6

## Calculate Estimated Standard Deviations

The developmentTriange link ratios are estimated using the formula:

$$
\widehat{f_{j}}=\frac{\Sigma_{i=0}^{I-j-1} C_{i, j+1}}{\sum_{i=0}^{I-j-1} C_{i, j}}
$$

Along, with the link ratios, the variance parameters are estimated as:

$$
\widehat{\sigma}_{j}^{2}=\frac{1}{I-j-1} \sum_{i=0}^{I-j-1} C_{i, j}\left(\frac{C_{i, j+1}}{C_{i, j}}-\widehat{f}_{j}\right)^{2}
$$

Since the last variance parameter $\sigma_{J-1}^{2}$ cannot be estimated with the estimator $\widehat{\sigma}_{J-1}^{2}$, the Mack extrapolation method is used to estimate of $\sigma_{J-1}^{2}$ :

$$
\hat{\sigma}_{J-1}^{2}=\min \left\{\frac{\hat{\sigma}_{J-2}^{4}}{\hat{\sigma}_{J-3}^{2}} ; \hat{\sigma}_{J-3}^{2} ; \hat{\sigma}_{J-2}^{2}\right\}
$$

Using this formula, you can compute the estimated conditional process standard deviations.

```
currentSelectedFactors = dTriangle.SelectedLinkRatio;
estimatedStandardDeviations = currentSelectedFactors;
for i=1:width(estimatedStandardDeviations)-1
 estimatedStandardDeviations(1,i) = sqrt(sum(((factorsTable{1:end-i,i} - currentSelectedFacto
end
estimatedStandardDeviations(1,end) = sqrt(min([estimatedStandardDeviations(1,end-1)^4 / estimate
```


## Calculate Reserves and Estimated Conditional Process Standard Deviations

Using the latest developmentTriange diagonal information and projected ultimate claims from the developmentTriangle object, the ReservesTable is calculated.
$\mathrm{h}=$ height(dTriangleTable);
ReservesTable = array2table(NaN(h, 9));
ReservesTable.Properties.RowNames = dTriangleTable.Properties.RowNames;
ReservesTable. Properties.VariableNames = \{'Latest Diagonal','Projected Ultimate Claims','Reserve ReservesTable.("Latest Diagonal") = dTriangle.LatestDiagonal;
ReservesTable.("Projected Ultimate Claims") = ultimateClaims(dTriangle);
ReservesTable.("Reserves") = IBNR.IBNR(1:end-1,:);
Estimate the conditional process variance for the ultimate claim of a single accident year as:

$$
\left.\widehat{\operatorname{Var}}\left(C_{i, J} \mid D_{I}\right)=\left(\widehat{C_{i, J}}\right)^{\mathrm{CL}}\right)^{2} \sum_{j=I-i}^{J-1} \frac{\widehat{\sigma}_{j}^{2} / \widehat{f}_{j}^{2}}{{\widehat{C_{i, j}}}^{\mathrm{CL}}}
$$

and estimate the conditional process variance for aggregated accident years as:

$$
\widehat{\operatorname{Var}}\left(\sum_{i=1}^{I} C_{i, J} \mid D_{I}\right)=\sum_{i=1}^{I} \widehat{\operatorname{Var}}\left(C_{i, J} \mid D_{I}\right)
$$

Calculate the estimated conditional variational coefficient for origin year $i$ relative to the estimated reserves as:

$$
V_{\mathrm{CO}_{i}}=\widehat{V_{\mathrm{CO}}}\left(C_{i, J}-C_{i, I-i} \mid D_{I}\right)=\frac{\widehat{\operatorname{Var}}\left(C_{i, J} \mid D_{I}\right)^{\frac{1}{2}}}{\widehat{C_{i, J}^{\mathrm{CL}}-C_{i, I-i}}}
$$

summationFactors = zeros(1,h);
for $\mathrm{i}=$ length(summationFactors) $-1:-1: 1$
summationFactors(i) = (estimatedStandardDeviations(1,i)^2 / currentSelectedFactors(1,i)^2) /
end
summationFactors = fliplr(summationFactors)';
ReservesTable.("Estimated conditional process standard deviation") = sqrt(ReservesTable.("Projec ReservesTable.("Estimated conditional variational coefficient") = ReservesTable.("Estimated cond: ReservesTable('Total',:) = array2table([NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN]);
ReservesTable\{"Total","Reserves"\} = sum(ReservesTable.("Reserves")(1:end-1));
ReservesTable\{"Total","Estimated conditional process standard deviation"\} = sqrt(sum(ReservesTab ReservesTable\{"Total","Estimated conditional variational coefficient"\} = ReservesTable\{"Total"," disp(ReservesTable(:,(2:5)));

Projected Ultimate Claims Reserves Estimated conditional process standard dev

In addition to these claculated estimates, you can obtain the estimator for the conditional estimation error for origin year $i$ as:

$$
\widehat{\operatorname{Var}}\left({\widehat{C_{i, J}}}^{\mathrm{CL}} \mid D_{I}\right)=C_{i, I-i}^{2}\left(\prod_{j=I-i}^{J-1}\left(\widehat{f}_{j}^{2}+\frac{\widehat{\sigma}_{j}^{2}}{S_{j}^{[I-j-1]}}\right)-\prod_{j=I-i}^{J-1} \widehat{f}_{j}^{2}\right)
$$

where

$$
S_{j}^{[I-j-1]}=\sum_{i=0}^{I-j-1} C_{i, j}
$$

factor1 = zeros(h,1);
factor2 $=$ zeros(h,1);
factor1(2) $=$ currentSelectedFactors(1,h-1)^2 + estimatedStandardDeviations(1,h-1)^2/sum(dTriangl
factor2(2) = currentSelectedFactors(1,h-1)^2;
for $i=3: l e n g t h(f a c t o r l)$
factorl(i) $=($ currentSelectedFactors(1,h-i+1)^2 + estimatedStandardDeviations(1,h-i+1)^2/sum
factor2(i) $=$ currentSelectedFactors(1,h-i+1)^2 * factor2(i-1);
end
Var_hat = sqrt(dTriangle.LatestDiagonal.^2 .* (factor1 - factor2));
ReservesTable.("Conditional Var_hat")(1:end-1) = Var_hat;
ReservesTable.("variation for Var_hat")(1:end-1) = ReservesTable.("Conditional Var_hat")(1:end-1
Using the previous formulas, the estimator for the conditional MSEP of the ultimate claim for a single origin year $i$ is:

$$
\widehat{\operatorname{msep}_{C_{i, J} \mid D_{I}}}\left(\widehat{C_{i, J}}{ }^{\mathrm{CL}}\right)=\left(\widehat{C_{i, J}}\right)^{\mathrm{CL}} \sum_{j=I-i}^{J-1} \quad{\widehat{\sigma_{j}}}_{\widehat{f_{j}^{2}}}^{2}\left(\frac{1}{\widehat{C_{i, j}} \mathrm{CL}}+\frac{1}{S_{j}^{[I-j-1]}}\right)
$$

And the estimator for the conditional MSEP of the ultimate claim for aggregated origin years is:

$$
\begin{aligned}
& +2 \sum_{1 \leq i<k \leq I} \widehat{C}_{C_{i, J}}^{\mathrm{CL}} \widehat{C_{k, J}}{ }^{\mathrm{CL}} \sum_{j=I-i}^{J-1} \frac{\widehat{\sigma}_{j}^{2} /{\widehat{f_{j}}}_{S_{j}^{[I-j-1]}}^{2}}{}
\end{aligned}
$$

```
summationFactorsMSEP = zeros(h,1);
for i=2:length(summationFactorsMSEP)
 summationFactorsMSEP(i) = (((estimatedStandardDeviations(1,h-i+1)^2 / currentSelectedFactors
end
msep = sqrt(ReservesTable.("Projected Ultimate Claims")(1:end-1).^2 .* summationFactorsMSEP);
ReservesTable.MSEP(1:end-1) = msep;
ReservesTable.("MSEP Uncertainty")(1:end-1) = ReservesTable.MSEP(1:end-1) ./ ReservesTable.("Res
ReservesTable{'Total','Conditional Var hat'} = sqrt(sum(ReservesTable.("Conditional Var hat")(1:
ReservesTable{'Total','variation for Var_hat'} = ReservesTable{'Total','Conditional Var_hat'} / '
disp(ReservesTable(:,[2,3,6,7]));
\begin{tabular}{lrrrr}
2010 & 5089.4 & 0 & 0 & NaN \\
2011 & 5185.1 & 5.1857 & 0.0072985 & 0.14074 \\
2012 & 5642.3 & 16.89 & 0.0099066 & 0.058655 \\
2013 & 5838.6 & 34.886 & 0.011503 & 0.032972 \\
2014 & 5936.3 & 57.583 & 1.4539 & 2.5248 \\
2015 & 5861 & 88.148 & 2.7754 & 3.1486 \\
2016 & 5863.6 & 149.34 & 5.0379 & 3.3735 \\
2017 & 6157.7 & 303.29 & 9.1852 & 3.0285 \\
2018 & 6105.1 & 609.99 & 13.941 & 2.2854 \\
2019 & 6465.2 & 1519.3 & 28.137 & 1.852 \\
Total & NaN & 2784.6 & 33.25 & 1.1941
\end{tabular}

\section*{Calculate MSEP}

Measure the quality of the estimated ultimate claims by calculating the MSEP and MSEP Uncertainty.
```

summationFactorsCovarianceTerm = zeros(h,1);
for i=2:length(summationFactorsCovarianceTerm)
summationFactorsCovarianceTerm(i) = ((estimatedStandardDeviations(1,h-i+1)^2 / currentSelect
end
totalSum = 0;
for i = 2:h
totalSum = totalSum + sum(dTriangle.LatestDiagonal(i,1) * fullTriangleTable{i+l:end, h-i+l} * sur
end
covarianceTerm = 2 * totalSum;
totalMSEP = sqrt(sum(ReservesTable.MSEP(1:end-1) .^ 2) + covarianceTerm);
ReservesTable{'Total','MSEP'} = totalMSEP;
ReservesTable{'Total','MSEP Uncertainty'} = ReservesTable{'Total','MSEP'} / ReservesTable{'Total
disp(ReservesTable(:,[1,2,3,8,9]));

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Latest Diagonal & Projected Ultimate Claims & Reserves & MSEP & MSEP Uncert \\
\hline 2010 & 5089.4 & 5089.4 & 0 & 0 & Na \\
\hline 2011 & 5179.9 & 5185.1 & 5.1857 & 0.010274 & 0.1981 \\
\hline 2012 & 5625.4 & 5642.3 & 16.89 & 0.014963 & 0.08859 \\
\hline 2013 & 5803.7 & 5838.6 & 34.886 & 0.018471 & 0.05294 \\
\hline 2014 & 5878.7 & 5936.3 & 57.583 & 3.14 & 5.45 \\
\hline 2015 & 5772.8 & 5861 & 88.148 & 6.474 & 7.344 \\
\hline 2016 & 5714.3 & 5863.6 & 149.34 & 12.678 & 8.489 \\
\hline 2017 & 5854.4 & 6157.7 & 303.29 & 24.383 & 8.039 \\
\hline 2018 & 5495.1 & 6105.1 & 609.99 & 39.083 & 6.407 \\
\hline 2019 & 4945.9 & 6465.2 & 1519.3 & 82.903 & 5.456 \\
\hline Total & NaN & NaN & 2784.6 & 100.45 & 3.607 \\
\hline
\end{tabular}

\section*{References}

1 Wüthrich, Mario, and Michael Merz. Stochastic Claims Reserving Methods in Insurance.
Hoboken, NJ: Wiley, 2008.

2 Friedland, Jacqueline. "Estimating Unpaid Claims Using Basic Techniques." Arlington, VA: Casualty Actuarial Society, 2010.

\section*{See Also}
developmentTriangle | view| linkRatios|linkRatiosPlot|linkRatioAverages |
cdfSummary|ultimateClaims|claimsPlot|fullTriangle|chainLadder|
expectedClaims | bornhuetterFerguson | capeCod

\section*{More About}
- "Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

\section*{Bootstrap Using Chain Ladder Method}

This example shows how to apply a chain ladder bootstrap method to generate several developmentTriangle objects to estimate the ultimate claims.

Deterministic claim estimation methods produce point estimates of reserve values with no information about the uncertainty of these estimates. The goal of a stochastic claim estimation method is to assess the variability of estimated reserve values. The chain ladder bootstrapping approach is a simulation-based method to randomly modify the developmentTriangle data and produce a distribution of estimated reserves that represents the variability of the estimated reserve values. This example is based on the work of Wüthrich and Merz [1 on page 4-177].

\section*{Load Data}
load('InsuranceClaimsData.mat'); disp(head(data));
\begin{tabular}{|c|c|c|c|}
\hline OriginYear & DevelopmentYear & ReportedClaims & PaidClaims \\
\hline 2010 & 12 & 3995.7 & 1893.9 \\
\hline 2010 & 24 & 4635 & 3371.2 \\
\hline 2010 & 36 & 4866.8 & 4079.1 \\
\hline 2010 & 48 & 4964.1 & 4487 \\
\hline 2010 & 60 & 5013.7 & 4711.4 \\
\hline 2010 & 72 & 5038.8 & 4805.6 \\
\hline 2010 & 84 & 5059 & 4853.7 \\
\hline 2010 & 96 & 5074. & 4877.9 \\
\hline
\end{tabular}

\section*{Create developmentTriangle}

Create a developmentTriangle object and use claimsPlot to visualize the developmentTriangle. For more information on unpaid claims estimation, see "Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16.
```

dTriangle = developmentTriangle(data);
dTriangleTable = view(dTriangle);
% visualize the development triangle
claimsPlot(dTriangle)

```


\section*{Analyze the developmentTriangle}

The developmentTriangle link ratios are estimated using the formula:
\[
\widehat{f}_{j}=\frac{\sum_{i=0}^{I-j-1} C_{i, j+1}}{\sum_{i=0}^{I-j-1} C_{i, j}}
\]

Use linkRatios to calculate the age-to-age factors.
factorsTable \(=\) linkRatios(dTriangle);
Use linkRatioAverages to calculate the averages of the age-to-age factors.
averageFactorsTable = linkRatioAverages(dTriangle); disp(averageFactorsTable);
```

Simple Average
Simple Average - Latest 5
Simple Average - Latest 3
Medial Average - Latest 5x1
Volume-weighted Average
Volume-weighted Average - Latest 5
Volume-weighted Average - Latest 3
Geometric Average - Latest 4

```
\begin{tabular}{r}
\(12-24\) \\
\hline
\end{tabular}
1.1767
1.172
1.17
1.1733
1.1766
1.172
1.1701
1.17
\begin{tabular}{r}
24.36 \\
\hline 1.0563 \\
1.056 \\
1.0533 \\
1.0567 \\
1.0563 \\
1.056 \\
1.0534 \\
1.055
\end{tabular}

36-48
-
-
1. 02
1.010
1.010
1.0117
1.0103
1.0107
1.0108
1.0117
1.011

48-60
\(\qquad\)

60-72
72-8
-
1.0054
1.00
1.0054
1.0057
1.005
1.0054
1.0054
1.0057
1.0055

Display the selected age-to-age factors table and calculate the cumulative development factor (CDF) using cdfSummary.
dTriangle.SelectedLinkRatio = averageFactorsTable\{'Volume-weighted Average',:\}; currentSelectedFactors = dTriangle.SelectedLinkRatio; dTriangle.TailFactor = 1;
selectedFactorsTable = cdfSummary(dTriangle);
disp(selectedFactorsTable);
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 12-24 & 24-36 & 36-48 & 48-60 & 60-72 & 72-84 \\
\hline Selected & 1.1766 & 1.0563 & 1.025 & 1.0107 & 1.0054 & 1.0038 \\
\hline CDF to Ultimate & 1.3072 & 1.111 & 1.0518 & 1.0261 & 1.0153 & 1.0098 \\
\hline Percent of Total Claims & 0.76501 & 0.90008 & 0.95075 & 0.97453 & 0.98496 & 0.9903 \\
\hline
\end{tabular}

DIsplay the latest diagonal.
latestDiagonal = dTriangle.LatestDiagonal;
Compute the projected ultimate claims using ultimateClaims.
projectedUltimateClaims = ultimateClaims(dTriangle);
Display the full development triangle using fullTriangle.
fullTriangleTable = fullTriangle(dTriangle);
disp(fullTriangleTable);
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 12 & 24 & 36 & 48 & 60 & 72 & 84 & 96 & 108 \\
\hline 2010 & 3995.7 & 4635 & 4866.8 & 4964.1 & 5013.7 & 5038.8 & 5059 & 5074.1 & 5084 \\
\hline 2011 & 3968 & 4682.3 & 4963.2 & 5062.5 & 5113.1 & 5138.7 & 5154.1 & 5169.6 & 5179 \\
\hline 2012 & 4217 & 5060.4 & 5364 & 5508.9 & 5558.4 & 5586.2 & 5608.6 & 5625.4 & 5636 \\
\hline 2013 & 4374.2 & 5205.3 & 5517.7 & 5661.1 & 5740.4 & 5780.6 & 5803.7 & 5821.1 & 5832 \\
\hline 2014 & 4499.7 & 5309.6 & 5628.2 & 5785.8 & 5849.4 & 5878.7 & 5900.8 & 5918.5 & 5930 \\
\hline 2015 & 4530.2 & 5300.4 & 5565.4 & 5715.7 & 5772.8 & 5804.1 & 5825.9 & 5843.4 & 5855 \\
\hline 2016 & 4572.6 & 5304.2 & 5569.5 & 5714.3 & 5775.4 & 5806.7 & 5828.6 & 5846.1 & 5857 \\
\hline 2017 & 4680.6 & 5523.1 & 5854.4 & 6000.9 & 6065.1 & 6098 & 6120.9 & 6139.3 & 6151 \\
\hline 2018 & 4696.7 & 5495.1 & 5804.4 & 5949.6 & 6013.3 & 6045.9 & 6068.6 & 6086.8 & 60 \\
\hline 2019 & 4945.9 & 5819.2 & 6146.7 & 6300.5 & 6367.9 & 6402.4 & 6426.5 & 6445.8 & 6458 \\
\hline
\end{tabular}

Compute the total reserves using ultimateClaims.
```

IBNR = ultimateClaims(dTriangle) - dTriangle.LatestDiagonal;
IBNR = array2table(IBNR, 'RowNames', dTriangleTable.Properties.RowNames, 'VariableNames', {'IBNR
IBNR{'Total',1} = sum(IBNR{:,:});
disp(IBNR);

```
 IBNR
\begin{tabular}{rr}
2010 & 0 \\
2011 & 5.1857 \\
2012 & 16.89 \\
2013 & 34.886 \\
2014 & 57.583 \\
2015 & 88.148
\end{tabular}
```

2016
2017-303.29
2018 609.99
2019 1519.3
Total 2784.6

```

\section*{Bootstrap Chain Ladder}

To derive the resampling approaches, the Time Series Model of the distribution-free chain ladder (CL) model is defined as:
\[
C_{i, j+1}=f_{j} C_{i, j}+\sigma_{j} \sqrt{C_{i, j}} \epsilon_{i, j+1}
\]

For the link ratio selected above, Wüthrich [1 on page 4-177] and Mack [2 on page 4-177] show that the standard deviation is estimated as:
```

    \mp@subsup{\sigma}{j}{2}}=\frac{1}{I-j-1}\mp@subsup{\sum}{i=0}{I-j-1}\mp@subsup{C}{i,j}{}(\frac{\mp@subsup{C}{i,j+1}{}}{\mp@subsup{C}{i,j}{}}-\widehat{\mp@subsup{f}{j}{}}\mp@subsup{)}{}{2
    ```

```

estimatedStandardDeviations = currentSelectedFactors;
for i=1:width(estimatedStandardDeviations)-1
estimatedStandardDeviations(1,i) = sqrt(sum(((factorsTable{1:end-i,i} - currentSelectedFacto
end
estimatedStandardDeviations(1,end) = sqrt(min([estimatedStandardDeviations(1,end-1)^4 / estimate
disp(estimatedStandardDeviations);
0.8667 0.3699 0.2420 0.1310 0.0673 0.0361 0.0001 0.0001 0.0001

```

To apply the bootstrap method, you need to find the appropriate residuals that allow for the construction of the empirical distribution \(\widehat{F_{n}}\) to construct the bootstrap observations.

Consider the following residuals for \(i+j \leq I, j \geq 1\).
\(\widetilde{\epsilon_{i, j}}=\frac{F_{i, j}-\widehat{f_{j-1}}}{\sigma_{j-1} C_{i, j-1}^{-1 / 2}}\) where \(F_{i, j}=\frac{C_{i, j}}{C_{i, j-1}}\)
Following Wüthrich [1 on page 4-177], you can scale the residuals to adjust their variance upwards. Unscaled residuals tend to result in lighter tails in the simulated distribution.

Adjust the residuals such that the bootstrap distribution has an adjusted variance function.
\[
Z_{i, j}=\left(1-\frac{C_{i, j-1}}{\sum_{i=0}^{I-j} C_{i, j-1}}\right)^{-\frac{1}{2}} \frac{F_{i, j}-\widehat{f_{j-1}}}{\widehat{\sigma_{j-1}} C_{i, j-1}^{-\frac{1}{2}}}
\]

You can apply the bootstrap algorithm using three different versions:
- Efron's nonparametric bootstrap for residuals \(\tilde{\epsilon_{i, j}}\)
- Efron's nonparametric bootstrap for scaled residuals \(Z_{i, j}\)
- Parametric bootstrap under the assumption that the residuals have a standard Gaussian distribution, that is \(Z_{i, j}^{*}\) is resampled from \(N(0,1)\)

This example uses the second version (Efron's nonparametric bootstrap for scaled residuals) to calculate \(Z_{i, j}\).
```

% Create a copy of the factors table and modify it to create the
% residuals table
residuals = factorsTable.Variables;
colSums = sum(dTriangle.Claims,'omitnan');
for i=1:height(residuals)
for j=1:width(residuals)
residuals(i,j) = (1 - (dTriangleTable{i,j}/colSums(j)))^-0.5 * (factorsTable{i,j} - curr
end
end

```

The residuals \(\left\{Z_{i, j}, i+j \leq I\right\}\) define a bootstrap distribution.
```

residualsVector = residuals(:);
residualsVector(isnan(residualsVector)) = [];
histogram(residualsVector,10)
title('Scaled Residuals')
xlabel('Residual Value')
ylabel('Frequency')

```

Scaled Residuals

To simulate a new reserves scenario with the bootstrap method, follow these steps.

\section*{Step 1: Resample a triangle of residuals from the bootstrap distribution.}

Resample the independent and identically distributed (i.i.d.) residuals \(\left\{Z^{*}{ }_{i, j}, i+j \leq I\right\}\) from the bootstrap distribution.
```

resampledResiduals = residuals;
rng('default');
rng(1);
for i = 1:height(residuals)-1
for j = 1:width(residuals)-i+1
resampledResiduals(i,j) = datasample(residuals(~isnan(residuals)), 1);
end
end
disp(resampledResiduals);

| -1.5522 | -0.5120 | -1.2668 | 0.7776 | -1.3649 | 0.2799 | -0.5495 | -1.3146 | -1.5364 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -0.4041 | -1.5522 | -0.4784 | -1.2189 | -0.7591 | 0.2610 | -0.4784 | -1.5522 | NaN |
| -0.4091 | -1.3649 | -0.5495 | -1.6767 | -0.8571 | -1.3143 | -0.4879 | NaN | NaN |
| -0.7591 | 1.3226 | 1.0791 | 0.2610 | 0.2861 | -0.7591 | NaN | NaN | NaN |
| 0.2799 | -1.5522 | -0.8571 | 0.3243 | -0.4879 | NaN | NaN | NaN | NaN |
| -1.3143 | -0.4784 | 0.5556 | -1.2668 | NaN | NaN | NaN | NaN | NaN |
| 1.9550 | 0 | 1.9550 | NaN | NaN | NaN | NaN | NaN | NaN |
| 0.7693 | 0.5169 | NaN |
| 0.2799 | NaN |
| NaN |

```

\section*{Step 2: Compute bootstrapped claims.}

Define \(C_{i, 0}^{*}=C_{i, 0}\) and, for \(j \geq 1\), assume that:
\[
C_{i, j}^{*}=\widehat{f_{j-1}} C_{i, j-1}^{*}+\widehat{\sigma_{j-1}} \sqrt{C_{i, j-1}^{*}} Z_{i, j}^{*}
\]

This expression represents the new simulated claim values. Using the simulated claim values, you can create a new developmentTriangle to estimate new reserve values.
```

bootstrappedClaims = dTriangleTable.Variables;

```
```

for j = 2:width(bootstrappedClaims)

```
 bootstrappedClaims(:,j) = currentSelectedFactors(1,j-1).*bootstrappedClaims(:,j-1) + estimat
end
stackedClaims = reshape(bootstrappedClaims',100,1);
stackedClaims = stackedClaims(~isnan(stackedClaims));
newData = data;
newData.values = stackedClaims;
bootstrappedDevelopmentTriangle = developmentTriangle(newData,'Claims','values');

\section*{Step 3: Select a link ratio consistent with the model.}

The volume-weighted average is the link ratio that is consistent with the model used in this bootstrap approach.
bootstrappedAverageFactorsTable = linkRatioAverages(bootstrappedDevelopmentTriangle);
bootstrappedDevelopmentTriangle.SelectedLinkRatio = bootstrappedAverageFactorsTable\{'Volume-weig bootstrappedDevelopmentTriangle.TailFactor = 1;
bootstrappedSelectedFactorsTable = cdfSummary(bootstrappedDevelopmentTriangle);
disp(bootstrappedSelectedFactorsTable);
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 12-24 & 24-36 & 36-48 & 48-60 & 60-72 & 72-84 \\
\hline Selected & 1.1751 & 1.054 & 1.0253 & 1.0099 & 1.0048 & 1.0036 \\
\hline CDF to Ultimate & 1.301 & 1.1072 & 1.0504 & 1.0245 & 1.0145 & 1.0096 \\
\hline Percent of Total Claims & 0.76861 & 0.90321 & 0.952 & 0.97609 & 0.98572 & 0.9905 \\
\hline
\end{tabular}

Use fullTriangle to display the full development triangle corresponding to the selected link ratio.
bootstrappedFullTriangle = fullTriangle(bootstrappedDevelopmentTriangle); disp(bootstrappedFullTriangle);
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 12 & 24 & 36 & 48 & 60 & 72 & 84 & 96 & 108 \\
\hline 2010 & 3995.7 & 4616.2 & 4863.2 & 4963.4 & 5023.7 & 5044.5 & 5064.1 & 5079.3 & 5089 \\
\hline 2011 & 3968 & 4646.6 & 4869 & 4982.8 & 5024.8 & 5048.4 & 5068.1 & 5083.3 & 5093 \\
\hline 2012 & 4217 & 4938.6 & 5181.1 & 5301.1 & 5341.9 & 5366.6 & 5383.3 & 5399.5 & 5410 \\
\hline 2013 & 4374.2 & 5103.1 & 5425.3 & 5580.2 & 5642.5 & 5674.5 & 5693.8 & 5710.9 & 5722 \\
\hline 2014 & 4499.7 & 5310.5 & 5567.5 & 5691.3 & 5755.4 & 5784.2 & 5804.8 & 5822.2 & 5833 \\
\hline 2015 & 4530.2 & 5253.5 & 5536.3 & 5684.8 & 5733.2 & 5761 & 5781.5 & 5798.8 & 5810 \\
\hline 2016 & 4572.6 & 5494.6 & 5803.9 & 5985.1 & 6044.2 & 6073.5 & 6095.1 & 6113.4 & 6125 \\
\hline 2017 & 4680.6 & 5552.6 & 5879.4 & 6028.2 & 6087.7 & 6117.2 & 6139 & 6157.4 & 6169 \\
\hline 2018 & 4696.7 & 5542.6 & 5842 & 5989.8 & 6048.9 & 6078.2 & 6099.9 & 6118.2 & 6130 \\
\hline 2019 & 4945.9 & 5812 & 6126 & 6281 & 6343 & 6373.7 & 6396.4 & 6415.6 & 6428 \\
\hline
\end{tabular}

\section*{Step 4: Compute the total reserves.}

Compute the total reserves from the simulated developmentTriangle.
bootstrappedDevelopmentTriangleTable = view(bootstrappedDevelopmentTriangle); bootstrappedIBNR = ultimateClaims(bootstrappedDevelopmentTriangle) - bootstrappedDevelopmentTria bootstrappedIBNR = array2table(bootstrappedIBNR, 'RowNames', bootstrappedDevelopmentTriangleTabl bootstrappedIBNR\{'Total',1\} = sum(bootstrappedIBNR\{:,:\});
disp(bootstrappedIBNR);
IBNR
\begin{tabular}{lr}
2010 & 0 \\
2011 & 5.0881 \\
2012 & 16.188 \\
2013 & 34.197 \\
2014 & 55.485 \\
2015 & 83.048 \\
2016 & 146.61 \\
2017 & 296.45 \\
2018 & 593.94 \\
2019 & 1489 \\
Total & 2720
\end{tabular}

You can repeat the previous steps many times to genreate a full, simulated, distribution of reserves. The simulation produces reserves for each year and for the total reserves.

\section*{Simulate Multiple Bootstrapped Scenarios}

Create 1000 bootstrapped development triangles and calculate the incurred-but-not-reported (IBNR) for each developmentTriangle.
```

n = 1000;

```
simulatedIBNR = zeros(10,n);
for i = 1:n
 simulatedResiduals = residuals;
 for \(j=1:\) height(residuals)-1
 for k = 1:width(residuals)-j+1
 simulatedResiduals(j,k) = datasample(residuals(~isnan(residuals)), 1);
 end
 end
 simulatedClaims = dTriangleTable.Variables;
 for \(\mathrm{j}=2:\) width(simulatedClaims)
 simulatedClaims(:,j) = currentSelectedFactors(1,j-1).*simulatedClaims(:,j-1) + estimated
 end
 simulatedClaims = reshape(simulatedClaims',100,1);
 simulatedClaims = simulatedClaims(~isnan(simulatedClaims));
 simulatedData = data;
 simulatedData.ReportedClaims = simulatedClaims;
 simulatedDevelopmentTriangle = developmentTriangle(simulatedData);
 simulatedAverageFactorsTable = linkRatioAverages(simulatedDevelopmentTriangle);
 simulatedDevelopmentTriangle.SelectedLinkRatio = simulatedAverageFactorsTable\{'Volume-weight
 simulatedDevelopmentTriangle.TailFactor = 1;
 simulatedLatestDiagonal = simulatedDevelopmentTriangle.LatestDiagonal;
 simulatedProjectedUltimateClaims = ultimateClaims(simulatedDevelopmentTriangle);
 simulatedIBNR(:,i) = simulatedProjectedUltimateClaims - simulatedLatestDiagonal;
end
simulatedIBNR(end+1,:) = sum(simulatedIBNR);

Select a year to plot the distribution of the IBNR, calculate the mean, and compare that mean to a calculated deterministic value.
```

originYear = 5 ;
histogram(simulatedIBNR(originYear+1,:));
hold on;
plot(mean(simulatedIBNR(originYear+1,:)),0,'0','LineWidth',2)
plot(IBNR{originYear+1,1},0,'X','LineWidth',2);
legend('Simulated IBNR',['Simulated mean : ' num2str(round(mean(simulatedIBNR(originYear+1,:)),2
hold off;

```


Plot a histogram of the totals for IBNRs, simulated means, and deterministic values.
histogram(simulatedIBNR(11,:));
hold on;
plot(mean(simulatedIBNR(11,:)),0,'0','LineWidth',2)
plot(IBNR\{11,1\},0,'X','LineWidth', 2);
legend('Simulated Total IBNR',['Simulated mean : ' num2str(round(mean(simulatedIBNR(11,:)),2))], hold off;

\section*{References}

1 Wüthrich, Mario, and Michael Merz. Stochastic Claims Reserving Methods in Insurance. Hoboken, NJ: Wiley, 2008

2 Mack, Thomas. "Distribution-Free Calculation of the Standard Error of Chain Ladder Reserve Estimates." Astin Bulletin. Vol. 23, No. 2, 1993.

\section*{See Also}
developmentTriangle | view | linkRatios | linkRatiosPlot | linkRatioAverages |
cdfSummary|ultimateClaims|claimsPlot|fullTriangle |chainLadder|
expectedClaims | bornhuetterFerguson | capeCod

\section*{More About}
- "Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

\section*{Interpret and Stress-Test Deep Learning Networks for Probability of Default}

Train a credit risk for probability of default (PD) prediction using a deep neural network. The example also shows how to use the locally interpretable model-agnostic explanations (LIME) and Shapley values interpretability techniques to understand the predictions of the model. In addition, the example analyzes model predictions for out-of-sample values and performs a stress-testing analysis.

The "Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36 example presents a similar workflow but uses a logistic model. The "Modeling Probabilities of Default with Cox Proportional Hazards" on page 4-28 example uses a Cox regression, or Cox proportional hazards model. However, interpretability techniques are not discussed in either of these examples because the models are simpler and interpretable. The "Compare Deep Learning Networks for Credit Default Prediction" (Deep Learning Toolbox) example focuses on alternative network designs and fits simpler models without the macroeconomic variables.

While you can use these alternative, simpler models successfully to model credit risk, this example introduces explainability tools for exploring complex-modeling techniques in credit applications. To visualize and interpret the model predictions, you use Deep Learning Toolbox \({ }^{\mathrm{TM}}\) and the lime and shapley functions. To run this example, you:

1 Load and prepare credit data, reformat predictors, and split the data into training, validation, and testing sets.
2 Define a network architecture, select training options, and train the network. (A saved version of the trained network residualTrainedNetworkMacro is available for convenience.)
3 Apply the LIME and Shapley interpretability techniques on observations of interest (or "query points") to determine if the importance of predictors in the model is as expected.
4 Explore extreme predictor out-of-sample values to investigate the behavior of the model for new, extreme data.
5 Use the model to perform a stress-testing analysis of the predicted PD values.

\section*{Load Credit Default Data}

Load the retail credit panel data set including its macroeconomic variables. The main data set (data) contains the following variables:
- ID: Loan identifier
- ScoreGroup: Credit score at the beginning of the loan, discretized into three groups, High Risk, Medium Risk, and Low Risk
- YOB: Years on books
- Default: Default indicator; the response variable
- Year: Calendar year

The small data set (dataMacro) contains macroeconomic data for the corresponding calendar years:
- Year: Calendar year
- GDP: Gross domestic product growth (year over year)
- Market: Market return (year over year)

The variables YOB, Year, GDP, and Market are observed at the end of the corresponding calendar year. The score group is a discretization of the original credit score when the loan started. A value of 1 for Default means that the loan defaulted in the corresponding calendar year.

The third data set (dataMacroStress) contains baseline, adverse, and severely adverse scenarios for the macroeconomic variables. This table is for the stress-testing analysis.

This example uses simulated data, but the same approach has been successfully applied to real data sets.
```

load RetailCreditPanelData.mat
data = join(data,dataMacro);
head(data)

```
\begin{tabular}{lrllllllr}
ID & ScoreGroup & YOB & & Default & & Year & & \multirow{2}{c}{ GDP }
\end{tabular}

\section*{Encode Categorical Variables}

To train a deep learning network, you must first encode the categorical ScoreGroup variable to onehot encoded vectors.

View the order of the ScoreGroup categories.
```

categories(data.ScoreGroup)'
ans = 1\times3 cell
{'High Risk'} {'Medium Risk'} {'Low Risk'}
ans = 1\times3 cell
{'High Risk'} {'Medium Risk'} {'Low Risk'}
One-hot encode the ScoreGroup variable.

```
```

riskGroup = onehotencode(data.ScoreGroup,2);

```
```

riskGroup = onehotencode(data.ScoreGroup,2);

```

Add the one-hot vectors to the table.
```

data.HighRisk = riskGroup(:,1);
data.MediumRisk = riskGroup(:,2);
data.LowRisk = riskGroup(:,3);

```

Remove the original ScoreGroup variable from the table using removevars.
```

data = removevars(data,{'ScoreGroup'});

```

Move the Default variable to the end of the table, as this variable is the response you want to predict.
data = movevars(data,'Default','After','LowRisk');
View the first few rows of the table. The ScoreGroup variable is split into multiple columns with the categorical values as the variable names.
head(data)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ID & YOB & Year & GDP & Market & HighRisk & MediumRisk & LowRisk & Default \\
\hline 1 & 1 & 1997 & 2.72 & 7.61 & 0 & 0 & 1 & 0 \\
\hline 1 & 2 & 1998 & 3.57 & 26.24 & 0 & 0 & 1 & 0 \\
\hline 1 & 3 & 1999 & 2.86 & 18.1 & 0 & 0 & 1 & 0 \\
\hline 1 & 4 & 2000 & 2.43 & 3.19 & 0 & 0 & 1 & 0 \\
\hline 1 & 5 & 2001 & 1.26 & -10.51 & 0 & 0 & 1 & 0 \\
\hline 1 & 6 & 2002 & -0.59 & -22.95 & 0 & 0 & 1 & 0 \\
\hline 1 & 7 & 2003 & 0.63 & 2.78 & 0 & 0 & 1 & 0 \\
\hline 1 & 8 & 2004 & 1.85 & 9.48 & 0 & 0 & 1 & 0 \\
\hline
\end{tabular}

\section*{Split Data}

Partition the data set into training, validation, and test partitions using the unique loan ID numbers. Set aside \(60 \%\) of the data for training, \(20 \%\) for validation, and \(20 \%\) for testing.

Find the unique loan IDs.
```

idx = unique(data.ID);
numObservations = length(idx);

```

Determine the number of observations for each partition.
```

numObservationsTrain = floor(0.6*numObservations);

```
numObservationsValidation \(=\) floor(0.2*numObservations);
numObservationsTest = numObservations - numObservationsTrain - numObservationsValidation;

Create an array of random indices corresponding to the observations and partition it using the partition sizes.
```

rng('default'); % for reproducibility
idxShuffle = idx(randperm(numObservations));

```
idxTrain = idxShuffle(1:numObservationsTrain);
idxValidation = idxShuffle(numObservationsTrain+1:numObservationsTrain+num0bservationsValidation
idxTest = idxShuffle(numObservationsTrain+numObservationsValidation+1:end);

Find the table entries corresponding to the data set partitions.
```

idxTrainTbl = ismember(data.ID,idxTrain);
idxValidationTbl = ismember(data.ID,idxValidation);
idxTestTbl = ismember(data.ID,idxTest);

```

Keep the variables of interest for the task (YOB, Default, and ScoreGroup) and remove all other variables from the table.
```

data = removevars(data,{'ID','Year'});
head(data)

| YOB GDP | Market | HighRisk | MediumRisk |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

```
\begin{tabular}{rrrrlll}
1 & 2.72 & 7.61 & 0 & 0 & 1 & 0 \\
2 & 3.57 & 26.24 & 0 & 0 & 1 & 0 \\
3 & 2.86 & 18.1 & 0 & 0 & 1 & 0 \\
4 & 2.43 & 3.19 & 0 & 0 & 1 & 0 \\
5 & 1.26 & -10.51 & 0 & 0 & 1 & 0 \\
6 & -0.59 & -22.95 & 0 & 0 & 1 & 0 \\
7 & 0.63 & 2.78 & 0 & 0 & 1 & 0 \\
8 & 1.85 & 9.48 & 0 & 0 & 1 & 0
\end{tabular}

Partition the table of data into training, validation, and testing partitions using the indices.
```

tblTrain = data(idxTrainTbl,:);
tblValidation = data(idxValidationTbl,:);
tblTest = data(idxTestTbl,:);

```

\section*{Define Network Architecture}

You can use different deep learning architectures for the task of predicting credit default probabilities. Smaller networks are quick to train, but deeper networks can learn more abstract features. Choosing a neural network architecture requires balancing computation time against accuracy. This example uses a residual architecture. For an example of other networks, see the "Compare Deep Learning Networks for Credit Default Prediction" (Deep Learning Toolbox) example.

Create a residual architecture (ResNet) from multiple stacks of fully connected layers and ReLU activations. ResNet architectures are state of the art in deep learning applications and popular in deep learning literature. Originally developed for image classification, ResNets have proven successful across many domains [1 on page 4-193].
```

residualLayers = [
featureInputLayer(6, 'Normalization', 'zscore', 'Name', 'input')
fullyConnectedLayer(16, 'Name', 'fc1','WeightsInitializer','he')
batchNormalizationLayer('Name', 'bn1')
reluLayer('Name','relu1')
fullyConnectedLayer(32, 'Name', 'resblock1-fc1','WeightsInitializer','he')
batchNormalizationLayer('Name', 'resblock1-bn1')
reluLayer('Name', 'resblock1-relu1')
fullyConnectedLayer(32, 'Name', 'resblock1-fc2','WeightsInitializer','he')
additionLayer(2, 'Name', 'resblock1-add')
batchNormalizationLayer('Name', 'resblock1-bn2')
reluLayer('Name', 'resblock1-relu2')
fullyConnectedLayer(64, 'Name', 'resblock2-fc1','WeightsInitializer','he')
batchNormalizationLayer('Name', 'resblock2-bn1')
reluLayer('Name', 'resblock2-relu1')
fullyConnectedLayer(64, 'Name', 'resblock2-fc2','WeightsInitializer','he')
additionLayer(2, 'Name', 'resblock2-add')
batchNormalizationLayer('Name', 'resblock2-bn2')
reluLayer('Name', 'resblock2-relu2')
fullyConnectedLayer(1, 'Name', 'fc2','WeightsInitializer','he')
sigmoidLayer('Name', 'sigmoid')
BinaryCrossEntropyLossLayer('output')];
residualLayers = layerGraph(residualLayers);
residualLayers = addLayers(residualLayers,fullyConnectedLayer(32, 'Name', 'resblock1-fc-shortcut
residualLayers = addLayers(residualLayers,fullyConnectedLayer(64, 'Name', 'resblock2-fc-shortcut
residualLayers = connectLayers(residualLayers, 'relu1', 'resblock1-fc-shortcut');
residualLayers = connectLayers(residualLayers, 'resblock1-fc-shortcut', 'resblock1-add/in2');

```
```

residualLayers = connectLayers(residualLayers, 'resblock1-relu2', 'resblock2-fc-shortcut');
residualLayers = connectLayers(residualLayers, 'resblock2-fc-shortcut', 'resblock2-add/in2');

```

You can visualize the network using Deep Network Designer (Deep Learning Toolbox) or the analyzeNetwork (Deep Learning Toolbox) function.
deepNetworkDesigner(residualLayers)

\section*{Specify Training Options}

In this example, train each network with these training options:
- Train using the Adam optimizer.
- Set the initial learning rate to 0.001 .
- Set the mini-batch size to 512.
- Train for 75 epochs.
- Turn on the training progress plot and turn off the command window output.
- Shuffle the data at the beginning of each epoch.
- Monitor the network accuracy during training by specifying validation data and using it to validate the network every 1000 iterations.
```

options = trainingOptions('adam', ...
'InitialLearnRate',0.001, ...
'MiniBatchSize',512, ...
'MaxEpochs',75, ...
'Plots','training-progress', ...
'Verbose',false, ...
'Shuffle','every-epoch', ...
'ValidationData',tblValidation, ...
'ValidationFrequency',1000);

```

The "Compare Deep Learning Networks for Credit Default Prediction" (Deep Learning Toolbox) example fits the same type of network, but it excludes the macroeconomic predictors. In that example, if you increase the number of epochs from 50 to 75 , you can improve accuracy without overfitting concerns.

You can perform optimization programmatically or interactively using Experiment Manager (Deep Learning Toolbox). For an example showing how to perform a hyperparameter sweep of the training options, see "Create a Deep Learning Experiment for Classification" (Deep Learning Toolbox).

\section*{Train Network}

Train the network using the architecture that you defined, the training data, and the training options. By default, trainNetwork (Deep Learning Toolbox) uses a GPU if one is available; otherwise, it uses a CPU. Training on a GPU requires Parallel Computing Toolbox \({ }^{\mathrm{TM}}\) and a supported GPU device. For information, see "Deep Learning with MATLAB on Multiple GPUs" (Deep Learning Toolbox). You can also specify the execution environment by using the 'ExecutionEnvironment ' name-value argument of trainingOptions (Deep Learning Toolbox).

To avoid waiting for the training, load pretrained networks by setting the doTrain flag to false. To train the networks using analyzeNetwork (Deep Learning Toolbox), set the doTrain flag to true. The Training Progress window displays progress. The training time using an NVIDIA® GeForce \({ }^{\circledR}\) RTX 2080 is about 35 minutes for 75 epochs.
```

doTrain = false;
if doTrain
residualNetMacro = trainNetwork(tblTrain,'Default',residualLayers,options);
else
load residualTrainedNetworkMacro.mat
end

```
A Training Progress (19-Aug-2021 12:48:25)

Training iteration 6346 of \(56775 \ldots\)
\begin{tabular}{ll}
Training Time & \\
\begin{tabular}{ll}
Start time: & \\
Elapsed time: & \\
19-Aug-2021 12:48:25
\end{tabular} \\
Training Cycle & \\
Epoch: & \\
\begin{tabular}{l}
Iterations per epoch:
\end{tabular} & 757 \\
Maximum iterations: & 56775 \\
Validation & \\
Frequency: & 1000 iterations \\
Other Information & \\
Hardware resource: & Single CPU \\
Learning rate schedule: & Constant \\
Learning rate: & 0.001
\end{tabular}
i Learn more

\section*{Test Network}

Use the predict (Deep Learning Toolbox) function to predict the default probability of the test data using the trained networks.
tblTest.residualPred = predict(residualNetMacro,tblTest(:,1:end-1));

\section*{Plot Default Rates by Year on Books}

To assess the performance of the network, use the groupsummary function to group the true default rates and corresponding predictions by years on the books (represented by the YOB variable) and calculate the mean value.
```

summaryYOB = groupsummary(tblTest,'YOB','mean',{'Default','residualPred'});
head(summaryYOB)

| YOB | GroupCount | mean_Default | mean_residualPred |
| :---: | :---: | :---: | :---: |
| 1 | 19364 | 0.017352 | 0.017688 |
| 2 | 18917 | 0.012158 | 0.013354 |
| 3 | 18526 | 0.011875 | 0.011522 |
| 4 | 18232 | 0.011683 | 0.010485 |
| 5 | 17925 | 0.0082008 | 0.0090247 |
| 6 | 17727 | 0.0066565 | 0.0066525 |

```
\begin{tabular}{lrrr}
7 & 12294 & 0.0030909 & 0.0034051 \\
8 & 6361 & 0.0017293 & 0.0018151
\end{tabular}

Plot the true average default rate against the average predictions by YOB.
```

figure
scatter(summaryYOB.YOB,summaryY0B.mean_Default*100,'*');
hold on
plot(summaryYOB.YOB,summaryYOB.mean_residualPred*100);
hold off
title('Residual Network')
xlabel('Years on Books')
ylabel('Default Rate (%)')
legend('Observed','Predicted')

```


The plot shows a good fit on the test data. The model seems to capture the overall trend as the age of the loan (YOB value) increases, as well as changes in the steepness of the trend.

The rest of this example shows some ways to better understand the model. First, it reviews standard explainability techniques that you can apply to this model, specifically, the lime and shapley functions. Then, it explores the behavior of the model in new (out-of-sample) data values. Finally, the example uses the model to predict PD values under stressed macroeconomic conditions, also known as stress testing.

\section*{Explain Model with LIME and Shapley}

The local interpretable model-agnostic explanations (LIME) method and the Shapley method both aim to explain the behavior of the model at a particular observation of interest or "query point." More
specifically, these techniques help you to understand the importance of each variable in the prediction made for a particular observation. For more information, see lime and shapley.

For illustration purposes, choose two observations from the data to better interpret the model predictions. The response values (last column) are not needed.

The first observation is a seasoned, low-risk loan. In other words, it has an initial score of LowRisk and eight years on the books.
```

obs1 = data(8,1:end-1);

```


The second observation is a new, high-risk loan. That is, the score is HighRisk and it is in its first year on the books.
```

obs2 = data(88,1:end-1);
disp(obs2)

| YOB | GDP | Market | HighRisk |  | MediumRisk | LowRisk |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2.72 | 7.61 | 1 | 0 | 0 |  |

```

Both lime and shapley require a reference data set with predictor values. This reference data can be the training data itself, or any other reference data where the model can be evaluated to explore the behavior of the model. More data points allow the explainability methods to understand the behavior of the model in more regions. However, a large data set can also slow down the computations, especially for shapley. For illustration purposes, use the first 1000 rows from the training data set. The response values (last column) are not needed.
predictorData \(=\operatorname{data}(1: 1000,1:\) end-1);
lime and shapley also require a function handle to the predict (Deep Learning Toolbox) function. Treat predict (Deep Learning Toolbox) like a black-box model and call it multiple times to make predictions on data and gather information on the behavior of the model.
blackboxFcn = @(x)predict(residualNetMacro,x);

\section*{Create lime Object}

Create a lime object by passing the black-box function handle and the selected predictor data.
Randomly generated synthetic data underlying lime can affect the importance. The report may change depending on the synthetic data generated. It can also change due to optional arguments, such as the 'KernelWidth ' parameter that controls the area around the observation of interest ("query point") while you fit the local model.
explainerLIME = lime(blackboxFcn,predictorData,'Type','regression');
Choose a number of important predictors of interest and fit a local model around the selected observations. For illustration purposes, the model contains all of the predictors.
```

numImportantPredictors = 6;
explainerObs1 = fit(explainerLIME,obs1,numImportantPredictors);
explainerObs2 = fit(explainerLIME,obs2,numImportantPredictors);

```

Plot the importance for each predictor.
figure
subplot \((2,1,1)\)
plot(explainerObs1);
subplot (2,1,2)
plot(explainerObs2);

The lime results are quite similar for both observations. The information in the plots show that the most important variables are the High Risk and Medium Risk variables. High Risk and Medium Risk contribute positively to higher probabilities of default. On the other hand, YOB, LowRisk, GDP, and Market have a negative contribution to the default probability. The Market variable does not seem to contribute as much as the other variables. The values in the plots are coefficients of a simple model fitted around the point of interest, so the values can be interpreted as sensitivities of the PD to the different predictors, and these results seem to align with expectations. For example, PD predictions decrease as the YOB value (age of the loan) increases, consistent with the downward trend observed in the model fit plot in the Test Network on page 4-184 section.

\section*{Create shapley Object}

The steps for creating a shapley object are the same as for lime. Create a shapley object by passing the black-box function handle and the predictor data selected previously.

The shapley analysis can also be affected by randomly generated data, and it requires different methods to control the simulations required for the analysis. For illustration purposes, create the shapley object with default settings.
```

explainerShapley = shapley(blackboxFcn,predictorData);

```

Find and plot the importance of predictors for each query point. shapley is more computationally intensive than lime. As the number of rows in the predictor data increases, the computational time for the shapley results increases. For large data sets, using parallel computing is recommended (see the 'UseParallel' option in shapley).
```

explainerShapleyObs1 = fit(explainerShapley, obs1);
explainerShapleyObs2 = fit(explainerShapley, obs2);
figure;
subplot(2,1,1)
plot(explainerShapley0bs1)
subplot(2,1,2)
plot(explainerShapley0bs2)

```


Shapley Explanation

In this case, the results look different for the two observations. The shapley results explain the deviations from the average PD prediction. For the first observation, which is a very low risk observation, the predicted value is well below the average PD Therefore, all shapley values are negative, with YOB being the most important variable in this case, followed by LowRisk. For the second observation, which is a very high risk observation, most shapley values are positive, with YOB and HighRisk as the main contributors to a predicted PD well above average.

\section*{Explore Out-of-Sample Model Predictions}

Splitting the original data set into training, validation, and testing helps prevent overfitting. However, the validation and test data sets share similar characteristics with the training data, for example, the range of values for YOB, or the observed values for the macroeconomic variables.
```

rangeYOB = [min(data.YOB) max(data.YOB)]
rangeYOB = 1\times2
1 8
rangeGDP = [min(data.GDP) max(data.GDP)]
rangeGDP = 1\times2
-0.5900 3.5700
rangeMarket = [min(data.Market) max(data.Market)]
rangeMarket = 1\times2
-22.9500 26.2400

```

You can explore the behavior of the out-of-sample (OOS) model in two different ways. First, you can predict for age values (YOB variable) larger than the maximum age value observed in the data. You can predict YOB values up to 15 . Second, you can predict for economic conditions not observed in the data either. This example uses two extremely severe macroeconomic situations, where both the GDP and Market values are very negative and outside the range of values in the data.

Start by setting up a baseline scenario where the last macroeconomic data in the sample is used as reference. The YOB values go out of sample for all scenarios.
```

dataBaseline = table;
dataBaseline.YOB = repmat((1:15)',3,1);
dataBaseline.GDP = zeros(size(dataBaseline.YOB));
dataBaseline.Market = zeros(size(dataBaseline.YOB));
dataBaseline.HighRisk = zeros(size(dataBaseline.YOB));
dataBaseline.MediumRisk = zeros(size(dataBaseline.YOB));
dataBaseline.LowRisk = zeros(size(dataBaseline.YOB));
dataBaseline.GDP(:) = data.GDP(8);
dataBaseline.Market(:) = data.Market(8);
dataBaseline.HighRisk(1:15) = 1;
dataBaseline.MediumRisk(16:30) = 1;
dataBaseline.LowRisk(31:45) = 1;
disp(head(dataBaseline))

| YOB | GDP | Market | HighRisk | MediumRisk | LowRisk |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.85 | 9.48 | 1 | 0 | 0 |
| 2 | 1.85 | 9.48 | 1 | 0 | 0 |
| 3 | 1.85 | 9.48 | 1 | 0 | 0 |

```
\begin{tabular}{llllll}
4 & 1.85 & 9.48 & 1 & 0 & 0 \\
5 & 1.85 & 9.48 & 1 & 0 & 0 \\
6 & 1.85 & 9.48 & 1 & 0 & 0 \\
7 & 1.85 & 9.48 & 1 & 0 & 0 \\
8 & 1.85 & 9.48 & 1 & 0 & 0
\end{tabular}

Create two new extreme scenarios that include out-of-sample values not only for YOB, but also for the macroeconomic variables. This example uses pessimistic scenarios, but you could repeat the analysis for optimistic situations to explore the behavior of the model in either kind of extreme situation.
```

dataExtremeS1 = dataBaseline;
dataExtremeS1.GDP(:) = -1;
dataExtremeS1.Market(:) = -25;
dataExtremeS2 = dataBaseline;
dataExtremeS2.GDP(:) = -2;
dataExtremeS2.Market(:) = -40;

```

Predict PD values for all scenarios using predict (Deep Learning Toolbox).
```

dataBaseline.PD = predict(residualNetMacro,dataBaseline);
dataExtremeS1.PD = predict(residualNetMacro,dataExtremeS1);
dataExtremeS2.PD = predict(residualNetMacro,dataExtremeS2);

```

Visualize the results for a selected score. For convenience, the average of the PD values over the three scores is visualized as a summary.
```

ScoreSelected = High *;
switch ScoreSelected
case 'High'
ScoreInd = dataBaseline.HighRisk==1;
PredPDYOB = [dataBaseline.PD(ScoreInd) dataExtremeS1.PD(ScoreInd) dataExtremeS2.PD(ScoreIn
case 'Medium'
ScoreInd = dataBaseline.MediumRisk==1;
PredPDYOB = [dataBaseline.PD(ScoreInd) dataExtremeS1.PD(ScoreInd) dataExtremeS2.PD(ScoreIn
case 'Low'
ScoreInd = dataBaseline.LowRisk==1;
PredPDYOB = [dataBaseline.PD(ScoreInd) dataExtremeS1.PD(ScoreInd) dataExtremeS2.PD(ScoreIn
case 'Average'
PredPDYOBBase = groupsummary(dataBaseline,'YOB','mean','PD');
PredPDYOBS1 = groupsummary(dataExtremeS1,'YOB','mean','PD');
PredPDYOBS2 = groupsummary(dataExtremeS2,'YOB','mean','PD');
PredPDYOB = [PredPDYOBBase.mean_PD PredPDYOBS1.mean_PD PredPDYOBS2.mean_PD];
end
figure;
bar(PredPDY0B*100);
xlabel('Years on Books')
ylabel('Probability of Default (%)')
legend('Baseline','Scenario 1','Scenario 2')
title(strcat("Out-of-Sample Scenarios, ",ScoreSelected," Score"))
grid on

```


The overall results are in line with expectations, since the PD values decrease as the YOB value increases, and worse economic conditions result in higher PD values. However, the relative increase of the predicted PD values shows an interesting result. For Low and Medium scores, there is a significant increase for the first year on books (YOB = 1). In contrast, for High scores, the relative increase from baseline, to the first extreme scenario, then to the second extreme case, is small. This result suggests an implicit upper limit in the predicted values in the structure of the model. The extreme scenarios in this exercise seem unlikely to occur, however, for extreme but plausible scenarios, this behavior would require investigation with stress testing.

\section*{Stress-Test Predicted Probabilities of Default (PD)}

Because the model includes macroeconomic variables, it can be used to perform a stress-testing analysis (see for example [2 on page 4-193], [3 on page 4-193] on page 4-193, [4 on page 4-193]). The steps are similar to the previous section except that the scenarios are plausible scenarios set periodically at an institution level, or set by regulators to be used by all institutions.

The dataMacroStress data set contains three scenarios for the stress testing of the model, namely, baseline, adverse, and severely adverse scenarios. The adverse and severe scenarios are relative to the baseline scenario, and the macroeconomic conditions are plausible given the baseline. These scenarios fall within the range of values observed in the data used for training and validation. The stress testing of the PD values for given macroeconomic scenarios is conceptually different from the exercise in the previous section, where the focus is on exploring the behavior of the model on out-ofsample data, regardless of how plausible those extreme scenarios are from an economic point of view.

Following the prior steps, you generate PD predictions for each score level and each scenario.
```

dataBaselineStress = dataBaseline(:,1:end-1);
dataAdverse = dataBaselineStress;
dataSevere = dataBaselineStress;
dataBaselineStress.GDP(:) = dataMacroStress{'Baseline','GDP'};
dataBaselineStress.Market(:) = dataMacroStress{'Baseline','Market'};
dataAdverse.GDP(:) = dataMacroStress{'Adverse','GDP'};
dataAdverse.Market(:) = dataMacroStress{'Adverse','Market'};
dataSevere.GDP(:) = dataMacroStress{'Severe','GDP'};
dataSevere.Market(:) = dataMacroStress{'Severe','Market'};

```

Use the predict (Deep Learning Toolbox) function to predict PD values for all scenarios. Visualize the results for a selected score.
```

dataBaselineStress.PD = predict(residualNetMacro,dataBaselineStress);
dataAdverse.PD = predict(residualNetMacro,dataAdverse);
dataSevere.PD = predict(residualNetMacro,dataSevere);
ScoreSelected = Average - ;
switch ScoreSelected
case 'High'
ScoreInd = dataBaselineStress.HighRisk==1;
PredPDYOBStress = [dataBaselineStress.PD(ScoreInd) dataAdverse.PD(ScoreInd) dataSevere.PD(!
case 'Medium'
ScoreInd = dataBaselineStress.MediumRisk==1;
PredPDYOBStress = [dataBaselineStress.PD(ScoreInd) dataAdverse.PD(ScoreInd) dataSevere.PD(
case 'Low'
ScoreInd = dataBaselineStress.LowRisk==1;
PredPDYOBStress = [dataBaselineStress.PD(ScoreInd) dataAdverse.PD(ScoreInd) dataSevere.PD(!
case 'Average'
PredPDYOBBaseStress = groupsummary(dataBaselineStress,'YOB','mean','PD');
PredPDYOBAdverse = groupsummary(dataAdverse,'YOB','mean','PD');
PredPDYOBSevere = groupsummary(dataSevere,'YOB','mean','PD');
PredPDYOBStress = [PredPDYOBBaseStress.mean_PD PredPDYOBAdverse.mean_PD PredPDYOBSevere.me
end
figure;
bar(PredPDYOBStress*100);
xlabel('Years on Books')
ylabel('Probability of Default (%)')
legend('Baseline','Adverse','Severe')
title(strcat("PD Stress Testing, ",ScoreSelected," Score"))
grid on

```


The overall results are in line with expectations. As in the Explore Out-of-Sample Model Predictions on page 4-189section, the predictions for the High score in the first year on books (\(Y O B=1\)) needs to be reviewed, since the relative increase in the predicted PD from one scenario to the next seems smaller than for other scores and loan ages. All other predictions show a reasonable pattern that are consistent with expectations.

\section*{References}
[1] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770-778, 2016.
[2] Federal Reserve, Comprehensive Capital Analysis and Review (CCAR): https:// www.federalreserve.gov/bankinforeg/ccar.htm
[3] Bank of England, Stress Testing: https://www.bankofengland.co.uk/financial-stability
[4] European Banking Authority, EU-Wide Stress Testing: https://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing

\section*{See Also}

\section*{More About}
- "Get Started with Deep Network Designer" (Deep Learning Toolbox)

\section*{Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations}

This example shows how to generate macroeconomic scenarios and perform expected credit loss (ECL) calculations for a portfolio of loans. The workflow in this example shows important computational steps required to estimate provisions for credit losses following regulations such as IFRS 9 on page \(4-222\) or CECL on page \(4-222\). In practice, the determination of loan provisions is a much more involved operational program requiring the collaboration of multiple departments in an institution. The goal of this example is to show useful computational tools that can support this process.

This example includes two parts:
- Part 1 on page 4-196 produces macroeconomic scenarios for the credit analysis and fits a vector autoregression (VAR) model to macroeconomic data. The workflow describes three qualitative scenario narratives with selected macro projections covering a few quarters ahead. It uses the conditional forecasting capabilities of the fitted VAR model to generate longer term projections for the macroeconomic variables.
- Part 2 on page 4-208 focuses on the credit analysis of an existing portfolio of loans. It uses three existing credit models are used, namely, a lifetime probability of default (PD) model, a loss given default (LGD) model, and an exposure at default (EAD) model. These models predict lifetime PD, LGD, and EAD values several periods ahead, given projections on loan-specific predictor variables and the macroeconomic scenarios from Part 1. The workflow estimates the loan loss provisions using the portfolioECL function, given the marginal PD, LGD, and EAD projections for different scenarios.

The following diagram summarizes the workflow in this example.

Part 1: Macroeconomic Scenarios
This part of the example shows how to fit an econometric model and how to use the fitted model with hypothesized conditions to produce macroeconomic scenarios.

In practice, the determination and approval of macroeconomic scenarios is an involved process. Institutions source macroeconomic scenarios from external vendors or they maintain internal macroeconomic models and produce scenarios. An institution can have existing models to generate scenarios, which are reviewed and updated infrequently. Some macroeconomic model developers use econometric models, while others prefer to explore alternative statistical models, such as machine learning or deep learning models. For more details, see "Sequence and Numeric Feature Data Workflows" (Deep Learning Toolbox).

For concreteness, the example fits a vector autoregressive (VAR) econometric model. For alternative econometric models, such as "Vector Error-Correction Models" (Econometrics Toolbox), see the example, "Model the United States Economy" (Econometrics Toolbox). Also, the Econometric Modeler (Econometrics Toolbox) enables you to interactively fit and analyze econometric models, including VAR and VEC models. For alternative time series modeling techniques, see Statistical and Machine Learning Toolbox \({ }^{\mathrm{TM}}\) and Deep Learning Toolbox \({ }^{\mathrm{TM}}\).

Part 1 describes the following workflow:
1 Visualize and transform data on page 4-197.
2 Conduct stationarity tests and select model lags on page 4-199.
3 Fit a VAR model on page 4-201.
4 Define macro scenarios on page 4-203.
This example uses the Data_USEconModel.mat data set included with Econometrics Toolbox. The data set includes several macroeconomic variables measured quarterly from March, 1947, through March, 2009 (near the start of the global financial crisis). For more details on the series, inspect the Description variable in the data file.

The measurements help emphasize the sensitivity of the credit projections to stressed macroeconomic conditions. You can apply the steps in this example to fit macroeconomic models using recent data.

\section*{Visualize and Transform Data}

This example includes the following variables in the model:
- GDP: Gross domestic product
- UNRATE: Unemployment rate
- TB3MS: Three-month treasury bill yield

The variables sufficiently determine scenarios for the credit models in Part 2 of this example. However, the model can include additional variables, for example, variables that can explain the dynamics of the economy enough to improve model predictions.

Load the data. Visualize the raw macroeconomic time series.
```

load Data_USEconModel
varnames = ["GDP" "UNRATE" "TB3MS"];
DataMacro = rmmissing(DataTimeTable(:,varnames)); % Remove initial rows with UNRATE = NaN
DataMacro.Time.Format = "default";
figure
t = tiledlayout(3,1);
nexttile
plot(DataMacro.Time,DataMacro.GDP)
title("GDP")
nexttile
plot(DataMacro.Time,DataMacro.UNRATE)
title("UNRATE")
nexttile
plot(DataMacro.Time,DataMacro.TB3MS)
title("TB3MS")
title(t,"Macroeconomic Time Series")

```

\section*{Macroeconomic Time Series}

All series appear nonstationary and have different scales. Because model estimation with nonstationary variables is problematic (see "Time Series Regression IV: Spurious Regression" (Econometrics Toolbox)), transform each series appropriately.
- The GDP series shows exponential growth and has a larger scale than the other variables. Because GDP percent growth from quarter to quarter is common to report, is close in scale to the other variables, and is required by the credit models in Part 2, try to stabilize the series by computing its percent returns.
- The unemployment and interest rate series do not show exponential growth, but they appear to have a stochastic trend. You can stabilize the series by applying the first difference to each. The credit models in Part 2 use the original units of these series; you can back-transform the series to their original units for the credit analysis.

Transform each series, and plot the results. Include the transformed variables in the timetable, prepad each transformation with NaN to synchronize the series (the first difference operation of a series results in one less observation).
```

DataMacro.GDPGROWTH = 100*[NaN; price2ret(DataMacro.GDP)]; % Growth rate in percent
DataMacro.UNRATEDIFF = [NaN; diff(DataMacro.UNRATE)];
DataMacro.TB3MSDIFF = [NaN; diff(DataMacro.TB3MS)];
DataMacro = rmmissing(DataMacro); % Remove initial missing values
numObs = height(DataMacro);
figure
t = tiledlayout(3,1);
nexttile

```
```

plot(DataMacro.Time,DataMacro.GDPGROWTH)
yline(0)
title("GDPGROWTH")
nexttile
plot(DataMacro.Time,DataMacro.UNRATEDIFF)
yline(0)
title("UNRATEDIFF")
nexttile
plot(DataMacro.Time,DataMacro.TB3MSDIFF)
yline(0)
title("TB3MSDIFF")
title(t,"Transformed Macroeconomic Series")

```

\section*{Transformed Macroeconomic Series}

GDPGROWTH

UNRATEDIFF

TB3MSDIFF

The series appear stable. To confirm the visual conclusions, conduct stationarity tests on each series.

\section*{Conduct Stationarity Tests and Select Model Lags}

To fit a VAR model, all variables must be stationarity. Econometrics Toolbox includes several tests for stationarity; see "Unit Root Tests" (Econometrics Toolbox).

This example uses the augmented Dickey-Fuller (ADF) test for unit root nonstationarity (see adftest (Econometrics Toolbox)). The null hypothesis of the test is that the input series is unit root nonstationary. Specified options determine the alternative hypothesis. The Model option of the ADF test specifies the dynamic structure of the alternative model for the test variable, specifically, autoregressive AR, autoregressive with drift ARD, or trend-stationary TS. The Lags option specifies the number of AR lags in the alternative model, specifically, the number \(p\) where \(y_{t-p}\) (the value of the series \(p\) periods back) influences the evolution of the series to the current step \(y_{t}\). The ADF test
results give information on whether the series is stationarity and on the structure of the autoregressive model that is appropriate for the series.

Use the ADF test to assess whether each series is stationary and to determine the appropriate dynamic model with number of lags for each series. The drop-down controls enable you to set model choices and variables for the ADF test. The adftest call runs separate tests from lags 0 through 4. The current settings in the code assesses whether TB3MSDIFF is stationary, assuming an ARD model.
```

ADFModelChoice = ARD *;
DataVariableChoice = TB3MSDIFF - ;
ADFTbl = adftest(DataMacro,'model',ADFModelChoice,'Lags',0:4,'DataVariable',DataVariableChoice)

```
ADFTbl=5×8 table
\begin{tabular}{lllllllllll}
& h & & pValue & stat & & cValue & & Lags & Alpha & Model
\end{tabular} Test

ADFTbl is a table containing the results of all conducted tests for assessing whether TB3MSDIFF is stationary. Each row is a separate test for each lag in the Lags variable. Values of h indicate whether to reject the null hypothesis at Alpha level of significance. Small enough \(p\)-values in the pValue variable suggest whether to reject the null hypothesis. \(\mathrm{h}=1\) suggests to reject the null hypothesis in favor of the alternative, and \(\mathrm{h}=0\) suggests failure to reject the null hypothesis. In this case, \(\mathrm{h}=1\) for all lags, so there is evidence that the TB3MSDIFF series is a stationary, autoregressive process with drift among all lags.

For each untransformed and transformed series in this example, use the drop-down controls to assess whether the series is unit root nonstationary against each alternative model including the AR lags 1 through 4.

The results are as follows:
- GDP: The ADF test fails to reject the null hypothesis for all settings. Exclude this series from the VAR model.
- GDPGROWTH: The ADF test rejects the null hypothesis for all settings. Include this series in the VAR model.
- UNRATE: The tests return mixed results. The tests that use an ARD alternative model with lags 1 through 3 reject the null hypothesis. Therefore, the unemployment rate does not require transforming because it has a deterministic trend. Include the raw series in the VAR model with a drift term. Also, use of the raw series is convenient because the series does not need to be backtransformed; it simplifies the scenario determination.
- TB3MS: The ADF test fails to reject the null hypothesis for all settings. Exclude this series from the VAR model.
- TB3MSDIFF: The ADF test rejects the null hypothesis for all settings. Include this series in the VAR model.

In addition to using ADF test results, you can determine the number of lags by using Akaike information criterion (AIC), Bayesian information criterion (BIC), and likelihood ratio tests. For an
example, see "Select Appropriate Lag Order" (Econometrics Toolbox). These approaches are useful, but they have caveats (for example, they are sensitive to the scaling of the series).

This example proceeds using two lags, which is reasonable from an application standpoint (it specifies to include information up to two quarters back). It leads to a less complex model, which is easier to analyze.

\section*{Fit VAR Model}

Fit a VAR model that includes the GDP growth, unemployment rate, and the first difference of the interest rate time series as endogenous variables. Include two AR lags in the model. For details, see varm (Econometrics Toolbox) and estimate (Econometrics Toolbox).
```

varnames = ["GDPGROWTH" "UNRATE" "TB3MSDIFF"];
numVars = length(varnames);
numLags = 2;
% 3-D VAR(2) model template
Mdl = varm(numVars,numLags);
Mdl.SeriesNames = varnames;
% Fit the model
[MacroVARModel,~,~,Residuals] = estimate(Mdl,DataMacro{:,varnames});

```

Visualize the fitted values for each series by using the drop-down control.
```

numRes = size(Residuals,1);
DataMacro.GDPGROWTH Predicted = NaN(numObs,1);
DataMacro.GDPGROWTH_Predicted(end-numRes+1:end) = DataMacro.GDPGROWTH(end-numRes+1:end) - Residua
DataMacro.UNRATE_Predicted = NaN(numObs,1);
DataMacro.UNRATE Predicted(end-numRes+1:end) = DataMacro.UNRATE(end-numRes+1:end) - Residuals(:,
DataMacro.TB3MSDIFF_Predicted = NaN(numObs,1);
DataMacro.TB3MSDIFF_Predicted(end-numRes+1:end) = DataMacro.TB3MSDIFF(end-numRes+1:end) - Residu
PlotVariableChoice = GDPGROWTH * ;
figure
plot(DataMacro.Time,DataMacro.(PlotVariableChoice))
hold on
plot(DataMacro.Time,DataMacro.(strcat(PlotVariableChoice,"_Predicted")),"-.")
hold off
title(strcat("Model Fit ",PlotVariableChoice))
ylabel(PlotVariableChoice)
legend("Observed","Predicted")
grid on

```


The model seems to have less variability than the actual data; the fitted values do not seem to go as high or as low as the most extreme values in the data. This result suggests the model error is smaller for small to medium GDP changes, but the errors are larger for more extreme GDP changes. Therefore, you can expect the model residuals to show heavy tails. A thorough analysis of residuals and autocorrelation is out of the scope of this example. For more details, see "Time Series Regression VI: Residual Diagnostics" (Econometrics Toolbox). This observation means the model seems more reliable for forecasts, which work with expected values (central tendencies around current levels), and less reliable for analyses of tail behavior (very extreme shocks away from current levels).

A review of model coefficients is an important model validation step. The way the series and their lagged information influence the latest values of the series should have a reasonable explanation.

Display the estimated coefficients and inferences.
```

summarize(MacroVARModel)

```
```

AR-Stationary 3-Dimensional VAR(2) Model

```
Effective Sample Size: 242
Number of Estimated Parameters: 21
LogLikelihood: -681. 275
AIC: 1404.55
BIC: 1477.82
Value \begin{tabular}{lll}
StandardError & TStatistic PValue \\
\hline
\end{tabular}
\begin{tabular}{lrrrr}
Constant (1) & -0.010079 & 0.26158 & -0.03853 & 0.96926 \\
Constant (2) & 0.3433 & 0.099669 & 3.4444 & 0.00057241 \\
Constant (3) & 0.11773 & 0.25581 & 0.46024 & 0.64535 \\
\(\operatorname{AR}\{1\}(1,1)\) & 0.32725 & 0.073009 & 4.4823 & \(7.3852 \mathrm{e}-06\) \\
\(\operatorname{AR}\{1\}(2,1)\) & -0.071852 & 0.027819 & -2.5829 & 0.0097982 \\
\(\operatorname{AR}\{1\}(3,1)\) & 0.098221 & 0.0714 & 1.3756 & 0.16893 \\
\(\operatorname{AR}\{1\}(1,2)\) & -0.22429 & 0.19147 & -1.1714 & 0.24145 \\
\(\operatorname{AR}\{1\}(2,2)\) & 1.4205 & 0.072958 & 19.47 & \(1.9537 \mathrm{e}-84\) \\
\(\operatorname{AR}\{1\}(3,2)\) & -0.50519 & 0.18725 & -2.6979 & 0.0069782 \\
\(\operatorname{AR}\{1\}(1,3)\) & 0.092278 & 0.067309 & 1.371 & 0.17039 \\
\(\operatorname{AR}\{1\}(2,3)\) & 0.040064 & 0.025647 & 1.5621 & 0.11825 \\
\(\operatorname{AR}\{1\}(3,3)\) & -0.30309 & 0.065826 & -4.6045 & \(4.1352 e-06\) \\
\(\operatorname{AR}\{2\}(1,1)\) & 0.15851 & 0.063174 & 2.509 & 0.012107 \\
\(\operatorname{AR}\{2\}(2,1)\) & 0.016333 & 0.024071 & 0.67854 & 0.49743 \\
\(\operatorname{AR}\{2\}(3,1)\) & 0.10361 & 0.061782 & 1.6771 & 0.093525 \\
\(\operatorname{AR}\{2\}(1,2)\) & 0.37458 & 0.19298 & 1.941 & 0.052255 \\
\(\operatorname{AR}\{2\}(2,2)\) & -0.4632 & 0.073531 & -6.2994 & \(2.9882 \mathrm{e}-10\) \\
\(\operatorname{AR}\{2\}(3,2)\) & 0.42524 & 0.18873 & 2.2532 & 0.024246 \\
\(\operatorname{AR}\{2\}(1,3)\) & -0.15819 & 0.0655 & -2.4152 & 0.015728 \\
\(\operatorname{AR}\{2\}(2,3)\) & 0.03071 & 0.024957 & 1.2305 & 0.21851 \\
\(\operatorname{AR}\{2\}(3,3)\) & -0.3519 & 0.064056 & -5.4936 & \(3.939 e-08\)
\end{tabular}
\begin{tabular}{ccc}
\multicolumn{3}{c}{ Innovations Covariance Matrix: } \\
0.8575 & -0.1668 & 0.2065 \\
-0.1668 & 0.1245 & -0.1156 \\
0.2065 & -0.1156 & 0.8201
\end{tabular}
\begin{tabular}{crc}
\multicolumn{3}{c}{ Innovations Correlation Matrix: } \\
1.0000 & -0.5103 & 0.2463 \\
-0.5103 & 1.0000 & -0.3616 \\
0.2463 & -0.3616 & 1.0000
\end{tabular}

For example, for GDP growth, the diagonal coefficients are positive, with the first lag coefficient about twice as large as the second lag coefficient. This result means there is some inertia in the GDP series, some positive memory, and the more recent quarter has more influence than the growth two periods ago. For unemployment, the first lag diagonal coefficient is positive (and relatively large), but the second lag coefficient is negative. This result suggests that there is strong inertia for unemployment with respect to the previous quarter, but that there is a rebound effect with respect to two quarters before. Expert judgment is required to analyze model coefficients and raise flags in unexpected situations (a thorough analysis of the model coefficients and their especially statistical significance are beyond the scope of this example).

\section*{Define Macroeconomic Scenarios}

Econometric model forecasts use the model parameters and recent observations of the time series to make predictions. The model forecast is a natural candidate for a macroeconomic scenario. However, the data and the model fully determine the forecasts, without qualitative views.

Forecast the estimated VAR model into a 30-period horizon by using forecast (Econometrics Toolbox). Initialize the forecasts by specifying the estimation data as a presample.
```

NumPeriods = 30;
ModelForecast = forecast(MacroVARModel,NumPeriods,DataMacro{:,varnames});

```

For later use by models and visualizations, append the latest observed quarter.
```

ModelForecast = [DataMacro{end,varnames}; ModelForecast];
fhTime = dateshift(DataMacro.Time(end),"end","quarter",0:NumPeriods)
fhTime = 1x31 datetime
31-Mar-2009 30-Jun-2009 30-Sep-2009 31-Dec-2009 31-Mar-2010 30-Jun-2010 30-Sep-20

```
TTForecast = array2timetable(ModelForecast,RowTimes=fhTime,VariableNames=varnames);

The model forecasts interest rate changes to TB3MSDIFF. Postprocess the forecast to recover the predicted values for the interest rate in TB3MS.

TTForecast.TB3MS = TTForecast.TB3MSDIFF;
TTForecast.TB3MS(1) = DataMacro.TB3MS(end);
TTForecast.TB3MS = cumsum(TTForecast.TB3MS)
\begin{tabular}{crrrrr}
\begin{tabular}{c}
TTForecast=31×4 \\
Time
\end{tabular} & \begin{tabular}{r}
timetable \\
GDPGROWTH
\end{tabular} & & UNRATE & & TB3MSDIFF
\end{tabular}

Visualize each model forecast by using the drop-down control.
```

VarToPlot = UNRATE *;
figure
plot(DataMacro.Time,DataMacro{:,VarToPlot})
hold on
plot(TTForecast.Time,TTForecast{:,VarToPlot}," --")
yline(0)
hold off
title(VarToPlot)
legend("Data","Forecast")

```

- The GDP growth reverts quickly to the average levels, with one more quarter of economic contraction, and growth rates over \(1 \%\) by the third quarter.
- The unemployment rate peaks at just over \(9 \%\) and then goes back to average levels, at a slower pace than the GDP.
- The model forecast predicts significantly negative interest rates going forward for a long period of time.

To define the scenarios for the credit analysis in Part 2, this example uses scenario narratives with qualitative views up to a few quarters ahead. This example combines the scenario narratives with conditional forecasting of the model to extend the predictions to several years ahead, where the predicted values revert to long-term levels. This approach can determine values for variables not described in the narrative, but are included in the macroeconomic model. For example, if only the GDP growth and unemployment rate are in the narrative, the corresponding interest rate scenario can be determined with conditional forecasting.

This example explores three scenarios: slow recovery, baseline, and fast recovery.

\section*{Slow Recovery Scenario}

In this scenario, the GDP contracts for four more quarters, with a maximum contraction of \(1.5 \%\) one quarter ahead. The unemployment rate peaks at \(11 \%\) three quarters ahead. The interest rate remains negative for four quarters.

Forecast the model under this scenario. Preprocess the raw interest rate series of the estimated model, then postprocess their forecasts to the original units.
```

TTSlow = TTForecast; % Initialize forecast variables
TTSlow.GDPGROWTH(2:7) = [-1.5; -1.2; -0.8; -0.3; 0.1; 0.5];
TTSlow.GDPGROWTH(8:end) = NaN;
TTSlow.UNRATE(2:7) = [9.3; 10.1; 11.0; 10.5; 9.9; 9.1];
TTSlow.UNRATE(8:end) = NaN;
TTSlow.TB3MS(2:7) = [-0.5; -0.25; -0.15; -0.05; 0.0; 0.05];
TTSlow.TB3MS(8:end) = NaN;
TTSlow.TB3MSDIFF(2:end) = diff(TTSlow.TB3MS);
TTSlow{2:end,varnames} = forecast(MacroVARModel,NumPeriods,DataMacro{:,varnames},YF=TTSlow{2:end
TTSlow.TB3MS(8:end) = TTSlow.TB3MS(7) + cumsum(TTSlow.TB3MSDIFF(8:end));

```

\section*{Baseline Scenario}

In this scenario, the GDP contracts for three more quarters, with a maximum contraction of \(1 \%\) one quarter ahead. The unemployment rate peaks at \(10 \%\) three quarters ahead. The interest rate remains negative for 2 quarters.

Forecast the model under this scenario. Preprocess the raw interest rate series using the estimated model, then postprocess their forecasts to the original units.
```

TTBaseline = TTForecast;
TTBaseline.GDPGROWTH(2:6) = [-1.0; -0.5; -0.25; 0.2; 0.6];
TTBaseline.GDPGROWTH(7:end) = NaN;
TTBaseline.UNRATE(2:6) = [9.0; 9.5; 10.0; 9.5; 9.0];
TTBaseline.UNRATE(7:end) = NaN;
TTBaseline.TB3MS(2:7) = [-0.25; -0.05; 0.01; 0.1; 0.15; 0.20];
TTBaseline.TB3MS(8:end) = NaN;
TTBaseline.TB3MSDIFF(2:end) = diff(TTBaseline.TB3MS);
TTBaseline{2:end,varnames} = forecast(MacroVARModel,NumPeriods,DataMacro{:,varnames},YF=TTBaseli,
TTBaseline.TB3MS(8:end) = TTBaseline.TB3MS(7) + cumsum(TTBaseline.TB3MSDIFF(8:end));

```

\section*{Fast Recovery Scenario}

In this scenario, the GDP contracts for one more quarter only, with a contraction of \(0.5 \%\). The unemployment rate peaks at \(9 \%\) three quarters ahead. The interest rate is zero in the next quarter and remains positive after that. The fast recovery scenario is similar to the model forecast, but in the forecast the GDP grows faster and the interest rate is negative for a long period of time.

Forecast the model under this scenario. Preprocess the raw interest rate series using the estimated model, then postprocess their forecasts to the original units.

TTFast \(=\) TTForecast;
TTFast.GDPGROWTH(2:5) \(=\) [-0.5; 0.05; 0.5; 0.9];
TTFast.GDPGROWTH (6:end) = NaN;
TTFast.UNRATE(2:5) = [8.8; 8.9; 9.0; 8.7];
TTFast.UNRATE(6:end) = NaN;
TTFast.TB3MS(2:7) \(=\) [0; 0.1; 0.15; 0.25; 0.25; 0.30];

TTFast.TB3MS(8:end) \(=\) NaN;
TTFast.TB3MSDIFF(2:end) = diff(TTFast.TB3MS);
TTFast\{2:end,varnames\} = forecast(MacroVARModel,NumPeriods,DataMacro\{:, varnames\},YF=TTFast\{2: end
TTFast.TB3MS(8:end) = TTFast.TB3MS(7) + cumsum(TTFast.TB3MSDIFF(8:end));
Assign a probability of 0.30 to the slow recovery scenario, 0.60 to the baseline scenario, and 0.10 to the fast recovery.
```

scenarioProb = [0.30; 0.60; 0.10];

```

Visualize the scenarios. Use the drop-down and slide controls to fine-tune the selected values that support the narratives. Visualize the long-term levels for different scenarios.
```

VarToPlot = GDPGROWTH - ;
StartYearPlot = 2007 % % % %
figure
DataPlotInd = (year(DataMacro.Time) >= StartYearPlot) \& (year(DataMacro.Time) <= EndYearPlot);
ScenarioPlotInd = year(TTSlow.Time) <= EndYearPlot;
plot(DataMacro.Time(DataPlotInd),DataMacro{DataPlotInd,VarToPlot})
hold on
plot(TTSlow.Time(ScenarioPlotInd),TTSlow{ScenarioPlotInd,VarToPlot},"-.")
plot(TTBaseline.Time(ScenarioPlotInd),TTBaseline{ScenarioPlotInd,VarToPlot}," - " )
plot(TTFast.Time(ScenarioPlotInd),TTFast{ScenarioPlotInd,VarToPlot},":")
yline(0)
hold off
title(strcat("Scenarios ",VarToPlot))
legend("Data","Slow","Baseline","Fast",Location="best")

```


The extended forecasts cross paths in some cases. For example, for GDP, the speed-up of the economy after the crisis occurs sooner in the fast recovery scenario, and then it starts settling down towards a long-term mean level while the economy is just speeding up for other scenarios.

The macroeconomic scenarios are defined. This example proceeds to the credit analysis, specifically, the computation of expected credit losses (ECL).

\section*{Part 2: ECL Calculations}

The second part of this example focuses on the workflow for computing the lifetime expected credit loss (ECL). ECL is the amount of provisions required for loan losses.

Part 2 works with an existing portfolio of loans for which there are three existing credit models: a lifetime probability of default (PD) model, a loss given default (LGD) model, and an exposure at default (EAD) model. These models predict lifetime PD, LGD, and EAD values several periods ahead, given projections on loan-specific predictor variables and the macroeconomic scenarios produced in Part 1 on page 4-196.

Given the marginal PD, LGD, and EAD projections for different scenarios, you can use the portfolioECL function to estimate the lifetime loan loss provisions. This example presents a comparison of 1-year ECL vs. lifetime ECL and this corresponds to stage 1 vs. stage 2 of the IFRS 9 regulation. In this example, the estimated provisions for the lifetime ECL and 1-year ECL are very high because the three macroeconomic scenarios correspond to challenging economic conditions. For reference, this example also estimates 1 -year provisions using an average macroeconomic scenario. This approach is similar to a through-the-cycle (TTC) method that shows in normal times the same
models produce significantly lower provisions. You can use a visualization of credit projections and provisions for each ID to drill down to a loan level.

Part 2 describes the following workflow:
1 Prepare loan data for macroeconomic scenarios on page 4-209.
2 Predict lifetime PD, LGD. and EAD on page 4-211.
3 Compute lifetime ECL on page 4-213.
4 Compute 1-year ECL on page 4-215.
5 Compute 1-year ECL with average macroeconomic levels on page 4-217.
6 Visualize loan-level results on page 4-219.
Both the portfolio data and the models are simulated to capture characteristics that may be found in practice and are intended only for illustration purposes.

\section*{Prepare for Loan Data for Macroeconomic Scenarios}

The ECLPortfolioMacroExample.mat file contains loan portfolio data. This data is a simulated existing portfolio of loans. The ECLPortfolioSnapshot table indicates which loans are in the portfolio.
load ECLPortfolioMacroExample.mat
head(ECLPortfolioSnapshot,5)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ID & Time & Age & ScoreGroup0rig & Balance & Limit & EffintRate \\
\hline 1 & 31-Mar-2009 & 12 & LowRisk & 3474 & 9000 & 5.04 \\
\hline 2 & 31-Mar-2009 & 5 & LowRisk & 6232.7 & 9100 & 1.51 \\
\hline 3 & 31-Mar-2009 & 3 & HighRisk & 2420.6 & 6000 & 3.13 \\
\hline 4 & 31-Mar-2009 & 2 & LowRisk & 7274.2 & 10100 & 0.28 \\
\hline 5 & 31-Mar-2009 & 1 & MediumRisk & 3611.8 & 5800 & 0.96 \\
\hline
\end{tabular}

The ECLPortfolioProjections table contains portfolio projections. These values are projected for the remaining life of each loan and for each of the loan variables. For example, the age (measured in quarters) is required for the lifetime PD and LGD models. Because the first loan is 12 quarters old, the projected age for the remaining periods starts at 13 and goes up by one all the way to the end of the loan, at 20 quarters (5 years). All models use the score group at origination and that is a constant value. The loan-to-value (LTV) ratio included in this simulated data set and models is the LTV at origination, which is constant. In practice, if the most recent LTV were included, it would have to be projected all the way through the end of the life of each loan.
\begin{tabular}{|c|c|c|c|c|c|}
\hline ID & Age & ScoreGroup0rig & LTV0rig & Limit & Time \\
\hline 1 & 13 & LowRisk & 0.81866 & 9000 & 30-Jun-2009 \\
\hline 1 & 14 & LowRisk & 0.81866 & 9000 & 30-Sep-2009 \\
\hline 1 & 15 & LowRisk & 0.81866 & 9000 & 31-Dec-2009 \\
\hline 1 & 16 & LowRisk & 0.81866 & 9000 & 31-Mar-2010 \\
\hline 1 & 17 & LowRisk & 0.81866 & 9000 & 30-Jun-2010 \\
\hline 1 & 18 & LowRisk & 0.81866 & 9000 & 30-Sep-2010 \\
\hline 1 & 19 & LowRisk & 0.81866 & 9000 & 31-Dec-2010 \\
\hline
\end{tabular}
\begin{tabular}{rrrrll}
1 & 20 & LowRisk & 0.81866 & 9000 & 31-Mar-2011 \\
2 & 6 & LowRisk & 0.79881 & 9100 & 30-Jun-2009 \\
2 & 7 & LowRisk & 0.79881 & 9100 & 30-Sep-2009
\end{tabular}

The credit models need projected values of GDP growth, unemployment rate, and interest rate, all lagged by one period. First, store the macroeconomic information in the MacroScenarios table, where the macroeconomic scenarios are stacked.
```

ScenarioIDs = ["SlowRecovery";"Baseline";"FastRecovery"];
NumScenarios = length(ScenarioIDs);
MacroScenarios = table;
NumForecastPeriods = height(TTForecast)-1; % Remove initial period, keep future periods only
MacroScenarios.ScenarioID = repelem(ScenarioIDs,NumForecastPeriods);
MacroScenarios.Time = repmat(TTForecast.Time(2:end),NumScenarios,1);
MacroScenarios.GDPGROWTHLAG = NaN(height(MacroScenarios),1);
MacroScenarios.GDPGROWTHLAG(MacroScenarios.ScenarioID=="SlowRecovery") = TTSlow.GDPGROWTH(1:end-
MacroScenarios.GDPGROWTHLAG(MacroScenarios.ScenarioID=="Baseline") = TTBaseline.GDPGROWTH(1:end-
MacroScenarios.GDPGROWTHLAG(MacroScenarios.ScenarioID=="FastRecovery") = TTFast.GDPGROWTH(1:end-.
MacroScenarios.UNRATELAG = NaN(height(MacroScenarios),1);
MacroScenarios.UNRATELAG(MacroScenarios.ScenarioID=="SlowRecovery") = TTSlow.UNRATE(1:end-1);
MacroScenarios.UNRATELAG(MacroScenarios.ScenarioID=="Baseline") = TTBaseline.UNRATE(1:end-1);
MacroScenarios.UNRATELAG(MacroScenarios.ScenarioID=="FastRecovery") = TTFast.UNRATE(1:end-1);
MacroScenarios.TB3MSLAG = NaN(height(MacroScenarios),1);
MacroScenarios.TB3MSLAG(MacroScenarios.ScenarioID=="SlowRecovery") = TTSlow.TB3MS(1:end-1);
MacroScenarios.TB3MSLAG(MacroScenarios.ScenarioID=="Baseline") = TTBaseline.TB3MS(1:end-1);
MacroScenarios.TB3MSLAG(MacroScenarios.ScenarioID=="FastRecovery") = TTFast.TB3MS(1:end-1);
head(MacroScenarios)

| ScenarioID | Time | GDPGROWTHLAG | UNRATELAG | TB3MSLAG |
| :---: | :---: | :---: | :---: | :---: |
| "SlowRecovery" | 30-Jun-2009 | -0.78191 | 8.5 | 0.21 |
| "SlowRecovery" | 30-Sep-2009 | -1.5 | 9.3 | -0.5 |
| "SlowRecovery" | 31-Dec-2009 | -1.2 | 10.1 | -0.25 |
| "SlowRecovery" | 31-Mar-2010 | -0.8 | 11 | -0.15 |
| "SlowRecovery" | 30-Jun-2010 | -0.3 | 10.5 | -0.05 |
| "SlowRecovery" | 30-Sep-2010 | 0.1 | 9.9 | 0 |
| "SlowRecovery" | 31-Dec-2010 | 0.5 | 9.1 | 0.05 |
| "SlowRecovery" | 31-Mar-2011 | 1.8334 | 8.6536 | -0.19292 |

```

To make predictions with the credit models, use the macroeconomic scenarios together with the loan data containing all the loan projection periods correctly aligned in time with the macroeconomic projected values. There are different ways to implement this. In this example, you can stack the portfolio projections three times, one for each scenario, and then join the stacked projections with the macro scenarios. Although this stacking method uses more memory, you can easily drill down to the loan level for different scenarios (see Loan-Level Results on page 4-219).

Stack portfolio projections by scenario in the ECLProjectionsByScenario table, and apply a join operation with the MacroScenarios table. The result is to add the macro variables to the larger table, using the Time and ScenarioID variables as keys for the join.

ECLProjectionsByScenario = repmat(ECLPortfolioProjections,NumScenarios,1);
ECLProjectionsByScenario = addvars(ECLProjectionsByScenario, repelem(ScenarioIDs, height(ECLPortfo
```

ECLProjectionsByScenario = join(ECLProjectionsByScenario,MacroScenarios);
head(ECLProjectionsByScenario,10)

```
\begin{tabular}{lllllllllll}
ScenarioID & ID & Age & & ScoreGroupOrig & & LTVOrig & & Limit & & Time
\end{tabular}

\section*{Predict Lifetime PD, LGD, and EAD}

Load the existing credit models and use them to make predictions using the prepared data. In this workflow, new credit models for PD, LGD, and EAD are not fit; the assumption is that these credit models were previously fit and reviewed and are ready to use for ECL calculations. The credit models are all instances of models created with Risk Management Toolbox \({ }^{\text {TM }}\) using fitLifetimePDModel, fitLGDModel, and fitEADModel.
load ECLCreditModelsMacroExample.mat
The lifetime PD model is a Probit model with the predictors: age of the loan, score group at origination, LTV ratio at origination, and the lagged GDP growth and unemployment rate values.
```

disp(pdECLModel)
Probit with properties:

```
```

            ModelID: "PD-ECL-Probit"
    ```
 ModelID: "PD-ECL-Probit"
 Description: "Lifetime PD model example fitted to simulated data."
 Description: "Lifetime PD model example fitted to simulated data."
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 IDVar: "ID"
 AgeVar: "Age"
 AgeVar: "Age"
 LoanVars: ["ScoreGroupOrig" "LTVOrig"]
 LoanVars: ["ScoreGroupOrig" "LTVOrig"]
 MacroVars: ["GDPGROWTHLAG" "UNRATELAG"]
 MacroVars: ["GDPGROWTHLAG" "UNRATELAG"]
 ResponseVar: "Default"
```

            ResponseVar: "Default"
    ```

The LGD model is a Tobit model with the predictors: age of the loan, score group at origination, LTV ratio at origination, and the lagged GDP growth.
```

disp(lgdECLModel)

```
 Tobit with properties:
```

    CensoringSide: "both"
            LeftLimit: 0
            RightLimit: 1
            ModelID: "LGD-ECL-Tobit"
        Description: "LGD model example fitted to simulated data."
    UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
        PredictorVars: ["Age" "ScoreGroupOrig" "LTVOrig" "GDPGROWTHLAG"]
            ResponseVar: "LGD"
    ```

The EAD model is a Regression model, based on the limit conversion factor (LCF) conversion measure, with the predictors: score group at origination, LTV ratio at origination, and the lagged unemployment rate and interest rate values. Because the underlying model predicts LCF, the EAD model requires the credit limit variable to make EAD predictions, even though the credit limit is not a predictor of the underlying LCF model.
```

disp(eadECLModel)
Regression with properties:
ConversionTransform: "logit"
BoundaryTolerance: 1.0000e-07
ModelID: "EAD-ECL-Regression"
Description: "EAD model example fitted to simulated data."
UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
PredictorVars: ["ScoreGroupOrig" "LTVOrig" "UNRATELAG" "TB3MSLAG"]
ResponseVar: "EAD"
LimitVar: "Limit"
DrawnVar:
ConversionMeasure: "lcf"

```

Store the predictions in the ECLProjectionsByScenario table. The predictions can also be stored in separate tables and used directly as inputs for the portfolioECL function. For an example of using separate tables, see "Calculate ECL Based on Marginal PD, LGD, and EAD Predictions" on page 6-497. Storing predictions in the ECLProjectionsByScenario table with scenarios stacked allows you to review prediction details at a very granular level because the predictions are stored side by side with projected predictor values in each row.

Store the lifetime (cumulative) PD and the marginal PD. Typically, the cumulative PD is used for reporting purposes and the marginal PD is used as an input for ECL computations with the portfolioECL function.

ECLProjectionsByScenario.PDLifetime = zeros(height(ECLProjectionsByScenario),1);
ECLProjectionsByScenario.PDMarginal = zeros(height(ECLProjectionsByScenario),1);
ECLProjectionsByScenario.LGD = zeros(height(ECLProjectionsByScenario),1);
ECLProjectionsByScenario.EAD = zeros(height(ECLProjectionsByScenario),1);
for ii=1:NumScenarios
ScenIndECLData = ECLProjectionsByScenario.ScenarioID==ScenarioIDs(ii);
ECLProjectionsByScenario.PDLifetime(ScenIndECLData) = predictLifetime(pdECLModel, ECLProjectio ECLProjectionsByScenario.PDMarginal(ScenIndECLData) = predictLifetime(pdECLModel,ECLProjectio ECLProjectionsByScenario.LGD(ScenIndECLData) = predict(lgdECLModel, ECLProjectionsByScenario(S ECLProjectionsByScenario.EAD(ScenIndECLData) = predict(eadECLModel,ECLProjectionsByScenario(S
end
head(ECLProjectionsByScenario,10)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ScenarioID & ID & Age & ScoreGroup0rig & LTVOrig & Limit & Time & GDPGROWT \\
\hline "SlowRecovery" & 1 & 13 & LowRisk & 0.81866 & 9000 & 30-Jun-2009 & -0.781 \\
\hline "SlowRecovery" & 1 & 14 & LowRisk & 0.81866 & 9000 & 30-Sep-2009 & -1 \\
\hline "SlowRecovery" & 1 & 15 & LowRisk & 0.81866 & 9000 & 31-Dec-2009 & -1 \\
\hline "SlowRecovery" & 1 & 16 & LowRisk & 0.81866 & 9000 & 31-Mar-2010 & - 0 \\
\hline "SlowRecovery" & 1 & 17 & LowRisk & 0.81866 & 9000 & 30-Jun-2010 & - 0 \\
\hline
\end{tabular}
\begin{tabular}{lrrlrlr}
"SlowRecovery" & 1 & 18 & LowRisk & 0.81866 & 9000 & 30-Sep-2010 \\
"SlowRecovery" & 1 & 19 & LowRisk & 0.81866 & 9000 & \(31-\) Dec-2010 \\
"SlowRecovery" & 1 & 20 & LowRisk & 0.81866 & 9000 & \(31-\) Mar-2011 \\
"SlowRecovery" & 2 & 6 & LowRisk & 0.79881 & 9100 & \(30-\) Jun-2009 \\
"SlowRecovery" & 2 & 7 & LowRisk & 0.79881 & 9100 & \(30-\) Sep-2009
\end{tabular}

\section*{Compute Lifetime ECL}

Compute the lifetime ECL using the portfolioECL function. The inputs to this function are tables, where the first column is an ID variable that indicates which rows correspond to which loan. Because the projections cover multiple periods for each loan, and the remaining life of different loans may be different, the ID variable is an important input. Then, for each ID, the credit projections must be provided, period by period, until the end of the life of each loan. Typically, the marginal PD has a multi-period and multi-scenario size. However, in some situations, more commonly for LGD or EAD inputs, the credit projections may not have values for each period, or may not be sensitive to the scenarios. A typical case for this situation is a loan that repays the principal at maturity, where the exposure is considered constant for each period and independent of the macroeconomic scenarios. In this case, the EAD table input has one scalar value per ID that applies for all periods and all scenarios. To offer flexibility for different input dimensions for marginal PD, LGD, and EAD inputs, these inputs are separated into three separate tables in the syntax of portfolioECL.

Reformat the credit projections stored in the ECLProjectionsByScenario table into an intermediate table that includes the Time variable. You can use these intermediate tables to look at the detailed predictions period-by-period with different scenarios side-by-side. Also, these tables with a Time variable are useful for logical indexing to extract the predictions for only the first year.
```

PDMarginalUnstacked = ECLProjectionsByScenario(:,["ScenarioID" "ID" "Time" "PDMarginal"]);
PDMarginalUnstacked = unstack(PDMarginalUnstacked,"PDMarginal","ScenarioID");
PDMarginalUnstacked = movevars(PDMarginalUnstacked,"SlowRecovery","Before","Baseline");
disp(head(PDMarginalUnstacked))

```
\begin{tabular}{|c|c|c|c|c|}
\hline ID & Time & SlowRecovery & Baseline & FastRecovery \\
\hline 1 & 30-Jun-2009 & 0.0092969 & 0.0092969 & 0.0092969 \\
\hline 1 & 30-Sep-2009 & 0.010737 & 0.0090867 & 0.0078466 \\
\hline 1 & 31-Dec-2009 & 0.01015 & 0.0076948 & 0.005958 \\
\hline 1 & 31-Mar-2010 & 0.0096304 & 0.006847 & 0.0045918 \\
\hline 1 & 30-Jun-2010 & 0.0064312 & 0.0045587 & 0.0032064 \\
\hline 1 & 30-Sep-2010 & 0.0042121 & 0.0030213 & 0.0019542 \\
\hline 1 & 31-Dec-2010 & 0.0025718 & 0.0016771 & 0.0013505 \\
\hline 1 & 31-Mar-2011 & 0.0013569 & 0.0011649 & 0.00096951 \\
\hline
\end{tabular}
```

LGDUnstacked = ECLProjectionsByScenario(:,["ScenarioID" "ID" "Time" "LGD"]);
LGDUnstacked = unstack(LGDUnstacked,"LGD","ScenarioID");
LGDUnstacked = movevars(LGDUnstacked,"SlowRecovery","Before","Baseline");
EADUnstacked = ECLProjectionsByScenario(:,["ScenarioID" "ID" "Time" "EAD"]);
EADUnstacked = unstack(EADUnstacked,"EAD","ScenarioID");
EADUnstacked = movevars(EADUnstacked,"SlowRecovery","Before","Baseline");

```

The final step to preparing the inputs for portfolioECL is to remove the Time column. There are other ways to prepare these inputs, for example, you can store the columns side-by-side directly during prediction. In this example, the extra steps for preparation are illustrated so that you can use the ECLProjectionsByScenario table for detailed analysis at a loan level (see Loan-Level Results on page 4-219).
```

PDMarginalLifetimeInput = PDMarginalUnstacked(:,[1 3:end]);
disp(head(PDMarginalLifetimeInput))

ID	SlowRecovery		Baseline		FastRecovery
1	0.0092969		0.0092969		0.0092969
1	0.010737		0.0090867		0.0078466
1	0.01015		0.0076948		0.005958
1	0.0096304		0.006847		0.0045918
1	0.0064312		0.0045587		0.0032064
1	0.0042121		0.0030213		0.0019542
1	0.0025718		0.0016771		0.0013505
1	0.0013569		0.0011649		0.00096951

```
```

LGDLifetimeInput = LGDUnstacked(:,[1 3:end]);
EADLifetimeInput = EADUnstacked(:,[1 3:end]);

```

Each loan has an effective interest rate for discounting that is determined at loan recognition.
```

EIRInput = ECLPortfolioSnapshot(:,["ID" "EffIntRate"]);
EIRInput.EffIntRate = EIRInput.EffIntRate/100; % Convert to decimal

```

Use the portfolioECL function.
[totalECL,idECL, periodECL] = portfolioECL(PDMarginalLifetimeInput,LGDLifetimeInput,EADLifetimeIn ScenarioNames=ScenarioIDs,ScenarioProbabilities=scenarioProb,InterestRate=EIRInput);

The totalECL output is the lifetime ECL of the portfolio which is the total provisions amount required by the portfolio.
```

fprintf('Total Portfolio Lifetime ECL: %s',cur2str(totalECL))
Total Portfolio Lifetime ECL: \$67701.21

```

The idECL output is the lifetime ECL at a loan level. Join the idECL output with the score group and the balance information from the ECL portfolio snapshot table. With this data, you can compute the lifetime ECL as a percent of the loan balance. You can also aggregate by score group. The TotalsByScore table shows that the lifetime ECL is significantly higher for lower quality score groups.
```

idECL = join(idECL,ECLPortfolioSnapshot(:,["ID" "ScoreGroup0rig" "Balance"]));
idECL.ECLPercent = 100*idECL.ECL./idECL.Balance;
TotalsByScore = groupsummary(idECL,"ScoreGroupOrig","sum",["ECL" "Balance"]);
TotalsByScore.ECLPercent = 100*TotalsByScore.sum_ECL./TotalsByScore.sum_Balance
TotalsByScore=3\times5 table
ScoreGroupOrig GroupCount sum ECL sum Balance ECLPercent

HighRisk	76	22027	$1.828 \mathrm{e}+05$	12.05
MediumRisk	121	23921	$3.312 \mathrm{e}+05$	7.2225
LowRisk	130	21753	$5.9629 \mathrm{e}+05$	3.6481

```

The provisions in TotalsByScore table are very high. These results are explored in the Compute 1Year ECL on page 4-215 and Compute 1-Year ECL with Average Macroeconomic Levels on page 4-217 sections.

Visualize the distribution of the portfolio balance and the distribution of provisions by score group. Only about \(1 / 6\) of the assets are allocated to high-risk loans, yet the provisions for high risk make up about \(1 / 3\) of the total provisions. On the other end, more than half of the assets are allocated to lowrisk loans, yet the provisions for low risk are less than \(1 / 3\) of the total provisions.
```

figure
tiledlayout(1,2)
nexttile
pie(TotalsByScore.sum_Balance)
title('Balance by Score Group')
nexttile
pie(TotalsByScore.sum ECL)
title('Provisions by Score Group')
leg = legend(TotalsByScore.ScoreGroupOrig,'Location','south','Orientation','horizontal');
leg.Layout.Tile = 'south';

```


\section*{Compute 1-Year ECL}

As noted in Compute Lifetime ECL on page 4-213, the lifetime provisions in TotalsByScore table are very high. To better understand why, you can compute 1 -year provisions to understand the impact of the lifetime part of the ECL beyond the first year.

The difference between lifetime ECL and 1-year ECL is important for the IFRS 9 regulation where stage 1 loans (performing loans) use 1-year ECL for provisioning, whereas stage 2 loans (increased credit risk) and stage 3 loans (credit impaired) use lifetime ECL. [1 on page 4-222]

To obtain a 1-year ECL, prepare the marginal PD, LGD, and EAD input tables so that they cover one year ahead. You can leverage the unstacked tables created in Compute Lifetime ECL on page 4-213. These unstacked tables contain a Time variable to do logical indexing and obtain the inputs for a 1year ECL. In the new inputs, each ID has only four periods and any loan with a remaining life of less than four quarters has fewer periods.

FourthQuarterAhead = ECLPortfolioProjections.Time(4);
PDMarginal1YearInput = PDMarginalUnstacked(PDMarginalUnstacked.Time<=FourthQuarterAhead,[1 3:end disp(head(PDMarginal1YearInput))
\begin{tabular}{|c|c|c|c|}
\hline ID & SlowRecovery & Baseline & FastRecovery \\
\hline 1 & 0.0092969 & 0.0092969 & 0.0092969 \\
\hline 1 & 0.010737 & 0.0090867 & 0.0078466 \\
\hline 1 & 0.01015 & 0.0076948 & 0.005958 \\
\hline 1 & 0.0096304 & 0.006847 & 0.0045918 \\
\hline 2 & 0.02793 & 0.02793 & 0.02793 \\
\hline 2 & 0.030942 & 0.026838 & 0.023675 \\
\hline 2 & 0.028822 & 0.022818 & 0.018364 \\
\hline 2 & 0.026954 & 0.020285 & 0.014466 \\
\hline
\end{tabular}
```

LGD1YearInput = LGDUnstacked(LGDUnstacked.Time<=FourthQuarterAhead,[1 3:end]);
EAD1YearInput = EADUnstacked(EADUnstacked.Time<=FourthQuarterAhead,[1 3:end]);

```

Use portfolioECL with the new inputs.
[totalECL1Year,idECL1Year, periodECL1Year] = portfolioECL(PDMarginal1YearInput,LGD1YearInput, EAD1
ScenarioNames=ScenarioIDs,ScenarioProbabilities=scenarioProb,InterestRate=EIRInput);
Expand the ID level ECL table with the score group and balance information.
```

idECL1Year.ScoreGroupOrig = idECL.ScoreGroupOrig;
idECL1Year.Balance = idECL.Balance;
idECL1Year.ECLPercent = 100*idECL1Year.ECL./idECL1Year.Balance;

```
TotalsByScore1Year = groupsummary(idECL1Year,"ScoreGroupOrig","sum", ["ECL" "Balance"]);
TotalsByScore1Year.ECLPercent = 100*TotalsByScore1Year.sum_ECL./TotalsByScore1Year.sum_Balance;

Compare the 1 -year ECL with the lifetime ECL by plotting the lifetime and 1 -year ECL values as a proportion of balance for each score group.
figure;
bar([TotalsByScore.ECLPercent TotalsByScore1Year.ECLPercent])
xticklabels(TotalsByScore.ScoreGroupOrig)
ylabel('ECL as \% of Balance')
legend('Lifetime ECL','1-Year ECL')
title('ECL, Lifetime vs. 1 Year')
grid on

The lifetime ECL shows an important increase with respect to the 1 -year ECL. However, the 1 -year ECL values are high. In general, the increment from 1-year ECL to lifetime ECL is not expected to be large because marginal PD values tend to decrease as loans age, and in some cases, the risk implied by LGD and EAD projections can also decrease with time. An example of this behavior is an amortizing loan.

The macroeconomic scenarios in this example are extremely adverse and the provisions are conditional on the macroeconomic scenarios. Compute 1-Year ECL with Average Macroeconomic Levels on page 4-217 explores the impact of these adverse scenarios on the ECL estimates.

\section*{Compute 1-Year ECL with Average Macroeconomic Levels}

To compare the 1-year ECL with more normal macroeconomic conditions, the macroeconomic scenarios from Define Macroeconomic Scenarios on page 4-203 are replaced with a long-term average of the macroeconomic variables. To simplify, use the long-term average of the macroeconomic variables to make predictions only four quarters ahead. This approach is similar to a through-the-cycle (TTC) reserving approach because the credit projections reflect average macroeconomic conditions.

Use the mean macroeconomic levels over the entire sample.
```

MeanGDPGROWTH = mean(DataMacro.GDPGROWTH);
MeanUNRATE = mean(DataMacro.UNRATE);
MeanTB3MS = mean(DataMacro.TB3MS);

```

To make predictions, you need the projected predictors values and data only one year ahead.

ECLPortfoliolYearMacroAverage = ECLPortfolioProjections(ECLPortfolioProjections.Time<=FourthQuar ECLPortfoliolYearMacroAverage.GDPGROWTHLAG = zeros(height(ECLPortfoliolYearMacroAverage),1); ECLPortfoliolYearMacroAverage.UNRATELAG = zeros(height(ECLPortfolio1YearMacroAverage), 1); ECLPortfolio1YearMacroAverage.TB3MSLAG = zeros(height(ECLPortfolio1YearMacroAverage),1);

Append the macroeconomic average values and use the same average value for all periods going forward.

ECLPortfoliolYearMacroAverage.GDPGROWTHLAG(:) = MeanGDPGROWTH;
ECLPortfolio1YearMacroAverage.UNRATELAG(:) = MeanUNRATE;
ECLPortfolio1YearMacroAverage.TB3MSLAG(:) = MeanTB3MS;
Predict credit values. You need only the marginal PD values for ECL calculations, but you can also store the lifetime PD values for the analysis in the Loan-Level Results on page 4-219 section.

ECLPortfoliolYearMacroAverage.PDLifetime = predictLifetime(pdECLModel,ECLPortfoliolYearMacroAver ECLPortfoliolYearMacroAverage.PDMarginal = predictLifetime(pdECLModel, ECLPortfoliolYearMacroAver ECLPortfoliolYearMacroAverage. LGD = predict(lgdECLModel, ECLPortfoliolYearMacroAverage); ECLPortfoliolYearMacroAverage.EAD = predict(eadECLModel,ECLPortfolio1YearMacroAverage);

In this case, the inputs for the portfolioECL function have only one scenario.
```

PDMarginal1YearMacroAverageInput = ECLPortfoliolYearMacroAverage(:,["ID" "PDMarginal"]);
LGD1YearMacroAverageInput = ECLPortfolio1YearMacroAverage(:,["ID" "LGD"]);
EAD1YearMacroAverageInput = ECLPortfolio1YearMacroAverage(:,["ID" "EAD"]);

```

Obtain the 1-year ECL and expand the loan-level results table.
```

[totalECL1YearMacroAverage,idECL1YearMacroAverage,periodECL1YearMacroAverage] = portfolioECL(PDM

```
idECL1YearMacroAverage.ScoreGroupOrig = idECL.ScoreGroup0rig;
idECL1YearMacroAverage.Balance = idECL.Balance;
idECL1YearMacroAverage.ECLPercent = 100*idECL1YearMacroAverage.ECL./idECL1YearMacroAverage.Balan

TotalsByScore1YearMacroAverage = groupsummary(idECL1YearMacroAverage, "ScoreGroupOrig", "sum" , ["ECI TotalsByScore1YearMacroAverage.ECLPercent = 100*TotalsByScore1YearMacroAverage.sum_ECL./TotalsBy

Compare the 1-year ECL with average macroeconomic values to the 1-year ECL and lifetime ECL approach using the initial macroeconomic scenarios.
```

figure;
bar([TotalsByScore.ECLPercent TotalsByScore1Year.ECLPercent TotalsByScore1YearMacroAverage.ECLPe
xticklabels(TotalsByScore.ScoreGroupOrig)
ylabel('ECL as % of Balance')
legend('Lifetime ECL','1-Year ECL','1-Year ECL, Macro Average')
title('ECL, Lifetime vs. 1 Year vs. 1 Year Macro Average')
grid on

```


These results show that the severely adverse macroeconomic scenarios defined in Define Macroeconomic Scenarios on page 4-203 drive the high provisions. The 1-year ECL values with average macroeconomic levels are much lower with the low-risk 1 -year ECL at \(0.5 \%\) of the current provisions balance. The medium-risk 1 -year ECL is at \(1 \%\) of the current provisions balance and the high-risk 1 -year ECL is \(2 \%\) of the current provisions balance.

\section*{Visualize Loan-Level Results}

You can explore the ECL predictions and the results at a loan level. Use SelectedID to enter any loan ID in the portfolio. The resulting visualizations show the predicted lifetime PD, marginal PD, LGD, and EAD over the remaining life of the loan. The plot shows the predictions for each macroeconomic scenario defined in Define Macroeconomic Scenarios on page 4-203 as well as the macroeconomic average scenario (1-year predictions only).
```

SelectedID = 1,
IDDataLifetime = ECLProjectionsByScenario(ECLProjectionsByScenario.ID==SelectedID,:);
IDData1YearMacroAverage = ECLPortfoliolYearMacroAverage(ECLPortfoliolYearMacroAverage.ID==Select
figure;
t = tiledlayout(4,1);
nexttile
hold on
for ii=1:NumScenarios
ScenPlotInd = IDDataLifetime.ScenarioID==ScenarioIDs(ii);
plot(IDDataLifetime.Time(ScenPlotInd),IDDataLifetime.PDLifetime(ScenPlotInd))
end

```
```

plot(IDData1YearMacroAverage.Time,IDData1YearMacroAverage.PDLifetime,'--')
hold off
ylabel('PD Lifetine')
title('PD Lifetime')
grid on
nexttile
hold on
for ii=1:NumScenarios
ScenPlotInd = IDDataLifetime.ScenarioID==ScenarioIDs(ii);
plot(IDDataLifetime.Time(ScenPlotInd),IDDataLifetime.PDMarginal(ScenPlotInd))
end
plot(IDDatalYearMacroAverage.Time,IDData1YearMacroAverage.PDMarginal,' --')
hold off
ylabel('PD Marginal')
title('PD Marginal')
grid on
nexttile
hold on
for ii=1:NumScenarios
ScenPlotInd = IDDataLifetime.ScenarioID==ScenarioIDs(ii);
plot(IDDataLifetime.Time(ScenPlotInd),IDDataLifetime.LGD(ScenPlotInd))
end
plot(IDData1YearMacroAverage.Time,IDData1YearMacroAverage.LGD,' - -')
hold off
ylabel('LGD')
title('LGD')
grid on
nexttile
hold on
for ii=1:NumScenarios
ScenPlotInd = IDDataLifetime.ScenarioID==ScenarioIDs(ii);
plot(IDDataLifetime.Time(ScenPlotInd),IDDataLifetime.EAD(ScenPlotInd))
end
plot(IDData1YearMacroAverage.Time,IDData1YearMacroAverage.EAD,' - ' ')
hold off
ylabel('EAD')
title('EAD')
grid on
leg = legend("Slow recovery","Baseline","Fast recovery","Macro Average","Orientation","horizonta
leg.Layout.Tile = 'south';

```


The following plot shows the ECL for the loan, the ECL for the lifetime case, the 1-year ECL case, and the 1-year ECL using average macroeconomic values.
figure;
IDECLInd = idECL.ID == SelectedID;
bar(categorical("Provisions"), [idECL.ECLPercent(IDECLInd) idECL1Year.ECLPercent(IDECLInd) idECL1
legend('Lifetime','1 Year','1 Year Macro Average')
ylabel('ECL as \% of Balance')
TitleStr = sprintf('ID: \%g, Score Group: \%s',SelectedID,idECL.ScoreGroupOrig(IDECLInd)); title(TitleStr)
grid on

\section*{Conclusion}

This example covers an entire workflow, including the determination of macroeconomic scenarios and the estimation of provisions using lifetime ECL computations. The example also shows some tools and visualizations to analyze the results at a portfolio level, score-group level, and loan level.

The example demonstrates tools from the Econometrics Toolbox \({ }^{\mathrm{TM}}\) and Risk Management Toolbox \({ }^{\mathrm{TM}}\) that support this workflow, including macroeconomic modeling tools such as vector autoregressive (VAR) models, and credit risk tools such as the lifetime probability of default (PD) models (fitLifetimePDModel), loss given default (LGD) models (fitLGDModel), exposure at default (EAD) models (fitEADModel), and the portfolioECL function.

\section*{References}
[1] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. Elsevier, 2019.
[2] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Prescient Models LLC, 2018.
[3] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.

\section*{See Also}
fitLifetimePDModel|fitEADModel|fitLGDModel|portfolioECL

\section*{Related Examples}
- "Expected Credit Loss Computation" on page 4-124
- "Modeling Probabilities of Default with Cox Proportional Hazards" on page 4-28

\section*{Create Custom Lifetime PD Model for Decision Tree Model with Function Handle}

This example shows how to fit a decision tree model for credit scoring and then use the customLifetimePDModel object to create a lifetime model for probability of default.

\section*{Fit a Decision Tree Model for Credit Scoring}

Load the credit scorecard data using a data set from Refaat [1 on page 4-230]. The data set in this example contains one row per loan.
```

load CreditCardData.mat
disp(head(data))

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CustID & CustAge & TmAtAddress & ResStatus & EmpStatus & CustIncome & TmWBank \\
\hline 1 & 53 & 62 & Tenant & Unknown & 50000 & 55 \\
\hline 2 & 61 & 22 & Home Owner & Employed & 52000 & 25 \\
\hline 3 & 47 & 30 & Tenant & Employed & 37000 & 61 \\
\hline 4 & 50 & 75 & Home Owner & Employed & 53000 & 20 \\
\hline 5 & 68 & 56 & Home Owner & Employed & 53000 & 14 \\
\hline 6 & 65 & 13 & Home Owner & Employed & 48000 & 59 \\
\hline 7 & 34 & 32 & Home Owner & Unknown & 32000 & 26 \\
\hline 8 & 50 & 57 & Other & Employed & 51000 & 33 \\
\hline
\end{tabular}

Fit a decision tree model using fitctree from Statistics and Machine Learning Toolbox \({ }^{\mathrm{TM}}\). The data set in this example contains 1200 observations, which is not a large number. This example uses the data to train the model, but you can split larger data sets into training and testing sets.
```

CategoricalPreds = {'ResStatus','EmpStatus','OtherCC'};
dt = fitctree(data,'status~CustAge+TmAtAddress+ResStatus+EmpStatus+CustIncome+TmWBank+0therCC+Ut;
'MaxNumSplits',30,'CategoricalPredictors',CategoricalPreds);
disp(dt)
ClassificationTree
PredictorNames: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'Tr
ResponseName: 'status'
CategoricalPredictors: [3 4 7]
ClassNames: [0 1]
ScoreTransform: 'none'
NumObservations: 1200
view(dt)
Decision tree for classification
if CustIncome<30500 then node 2 elseif CustIncome>=30500 then node 3 else 0
if TmWBank<60 then node 4 elseif TmWBank>=60 then node 5 else 1
if TmWBank<32.5 then node 6 elseif TmWBank>=32.5 then node 7 else 0
if TmAtAddress<13.5 then node 8 elseif TmAtAddress>=13.5 then node 9 else 1
if UtilRate<0.255 then node 10 elseif UtilRate>=0.255 then node 11 else 0
if CustAge<60.5 then node 12 elseif CustAge>=60.5 then node 13 else 0
if CustAge<46.5 then node 14 elseif CustAge>=46.5 then node 15 else 0
if CustIncome<24500 then node 16 elseif CustIncome>=24500 then node 17 else 1
if TmWBank<56.5 then node 18 elseif TmWBank>=56.5 then node 19 else 1
10 if CustAge<21.5 then node 20 elseif CustAge>=21.5 then node 21 else 0

```
```

class = 1
if EmpStatus=Employed then node 22 elseif EmpStatus=Unknown then node 23 else 0
if TmAtAddress<131 then node 24 elseif TmAtAddress>=131 then node 25 else 0
if TmAtAddress<97.5 then node 26 elseif TmAtAddress>=97.5 then node 27 else 0
class = 0
class = 0
if ResStatus in {Home Owner Tenant} then node 28 elseif ResStatus=Other then node 29 else 1
if TmWBank<52.5 then node 30 elseif TmWBank>=52.5 then node 31 else 0
class = 1
class = 1
class = 0
if UtilRate<0.375 then node 32 elseif UtilRate>=0.375 then node 33 else 0
if UtilRate<0.005 then node 34 elseif UtilRate>=0.005 then node 35 else 0
if CustIncome<39500 then node 36 elseif CustIncome>=39500 then node 37 else 0
class = 1
if UtilRate<0.595 then node 38 elseif UtilRate>=0.595 then node 39 else 0
class = 1
class = 1
class = 0
class = 1
class = 0
class = 0
if UtilRate<0.635 then node 40 elseif UtilRate>=0.635 then node 41 else 0
if CustAge<49 then node 42 elseif CustAge>=49 then node 43 else 1
if CustIncome<57000 then node 44 elseif CustIncome>=57000 then node 45 else 0
class = 1
class = 0
class = 0
if CustIncome<34500 then node 46 elseif CustIncome>=34500 then node 47 else 1
class = 1
class = 0
class = 1
class = 0
class = 0
class = 1
class = 0
class = 1

```

The decision tree predict function returns a predicted class in the first output, where class \(=0\) means no-default, and class = 1 means default (same as the response data that you used to train the model). The predict function also returns the corresponding prediction scores or class probabilities as the second output.

In this example, you are interested in the probability of default, which is the class probability for class = 1 (the second column of the class probability output).
[~,ObservationClassProb] = predict(dt,data);
pdDT = ObservationClassProb(:,2);

\section*{Wrap Decision Tree Model as Lifetime PD Model}

To wrap the decision tree model as a lifetime PD model, a function handle to a PD prediction function is required. For the decision tree in this example, the predict method of the decision tree does not return the PD values directly. Therefore, first create a helper function that takes the decision tree model and the data as inputs and returns the PD predictions. This helper function is implemented as myDTPredictFcn in Local Functions on page 4-230. Then define a function handle to this function, predictFcnHandle, that takes data as input and returns the PD.
```

predictFcnHandle = @(data)myDTPredictFcn(dt,data);

```

Create an instance of a custom lifetime PD model by passing the function handle to customLifetimePDModel. You need to specify variable names using name-value arguments because these variable names are used by the base class LifetimePDModel.
```

pdModel = customLifetimePDModel(predictFcnHandle,'ModelID','MyDTModel','IDVar','CustID','LoanVar
pdModel =
CustomLifetimePD with properties:
ModelID: "MyDTModel"
Description: ""
UnderlyingModel: @(data)myDTPredictFcn(dt,data)
IDVar: "CustID"
AgeVar: ""
LoanVars: ["CustAge" "TmAtAddress" "ResStatus" "EmpStatus" "CustIncome"
MacroVars: ""
ResponseVar: "status"

```

\section*{Predict and Validate Scores Using the Custom Lifetime PD Model}

Use the predict function of the lifetime PD model to make PD predictions.
```

CondPD = predict(pdModel,data);

```

The predictions are the same as predicting directly with the original decision tree model.
```

CondPDOriginal = myDTPredictFcn(dt,data);
isequal(CondPD,CondPDOriginal)
ans = logical
1

```

By wrapping the decision tree as a lifetime PD model, all the validation capabilities of lifetime PD models are available.

For example, use modelDiscriminationPlot to plot the ROC curve. The next plot shows the ROC curve for each of the residential status levels. All of the residential status levels show good discrimination in the training data.
modelDiscriminationPlot(pdModel,data,'SegmentBy','ResStatus')

Also, you can use modelCalibrationPlot to visualize the calibration of the model. A grouping variable is required to compare the average PD for the group against the default rate in the group. For illustration purposes, define an AgeGroup variable. You can also use other variables, including model predictors, as grouping variables.
```

AgeGroupEdges = [0,20:5:65,100];
AgeGroupLabels = strcat(string(AgeGroupEdges(1:end-1))," - ",string(AgeGroupEdges(2:end)));
data.AgeGroup = discretize(data.CustAge,AgeGroupEdges,'categorical',AgeGroupLabels);
modelCalibrationPlot(pdModel,data,'AgeGroup')

```


The default rates are high in this data set. The safest (60-65 and 65-100) age groups default at a rate higher than \(10 \%\) and the \(0-20\) age group has a default rate of almost \(50 \%\). However, the predicted PDs are close to the observed default rates for most age groups. In other words, the model has good calibration in the training data.

\section*{Predict Lifetime PD}

Lifetime PD is the cumulative probability of default over multiple periods. Therefore, the input for the predictLifetime function should contain multiple rows per ID. In this example, the data you use for training and validation contains only one observation per ID. If you pass it to predictLifetime, the output would be the same as the output of the predict function. For more information, see "Lifetime PD" on page 6-347 and "Data Input for Lifetime Prediction" on page 6-348.

The predictLifetime function is typically used for predictions on outstanding loans, where the predictor variable values must be projected, period-by-period, for several periods into the future. To project predictor values to prepare data for lifetime prediction, suppose you have an existing customer with ID 1234, 35 years old, with 36 months in the current address, owns her house, is employed with an income of \(\$ 75,000\), a bank customer for 50 months, average monthly balance in the account is \(\$ 895\) dollars with a utilization rate of \(27 \%\), and does not have another credit card with the bank.
```

% Use first row as a template,
% removing response and age group.
dataLifetime = data(1,1:end-2);
dataLifetime.CustID = 1234;
dataLifetime.CustAge = 35;

```
```

dataLifetime.TmAtAddress = 36;
dataLifetime.ResStatus = 'Home Owner';
dataLifetime.EmpStatus = 'Employed';
dataLifetime.CustIncome = 75000;
dataLifetime.TmWBank = 50;
dataLifetime.OtherCC = 'No';
dataLifetime.AMBalance = 895;
dataLifetime.UtilRate = 0.27;
disp(dataLifetime)

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CustID & CustAge & TmAtAddress & ResStatus & EmpStatus & CustIncome & TmWBank \\
\hline 1234 & 35 & 36 & Home Owner & Employed & 75000 & 50 \\
\hline
\end{tabular}

To make projections for three periods ahead, you need projections for each variable. It is important to know what time interval is implicit in the underlying model because each PD model has a time interval. For more information, see "Time Interval for Logistic Models" on page 6-623 and "Time Interval and Data Input for Lifetime Prediction" on page 6-348.

In this example, use the time interval of 1 year, in other words, assume that the decision tree model predicts 1-year PDs. In this case, age is easy to project because the customer is one year older on each subsequent time period, that is, on each subsequent row in the data. Other time variables, such as time at address and time with bank, are easily projected if you assume there will be no change in address and that the customer will continue with the bank. You can project other variables as well with assumptions for each of them. For example, for CustIncome, you can keep it constant, as in this example, where your assumption might be that the customer does not update their income information. Or, you could assume some income growth instead. In this example, for simplicity, all variables other than time variables, are kept constant.
```

dataLifetime = repmat(dataLifetime,3,1);
% No changes to the ID value, same customer
dataLifetime.CustAge(2:3) = dataLifetime.CustAge(1)+[1;2]; % one year older each year
dataLifetime.TmAtAddress(2:3) = dataLifetime.TmAtAddress(1)+[12; 24]; % 12 extra months each yea
% No changes to ResStatus, EmpStatus or CustIncome
dataLifetime.TmWBank(2:3) = dataLifetime.TmWBank(1)+[12; 24]; % 12 extra months each year
% No changes to OtherCC, AMBalance or UtilRate
disp(dataLifetime)

CustID	CustAge	TmAtAddress	ResStatus	EmpStatus	CustIncome	TmWBank
1234	35	36	Home Owner	Employed	75000	50
1234	36	48	Home Owner	Employed	75000	62
1234	37	60	Home Owner	Employed	75000	74

```

Use predictLifetime to make a lifetime prediction.
```

pdLifetime = predictLifetime(pdModel,dataLifetime)
pdLifetime = 3×1
0.2527
0.4415
0.5826

```

\section*{References}
[1] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.
```

Local Functions
function CondPD = myDTPredictFcn(DTmodel,data)
%myDTPredictFcn Predict conditional PD with Decision Tree model.
[~,ObservationClassProb] = predict(DTmodel,data);
CondPD = ObservationClassProb(:,2);
end

```

\section*{See Also}
customLifetimePDModel|fitLifetimePDModel|fitEADModel|fitLGDModel| portfolioECL

\section*{Related Examples}
- "Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle" on page 3-131
- "Expected Credit Loss Computation" on page 4-124
- "Modeling Probabilities of Default with Cox Proportional Hazards" on page 4-28

\section*{Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios}

\begin{abstract}
This example shows the effect of transition risk on portfolios of loans from two banks given three different climate scenarios. Potentially, climate change is a large structural change affecting the economy and the financial system. Clear physical risks are associated with climate change, including increases in the global average temperature and an increased frequency and severity of extreme weather events. These events could result in significant macroeconomic and financial system impacts. In addition to physical risk, another type of risk called transition risk arises from changes in policy and new technologies, such as the growth of renewable energy.
\end{abstract}

Several countries around the globe are working on projects to understand and model different climate policies. For example, these climate initiatives are examples of projects investigating economic risk:
- LIMITS (Low climate IMpact scenarios and the Implications of required Tight emission control Strategies) was a research effort that included twelve partners from Europe, China, India, Japan, and the United States. The main objectives of the project were: (a) to provide an assessment of the emissions reductions strategies at a world level for the major global economies, and (b) to disseminate scientific knowledge for climate and energy policy. [4 on page 4-246]
- The Bank of Canada launched a pilot project with the Office of the Superintendent of Financial Institutions.The goal of the pilot project was to understand risks to the economy and the financial system related to climate change. This work included developing a set of climate transition scenarios relevant to Canada that explore pathways consistent with achieving certain climate targets. [1 on page 4-246]
- The Massachusetts Institute of Technology (MIT) developed the Economic Projection and Policy Analysis (EPPA) model that is part of the MIT Integrated Global Systems Model (IGSM) that represents the human systems. EPPA is a recursive-dynamic multi-regional general equilibrium model of the world economy, which is built on the Global Trade Analysis Project (GTAP) data set and additional data for the greenhouse gas and urban gas emissions. IGSM is designed to develop projections of economic growth and anthropogenic emissions of greenhouse related gases and aerosols. [3 on page 4-246]
- The Climate Integrated Assessment Models Explorer repository contains a set of tools to explore different data sets hosted by the IIASA Energy program (ENE). This repositiory contains an example that computes changes to multiple bank loan portfolios as a result of climate shocks. [2 on page 4-246]

This example follows an approach of Monsaterolo [5 on page 4-247] to develop a novel climate stresstest methodology for portfolios of loans to energy infrastructure projects and follows the workflow:

1 Obtain the climate scenario data on page 4-231.
2 Compute the market share shocks on page 4-232.
3 Obtain the loan portfolio data on page 4-235.
4 Create a valuation framework for loan contracts subject to climate policy shocks on page 4-237.
5 Compute the distribution of changes in the loan portfolio values on page 4-240.

\section*{Obtain Climate Scenario Data}

This example uses climate scenarios developed by MIT in collaboration with the Bank of Canada. The scenarios are described as:
- Baseline (2019 policies) - baseline scenario consistent with climate policies in place at the end of 2019
- Below \(2^{\circ} \mathrm{C}\) Immediate - immediate policy action scenario to limit average global warming to below \(2^{\circ} \mathrm{C}\)
- Below \(2^{\circ} \mathrm{C}\) Delayed - delayed policy action scenario to limit average global warming to below \(2^{\circ} \mathrm{C}\)
- Net-Zero \(2050\left(1.5^{\circ} \mathrm{C}\right)\) - more ambitious immediate policy action scenario to limit average global warming to \(1.5^{\circ} \mathrm{C}\) that includes current net-zero commitments by some countries

The Climate Transition Scenario data is provided by the Bank of Canada and is available free of charge at www.bankofcanada.ca. [1 on page 4-246]

The data is converted to a MAT file and is loaded from BankOfCanadaClimateScenarioData.mat.

\section*{Compute Market Share Shocks}

Load the data file for the Climate Transition Scenario provided by the Bank of Canada. This data set contains energy information of different sectors for various geographies around the world. The CL_VARIABLE column in the data set contains both input information used to model the different climate scenarios, as well as, output information of energy usage. This example focuses on the different forms of primary energy, that is: bioenergy, coal, gas, hydro, nuclear, oil, and renewables (wind and solar). The example computes the market shares for each of the different energy forms and uses this information to calculate climate shocks. The different geographies in the data set are Africa, Canada, China, Europe, India, Japan, the United States, and the rest of the world.
load Bank0fCanadaClimateScenarioData.mat
head(ClimateTransitionScenarioData)
\begin{tabular}{|c|c|c|c|c|}
\hline k & CL_GEOGRAPHY & CL_SECTOR & \multicolumn{2}{|r|}{CL_VARIABLE} \\
\hline 1 & Canada & National & Carbon price & \\
\hline 2 & Canada & National & Carbon price & \\
\hline 3 & Canada & National & Emissions & total GHG (scope 1) \\
\hline 4 & Canada & National & Emissions & total GHG (scope 1) \\
\hline 5 & Canada & National & Input price & Coal \\
\hline 6 & Canada & National & Input price & Coal \\
\hline 7 & Canada & National & Input price & Crops \\
\hline 8 & Canada & National & Input price & Crops \\
\hline
\end{tabular}

CL UNIT
```

US\$2014/tCO2e
US\$2014/tC02e
Million tonnes CO2e
Million tonnes CO2e
Index (2014 = 1)
Index (2014 = 1)
Index (2014 = 1)
Index (2014 = 1)

```

Trim and preprocess the original data set for what is required for this example.
```

% This example uses only the Primary Energy variables to compute market
% shares for different geographies.
VariableSubset = {'Primary Energy | Bioenergy', 'Primary Energy | Coal', 'Primary Energy | Gas',
'Primary Energy | Hydro', 'Primary Energy | Nuclear', 'Primary Energy | Oil', ...
'Primary Energy | Renewables (wind\&solar)', 'Primary Energy | Total'};
ClimateTransitionScenarioData = ClimateTransitionScenarioData(ismember(ClimateTransitionScenariol
% Remove columns 'k','CL SECTOR' and 'CL UNIT' and then sort the rows.
ClimateTransitionScenariōData = removevar`s(ClimateTransitionScenarioData,{'k','CL_SECTOR','CL_UN
ClimateTransitionScenarioData = sortrows(ClimateTransitionScenarioData);
% Pull market share data out according to climate scenario.
baseline = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_SCENARIO, 'Bas
b2delayed = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_SCENARIO, 'B
b2immediate = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.\overline{CL_SCENARIO,}

```
```

netzero2050 = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_SCENARIO,
% Compile all the scenarios into one data set.
MarketShareData = baseline;
MarketShareData = removevars(MarketShareData, "CL_SCENARIO");
MarketShareData.Properties.VariableNames(4) = "BA\overline{SELINE";}
MarketShareData.BELOW_2C_IMMEDIATE = b2immediate.CL_VALUE;
MarketShareData.BELOW_2C_DELAYED = b2delayed.CL_VALUE;
MarketShareData.NETZERO_2050 = netzero2050.CL_VALUE;
head(MarketShareData)

CL_GEOGRAPHY	CL_VARIABLE		CL_YEAR	BASELINE	BELOW_2C_IMMEDIATE
Africa	Primary Energy	Bioenergy	2020	15.502	15.502
Africa	Primary Energy	Bioenergy	2025	15.302	15.302
Africa	Primary Energy	Bioenergy	2030	15.221	15.203
Africa	Primary Energy	Bioenergy	2035	15.072	15.042
Africa	Primary Energy	Bioenergy	2040	15.016	15.055
Africa	Primary Energy	Bioenergy	2045	14.249	14.273
Africa	Primary Energy	Bioenergy	2050	13.591	14
Africa	Primary Energy	Coal	2020	4.5909	4.5909

```

Select the geography and subsector, and then compute the market share. By default, in this example, a coal project in China is selected.
```

Geography = China - ;
Sector = Coal * ;
SectorFullName = "Primary Energy | " + Sector;
BaseSector = "Primary Energy | Total";
Years = (2020:5:2050)';
GeographyData = MarketShareData(MarketShareData.CL_GEOGRAPHY == Geography, :);
MarketShare = GeographyData{GeographyData.CL_VARIABLE == SectorFullName, 4:7} ./ GeographyData{G

```

Plot the market shares for different climate scenarios. For the coal sector in China, the baseline scenario shows a drop in market share. However, this drop is accelerates in each of the three climate scenarios. The Below 2C Delayed scenario coincides with the baseline up until 2030, after which there is a sudden fall in market share, whereas the other two scenarios (Below 2C Immediate and Net-Zero 2050) lose market share more gradually until 2050.
figure;
msPlot = plot(Years, MarketShare, 'LineWidth',2);
grid on
set(msPlot, \{'LineStyle'\}, \{'-';'--';':';'-.'\})
legend("Baseline", "Below 2C Immediate", "Below 2C Delayed", "Net-Zero 2050 (1.5C)", 'Location',
xlim([2020 2050])
ylabel('Market Share (\%)')
xlabel('Year')
title(Sector + " Market Share in " + Geography)

Compute shocks for all climate scenarios.
Shocks = (MarketShare(:,2:4) - MarketShare(:,1))./MarketShare(:,1)*100;
Plot the shocks for different scenarios. For the default coal sector in China, the Below 2C Immediate and the Net-Zero 2050 scenarios have a gradual negative market share shock over time. However, the Below 2C Delayed scenario shows no market share shock until 2030, and then there is a sudden drop until 2050.
```

figure;
shp = plot(Years, Shocks, 'LineWidth',2);
grid on
set(shp, {'LineStyle'}, {'--';':';'-.'})
xlabel('Year')
ylabel('Market Share Shocks (%)')
xlim([2020 2050])
legend("Below 2C Immediate", "Below 2C Delayed", "Net-Zero 2050 (1.5C)", 'Location','best');
title(Sector + " Market Share Shocks in " + Geography);

```


\section*{Obtain Loan Portfolio Data}

This example uses a second data set (ClimateLoanPortfolioData.mat) for a loan portfolio. This data set contains simulated loan data of two fictitious banks: Bank 1 and Bank 2. The portfolio of loans are from different geographies and sectors. The example uses the face value of the loans to compute the change in reserves that a bank has to allocate when a climate shock occurs.

The distribution of loans for the two banks, by energy sector, is:
\begin{tabular}{|l|c|c|}
\hline Sector & Bank 1 & Bank 2 \\
\hline Bioenergy & \(2 \%\) & \(5 \%\) \\
\hline Coal & \(15 \%\) & \(15 \%\) \\
\hline Gas & \(2 \%\) & \(10 \%\) \\
\hline Hydro & \(15 \%\) & \(40 \%\) \\
\hline Nuclear & \(2 \%\) & \(3 \%\) \\
\hline Oil & \(60 \%\) & \(20 \%\) \\
\hline Renewables (wind\&solar) & \(4 \%\) & \(7 \%\) \\
\hline Total & \(100 \%\) & \(100 \%\) \\
\hline
\end{tabular}

Generate histograms to show the distribution of loans, by region and sector, for the two simulated banks.
```

load ClimateLoanPortfolioData
LoanPortfolioDataBank1 = ClimateLoanPortfolioData(ClimateLoanPortfolioData.Bank=='Bank1',:);

```
```

LoanPortfolioDataBank2 = ClimateLoanPortfolioData(ClimateLoanPortfolioData.Bank=='Bank2',:);
[CountsRegion1, BinsRegion1] = histcounts(LoanPortfolioDataBank1.BorrowerRegion);
[CountsSector1, BinsSector1] = histcounts(LoanPortfolioDataBank1.BorrowerSector);
[CountsRegion2, BinsRegion2] = histcounts(LoanPortfolioDataBank2.BorrowerRegion);
[CountsSector2, BinsSector2] = histcounts(LoanPortfolioDataBank2.BorrowerSector);
figure
tiledlayout(2,1)
nexttile
barh(categorical(BinsRegion1), [CountsRegion1; CountsRegion2]);
xlabel('Loans')
ylabel('Regions')
title('Distribution of Regions')
legend({'Bank 1', 'Bank 2'},'Location','best')
nexttile
barh(categorical(BinsSector1), [CountsSector1; CountsSector2]);
xlabel('Loans')
ylabel('Sectors')
title('Distribution of Sectors')
legend({'Bank 1', 'Bank 2'},'Location','best')

```


Bank 1 is heavily invested in fossil fuel projects (primarily oil) and Bank 2 is invested in green energy projects (primarily hydro). Regarding the distribution of projects across geographies, both banks are similar, with a larger number of projects in developing regions like China, India, and Africa.

\section*{Create Valuation Framework for Loan Contracts Subject to Climate Policy Shocks}

Using the same notation as in Monsaterolo [5 on page 4-247], consider a bank \(i\) endowed with a portfolio of investments in a set of projects through loan contracts. Each loan is represented by a distinct value \(j\). The goal is to carry out a valuation of this loan portfolio that accounts for climate policy shocks. The methodology assumes an underlying structural model that is similar to the Merton model (see mertonmodel). The valuation model includes three time steps:
\(t_{0}, t^{*}\), and \(T_{j}\), with \(t_{0}<t^{*}<T_{j}\). Time step \(t_{0}\) denotes the time at which the valuation is carried out, \(t^{*}\) denotes the time at which the climate policy shock potentially occurs, and \(T_{j}\) denotes the maturity of the loan \(j\).

The valuation of bank \(i\) 's loan portfolio is written as
\(\mathrm{A}_{i}\left(t_{0}\right)=\sum_{j} A_{i, j}\left(t_{0}, T_{j}\right)\).
Consider an approach based on the expected value of the loan
\(A_{i, j}\left(t_{0}, T_{j}\right)=p_{j}\left(t_{0}, T_{j}\right) r_{j} F_{i, j}+\left(1-p_{j}\left(t_{0}, T_{j}\right)\right) F_{i, j}=F_{i, j}-\left(F_{i, j}\left(1-r_{j}\right) p_{j}\left(t_{0}, T_{j}\right)\right)\),
where \(F_{i, j}\) is the face value of the loan, \(r_{j}\) is the recovery rate on the loan contract, and \(p_{j}\left(t_{0}, T_{j}\right)\) is the probability, based on the information available at time \(t_{0}\) that the borrower, \(j\), defaults on the loan at maturity \(T_{j}\).

Therefore, the expected value of the loan is the face value of the loan \(F_{i, j}\) minus the reserves or provisions that need to be set aside by the bank for that loan \(F_{i, j}\left(1-r_{j}\right) p_{j}\left(t_{0}, T_{j}\right)\).

At time \(t^{*}\) the occurrence of a climate policy shock implies that the economy switches from a business-as-usual scenario characterized by no climate policy \((B)\) to scenario \(P\), where the market shares of some economic sectors are affected. This change in default probability implies a proportional change in the expected value of the loan
\(\Delta A_{i, j}\left(t_{0}, T_{j}, P\right)=-F_{i, j}\left(1-r_{j}\right) \Delta p_{j}(P)\),
where \(\Delta p_{j}(P)\) denotes the difference of the default probability going from scenario \(B\) to \(P\).
This change is the negative of the change in provisions for the loan. That is, if the value goes down, it is due to an increase in provisions driven by the change in probability.

Assume that the policy shock impacts the borrower's balance sheet, and thus the expected value of the loan. We define a market share shock, \(u_{S, R}\left(P, M, t^{*}\right)\), as
\(u_{S, R}\left(P, M, t^{*}\right)=\frac{\left(m_{S, R}\left(P, M, t^{*}\right)-m_{S, R}\left(B, M, t^{*}\right)\right)}{m_{S, R}\left(B, M, t^{*}\right)}\).
Assume that a relative change in the market share of borrower \(j\) 's sector \(S\) within the geographic region \(R\), denoted by \(u_{S, R}\left(P, M, t^{*}\right)\), implies a proportional relative change in \(j\) 's profitability. Also, because the net worth is the integral of profits over one period of time, the relative change in net worth and profit coincide. Therefore, it is equivalent to assume that a relative change in net worth is proportional to the relative shock in market share
\[
\frac{\Delta E_{j}}{E_{j}}=\chi u_{S, R}\left(P, M, t^{*}\right),
\]
where \(\chi\) denotes the elasticity of profitability with respect to market share. Monsaterolo [5 on page 4247] assumes a value of \(\chi\) constant and equal to 1 (typical empirical values range from 0.2 and 0.6).

Another assumption by Monsaterolo [5 on page 4-247] is that the probability distribution \(p\left(\eta_{j}\right)\) of the shocks on the borrower's asset side follows a uniform distribution with support \(\delta\) and mean \(\mu\), for a given model \(M\), region, and sector. Therefore, the change in default probability is expressed as
\(\Delta P=\frac{\theta_{j}(P)-\theta_{j}(B)}{\delta}=-\frac{E_{j}}{\delta} \chi u_{S, R}\left(P, M, t^{*}\right)\).
The change in expected value of the loan, conditional to a change from scenario \(B\) to scenario \(P\) becomes:
\(\Delta A_{i, j}=F_{i, j}\left(1-r_{j}\right) \frac{E_{j}}{\delta} \chi u_{S, R}\left(P, M, t^{*}\right)\).
Summing the projects \(j\) in the portfolio, you obtain the total change in loan value:
\(\sum_{j} \Delta A_{i, j}\left(t_{0}, T_{j}, P\right)=\sum_{j} F_{i, j}\left(1-r_{j}\right) \frac{E_{j}}{\delta} \chi u_{S, R}\left(P, M, t^{*}\right)\).
This example computes the change in value for one loan. By default, the 12 th row of the data set is selected, which is an oil project in the United States for Bank 1. you can choose another loan by using the Loan slider. You can also select a different ClimateScenario from the three available scenarios. By default, the Below \(2{ }^{\circ} \mathrm{C}\) Delayed scenario is selected.

```

ClimateScenario $=$ Below $2^{\circ} \mathrm{C}$ delayed $\quad-$;
Geography = string(ClimateLoanPortfolioData\{Loan,'BorrowerRegion'\});
Sector = string(ClimateLoanPortfolioData\{Loan,'BorrowerSector'\});
LoanID = ClimateLoanPortfolioData\{Loan,'LoanID'\};
FaceValueOfLoan = ClimateLoanPortfolioData\{Loan,"FaceValue"\};
SectorFullName = "Primary Energy | " + Sector;

```

Compute the value of the selected Loan.
\begin{tabular}{|c|c|c|c|c|c|}
\hline LoanID & BorrowerCreditRating & LoanType & Bank & InterestRate & InterestType \\
\hline 786801JSP" & A2 & Term & Bank1 & 0.028 & Fixed \\
\hline
\end{tabular}

You can modify the recovery rate \(r_{j}\), as well as, \(\chi\). By default, \(r_{j}=0.4\) and \(\chi=0\). 3. A normal range of \(\chi\) is from 0.2 to 0.6 .

Following the Monsaterolo [5 on page 4-247] discussion in appendix I, set \(\frac{E_{j}}{\delta}=1\) to correspond to the assumption that the magnitude of the initial net worth and width of the distribution of the idiosyncratic shocks are comparable. You can adjust the EjDeltaRatio value using the slider.

TargetYear \(=2035 \quad{ }^{*}\);
GeographyData = MarketShareData(MarketShareData.CL_GEOGRAPHY == Geography, :);
MarketShare = GeographyData\{GeographyData.CL_VARIABLE == SectorFullName, 4:7\} ./ GeographyData\{G
Shocks = (MarketShare(:,2:4) - MarketShare(:,1))./MarketShare(:,1)*100;
ChangeInDefaultProbability = -EjDeltaRatio.*Chi.*(Shocks(:,ClimateScenario)/100); ChangeInValue = -FaceValueOfLoan.*(1-RecoveryRate).*ChangeInDefaultProbability;

The change in value of a loan is directly translated into a change in the reserves that need to be allocated by the bank for that particular loan.
```

disp("The change in value of the loan in the selected climate scenario and target year = \$" + nur
The change in value of the loan in the selected climate scenario and target year = $-155161.6488
% Plot change in value of loan over time superimposed over corresponding
% shock.
f = figure;
ax = axes(f);
yyaxis(ax, 'left')
plot(Years, ChangeInValue, 'LineWidth', 2)
xlabel('Years');
ylabel('US Dollars ($)')
yyaxis(ax, 'right')
plot(Years, Shocks(:, ClimateScenario), 'LineWidth', 2);
ylabel('Market Share Shocks (%)');
title('Change in Loan Value');
grid on

```


\section*{Compute Change in Value of Entire Portfolio of Loans}

For each of the two banks, Bank 1 and Bank 2, compute the total change in loan value of the entire portfolio of loans for each climate scenario. You can do this by summing up the changes in values of each individual loan.
```

% For each of the region and sector pairs, compute the market shocks for
% all scenarios and store these values.
MarketShocks = struct();
Bank1Combos = unique(table(LoanPortfolioDataBank1.BorrowerRegion, LoanPortfolioDataBank1.Borrowe
Bank2Combos = unique(table(LoanPortfolioDataBank2.BorrowerRegion, LoanPortfolioDataBank2.Borrowe
TotalCombos = union(Bank1Combos, Bank2Combos);
for i = 1:height(TotalCombos)
Region = string(TotalCombos.Region(i));
Sector = string(TotalCombos.Sector(i));
SectorFullName = "Primary Energy | " + Sector;
GeographyData = MarketShareData(MarketShareData.CL_GEOGRAPHY == Region, :);
MarketShare = GeographyData{GeographyData.CL_VARIA\overline{B}LE == SectorFullName, 4:7} ./ GeographyDa
Shocks = (MarketShare(:,2:4) - MarketShare(:,1))./MarketShare(:,1)*100;
if Sector == "Renewables (wind\&solar)"
SectorSplit = strsplit(Sector);
Sector = SectorSplit(1);
end
MarketShocks.(strrep(Region,' ','')).(strrep(Sector,' ','')) = Shocks;
end

```

Create a table containing the values of each loan, for each bank, for each climate scenario, and for each target year. Use the same model parameter values for simplicity. However, you can change these parameters for different issuers.

```

LoanValues = ClimateLoanPortfolioData;
LoanValues = removevars(LoanValues,{'LoanType','BorrowerCreditRating','InterestRate','InterestTy
LoanValues = repelem(LoanValues, 7, 1);
LoanValues.Year = repmat([2020; 2025; 2030; 2035; 2040; 2045; 2050], 1000, 1);
LoanValues.Below2CImmediate = zeros(7000, 1);
LoanValues.Below2CDelayed = zeros(7000, 1);
LoanValues.NetZero2050 = zeros(7000, 1);
for i = 1:7:height(LoanValues)
Region = string(LoanValues.BorrowerRegion(i));
Sector = string(LoanValues.BorrowerSector(i));
if Sector == "Renewables (wind\&solar)"
SectorSplit = strsplit(Sector);
Sector = SectorSplit(1);
end
Value = LoanValues.FaceValue(i);
ChangeInValue = Value.*(1-RecoveryRate).*EjDeltaRatio.*Chi.*(MarketShocks.(strrep(Region,'
LoanValues{i:i+6, {'Below2CImmediate','Below2CDelayed','NetZero2050'}} = ChangeInValue;
end

```

Compare the change in portfolio values of the two banks, for each climate scenario, and for all target years.
```

TPVBank1 = zeros(length(Years),3);
TPVBank2 = zeros(length(Years),3);
for i = 1:length(Years)
TBank1 = LoanValues((LoanValues.Bank == "Bank1") \& (LoanValues.Year == Years(i)), :);
TBank2 = LoanValues((LoanValues.Bank == "Bank2") \& (LoanValues.Year == Years(i)), :);
TPVBank1(i,:) = sum(TBank1{:,7:9});
TPVBank2(i,:) = sum(TBank2{:,7:9});
end
figure;
t = tiledlayout(3,1);
nexttile
plot(Years, [TPVBank1(:,1),TPVBank2(:,1)], 'LineWidth', 2)
xlabel('Year');
ylabel('US Dollar ($)')
title('Below 2C Immediate')
grid on
nexttile
plot(Years, [TPVBank1(:,2),TPVBank2(:,2)], 'LineWidth', 2)
xlabel('Year');
ylabel('US Dollar ($)')
title('Below 2C Delayed')
grid on
nexttile

```
```

plot(Years, [TPVBank1(:,3),TPVBank2(:,3)], 'LineWidth', 2)
xlabel('Year');
ylabel('US Dollar (\$)')
title('Net-Zero 2050')
leg = legend({'Bank1','Bank2'});
leg.Layout.Tile = 'south';
grid on
title(t,'Change in Portfolio Value');

```

Change in Portfolio Value

Considering that Bank 1 is weighted towards fossil fuels and Bank 2 is weighted toward green energy, the portfolio value of Bank 1 decreases over time, while the portfolio value of Bank 2 increases over time for each climate scenario.

From a reserves standpoint, the provisions of Bank 2 steadily increase over time and those of Bank 1 decrease over time.

\section*{Compute Distribution of Changes in Loan Portfolio Values}

The Compute Change in Value of Entire Portfolio of Loans on page 4-240 section illustrated the aggregate changes to the portfolio value. This section focuses on the entire distribution of value changes for particular climate scenarios.

Select the bank, climate scenario, and target year to compute the quartiles of the change in portfolio values.

Bank \(=\) Bank1 \(\quad\);
ClimateScenario \(=\) Below \(2^{\circ} \mathrm{C}\) delayed \(\quad \nabla\);
TargetYear \(=2050 \quad-\);
NewTable = LoanValues((LoanValues.Bank == Bank) \& (LoanValues.Year == str2double(TargetYear)), :
Plot the histogram of the change in loan values for the selected bank and climate scenario. Based on the default selection of Bank 1 under the Below 2C Delayed climate scenario for the target year 2050, you see that the distribution of the change in loan values has a long right tail and most of the frequency is below zero. This change occurs because Bank 1 has more projects focusing on fossil fuels, which lose market share, and thus value over time under the Below 2C Delayed climate scenario.
f = figure;
h = histogram(NewTable\{:,6+ClimateScenario\});
h.Parent.XLabel.String = 'Change in Loan Value';
h.Parent.YLabel.String = 'Counts';
h. Parent. Title.String = 'Histogram of Change in Loan Values';

Compute and plot the quartiles of the changes in portfolio values over time for the selected bank.
```

PLV = zeros(length(Years),3);
for i = 1:length(Years)
t = LoanValues((LoanValues.Bank == Bank) \& (LoanValues.Year == Years(i)), :);
PLV(i,1) = prctile(t{:,6+ClimateScenario}, 25);

```
```

    PLV(i,2) = prctile(t{:,6+ClimateScenario}, 50);
    PLV(i,3) = prctile(t{:,6+ClimateScenario}, 75);
    end
figure;
plot(Years, PLV, 'LineWidth', 2)
xlabel('Years');
ylabel('Change in Portfolio Value (\$)')
title('Quartiles of Change in Portfolio Value')
legend({'c = 25%','c = 50%','c = 75%'})
grid on

```


To compute some standard metrics of risk such as the Value-at-Risk (VaR) of the portfolio, you need to know the joint probaility distribution of the idiosyncratic shocks and the probability of occurrence of climate policy shocks. In the absence of these estimations, Monsaterolo [5 on page 4-247] defines a project-level climate VaR as the value such that, conditional to the same climate policy shock for all \(n\) loans, the fraction of loans leading to losses higher than the VaR equals the confidence level \(c\)
\(\left|\left\{j \mid \Delta A_{i, j}\left(t_{0}, T_{j}, P, B\right) \geq \operatorname{VaR}\right\}\right| / n=c\).
This project-level climate VaR metric is a percentile of the distribution of value changes for the portfolio.
```

ConfidenceLevel = 1% - ;
ProjVaR = -prctile(NewTable{:,6+ClimateScenario}, ConfidenceLevel);
disp("The project-level climate VaR at the " + ConfidenceLevel + "% confidence level = \$" + num2

```

The project-level climate VaR at the 1\% confidence level = \$1453621.915
Plot a graph of distributions of changes in loan values for each target year and for a given scenario and bank. Use the kernel smoothing function estimate for univariate data. The estimate is based on a normal kernel function and is evaluated at equally spaced points that cover the range of the data.
```

[F1Bank1, Xi1Bank1] = ksdensity(TBank1.Below2CImmediate);
[F1Bank2, Xi1Bank2] = ksdensity(TBank2.Below2CImmediate);
[F2Bank1, Xi2Bank1] = ksdensity(TBank1.Below2CDelayed);
[F2Bank2, Xi2Bank2] = ksdensity(TBank2.Below2CDelayed);
[F3Bank1, Xi3Bank1] = ksdensity(TBank1.NetZero2050);
[F3Bank2, Xi3Bank2] = ksdensity(TBank2.NetZero2050);
figure;
t = tiledlayout(3,1);
ax1 = nexttile;
plot(Xi1Bank1, F1Bank1, 'LineWidth', 1.5)
hold on
plot(Xi1Bank2, F1Bank2, 'LineWidth', 1.5)
ax1.Title.String = "Below 2C Immediate";
xlabel('US Dollar ($)')
ylabel('pdf')
grid on
ax2 = nexttile;
plot(Xi2Bank1, F2Bank1, 'LineWidth', 1.5)
hold on
plot(Xi2Bank2, F2Bank2, 'LineWidth', 1.5)
ax2.Title.String = "Below 2C Delayed";
xlabel('US Dollar ($)')
ylabel('pdf')
grid on
ax3 = nexttile;
plot(Xi3Bank1, F3Bank1, 'LineWidth', 1.5)
hold on
plot(Xi3Bank2, F3Bank2, 'LineWidth', 1.5)
leg = legend("Bank 1","Bank 2");
leg.Layout.Tile = 'south';
ax3.Title.String = "Net-Zero 2050";
xlabel('US Dollar (\$)')
ylabel('pdf')
grid on
title(t,'Distribution of Changes in Loan Values');

```

\section*{Distribution of Changes in Loan Values}

\section*{Conclusion}

Following the work Monsaterolo [5 on page 4-247], this example demonstrates how the market shares of different energy sectors in different geographies change under specific climate scenarios. The market share changes are converted into market share shocks and you can use these shocks to compute the change in value of a portfolio of loans. Using this approach, you can model additional climate scenarios and then apply the Monsaterolo [5 on page 4-247] methodology. In addition, you can use this approach to value a portfolio of other assets such as bonds.

\section*{References}
[1] Bank of Canada Climate Transition Scenario Data and pilot project available at https:// www.bankofcanada.ca/2022/01/climate-transition-scenario-data/ and https:// www.bankofcanada.ca/wp-content/uploads/2021/11/BoC-OSFI-Using-Scenario-Analysis-to-Assess-Climate-Transition-Risk.pdf.
[2] Climate IAM Explorer available at https://github.com/mathworks/Climate-IAM-Explorer.
[3] EPPA Model Structure available at https://globalchange.mit.edu/research/research-tools/eppa and https://globalchange.mit.edu/research/research-tools/human-system-model.
[4] LIMITS information available at https://tntcat.iiasa.ac.at/LIMITSDB/dsd?
Action=htmlpage\&page=about.
[5] Monasterolo, I., Zheng, Jiani I., and S. Battiston. "Climate Transition Risk and Development Finance: An Assessment of China's Overseas Energy Investments Portfolio." China and the World Economy. 26, 6(116-142), 2018. Available at https://doi.org/10.1111/cwe.12264.

\section*{See Also}

\section*{Related Examples}
- "Assess Physical and Transition Risk for Mortgages" on page 4-248

\section*{Assess Physical and Transition Risk for Mortgages}

This example shows an approach to assess physical and transition risks for mortgages. Physical and transition risks are the two main categories of climate change risks. Physical risks for mortgages relate to natural events such as flooding and wildfires. Transition risks for mortgages derive from policy changes related to the transition away from fossil fuels. For example, a mortgage transition risk is a change in energy-efficiency standards for buildings.

Multiple institutions, including central banks, offer climate scenarios that include projections on emissions and economic variables. The economic variables include unemployment rate and gross domestic product (GDP) [1 on page 4-264], [2 on page 4-265], [4 on page 4-265]. Projections of physical variables are also available from meteorological agencies about changes in precipitation or sea-level rise [7 on page 4-265], [8 on page 4-265]. In some countries, central bank estimates project energy-efficiency upgrade costs [9 on page 4-265]. This example brings together economic variables, physical variables, and transition costs to assess the impact of physical and transition risk on mortgage loan provisions and capital requirements.

The workflow in this example is:

\section*{1 ""Define climate scenarios on page 4-249: In this example, the data is simulated, but captures} trends similar to those in real climate scenario data sets. The economic variables in this example are residential and commercial real estate price indices. The only physical variable is precipitation change. There are three climate scenarios: "Early Action," "Delayed Action," and "No Action."
2 ""Compute baseline loan-to-value (LTV) ratio projections on page 4-252: The loan balance projections are straightforward for mortgages. To project the property value, this example uses the real estate price indices. This example uses the resulting loan-to-value (LTV) ratio as a reference to compare against the LTV ratio adjusted for physical and transition risk.
3 ""Specfiy physical risk on page 4-253: This example proposes a simple adjustment to the baseline house price index (HPI) scenario using physical variables and precipitation changes to adust the property value for flood risk.
4 ""Specify transition risk on page 4-255: This example makes adjustments to the property value based on its current energy efficiency rating and the estimated energy-efficiency transition costs necessary to reach a higher rating.
5 Adjust LTV ratio projections on page 4-257: With the property value adjusted for physical and transition risk, an adjusted LTV ratio is projected.
6 Estimate provisions and capital on page 4-258: This example assumes a probability of default (PD) model is available that includes LTV as a predictor. This model is the basis for the provisions and capital requirements computations. Use the PD model to compute the lifetime PD and the lifetime ECL, or provisions. Also use the PD model for capital requirements calculations in the form of risk-weighted assets (RWA).

Computational approaches to measure mortgage physical and transition risks require a combination of data from multiple sources, qualitative assessments, and expert judgement. The time horizon for this type of analysis is decades. There is no data to assess sensitivities to risk drivers because the climate scenarios have not yet been realized and not all the feedback loops and impacts are understood. Multiple models and assumptions must be brought together with qualitative adjustments and simplifications, and interdisciplinary collaboration is important. This example points out the places where different data sources, models, and qualitative adjustments intersect.

This example is extensible. You can apply additional economic variables to the analysis, such as unemployment rate, as long as the PD model also includes these variables. You can also add an LGD model to the analysis, as long as it is sensitive to the variables used in this analysis (for example, age of the loan, LTV ratio, and the economic variables). Multiple risks are explicitly excluded from this example, for example, exposure to wild fires or coastal flooding due to sea-level rise. You can use a similar approach to incorporate these physical risks into an analysis. Also, this example analyzes only an existing mortgage, and the effects of climate impact towards the end of the loan are not large because the credit risk is much smaller in the late years of the loan. You can complement this loan analysis with hypothetical new loans starting in the future. The loan analysis of this example focuses only on property value, yet additional risk considerations can include insurance considerations. For example, insurance considerations might be the rising costs of insurance due to more severe climate events or the fact that a property may become uninsurable. Therefore, the results of this example are limited and do not show a comprehensive assessment of the impact of climate change on mortgage loans.

\section*{Define Climate Scenarios}

This example uses simulated data with the following three different climate scenarios:
- "Early Action" - The world takes immediate action and climate policies are put into effect. There may be an initial impact on the economy, but this scenario leads to the best conditions in the long run.
- "Delayed Action" - No significant policy changes take place until 2030. The climate policies at that point are more aggressive, hence initially there is a more important impact on the economy, but the economic conditions improve later on.
- "No Action" - The assumption is that no climate policies are in effect. Initially, there are less economic disruptions because there are no policy changes, but the effects of climate change have an impact on the economy in the long run. Also, the overall state of the economy is worse in this scenario than the other two scenarios by the end of the simulated time horizon. Arguably, the worst conditions in the "No Action" scenario would take place after year 2050 when the simulated scenarios end. These trends are similar to those in real climate scenario data sets.

The economic variables in this example are residential and commercial real estate price indices. These variables are available in some real climate scenario data sets. An alternative for the economic variables is a general price index, which is commonly available in climate scenario data.

Load the simulated data and generate plots for the residential and commercial price indices. These projected indices already incorporate climate impact in the aggregate level, showing overall trends in the average market value of the properties. Because the mortgage physical and transition risks are incorporated in the Compute LTV Projections Adjusted for Physical and Transition Risk on page 4-257 section, there are property-specific adjustmets to these property value projections.
```

load SimulatedClimateScenarioData.mat
ScenarioLabels = ["Early Action" "Delayed Action" "No Action"];
figure
t = tiledlayout(2,1);
nexttile
PropertyType = "Residential";
VarName = strcat("RealEstate",PropertyType);
hold on
for s = ScenarioLabels
Ind = EconomicVariables.Scenario == s;

```
```

    plot(EconomicVariables.Year(Ind),EconomicVariables.(VarName)(Ind))
    end
hold off
title(PropertyType)
xlabel('Year')
ylabel('Index')
legend(ScenarioLabels,'Location','northwest')
grid on
nexttile
PropertyType = "Commercial";
VarName = strcat("RealEstate",PropertyType);
hold on
for s = ScenarioLabels
Ind = EconomicVariables.Scenario == s;
plot(EconomicVariables.Year(Ind),EconomicVariables.(VarName)(Ind))
end
hold off
title(PropertyType)
xlabel('Year')
ylabel('Index')
legend(ScenarioLabels,'Location','northwest')
grid on
title(t,"Real Estate Price Indices")

```

Real Estate Price Indices

Commercial

The simulated data also includes physical variables. In this example, there is information on precipitation change. The periodicity of these projections is not the same as the economic variables, so you must interpolate the data.

The increase in precipitation is worse for the "No Action" scenario. Properties with higher flood risk are affected by the precipitation changes more than properties with low flood risk. You can use this data for the physical risk adjustments to the property value projections.
```

PhysicalVariablesYearly = EconomicVariables(:,["Year" "Scenario"]);
PhysicalVariablesYearly.PrecipitationChange = zeros(height(PhysicalVariablesYearly),1);
for s = ScenarioLabels
IndYearly = PhysicalVariablesYearly.Scenario == s;
IndOrig = PhysicalVariables.Scenario == s;
PhysicalVariablesYearly.PrecipitationChange(IndYearly) = interp1(PhysicalVariables.Year(IndOr
end
figure;
hold on
for s = ScenarioLabels
Ind = PhysicalVariablesYearly.Scenario == s;
plot(PhysicalVariablesYearly.Year(Ind),PhysicalVariablesYearly.PrecipitationChange(Ind))
end
hold off
title('Precipitation Change')
xlabel('Year')
ylabel('Change (mm/day)')
legend(ScenarioLabels,'Location','northwest')
grid on

```


\section*{Compute Baseline Loan-to-Value Projections}

The loan-to-value (LTV) ratio is the main link between the scenario variables and the credit analysis. You can compare a baseline projection against projections that include the effects of the physical and transition risk.

Start by choosing a climate scenario.
```

ScenarioChoice = Early Action * ;
ScenarioInd = EconomicVariables.Scenario == ScenarioChoice;

```

For the LTV projections, project the mortgage balance and the property value separately, and then work with yearly projections using 2020 as the current year.

To project the mortgage balance, start from the current loan balance and use the age, term, and loan's interest rate to project the balance forward, using standard annuity techniques. Define the exposure at the end of the year as the scheduled payment amount plus the remaining balance after the payment.
```

CurrentYear = 2020; % Assume end of year
Age = 12; % Assume loan is already this age, next end of year will be age + 1
Term = 30; % Original mortgage term
Rate = 0.0575; % Assume fixed rate
CurrentBalance = 90000; % Current mortgage balance at end of current year
[PrincipalPayment,InterestPayment,RemainingBalance] = amortize(Rate,(Term-Age),CurrentBalance);

```
```

Projections = table;
Projections.Year = (CurrentYear+1:CurrentYear+(Term-Age))';
Projections.Age = (Age+1:Term)';
% Exposure at the end of next year is the expected payment amount plus remaining
% balance after the payment
Projections.LoanBalance = PrincipalPayment'+InterestPayment'+RemainingBalance';

```

For the property value, start out with the current property value and use the corresponding real estate price index (either residential or commercial) to project the value into the future. Different climate scenarios lead to different projected values.

You can compute the LTV ratio projections from the loan balance and the property values in each time period.
CurrentValue \(=150000 ;\)
PropertyType \(=\) Commercial \(\quad\);
PropertyTypeVarName = strcat("RealEstate",PropertyType);
Projections = join(Projections,EconomicVariables(ScenarioInd, ["Year" PropertyTypeVarName]));
Projections.Properties.VariableNames\{end\} = 'PriceIndex';
Projections.ValueReference = CurrentValue*Projections.PriceIndex/100;
Projections.LTVReference = Projections.LoanBalance./Projections.ValueReference;
disp(Projections)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Age & LoanBalance & PriceIndex & ValueReference & LTVReference \\
\hline 2021 & 13 & 95175 & 101.2 & 1.518e+05 & 0.62698 \\
\hline 2022 & 14 & 92022 & 102.4 & \(1.536 \mathrm{e}+05\) & 0.5991 \\
\hline 2023 & 15 & 88687 & 103.6 & \(1.554 \mathrm{e}+05\) & 0.5707 \\
\hline 2024 & 16 & 85161 & 104.8 & \(1.572 \mathrm{e}+05\) & 0.54174 \\
\hline 2025 & 17 & 81432 & 106 & \(1.59 \mathrm{e}+05\) & 0.51215 \\
\hline 2026 & 18 & 77489 & 107.8 & \(1.617 \mathrm{e}+05\) & 0.47921 \\
\hline 2027 & 19 & 73319 & 109.6 & \(1.644 \mathrm{e}+05\) & 0.44598 \\
\hline 2028 & 20 & 68909 & 111.4 & \(1.671 \mathrm{e}+05\) & 0.41238 \\
\hline 2029 & 21 & 64245 & 113.2 & \(1.698 \mathrm{e}+05\) & 0.37836 \\
\hline 2030 & 22 & 59313 & 115 & \(1.725 \mathrm{e}+05\) & 0.34385 \\
\hline 2031 & 23 & 54098 & 116.8 & \(1.752 \mathrm{e}+05\) & 0.30878 \\
\hline 2032 & 24 & 48583 & 118.6 & \(1.779 \mathrm{e}+05\) & 0.27309 \\
\hline 2033 & 25 & 42751 & 120.4 & \(1.806 \mathrm{e}+05\) & 0.23672 \\
\hline 2034 & 26 & 36583 & 122.2 & \(1.833 \mathrm{e}+05\) & 0.19958 \\
\hline 2035 & 27 & 30061 & 124 & \(1.86 \mathrm{e}+05\) & 0.16162 \\
\hline 2036 & 28 & 23164 & 126.2 & \(1.893 \mathrm{e}+05\) & 0.12237 \\
\hline 2037 & 29 & 15870 & 128.4 & \(1.926 \mathrm{e}+05\) & 0.082399 \\
\hline 2038 & 30 & 8156.7 & 130.6 & \(1.959 \mathrm{e}+05\) & 0.041637 \\
\hline
\end{tabular}

This result is a reference LTV ratio for the loan, for the selected climate scenario. The Physical Risk for Floods on page 4-253 and Transition Risk for Energy Efficiency Upgrades on page 4-255 sections describe the additional impact on the property value, specific to each mortgage.

\section*{Specify Physical Risk for Floods}

To incorporate risk of flooding, adjust the price index using property-specific flood risk information from the property with a sensitivity parameter for precipitation change. Assume there are known flood risk ratings for the properties. For properties in a flood area, reduce the baseline property value projections as the projected precipitation increases.

This simple approach that requires qualitative views to determine the sensitivity parameters. You could incorpoate a more sophisticated model where the projected drop in property value includes additional information from the property. You might distinguish additional types of flood risk. For example, precipitation changes are significant for flash-flooding risk. However, the value of coastal properties is sensitive to sea-level rise, which is a physical variable often projected with climate scenario data. Interdisciplinary collaboration can greatly enhance the granularity and quality of these adjustments.

Calibrate the sensitivity parameters. Then, display the impact of the flood risk adjustment on the property value at the end of the mortgage term.
```

Projections = join(Projections,PhysicalVariablesYearly(ScenarioInd,["Year" "PrecipitationChange"
FloodRisk = High - ;
switch FloodRisk
case "High"
PrecipitationSens = -100;
case "Medium"
PrecipitationSens = -50;
case "Low"
PrecipitationSens = 25;
end
Projections.PriceIndexPhysical = Projections.PriceIndex + PrecipitationSens*Projections.Precipit
Projections.ValuePhysical = CurrentValue*Projections.PriceIndexPhysical/100;
Projections.LTVPhysical = Projections.LoanBalance./Projections.ValuePhysical;
figure
t = tiledlayout(2,1);
nexttile
plot(Projections.Year, Projections.ValuePhysical, ' - ' ,Projections.Year, Projections.ValueReference,
title('Property Value')
legend('Adjusted','Reference','Location','northwest')
nexttile
plot(Projections.Year,Projections.LTVPhysical, ' - ',Projections.Year,Projections.LTVReference,':')
title('LTV')
legend('Adjusted','Reference','Location','southwest')
title(t,strcat("Adjustment for Physical Risk, ",ScenarioChoice))

```

\section*{Adjustment for Physical Risk, Early Action}

fprintf('Value adjustment due to physical risk in the last year of the mortgage (\%d): \%4.2f\%\%', P
Value adjustment due to physical risk in the last year of the mortgage (2038): -4.13\%
Even though the property value drop is noticeable at the end of the mortgage term, the effect on the LTV ratio is small. This effect is because mortgages are amortizing loans and the balance and the corresponding LTV ratio are small toward the maturity of the loan. However, if a future loan is assessed, the impact on LTV ratio would be more significant near the origination of the loan, resulting in a different impact on the credit analysis.

\section*{Specify Transition Risk for Energy Efficiency Upgrades}

Changing regulations for energy efficiency of properties represent a transition risk. For example, new regulations may require a minimum energy efficiency rating to rent a property. An energy efficiency rating itself may be required to sell a property in order to inform prospective buyers and lenders about potential maintenance and upgrade costs. New energy efficiency regulations affect the market value of a property.

This example assumes there are known energy efficiency ratings for the properties. Examples of these efficiency ratings are Energy Perfomance Certificates [9 on page 4-265] or Energy Star [10 on page 4-265]. This example uses a simulated scale with five levels: "Low", "Medium Low", "Medium", "Medium High", and "High":
```

EnergyRatingScale = string(EnergyEfficiencyUpgradeCost.Properties.VariableNames);
disp(EnergyRatingScale)
"High" "Medium High" "Medium" "Medium Low" "Low"

```

Assume that there are estimates of the cost to upgrade to a higher rating. The estimates in this example are simulated, but an example of these kinds of estimates can be found in the CBES Guidance document [3 on page 4-265].
```

disp(EnergyEfficiencyUpgradeCost)

```
\begin{tabular}{lrrrrrrr}
& High & & Medium High & & Medium & & Medium Low
\end{tabular}

To enhance this example, you could replace these estimates with a more granular model, where different characteristics of the property can help predict the upgrade costs.

Assume each property has a current rating and that there is a maximum attainable rating.
```

CurrentEER = Medium Low - ;
MaxEER = Medium High ; % Cannot be worse than current rating
TotalEnergyUpgradeCost = EnergyEfficiencyUpgradeCost{CurrentEER,MaxEER}
TotalEnergyUpgradeCost = 30000

```

The estimated cost is an estimated amount as of the current year. In the "Early Action" climate scenario, deduct this cost from the property value immediately, where the rationale is that this cost would be deducted from the property price when the property is sold. Then assume improvements are made in the following years until the property reaches its maximum energy efficiency rating. The initial drop in value gradually disappears and the adjusted projected property value matches the baseline value at the end of the loan. For the "Delayed Action" climate scenario, the same approach applies except the drop in value occurs in 2030 and the subsequent investments occur in a shorter time span. The yearly costs are adjusted by the price index of the corresponding scenario. In the "No Action" climate scenario, the upgrades never take place and, therefore, there is no transition risk impact.
```

Projections.ValueTransition = adjustValueProjections(Projections.PriceIndex,CurrentValue,TotalEn

```
Projections.LTVTransition = Projections.LoanBalance./Projections.ValueTransition;

\section*{figure}
t = tiledlayout(2,1);
nexttile
plot (Projections.Year, Projections.ValueTransition, ' - ' , Projections. Year, Projections.ValueReference
title('Property Value')
legend('Adjusted','Reference','Location','northwest')
nexttile
plot(Projections.Year, Projections.LTVTransition, ' - ' ,Projections.Year, Projections.LTVReference, ':
title('LTV')
legend('Adjusted','Reference','Location','southwest')
title(t,strcat("Adjustment for Transition Risk, ", ScenarioChoice))

Different implementations are possible to adjust the property value with the transition costs. It is also possible to include disposable income in the analysis to adjust the disposable income by the investments required each year to enhance the efficiency of the property. In that case, the credit models in this analysis would need to include disposable income as a predictor to capture the effect of the projections for provisions or capital. You can add other types of transition risk to this approach as long as the impact of these risks can be captured in the projected values of the variables included in the credit models.

\section*{Compute LTV Projections Adjusted for Physical and Transition Risk}

To adjust LTV projections for both physical and transition risks, combine physical and transition risk adjustments from the Physical Risk for Floods on page 4-253 and Transition Risk for Energy Efficiency Upgrades on page 4-255 sections.
```

Projections.ValuePhysicalTransition = adjustValueProjections(Projections.PriceIndexPhysical,Curr
Projections.LTVPhysicalTransition = Projections.LoanBalance./Projections.ValuePhysicalTransition
figure
t = tiledlayout(2,1);
nexttile
plot(Projections.Year,Projections.ValuePhysicalTransition, ' - ' ,Projections.Year,Projections.Valueß
title('Property Value')
legend('Adjusted','Reference','Location','northwest')
nexttile
plot(Projections.Year,Projections.LTVPhysicalTransition, ' - ' ,Projections.Year,Projections.LTVRefe
title('LTV')

```
```

legend('Adjusted','Reference','Location','southwest')
title(t,strcat("Adjustment for Physical and Transition Risk, ",ScenarioChoice))

```

Adjustment for Physical and Transition Risk, Early Action

\section*{Estimate Provisions and Capital}

To assess the impact of the physical and transition risk adjustments, use credit models that include the LTV ratio as a predictor and then estimate the provisions and capital with and without the adjustments.

This example uses a lifetime probability of default (PD) model (see fitLifetimePDModel) that includes the LTV ratio and the age of the mortgage as predictors.
```

load SimulatedClimatePDModel.mat
disp(ClimatePDModel)
Probit with properties:
ModelID: "Probit"
Description: "Simulated ad-hoc lifetime PD model for climate risk analysis of mortgages.
UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
IDVar: "ID"
AgeVar: "Age"
LoanVars: "LTV"
MacroVars: ""
ResponseVar: "Default"

```

An ad-hoc model is fitted for this analysis, including the projected variables of interest, in this case the LTV ratio. The training data is a historical data set that is representative of the current mortgage
loan portfolio. Alternatively, you could use an existing PD model for a mortgage loan portfolio if it includes the projected variables as predictors. You can create this type of PD model using customLifetimePDModel. In this example, age is included because it is a common predictor variable for credit models, especially for lifetime PD models in the context of lifetime expected credit losses. You can compute lifetime expected credit loses (ECL) using portfolioECL. For more information, see "Overview of Lifetime Probability of Default Models" on page 1-25.

You can also include other economic variables in this analysis. Climate scenarios typically include other economic variables commonly included in risk models, such as the unemployment rate. You can add these additional variables as long as the credit model uses these as predictors.

You can also include a loss given default (LGD) model (see fitLGDModel) in this analysis, provided it includes some or all of the projected loan variables and economic variables as predictors. An exposure-at-default (EAD) model (see fitEADModel) is not as relevant for mortgages because they use a standard payment schedule.

Reformat the adjusted projections to use these projections with the predict function for the credit model.
```

dataPredictAdjusted = Projections(:,{'Year' 'Age' 'LTVPhysicalTransition'});
dataPredictAdjusted.Properties.VariableNames{3} = 'LTV';
dataPredictAdjusted = addvars(dataPredictAdjusted,ones(height(dataPredictAdjusted),1),'NewVariab
dataPredictReference = dataPredictAdjusted;
dataPredictReference.LTV = Projections.LTVReference;

```

Calculate the yearly, conditional PD using predict.
```

PDAdjusted = predict(ClimatePDModel,dataPredictAdjusted);
PDReference = predict(ClimatePDModel,dataPredictReference);
figure;
bar(dataPredictAdjusted.Year,[PDAdjusted,PDReference])
title(strcat("Yearly (Conditional) PD, ",ScenarioChoice))
xlabel('Year')
ylabel('PD')
legend('Adjusted','Reference')
grid on

```


The PD values decrease with age. In the early years (2022 to 2024), the difference between the reference and adjusted projections are noticeable because they have an impact on the early PD values. For climate risk, more adjustments to projections happen many years into the future, where the PD values are smaller and have a decreasing the impact on downstream credit computations. One such downstream computation is the yearly risk-weighted assets (RWA) value, which is equivalent to the capital requirements. The computation of RWA follows Basel II and uses the asymptotic single risk factor (ASRF) model (see asrf). In this example, the asrf function uses the conditional yearly PD, LGD, and EAD values. If an LGD model is available, you can use its predictions here. For EAD, use the projected loan balances.
```

LGD = 0.50;
EAD = Projections.LoanBalance;
MortgageAssetCorrelation = 0.15;
CapAdjusted = asrf(PDAdjusted,LGD,MortgageAssetCorrelation,'EAD',EAD);
RWAAdjusted = 12.5*CapAdjusted;
CapReference = asrf(PDReference,LGD,MortgageAssetCorrelation,'EAD',EAD);
RWAReference = 12.5 * CapReference;
figure;
bar(dataPredictAdjusted.Year,[RWAAdjusted,RWAReference])
title(strcat("Yearly Risk-Weighted Assets (RWA), ",ScenarioChoice))
xlabel('Year')
ylabel('RWA')
legend('Adjusted','Reference')
grid on

```


The RWA value decreases with time because mortgages are amortizing loans and the decreasing PD values also contribute to this pattern.

To compute provisions, use a lifetime credit analysis. Start by comparing the cumulative lifetime PD values using predictLifetime.
```

LPDAdjusted = predictLifetime(ClimatePDModel,dataPredictAdjusted); % With adjusted LTV
LPDReference = predictLifetime(ClimatePDModel,dataPredictReference); % With reference LTV
figure;
plot(dataPredictAdjusted.Year,LPDAdjusted,' -',dataPredictReference.Year,LPDReference,':')
title(strcat("Cumulative Lifetime PD, ",ScenarioChoice))
xlabel('Year')
ylabel('Lifetime PD')
legend('Adjusted','Reference','Location','southeast')
grid on

```


Use the portfolioECL function to get the lifetime ECL, or lifetime provisions. To get this projection, you need the marginal version of the lifetime PD values, the LGD and EAD values, and an effective interest rate for the loan.
```

NumRemainingYears = height(Projections);
MPDTable = table;
MPDTable.ID = ones(NumRemainingYears,1);
% Marginal PDs for adjusted
MPDTable.MPD = predictLifetime(ClimatePDModel,dataPredictAdjusted,'ProbabilityType','marginal');
LGDTable = table;
LGDTable.ID = 1;
LGDTable.LGD = 0.50;
EADTable = table;
EADTable.ID = ones(NumRemainingYears,1);
EADTable.EAD = Projections.LoanBalance;
EIR = 0.045; % Effective interest rate

```
[LifetimeECLAdjusted,~,ECLAdjustedPerPeriod] = portfolioECL(MPDTable,LGDTable,EADTable,Periodici
\% Marginal PDs for reference
MPDTable.MPD = predictLifetime(ClimatePDModel,dataPredictReference,'ProbabilityType','marginal')
[LifetimeECLReference,~,ECLReferencePerPeriod] = portfolioECL(MPDTable,LGDTable,EADTable,Periodi

The following plot shows how the discounted yearly provisions accumulate during the remaining life of the loan.
```

CumulECLAdjusted = cumsum(ECLAdjustedPerPeriod.Scenariol);
CumulECLReference = cumsum(ECLReferencePerPeriod.Scenario1);
figure;
plot(dataPredictAdjusted.Year,CumulECLAdjusted, ' - ' , dataPredictReference.Year,CumulECLReference,
xlabel('Year')
ylabel('Provisions')
title(strcat("Cumulative Provisions, ",ScenarioChoice))
grid on
legend('Adjusted','Reference','Location','southeast')

```


The following plot shows the total impact that the physical and transition risk adjustments have on lifetime provisions.
```

figure;
bar(categorical({'Lifetime ECL'}),[LifetimeECLAdjusted LifetimeECLReference])
title(strcat("Total Lifetime Provisions, ",ScenarioChoice))
ylabel('Provisions')
legend('Adjusted','Reference')
grid on

```

fprintf('Lifetime provisions, percent increase / decrease relative to reference: \%4.2f\%\%',100*(L
Lifetime provisions, percent increase / decrease relative to reference: 1.67\%
The "Early Action" climate scenario shows a larger increase with respect to the baseline. However, this increase may be because the shocks occur early, where the exposure and PD values are larger. A hypothetical loan starting in the future may lead to different impacts. A more comprehensive analysis may better capture the impact of future shocks.

\section*{Conclusion}

This example shows a workflow to incorporate some physical and transition risks into a climaterelated credit analysis for mortgages. The methodology in this example is a simple approach to bring together existing information and models to assess the impact of climate change on provisions.

Climate risk is a complex developing area and this example is a starting point that you can extend in different directions. You might add more variables (such as rate of unemployment or sea-level rise) and other models (such as LGD, flood, or cost models) to the analysis. Bringing an entire portfolio of mortgages could also shed light on portfolio composition or potentially a dynamic balance sheet analysis. You might also explore debt serviceability to analyze the disposable income projections in the analysis. Another area of investigation could be additional insurance considerations, such as projections on the cost of insurance or whether a property is no longer insurable.

\section*{References}
[1] Bank of Canada, Climate Transition Scenario Data, https://www.bankofcanada.ca/2022/01/climate-transition-scenario-data/.
[2] Bank of England, Key elements of the 2021 Biennial Exploratory Scenario: Financial risks from climate change, June 2021, https://www.bankofengland.co.uk/stress-testing/2021/key-elements-2021-biennial-exploratory-scenario-financial-risks-climate-change.
[3] Bank of England, Guidance for participants of the 2021 Biennial Exploratory Scenario: Financial risks from climate change, June 2021, https://www.bankofengland.co.uk/-/media/boe/files/stress-testing/2021/the-2021-biennial-exploratory-scenario-on-the-financial-risks-from-climate-change.pdf.
[4] European Central Bank, Banking Supervision, Climate Risk Stress Test, January 2022, https:// www.bankingsupervision.europa.eu/ecb/pub/pdf/
ssm.macrofinancialscenariosclimateriskstresstest2022~bcac934986.en.pdf.
[5] U.S. Federal Government, 2022: U.S. Climate Resilience Toolkit. [Online] http://toolkit.climate.gov. Climate Explorer: https://toolkit.climate.gov/tool/climate-explorer-0. Accessed June, 2022.
[6] Intergovernmental Panel on Climate Change (IPCC), https://www.ipcc.ch/.
[7] National Oceanic and Atmospheric Administration (NOAA), https://www.noaa.gov/.
[8] Met Office, https://www.metoffice.gov.uk/.
[9] Energy Performance Certificate Wiki: https://en.wikipedia.org/wiki/ Energy_performance_certificate.
[10] Energy Star Wiki: https://en.wikipedia.org/wiki/Energy_Star.

\section*{Local Functions}
```

function ValueAdjusted = adjustValueProjections(PriceIndex,CurrentValue,TotalCost,ScenarioChoice

```
NumRemainingYears = length(PriceIndex);
ValueAdjusted = zeros(NumRemainingYears,1);
PriceIndexPrevious = [100;PriceIndex(1:end-1)];
PriceIndexRate = (PriceIndex-PriceIndexPrevious)./PriceIndexPrevious;
switch ScenarioChoice
 case "Early Action"
 CostPerYear = TotalCost/NumRemainingYears;
 TransitionCost = CostPerYear*PriceIndex/100;
 ValueAdjusted(1) = (CurrentValue-TotalCost)*(1+PriceIndexRate(1)) + TransitionCost(1);
 for ii=2:NumRemainingYears
 ValueAdjusted(ii) = ValueAdjusted(ii-1)*(1+PriceIndexRate(ii)) + TransitionCost(ii);
 end
 case "Delayed Action"
 TransitionCost = zeros(NumRemainingYears,1);
 ValueAdjusted = CurrentValue*PriceIndex/100; \% Initialize
```

    if NumRemainingYears>=10
        % TotalCost = TotalCost*PriceIndex(9)/100; % Adjust by price index
        CostPerYear = TotalCost/(NumRemainingYears-9); % Make upgrades in remaining years
        TransitionCost(10:end) = CostPerYear*PriceIndex(10:end)/100;
        ValueAdjusted(10) = (ValueAdjusted(9)-TotalCost*PriceIndex(9)/100)*(1+PriceIndexRate(10
        for ii=11:NumRemainingYears
            ValueAdjusted(ii) = ValueAdjusted(ii-1)*(1+PriceIndexRate(ii)) + TransitionCost(ii);
        end
        end
    case "No Action"
        ValueAdjusted = CurrentValue*PriceIndex/100; % No upgrades
    end
end

```

\section*{See Also}

\section*{Related Examples}
- "Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios" on page 4-231

\section*{More About}
- "Overview of Lifetime Probability of Default Models" on page 1-25

\section*{External Websites}
- Modeling the Impact of Transition and Physical Climate Risks on a Portfolio of Mortgages (13 \(\min 52 \mathrm{sec}\))

\section*{Analyze Transition Scenarios for Climate-Related Financial Risks}

This example shows how to visualize transition scenarios to understand climate-related risks to the economy and financial systems.

\section*{Background}

In late 2020, the Bank of Canada initiated a project to understand the climate impact on financial systems of Canada and the United States. The resulting data set [1] on page 4-278 is the basis of the Bank of Canada report "Transition Scenarios for Analyzing Climate-Related Financial Risk" [2] on page 4-278. From this project, data for three climate scenarios captures the evolution of the global economy. These three climate scenarios are in the Bank0fCanadaClimateScenarioData. mat file. The Bank of Canada report summarizes the global economy by ten emission-intensive sectors across eight global regions from 2020 to 2050. A fourth scenario is the benchmark scenario and reflects the climate policies of 2019., which mitigates effects due to the COVID-19 pandemic that started in 2020.

This example consists of two parts that relate to section 2 and section 4 of the Bank of Canada report.
Climate Impact of Green House Gas Emissions on page 4-267, uses MATLAB® code to re-create the graphs for each scenario that show the progress in the mitigation of greenhouse gas emissions to 2050 and the impact of natural-based solutions such us forests.

Impact of Climate Policies on page 4-271, uses MATLAB® code to re-create the graphs that demonstrate how the scenario policies affect economies at a global, regional, and sectoral level with the focus on Canada and the United States. Graphs in this example provide the following information:
- Impacts in greenhouse gas emissions due to the increase in shadow carbon price
- Financial impacts in terms of net income
- Macroeconomic impacts in terms of gross domestic product (GDP)

For information on the climate impact of different transition scenarios on loan default probabilities, see "Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios" on page 4-231.

\section*{Impact of Green House Gas Emissions}

\section*{Climate Scenario Data}

The data for this example includes these climate scenarios developed by MIT using the Economic Projection and Policy Analysis (EPPA) Mode in collaboration with the Bank of Canada [3 on page 4278].
- Baseline (2019 Policies) - Baseline scenario consistent with climate policies in place at the end of 2019
- Below \(2^{\circ} \mathrm{C}\) Immediate - Immediate policy action scenario to limit average global warming to below \(2^{\circ} \mathrm{C}\) by 2100
- Below \(2{ }^{\circ} \mathrm{C}\) Delayed - Delayed policy action scenario to limit average global warming to below \(2^{\circ} \mathrm{C}\) by 2100
- Net-Zero \(2050\left(1.5^{\circ} \mathrm{C}\right)\) - More ambitious immediate policy action scenario to limit average global warming to \(1.5^{\circ} \mathrm{C}\) by 2050 that includes current net-zero commitments by some countries

The climate transition scenario data is provided by the Bank of Canada and is available free of charge at www.bankofcanada.ca. [1 on page 4-278] on page 4-278

Load this data, converted to a MAT-file from BankOfCanadaClimateScenarioData.mat.
```

load BankOfCanadaClimateScenarioData.mat;
head(ClimateTransitionScenarioData);

```
\begin{tabular}{|c|c|c|c|c|}
\hline k & CL_GEOGRAPHY & CL_SECTOR & CL_VARIABLE & CL_UNIT \\
\hline 1 & Canada & National & Carbon price & US\$2014/tC02e \\
\hline 2 & Canada & National & Carbon price & US\$2014/tC02e \\
\hline 3 & Canada & National & Emissions | total GHG (scope 1) & Million tonnes C02e \\
\hline 4 & Canada & National & Emissions | total GHG (scope 1) & Million tonnes C02e \\
\hline 5 & Canada & National & Input price | Coal & Index (2014 = 1) \\
\hline 6 & Canada & National & Input price | Coal & Index (2014 = 1) \\
\hline 7 & Canada & National & Input price | Crops & Index (\(2014=1)\) \\
\hline 8 & Canada & National & Input price | Crops & Index (2014 = 1) \\
\hline
\end{tabular}

Use the preprocessBankOfCanadaData on page 4-285 helper function to keep only the variables that this example uses for analysis.
```

[ClimateTransitionScenarioData, options] = preprocessBankOfCanadaData(ClimateTransitionScenariol
regions = options.regions;

```

\section*{Global Carbon Dioxide Emissions}

The following plot shows the impact of each climate scenario in terms of carbon dioxide \(\left(\mathrm{CO}_{2}\right)\) emissions. To understand the various scenarios and their effect on the economy, first you need to explore how each scenario affects the total emissions of carbon dioxide globaly and for each geographic region. The contribution of the forests is important in this analysis because forests can act as both carbon dioxide emmiters and carbon dioxide sinks.

Use the plotVariableByCountry on page 4-279 function to plot the global greenhouse gas (GHG) emissions.
```

options = updateOptions(options,1e-3,"Global GHG Emissions","GigaTons/Year of CO_2 Emissions");
plotVariableByCountry('Global',{'Emissions | total GHG (scope 1)'},'Global', optīons);

```


As expected, the global GHG emissions for the Baseline (2019 Policies) are increasing. The GHG emissions for the Below \(2^{\circ} \mathrm{C}\) Delayed scenario are increasing in the same manner until 2030, when a reduction in carbon dioxde emmissions begins, and then shows a sharp reduction in emmisions until 2050. The two other scenarios, Below \(2^{\circ} \mathrm{C}\) Immediate and Net-Zero \(2050\left(1.5^{\circ} \mathrm{C}\right)\) show sharper decreases as the actions for emission mitigation start on 2020. The Net-Zero \(2050\left(1.5^{\circ} \mathrm{C}\right)\) scenario shows a faster decrease in carbon dioxied emissions because the target is an average decrease in global temperature of abour 1.5 degrees by 2050 . This target is a more aggressive assumption than the Below \(2^{\circ} \mathrm{C}\) Delayed scenario, which aims to acheive an average decrease in global temperature of about 2 degrees by 2100 .

\section*{Forestry Carbon Dioxide Emissions and Removal}

The global forests, a nature-based solution to cardon dioxide emissions, have a modest but not negligible contribution to the climate scenarios. Observe the impact of removing carbon dioxide emissions from forestry.
\% C02 emmissions and removal from forestry
baseline_C02FOR = options.baseline(ismember(options.baseline.CL VARIABLE,'Emissions/removals fror b2delayed C02FOR = options.b2delayed(ismember(options.b2delayed.CL VARIABLE, 'Emissions/removals b2immediate_C02F0R = options.b2immediate(ismember(options.b2immediate.CL_VARIABLE,'Emissions/rem netzero2050_C02F0R = options.netzero2050(ismember(options.netzero2050.CL_VARIABLE,'Emissions/rem
\% Global C02 emmissions and removal from forestry
baseline_C02F0R_GL0BAL = sortrows(baseline_C02F0R(ismember(baseline_C02F0R.CL_GE0GRAPHY, 'Global' b2delayed_C02F0R_GLOBAL = sortrows(b2delayed_C02FOR(ismember(b2delayed_C02F0R.CL_GE0GRAPHY, 'Glob

```

netzero2050_C02F0R_GL0BAL = sortrows(netzero2050_C02FOR(ismember(netzero2050_C02F0R.CL_GE0GRAPHY
figure
x_value = [baseline_C02F0R_GLOBAL.CL_VALUE(1);baseline_C02F0R_GLOBAL.CL_VALUE(end);b2delayed_C02l
y_value = categorical(["Baseline (2019 Policies) 2020";strcat(["Baseline (2019 Policies)"; "Belo
b = barh(y_value, x_value*1e-3,0.2,'BaseValue',0);
xlabel ("Gïgatons pèr Year of CO 2 Emissions")
title("CO_2 Emissions and Remova\ from Forestry")
grid on

```
\(\mathrm{CO}_{2}\) Emissions and Removal from Forestry

In 2020, global forests were responsible for 4 gigatons of carbon dioxed emissions. By 2050, the carbon dioxide emissions from global forests are projected to decrease for all scenarios. In the projection for the Below \(2^{\circ} \mathrm{C}\) Immediate and the Net-Zero \(2050\left(1.5^{\circ} \mathrm{C}\right)\) scenarios, the global forests become a natural carbon sink.

\section*{Regional Carbon Dioxide Emissions}

The following plots present the projected GHG emissions for various regions that you can select using the the dropdown control. Use the plotVariableByCountry on page 4-279 function to plot the GHG emissions for the selected region.
```

region = United States - ;
options = updateOptions(options,1,strcat("GHG Emissions in ", region),"Million Tons/Year of C0_2
plotVariableByCountry(region,'Emissions | total GHG (scope 1)',{'National','Global'},options);

```


The patterns for Canada and the United States are similar to the patterns for the Global GHG Emissions on page 4-268 plot. As described in [2 on page 4-278], these countries have different climate policies. The climate policies for the United States include:
- Renewable shares in electricity generation
- Corporate Average Fuel Economy standards for both passenger and commercial vehicles

The climate policies for Canada [4 on page 4-279] include:
- Phaseout of traditional coal-fired generation of electricity
- Renewable shares in electricity generation
- Corporate Average Fuel Economy standards for both passenger and commercial vehicles
- Regulations on methane emissions

\section*{Impact of Climate Policies}

Transitioning to low-carbon economies brings significant changes across industries. Industries must move away from fossil-fuel sources to meet their energy demands and adapt noncarbon emitting energy sources like electricity. The plots in this section show the carbon price, GHG emissions, and energy production for the four climate scenarios.

\section*{Shadow Carbon Price}

To achieve the emission mitigation targets, the model must increase the shadow price of carbon. The shadow carbon price applies a theoretical surcharge per ton of carbon emissions. The more
aggressive the scenario, the greater the increase of the carbon price. Use the plotVariableByCountry on page 4-279 function to plot the shadow carbon price for the selected region. When region is Global, the "global" price is the GDP-weighted average across geographies. As described in [2 on page 4-278], the carbon price is an output in this model. The model aims to reduce emissions by a predetermined amount, incorporating noncarbon tax policies first. Then, the model calculates a shadow carbon price to capture the remaining intensity required in government climate policy to meet the emissions targets. The carbon price is modeled as a tax, where the tax revenue is returned to households as lump-sum transfers in the same period.
region \(=\) Global \(\quad\);
options = updateOptions(options,1,strcat(region, " Shadow Carbon Price"),"2014 US Dollars/Ton of plotVariableByCountry(region,'Carbon price',\{'Global','National'\},options)

The Baseline (2019 Policies) scenario does not reflect any significant change in the carbon shadow price. On the other hand, the shadow carbon price for the Below \(2^{\circ} \mathrm{C}\) Delayed scenario shows sharp increases because after 2030 countries have to make up for the lost time in mitigating the gas emissions. The Below \(2^{\circ} \mathrm{C}\) Immediate and the Net-Zero \(2050\left(1.5^{\circ} \mathrm{C}\right)\) scenarios have a smoother increase of the shadow carbon price because there is time to achieve the goals by 2100 and 2050, respectively. However, the Net-Zero \(2050\left(1.5^{\circ} \mathrm{C}\right)\) scenario exhibits faster increases of the shadow carbon price as the target of 2050 is more aggressive.

\section*{Regional Sectorial Carbon Dioxide Emissions}

Use the plotVariableBySector on page 4-280 function to show bar graphs for the predicted GHG emissions, by sector, for the four climate scenarios. Low-carbon policies lead to changes in all economies and not only the fossil-fuel economies like coal, oil, natural gas, and refined oil.
```

region = United States *;
if (strcmp(region, "Global"))
options = updateOptions(options,le-3,strcat(region, " GHG Emissions Per Sector"),"Gigatons/y
else
options = updateOptions(options,1,strcat(region, " GHG Emissions Per Sector"),"Million Tons/
end
plotVariableBySector(region,{'Emissions | total GHG (scope 1)','Emissions and removals from fore

```

United States GHG Emissions Per Sector

You can see that the contribution of the fossil-fuel sectors to gas emissions significantly lowers by midcentrury as the demand for these products goes down.

The largest impact in the reduction of gas emissions is achieved by the electricity sector. The electricity sector uses low to zero emission technologies like wind and solar. Also many sectors leverage electricity as a substitute to fossil-fuel products. For example, in the commercial transportation sector, you can see the transition to electric vehicles.

For Canada and the United States, the patterns are similar to the Global GHG Emissions on page 4268 plot, but there are some key differences. In Canada, the electricity sector completely substitutes the fossil-fuel products, achieving negative gas emissions by midcentury, while leveraging
sophisticated technologies. In the United States, the forest carbon sequestration plays a major role in the carbon budget.

\section*{Sectorial Energy Production}

Use the plotEnergyBySector on page 4-281 function to visualize the use of primary and secondary energy, globally, by sector. Primary energy refers to the amount of energy that a sector delivers and secondary energy refers to the amount of electrical energy each sector generates.
```

options.energytype=secondary|electricity * ;
if strcmp(options.energytype,"primary")
options = updateOptions(options,le-3,"Global Primary Energy","Exajoules");
else
%1TWh = 0.0036 EJ
options = updateOptions(options,36*1e-4,"Global Secondary Energy (Electricity Generation)","!
end
plotEnergyBySector('Global',{'Global','Electricity'},options)

```

Global Secondary Energy (Electricity Generation)

Globally, the dominant energy type is fossil fuels. However, by midcentury renewable energies become the dominant energy types. Electrification supports decarbonization in many sectors. The production sectors are moving away from fossil-fuel products and adapting electrification, contributing to the increased generation of electricity.

\section*{Regional Electricity Generation}

Use the plotEnergyBySector on page 4-281 function to show bar graphs for electricity generation by region.
```

region = Europe *;
options = updateOptions(options, l,strcat(region," Electricity Generation"), "TW/H",'secondary')
plotEnergyBySector(region,'Electricity',options)

```

\section*{Europe Electricity Generation}

\section*{Regional Net Component Changes for Electricity Sector}

When a sector is not efficient, the direct emission costs increase because the sector produces more emissions, which also increases indirect costs. Similarly, the revenue decreases because the sector is not very efficient and the capital expenditures are projected to be low.

Therefore, the net income of a company is computed as:
Net Income \(=\) Revenues - Direct Emission Costs - Indirect Costs - Capital Expenditures [2 on page 4278]
- Revenues \(=\) (output price \(*\) production)
- Direct Emissions costs = (carbon price * scope1 emissions), where direct emissions cost refers to the increase in a sector's cost associated with the release of greenhouse gases from burning fossil fuels
- Indirect Costs = (input price * inputs in production), where indirect cost refers to the direct emission cost of upstream sectors that is passed to the sector.
- Capital Expenditures \(=(\) capital price * new capital added \()\), where capital expenditures refers to the cost of investing in new technologies so the sector can become more efficient

Use the plotNetComponents on page 4-283 function to show the bar graphs for the evolution of the net components for the electricity sector in a selected region.
region \(=\) Canada \(\rightarrow\);
options = updateOptions(options, 1,region, " Change from Baseline (2019 Policies) (\%)"); plotNetComponents(region, 'Electricity',options)

Canada

Capital Expenditure

Below \(2^{\circ} \mathrm{C}\) Immediate

Net-Zero \(2050\left(1.5^{\circ} \mathrm{C}\right)\)

For Canada and the United States the direct emission costs are dropping as the policies become stricter and the carbon price increases. To maintain efficiency, the Capital Expenditures also rise. You can see a large impact in both components for the Net-Zero \(2050\left(1.5^{\circ} \mathrm{C}\right)\) scenario where energy technology shows a rapid evolution. However, this change results in lower revenue than the Below \(2^{\circ} \mathrm{C}\) Immediate and Below \(2^{\circ} \mathrm{C}\) Delayed scenarios where the technology evolution remains steady.

\section*{Regional and Sectorial Net Component Changes}

Use the plotNetIncomeBySector on page 4-283 function to generate the bar graphs for net component changes by sector and region.
```

sector $=$ Electricity
region $=$ Global ;

```
options = updateOptions(options, 1,strcat(region, " - " ,sector), "Change from Baseline (2019 Po plotNetIncomeBySector(region, sector,options)

Global - Electricity

The fossil-fuel sectors present negative net income change as the demand for their products become less. Electricity, on the other hand, presents a postive change in net income as this becomes the dominant energy source in the future.

\section*{GDP Impact}

Use the plotVariableByCountry on page 4-279 function to generate a plot that shows the GDP change across all three climate scenarios compared with the Baseline (2019 Policies) scenario.
```

region = Global *;
options = updateOptions(options, 1,strcat("GDP ", region), "Deviation from Baseline Percentage")
plotVariableByCountry(region,'GDP', [], options);

```


The regional and global GDP impacts show similar patterns. Delayed policy action results in sharper impacts to the GDP by 2050 (see Below \(2^{\circ} \mathrm{C}\) Delayed), while immediate policy action results in more gradual decrease of the GDP (see Below \(2^{\circ} \mathrm{C}\) Immediate and Net-Zero \(2050\left(1.5^{\circ} \mathrm{C}\right)\)).

\section*{Summary}

The climate scenarios illustrate the important sectoral restructuring that the global economies need to undertake to meet climate targets. The climate scenarios show that every sector contributes to the transition and that the financial impacts vary across sectors. These impacts depend on how emissions and capital expenditures affect the sectors and on how the decarbonization of economies affects product demand. The four climate scenarios also highlight the risks of significant macroeconomic impacts, in particular for commodity-exporting countries like Canada. The economic impacts for Canada are driven mostly by declines in global prices of commodities rather than by domestic policy decisions. Finally, the climate scenarios show that delaying climate policy action increases the overall economic impacts and risks to financial stability.

\section*{References}
[1] https://www.bankofcanada.ca/2022/01/climate-transition-scenario-data
[2] "Transition Scenarios for Analyzing Climate-Related Financial Risks" available at: https:// www.bankofcanada.ca/wp-content/uploads/2021/11/sdp2022-1.pdf.
[3] EPPA Model Structure available at https://globalchange.mit.edu/research/research-tools/eppa and https://globalchange.mit.edu/research/research-tools/human-system-model.
[4] "Government of Canada's Pan-Canadian Framework on Clean Growth and Climate Change" available at https://www.canada.ca/en/services/environment/weather/climatechange/pan-canadianframework.html.

\section*{Local Functions}

\section*{plotVariableByCountry}
```

function plotVariableByCountry(country,variable,sector,options)

```
```

GDPflag = false; % Flag that the function is going to be used for GDP plots
if strcmp(variable,'GDP')
GDPflag = true;
if strcmp(country,'Global')
variable = "Global GDP";
sector = "Global";
elseif strcmp(country,'Canada')
variable = "Real GDP";
sector = "National";
else
variable = "US GDP";
sector = "National";
end
end

```
\% C02 emmissions removal from forestry
baseline_sc = options.baseline(ismember(options.baseline.CL_VARIABLE, variable),:);
b2delayed_sc = options.b2delayed(ismember(options.b2delayed.CL_VARIABLE, variable),:);
b2immediā̄e_sc = options.b2immediate(ismember(options.b2immediāte.CL_VARIABLE, variable), :);
netzero2050_sc = options.netzero2050(ismember(options.netzero2050.CL_VARIABLE,variable),:);
\% Global C02 emmissions removal from forestry
baseline_sc_co = sortrows(baseline_sc((ismember(baseline_sc.CL_GEOGRAPHY,country) \& ismember(bas
b2delayed_sc_co = sortrows(b2delayed_sc((ismember(b2delayed_sc.CL_GEOGRAPHY, country) \& ismember(l)
b2immediate_sc_co = sortrows(b2immediate_sc((ismember(b2immediate_sc.CL_GEOGRAPHY,country) \&isme
netzero2050_sc_co = sortrows(netzero2050_sc((ismember(netzero2050_sc.CL_GEOGRAPHY,country) \& ism
figure
if ~GDPflag, plot(baseline_sc_co.CL_YEAR,baseline_sc_co.CL_VALUE.*options.factor), end
hold on
plot (b2delayed_sc_co.CL_YEAR,b2delayed_sc_co.CL_VALUE.*options.factor)
plot(b2immediate_sc_co.CL_YEAR, b2immediate_sc_co.CL_VALUE.*options.factor)
plot(netzero2050_sc_co.CL_YEAR,netzero2050_sc_co.CL_VALUE.*options.factor)
hold off
if ~GDPflag
 legend('Baseline (Policies 2019)','Below 2^oC Delayed','Below 2^oC Immediate','Net-Zero 2050
else
 legend('Below 2^oC Delayed','Below 2^oC Immediate','Net-Zero 2050 1.5^oC','Location','southo
end
ylabel(options.yLabel)
title(options.title)
grid on
end
plotVariableBySector
function plotVariableBySector(country, variable,options)
baseline_sc = options.baseline(ismember(options.baseline.CL_VARIABLE, variable), :);
b2delayed_sc = options.b2delayed(ismember(options.b2delayed.CL_VARIABLE, variable), :);
b2immediā̄e_sc = options.b2immediate(ismember(options.b2immediāte.CL_VARIABLE, variable), :);
netzero2050_sc = options.netzero2050(ismember(options.netzero2050.CL_VARIABLE, variable),:);
baseline_sc_co = sortrows(baseline_sc(ismember(baseline_sc.CL_GEOGRAPHY, country), :),"CL_YEAR","a b2delayed_sc_co = sortrows(b2delayed_sc(ismember(b2delayed_sc.CL_GEOGRAPHY, country), :),"CL_YEAR" b2immediate_sc_co = sortrows(b2immedīate_sc(ismember(b2immediate_sc.CL_GEOGRAPHY,country), :),"CL netzero2050_sc_co = sortrows(netzero2050_sc(ismember(netzero2050_sc.CL_GEOGRAPHY,country), :),"CL

YRS = unique(baseline_sc_co.CL_YEAR);
SEC = unique(baseline_sc_co.CL_SECTOR); SEC(SEC=="Oil \& Gas") = []; SEC(SEC=="Global") = []; SEC
scenariosTitles \(=\) \{'Baseline (Policies 2019)','Below 2^oC Delayed','Below 2^oC Immediate','Net-Z
\% Perform initiatilization
for ii = 1:length(YRS)
for \(j \mathrm{j}=1\) llength(SEC) idx \(=j j+((i i-1) *\) length(SEC)) ; fun = @max;
max_baseline_sc_co(idx,:) = varfun(fun, baseline_sc_co((ismember(baseline_sc_co.CL_YEAR,Y max_b2delayed_sč_co(idx,:) = varfun(fun,b2delayed_sc_co((ismember(b2delayed_sc_co.-CL_YEAI max_b2immediate_sc_co(idx,:) = varfun(fun,b2immediate_sc_co((ismember(b2immediate_sc_co. max_netzero2050_sc_co(idx,:) = varfun(fun,netzero2050_sc_co((ismember(netzero2050_sc_co.
end
end
T1 = [];
T2 = [];
T3 = [];
T4 = [];
\% Prepare data to stack
for ii = 1:length(YRS)
T1 = [T1; table2array(max_baseline_sc_co(ismember(max_baseline_sc_co.max_CL_YEAR,YRS(ii)),"m T2 = [T2; table2array(max_b2delayed_sc coco(ismember(max_b2delayed_sc_co.max_C CL_YEAR,YRS(ii)), T3 = [T3; table2array(max_b2immediate_sc_co(ismember(max_b2immediate_sc_co.max_CL_YEAR,YRS(i T4 = [T4; table2array(max_netzero2050_sc_co(ismember(max_netzero2050_sc_co.max_CL_YEAR,YRS(i
end
\% Create colorSet
rng(0)
colorSet \(=\) round \((\) rand \((\) length \((\operatorname{SEC}), 3), 1)\);
figure
t = tiledlayout (1,4);
t.Title.String = options.title;
t.YLabel.String = options.yLabel;
colororder(colorSet)
```

ax1 = nexttile;
bar(ax1,YRS,T1,'stacked');
xtickangle(90)
grid on
title(scenariosTitles(1))
ax2 = nexttile;
bar(ax2,YRS,T2,'stacked');
xtickangle(90)
grid on
title(scenariosTitles(2))
ax3 = nexttile;
bar(ax3,YRS,T3,'stacked');
xtickangle(90)
grid on
title(scenariosTitles(3))
ax4 = nexttile;
bar(ax4,YRS,T4,'stacked')
xtickangle(90)
grid on
title(scenariosTitles(4))
linkaxes([ax1 ax2 ax3 ax4],'xy')
lg = legend(SEC,'Location','southoutside','NumColumns',3);
lg.Layout.Tile = 'South'; % Legend placement with tiled layout
end
plotEnergyBySector
function plotEnergyBySector(country,sector,options)
Prim = {'Primary Energy | Bioenergy','Primary Energy | Coal','Primary Energy | Gas', 'Primary E|
'Primary Energy | Nuclear','Primary Energy | Oil','Primary Energy | Renewables (wind\&solar)'
Sec = {'Secondary Energy | Electricity| Bioelectricity (CCS)', ...
'Secondary Energy | Electricity| Bioelectricity and other', ...
'Secondary Energy | Electricity| Coal (CCS)', ...
'Secondary Energy | Electricity| Gas (CCS)', ...
'Secondary Energy | Electricity| Hydro', ...
'Secondary Energy | Electricity| Nuclear', ...
'Secondary Energy | Electricity| Gas (without CCS)', ...
'Secondary Energy | Electricity| Coal (without CCS)', ...
'Secondary Energy | Electricity| Oil', ...
'Secondary Energy | Electricity| Wind\&Solar'};
if strcmp(options.energytype,'primary')
EnergyVars = Prim;
else
EnergyVars = Sec;
end

```
baseline_co = sortrows(options.baseline((ismember(options.baseline.CL_GEOGRAPHY,country) \& ismeml b2delayed_co = sortrows(options.b2delayed((ismember(options.b2delayed.CL_GEOGRAPHY,country) \& isr b2immediā̄e_co = sortrows(options.b2immediate((ismember(options.b2immediāte.CL_GEOGRAPHY,country
```

netzero2050_co = sortrows(options.netzero2050((ismember(options.netzero2050.CL_GE0GRAPHY,country
scenariosTitles = {'Baseline (Policies 2019)','Below 2^oC Delayed','Below 2^oC Immediate','Net-Z
YRS = unique(baseline_co.CL_YEAR);
VARS = unique(baseline_co.C\overline{L_}VARIABLE);
T1 = [];
T2 = [];
T3 = [];
T4 = [];
% Prepare data to stack
for ii = 1:length(YRS)
T1 = [T1; table2array(baseline co(ismember(baseline_co.CL YEAR,YRS(ii)),"CL VALUE"))'.*optio

```

```

    T3 = [T3; table2array(b2immediate_co(ismember(b2immediate_co.CL_YEAR,YRS(ii)),"CL_VALUE"))'.
    T4 = [T4; table2array(netzero2050_co(ismember(netzero2050_co.CL_YEAR,YRS(ii)),"CL_VALUE"))'.
    end
rng(0)
colorSet = round(rand(length(VARS),3),1);
figure
t = tiledlayout(1,4);
t.Title.String = options.title;
t.YLabel.String = options.yLabel;
colororder(colorSet)
ax1 = nexttile;
area(YRS,T1);
grid on
xtickangle(90)
title(scenariosTitles(1))
ax2 = nexttile;
area(YRS,T2);
grid on
xtickangle(90)
title(scenariosTitles(2))
ax3 = nexttile;
area(YRS,T3);
xtickangle(90)
grid on
title(scenariosTitles(3))
ax4 = nexttile;
area(YRS,T4)
xtickangle(90)
grid on
title(scenariosTitles(4))

```
```

if strcmp(options.energytype,'primary')
newVars = strrep(EnergyVars,'Primary Energy | ','');
else
newVars = strrep(EnergyVars,'Secondary Energy | Electricity| ','');
end
lg = legend(newVars,'Location','southoutside','NumColumns',3) ;
lg.Layout.Tile = 'South'; % Legend placement with tiled layout
linkaxes([ax1 ax2 ax3 ax4],'xy')
xtickangle(90)
end

```

\section*{plotNetComponents}
function plotNetComponents(country,sector,options)
NetVars \(=\) \{'Direct emissions costs', ...
'Capital expenditure', ...
'Revenue'\};
NetVarsTitles = \{'Direct Emissions Costs', 'Capital Expenditure', 'Revenue'\};
figure
\(\mathrm{t}=\mathrm{tiled}\) layout(1,length(NetVars));
t.Title.String = options.title;
t. YLabel.String = options.yLabel;
for ii \(=1\) :length(NetVars)
baseline_co = sortrows(options.baseline((ismember(options.baseline.CL_GEOGRAPHY,country) \& is
b2delayed_co = sortrows(options.b2delayed((ismember(options.b2delayed.CL_GEOGRAPHY,country)
b2immediate_co = sortrows(options.b2immediate((ismember(options.b2immediate.CL_GEOGRAPHY,cou
netzero2050_co = sortrows(options.netzero2050((ismember(options.netzero2050.CL_GEOGRAPHY, cou
nexttile(ii)
bar(unique (baseline_co.CL_YEAR), [(b2delayed_co.CL_VALUE-baseline_co.CL_VALUE)./baseline_co.C
(b2immediate_co.CL_VAL̄UE-baseline_co.CL_VALUE)./baseline_co. \(\bar{C} L\) _VALŪE, ...
(netzero2050_co.CL_VALUE-baseline_co.CL_VALUE)./baseline_co.CL_VALUE].*100);
grid on
title(NetVarsTitles(ii))
end
lg = legend('Below 2^oC Delayed','Below 2^oC Immediate','Net-Zero 2050 (1.5^oC)','Location','s lg.Layout.Tile = 'South'; \% Legend placement with tiled layout
end
plotNetIncomeBySector
function plotNetIncomeBySector(country,sector, options)
NetVars = \{'Capital expenditure', ...
'Direct emissions costs', ...
'Revenue', ...
'Indirect costs'\};
figure
t = tiledlayout(1,3);
```

t.Title.String = options.title;
t.YLabel.String = options.yLabel;
% Capital expenditure
baseline_CE = sortrows(options.baseline((ismember(options.baseline.CL_GEOGRAPHY,country) \& ismem
b2delayed_CE = sortrows(options.b2delayed((ismember(options.b2delayed.CL_GEOGRAPHY,country) \& is)
b2immediate CE = sortrows(options.b2immediate((ismember(options.b2immediate.CL GEOGRAPHY,country
netzero2050_CE = sortrows(options.netzero2050((ismember(options.netzero2050.CL_GEOGRAPHY,country
% Direct emissions costs
baseline_DEC = sortrows(options.baseline((ismember(options.baseline.CL_GEOGRAPHY,country) \& isme
b2delayed_DEC = sortrows(options.b2delayed((ismember(options.b2delayed.CL_GEOGRAPHY,country) \&
b2immedia\overline{te DEC = sortrows(options.b2immediate((ismember(options.b2immediāte.CL GEOGRAPHY,count}
netzero2050_DEC = sortrows(options.netzero2050((ismember(options.netzero2050.CL_GEOGRAPHY,count

```
\% Revenue
baseline_RE = sortrows(options.baseline((ismember(options.baseline.CL_GEOGRAPHY,country) \& ismeml
b2delayed_RE = sortrows(options.b2delayed((ismember(options.b2delayed.CL_GEOGRAPHY,country) \& is!
b2immediā̄e_RE = sortrows(options.b2immediate((ismember(options.b2immediāte.CL_GEOGRAPHY, country
netzero2050_RE = sortrows(options.netzero2050((ismember(options.netzero2050.CL_GEOGRAPHY, country
\% Indirect costs
baseline_IC = sortrows(options.baseline((ismember(options.baseline.CL_GEOGRAPHY,country) \& ismem
b2delayed_IC = sortrows(options.b2delayed((ismember(options.b2delayed.CL_GEOGRAPHY,country) \& is!
b2immediā̄e_IC = sortrows(options.b2immediate((ismember(options.b2immediāte.CL GEOGRAPHY, country
netzero2050_IC = sortrows(options.netzero2050((ismember(options.netzero2050.CL_GEOGRAPHY, country
if strcmp(sector,"Electricity")
 baseline_NI = baseline_RE.CL_VALUE -baseline_DEC.CL_VALUE - baseline_CE.CL_VALUE;
 b2delayed_NI = b2delayèd_RE. \(\bar{C} L \_V A L U E ~-b 2 d e l a y \overline{e d} D E C . C L \_V A L U E ~-~ b 2 d e l \bar{a} y e d \_C \bar{E} . C L \_V A L U E ; ~\)
 b2immediāe_NI = b2immediate_RE.CL_VALUE -b2immediate_DEC.CL_VALUE - b2immediāe_CE.CL_VALU
 netzero2050_NI = netzero2050_RE.CL_VALUE -netzero2050_DEC.CL_VALUE - netzero2050_CE.CL_VALU
else
 \% Net incomes
 baseline_NI = baseline_RE.CL_VALUE -baseline_DEC.CL_VALUE - baseline_IC.CL_VALUE - baseline
 b2delayed_NI = b2delayed_RE.CL_VALUE -b2delayed_DEC.CL_VALUE - b2delayed_IC.CL_VALUE - b2del
 b2immediāe_NI = b2immediate_RĒ.CL_VALUE -b2immediate_DEC.CL_VALUE - b2immediāe_IC.CL_VALUE
 netzero2050_NI = netzero2050_RE.CL_VALUE -netzero2050_DEC.CL_VALUE - netzero2050_IC.CL_VALUE
end
nexttile;
bar(unique(baseline_RE.CL_YEAR),((b2immediate_NI-baseline_NI)./baseline_NI) .*100); title('Below 2^oC Immediate')
grid on
nexttile;
bar(unique(baseline_RE.CL_YEAR), ((b2delayed_NI-baseline_NI)./baseline_NI) .*100);
title('Below 2^oC Delayed')
grid on
nexttile;
bar(unique(baseline_RE.CL_YEAR), ((netzero2050_NI-baseline_NI)./baseline_NI) .*100); title('Net-Zero 2050 1.5^ō')
grid on
end
preprocessBankOfCanadaData
function [ClimateTransitionScenarioData,options] = preprocessBankOfCanadaData(ClimateTransitionS
VariableSubset \(=\) \{'Direct emissions costs', ... \% Emissions
'Emission intensity','Emissions (scope 1)| CH4', ...
'Emissions (scope 1)| CO2', ...
'Emissions (scope 1)| HFC', ...
'Emissions (scope 1)| N2O', ...
'Emissions (scope 1)| PFC', ...
'Emissions (scope 1)| SF6', ...
'Emissions (scope 2)| total GHG', ...
'Emissions | total GHG (scope 1)', ...
'Emissions/removals from forestry', ...
'Carbon price' ... \% Shadow carbon price
'Primarsy Energy | Bioenergy', ... \% Primary energy
'Primary Energy | Coal', ...
'Primary Energy | Gas', ...
'Primary Energy | Hydro', ...
'Primary Energy | Nuclear', ...
'Primary Energy | Oil', ...
'Primary Energy | Renewables (wind\&solar)', ...
'Primary Energy | Total', ...
'Secondary Energy | Electricity| Bioelectricity (CCS)', ... \% Secondary energy for electrici
'Secondary Energy | Electricity| Bioelectricity and other', ...
'Secondary Energy | Electricity| Coal (CCS)', ...
'Secondary Energy | Electricity| Coal (without CCS)', ...
'Secondary Energy | Electricity| Gas (CCS)', ...
'Secondary Energy | Electricity| Gas (without CCS)', ...
'Secondary Energy | Electricity| Hydro', ...
'Secondary Energy | Electricity| Nuclear', ...
'Secondary Energy | Electricity| Oil', ...
'Secondary Energy | Electricity| Wind\&Solar', ...
'Capital expenditure', ... \% Components of net income
'Direct emissions costs', ...
'Indirect costs', ...
'Revenue', ...
'US GDP', ... \% GDPs
'Global GDP', ...
'Real GDP'\};
\% Keep only the specific VARIABLES
ClimateTransitionScenarioData = ClimateTransitionScenarioData(ismember(ClimateTransitionScenariol
\% Find unique values of the categories. These are useful for the controls
\% that appear later.
regions \(=\) string(unique(ClimateTransitionScenarioData.CL_GEOGRAPHY));
sectors = string(unique(ClimateTransitionScenarioData.CL_SECTOR));
vars = string(unique(ClimateTransitionScenarioData.CL_VARIABLE));
SCE = unique(ClimateTransitionScenarioData.CL_SCENARIO);
\% Remove table variables from data
ClimateTransitionScenarioData = removevars(ClimateTransitionScenarioData, \{'k'\});
ClimateTransitionScenarioData = sortrows(ClimateTransitionScenarioData);
```

% Pull data by scenario
baseline = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL SCENARIO, 'Ba
b2delayed = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL̄ SCENARIO, 'B
b2immediate = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_SCENARIO,
netzero2050 = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_SCENARIO,
% Options for local functions
options = struct;
options.regions = regions;
options.sectors = sectors;
options.var = vars;
options.scenarios = SCE;
options.baseline = baseline;
options.b2delayed = b2delayed;
options.b2immediate = b2immediate;
options.netzero2050 = netzero2050;
end
addData
function options = updateOptions(options,varargin)
% varargin
% 1st: factor
% 2nd: title
% 3rd: ylabel
% 4th: energy type
if nargin<3
options.factor = varargin{1};
elseif nargin<4
options.factor = varargin{1};
options.title = varargin{2};
elseif nargin<5
options.factor = varargin{1};
options.title = varargin{2};
options.yLabel = varargin{3};
else
options.factor = varargin{1};
options.title = varargin{2};
options.yLabel = varargin{3};
options.energytype = varargin{4};
end
end

```

\section*{See Also}

\section*{Related Examples}
- "Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios" on page 4-231
- "Assess Physical and Transition Risk for Mortgages" on page 4-248

\section*{External Websites}
- Modeling the Impact of Transition and Physical Climate Risks on a Portfolio of Mortgages (13 \(\min 52 \mathrm{sec}\))

\section*{Interpretability and Explainability for Credit Scoring}

This example shows different techniques for interpreting and explaining the logic behind credit scoring predictions.

While credit scorecard models, in general, are straightforward to interpret, this example uses a blackbox model, without revealing the logic, to show the workflow for explaining predictions. In this example, you work with the creditscorecard object from Financial Toolbox \({ }^{\mathrm{TM}}\) and pass the scoring function to interpretability tools in Statistics and Machine Learning Toolbox \({ }^{\mathrm{TM}}\). These tools include:
- Partial dependence plots (PDP) on page 4-290
- Iindividual conditional expectation plots (ICE) on page 4-292
- Local interpretable model-agnostic explanations (LIME) on page 4-294
- Shapley values on page 4-296

These tools support regression and classification modeling, which make interpretation more efficient. For more information on these techniques, see "Interpret Machine Learning Models". In this example, the score model of the creditscorecard object is used as the black-box model. For an example of this workflow, see "Interpret and Stress-Test Deep Learning Networks for Probability of Default" on page 4-178.

\section*{Background}

Credit scoring is the process by which lenders assign scores to borrowers and use those scores to decide whether or not to accept a loan application. Lenders use credit scoring models to come up with these scores. Traditionally, simple, interpretable models such as credit scorecards and logistic regression have been widely used in this area. Over time, Machine Learning (ML) and Artificial Intelligence (AI) techniques were introduced to implement credit scoring models. Such techniques, while improving predictive power, also are more black-box and there is little or no explanation behind the decisions. Consequently, the credit scoring predictions of ML and AI techniques are difficult for humans to interpret. As a result, lenders are implementing different interpretability and explainability methods to get a better understanding of the logic behind the credit scoring predictions. In addition, regulators are also requiring that practitioners use more interpretability and also fairness methods to ensure that no equal opportunity laws are broken while making credit decisions. For more information on using fairness metrics, see "Explore Fairness Metrics for Credit Scoring Model" on page 3-98.

\section*{Create Credit Scorecard Model}

Load credit card data and create a credit scorecard model using the creditscorecard object.
```

load CreditCardData
sc = creditscorecard(data,IDVar="CustID");

```

Apply automatic binning. This example uses a split algorithm, with a maximum of 5 bins per predictor and with the constraint that each bin has at least 50 observations. For more information, see autobinning and "Bin Data to Create Credit Scorecards Using Binning Explorer" on page 3-23.
sc = autobinning(sc,Algorithm="Split",AlgorithmOptions=\{"MaxNumBins",5,"MinCount",50\});
Verify that the binning for the numeric variables has five bins or levels. For example, here is the bin information for the customer age predictor.
```

bi = bininfo(sc,"CustAge");
disp(bi)

Bin	Good	Bad	Odds	WOE	InfoValue
\{'[-Inf, 35)'	93	76	1.2237	-0.50255	0.038003
\{'[35,47)' \}	321	184	1.7446	-0.14791	0.0094258
\{' $[47,53$ )' \}	194	64	3.0312	0.40456	0.03252
\{'[53,61)' \}	128	64	2	-0.011271	2.0365e-05
\{'[61,Inf]' \}	67	9	7.4444	1.303	0.079183
\{'Totals' \}	803	397	2.0227	NaN	0.15915

```

For categorical variables, there may be fewer than five bins in total, since the split algorithm in autobinning can merge categories into a single group. For example, the residential status predictor initially has three levels: Tenant, Home Owner, and Other. The split algorithm returns only two groups.

The category grouping information shows that Tentant and Home Owner are merged into Group1. This grouping means Tenant and Home Owner will get the same number of points in the final scorecard.
```

disp(cg)

```
\begin{tabular}{|c|c|}
\hline Category & BinNumber \\
\hline \{'Tenant' \} & 1 \\
\hline \{'Home Owner'\} & 1 \\
\hline \{'Other' \} & 2 \\
\hline
\end{tabular}

Fit the model coefficients using fitmodel. For illustration purposes, keep only five model predictors, including some categorical ones.
```

PredictorsInModel = ["CustAge" "CustIncome" "EmpStatus" "ResStatus" "UtilRate"];
sc = fitmodel(sc,PredictorVars=PredictorsInModel,VariableSelection="fullmodel",Display="off");

```

Scale the points so that 500 points correspond to odds of 2 , and the odds double every 50 points.
```

sc = formatpoints(sc,PointsOddsAndPDO=[500 2 50]);

```

Display the scorecard using displaypoints. The credit scorecard model is a lookup table. For example, for customer age there are five bins or levels with different points for each level. A visualization of the score, as a function of age, has a piecewise constant pattern with five levels, as shown in Partial Dependence Plot on page 4-290. For residential status, Tenant and Home Owner are in Groupl, and they get the same number of points.
```

[ScorecardPointsTable,MinPts,MaxPts] = displaypoints(sc);
disp(ScorecardPointsTable)

```
\begin{tabular}{|c|c|c|}
\hline Predictors & Bin & Points \\
\hline \{'CustAge' \} & \{'[-Inf,35)' \} & 71.84 \\
\hline \{'CustAge' \} & \{'[35,47)' \} & 91.814 \\
\hline \{'CustAge' \} & \{'[47,53)' \} & 122.93 \\
\hline \{'CustAge' \} & \{'[53,61)' \} & 99.511 \\
\hline \{'CustAge' \} & \{'[61,Inf]' \} & 173.54 \\
\hline \{'CustAge' \} & \{'<missing>' \} & NaN \\
\hline \{'ResStatus' \} & \{'Group1' \} & 97.318 \\
\hline \{'ResStatus' \} & \{'Group2' \} & 116.43 \\
\hline \{'ResStatus' \} & \{'<missing>' \} & NaN \\
\hline \{'EmpStatus' \} & \{'Unknown' \} & 85.326 \\
\hline \{'EmpStatus' \} & \{'Employed' \} & 118.11 \\
\hline \{'EmpStatus' \} & \{'<missing>' \} & NaN \\
\hline \{'CustIncome'\} & \{'[-Inf,31000)' \} & 68.158 \\
\hline \{'CustIncome'\} & \{'[31000, 38000)' \(\}\) & 102.11 \\
\hline \{'CustIncome'\} & \{'[38000, 42000)'\} & 93.302 \\
\hline \{'CustIncome'\} & \{'[42000, 47000)'\} & 109.18 \\
\hline \{'CustIncome'\} & \{'[47000,Inf]' \} & 121.21 \\
\hline \{'CustIncome'\} & \{'<missing>' \} & NaN \\
\hline \{'UtilRate' \} & \{'[-Inf,0.12)' \} & 106.84 \\
\hline \{'UtilRate' \} & \{'[0.12,0.3)' \} & 94.647 \\
\hline \{'UtilRate' \} & \{'[0.3,0.39)' \} & 140.95 \\
\hline \{'UtilRate' \} & \{'[0.39,0.68)' \} & 69.635 \\
\hline \{'UtilRate' \} & \{'[0.68,Inf]' \} & 94.634 \\
\hline \{'UtilRate' \} & \{'<missing>' \} & NaN \\
\hline
\end{tabular}

One "traditional" approach to measure the importance of each predictor in the credit scorecard model is to compute the percent of the total score range that comes from each predictor.
```

PtsRange = MaxPts - MinPts;
NumPred = length(PredictorsInModel);
PercentWeight = zeros(NumPred,1);
for ii = 1 : NumPred
Ind = strcmpi(PredictorsInModel{ii},ScorecardPointsTable.Predictors);
MaxPtsPred = max(ScorecardPointsTable.Points(Ind));
MinPtsPred = min(ScorecardPointsTable.Points(Ind));
PercentWeight(ii) = 100*(MaxPtsPred-MinPtsPred)/PtsRange;
end
PredictorWeights = table(PredictorsInModel',PercentWeight,VariableNames=["Predictor" "Weight"]);
disp(PredictorWeights)
Predictor Weight
"CustAge" 36.587
"CustIncome" 19.085
"EmpStatus" 11.795
"ResStatus" 6.8768
"UtilRate" 25.656

```

Customer age is the main variable in the model, since it corresponds to \(36 \%\) of the total score range. A customer can get anywhere from 71.8 to 173.5 points, based on their age. This range has a difference of over 100 points between the minimum and maximum values. On the other end,
residential status plays a minor role in the score, with points ranging from 97.3 to 116.4 only, a difference of less than 20 points.

An alternative to this "traditional" approach is to use the following explainability techniques from Statistics and Machine Learning Toolbox: Partial Dependence Plot on page 4-290, Individual Conditional Expectation Plot on page 4-292, Local Interpretable Model-Agnostic Explanation Plot on page 4-294, and Shapley Values on page 4-296.

\section*{Partial Dependence Plot}

The partial dependence plot (PDP) shows the effect of one or two variables on the predicted score.
Use the plotPartialDependence function to pass the score method of the creditscorecard object as a black-box model.

\section*{One Predictor}

Select a predictor using the dropdown option.
As an example, if customer age is selected, note the piecewise constant shape of the plot, with jumps occuring at the bin edges, and with five levels in total. This is consistent with the five bins for customer age in the credit scorecard model.
```

predictor = CustAge - ;
plotPartialDependence(@(tbl)score(sc,tbl),predictor,data)

```


\section*{Two Predictors}

Generating a partial dependence plot with two predictors can take significantly longer than the onepredictor case. Typically, the more unique values a predictor has in the data set, the longer it takes to plot the partial dependence. Here's a report of the number of unique values in the data.

NumUniqueValuesTable = varfun(@(x)length(unique(x)), data(:,PredictorsInModel));
NumUniqueValuesTable.Properties.VariableNames = erase(NumUniqueValuesTable.Properties.VariableNar disp(NumUniqueValuesTable)
\begin{tabular}{ccccc}
CustAge & \begin{tabular}{l}
CustIncome \\
54
\end{tabular}\(\frac{\text { EmpStatus }}{45}\) & \begin{tabular}{l}
ResStatus
\end{tabular} & \begin{tabular}{l}
UtilRate
\end{tabular} \\
\hline
\end{tabular}

The categorical predictors have fewer unique levels, so these plots for categorical predictors run faster. Numeric variables like customer age are relatively discrete and so is utilization rate because this rate's values are rounded to two decimals. However, a continuous predictor (for example, the average monthly balance (AMBalance) in the data table) can have many unique values.

Select a predictor and additional predictor to then use plotPartialDependence to generate the PDP plot.
predictor \(=\) CustAge
additionalPredictor \(=\) ResStatus ;
plotPartialDependence(@(tbl)score(sc,tbl),[predictor,additionalPredictor],data)

\section*{Individual Conditional Expectation Plot}

Similar to the partial dependence plot, the individual conditional expectation plot (ICE) shows the effect of one of the variables on the predicted score. The red line in the ICE plot matches the partial dependence plot. While the partial dependence plot shows the average score as a function of the selected predictor, the ICE plot disaggregates and shows the score for each observation (each gray line) as a function of the selected predictor. For more information, see the More About section on the plotPartialDependence reference page.
```

predictor = CustAge *;
plotPartialDependence(@(tbl)score(sc,tbl),predictor, ...
data,Conditional="absolute")

```


\section*{Select a Query Point}

The PDP and ICE plots provide a global view of the credit scorecard scores, where the score is visualized for all values of the selected predictor. In contrast, LIME and Shapley are local explainability techniques that explain the behavior of the model in a neighborhood of a query point of choice. For more information, see "Interpret Machine Learning Models".

To see how a query point helps to explain credit scores, use index 92 in the training data as your query point. You can select other query points by typing an index value into the text box.
```

QueryPointIndex = 92 ; % ID number of the observation to explain

```

Use score to display the query point score and the points, by predictor, for this query point.
```

[ScoresTraining,PointsTraining] = score(sc,data);
fprintf("Selected index %d, with score %g\n",QueryPointIndex,ScoresTraining(QueryPointIndex))
Selected index 92, with score 417.289
disp(PointsTraining(QueryPointIndex,:))

CustAge	ResStatus	EmpStatus	CustIncome	UtilRate
71.84	97.318	85.326	68.158	94.647

```

The plots that follow show the location of the query point (dotted vertical line) relative to the distribution of values for the scores and for each predictor. For example, for index 92 , the score is low
relative to the distribution. For the customer age predictor, the query point is on the bottom group. This result is similar for the customer income, employment status, and residential status predictors. The points for the utilization rate predictor are closer to the middle of the distribution, but still below average.
```

figure
t = tiledlayout(3,2);
nexttile
plotQueryInHistogram("Score",QueryPointIndex,ScoresTraining,PointsTraining)
nexttile
plotQueryInHistogram("CustAge",QueryPointIndex,ScoresTraining,PointsTraining)
nexttile
plotQueryInHistogram("CustIncome",QueryPointIndex,ScoresTraining,PointsTraining)
nexttile
plotQueryInHistogram("EmpStatus",QueryPointIndex,ScoresTraining,PointsTraining)
nexttile
plotQueryInHistogram("ResStatus",QueryPointIndex,ScoresTraining,PointsTraining)
nexttile
plotQueryInHistogram("UtilRate",QueryPointIndex,ScoresTraining,PointsTraining)
title(t,"Query Point Relative to Distribution")

```

Query Point Relative to Distribution

\section*{Local Interpretable Model-Agnostic Explanation Plot}

The local interpretable model-agnostic explanation (LIME) plot shows the coefficients of a local linear model near the instance of a score that you want to explain. LIME explains the scores around a particular observation, or query point, with a simple local model, such as a linear regression model or a decision tree.

Use lime to create a lime object specifying the data set of interest (the training data set), the model "type" (use "regression" to indicate a numeric prediction), and which variables are categorical. When you create a lime object, the toolbox generates a random synthetic data set. Use the synthetic data to fit simple local models to explain the local behavior.
```

rng('default'); % for reproducibility
limeExplainer = lime(@(tbl)score(sc,tbl),data(:,PredictorsInModel),Type="regression", ...
CategoricalPredictors=["ResStatus" "EmpStatus"]);

```

Select a maximum number of predictors (NumPredToExplain) to explain and use a
SimpleModelType of a "tree" to explain the local behavior of the score. The results are sensitive to the kernel width parameter (KernelWidthChoice) that controls how much neighbor points are weighted while fitting the linear simple model.
```

NumPredToExplain = 5 ; % number of variables/predictors to explain
KernelWidthChoice = 0.5 ;
limeExplainer = fit(limeExplainer,data(QueryPointIndex,PredictorsInModel), ...
NumPredToExplain,SimpleModelType="tree",KernelWidth=KernelWidthChoice);
figure
f = plot(limeExplainer);

```

\section*{LIME with Decision Tree Model}

Blackbox Model Prediction: 417.2893
Simple Model Prediction: 449.9973

When the simple model is a tree, based on the reported predictor importance, customer age is the main predictor, followed by employment status and customer income.

\section*{Shapley Values}

Shapley values explain the deviation of the predicted score from the average predicted score. The sum of the Shapley values for all predictors corresponds to the total deviation of the score for the query point from the average score.

The Shapley values are estimated based on a simulation. For larger data sets, this simulation is time consuming. For illustration purposes, this example uses only 500 rows of the training data with the shapley constructor.
```

rng('default'); % for reproducibility
shapleyExplainer = shapley(@(tbl)score(sc,tbl),data(500,PredictorsInModel), ...
QueryPoint=data(QueryPointIndex,PredictorsInModel),CategoricalPredictors=["EmpStatus" "ResSt
figure
plot(shapleyExplainer)

```

\section*{Shapley Explanation}

Average Prediction: 516.1871

For the query point with index 92 , the predicted score is 417 , whereas the average score for the training data set passed to shapley function is 516 . You expect the Shapley values to be negative, or at least have important negative components that explain why the predicted score is below average. In contrast, for scores above average, the Shapley values add up to a positive amount. In this example, the estimated Shapley values show that the main deviation from the average is explained by the customer income and employment status predictors, followed by the customer age and utilization rate predictors. The residential status predictor is not important. This result might be a combination of the simulation itself with the fact that residential status has a smaller impact on scores for this model.

\section*{Final Remarks}

Explainability techniques are widely used to understand the behavior of predictive models. In this example, a creditscorecard model shows how explainability techniques, such as PDP, ICE, LIME, and Shapley are applied to explain a black-box model. Although credit scorecard models are simple and interpretable, you can apply the explainability tools in this example to other scoring models that are treated as black-box models or to supported models in Statistics and Machine Learning Toolbox. Alternatively, instead of explaining the scores, you can pass the probdefault function as the blackbox model to explain the probability of default predictions.

\section*{Local Functions}
```

function plotQueryInHistogram(VariableChoice,QueryPointIndex,Scores,PointsTable)
if VariableChoice=="Score"
HistData = Scores;
else
HistData = PointsTable.(VariableChoice);
end
histogram(HistData)
hold on
xline(HistData(QueryPointIndex),':','LineWidth',2.5)
hold off
xlabel(VariableChoice)
ylabel('Frequency')
end

```

\section*{See Also}

\section*{Related Examples}
- "Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios" on page 4-231
- "Assess Physical and Transition Risk for Mortgages" on page 4-248

\section*{External Websites}
- Modeling the Impact of Transition and Physical Climate Risks on a Portfolio of Mortgages (13 \(\min 52 \mathrm{sec}\))

\title{
Model Risk Management with Modelscape
}
- "Get Started with Modelscape" on page 5-2
- "Modelscape Governance" on page 5-4
- "Modelscape Develop" on page 5-6
- "Modelscape Validate" on page 5-9
- "Modelscape Test" on page 5-12
- "Modelscape Deploy" on page 5-13
- "Extensibility" on page 5-15
- "Model Development and Experiment Manager" on page 5-16
- "Remove Risk Factors" on page 5-22
- "Fairness Metrics in Modelscape" on page 5-26
- "Screen Risk Factors by Custom Criteria" on page 5-30
- "Model Documentation in Modelscape" on page 5-35
- "Metrics Handlers" on page 5-45
- "Credit Scorecard Validation Metrics" on page 5-48
- "Validation of Credit Models in ECB Templates" on page 5-57
- "Validation of External Models" on page 5-60
- "File Attachments in Modelscape Review Editor" on page 5-68
- "Customization of Signoff Forms in Review Editor" on page 5-70
- "Model Implementation for Modelscape Deploy" on page 5-74
- "Customizing Model Inventory: Risk Tiering" on page 5-78
- "Test Metrics in Modelscape" on page 5-85

\section*{Get Started with Modelscape}

Modelscape \({ }^{\mathrm{TM}}\) provides workflow tools for model lifecycle support, including governance, automation, documentation, and operation in a unified, customizable system. Use Modelscape if you are a professional with a role related to model development and deployment in financial services. Modelscape supports models you build with MATLAB, Python \({ }^{\circledR}, ~ R, ~ S A S ~{ }^{\circledR}\), and other programming languages.

\section*{Installation}

To host Modelscape for your organization, contact MathWorks Consulting Services. After you have set up Modelscape, to use it in MATLAB R2023a, download the Support Software Downloader for your operating system, run it, and install Modelscape for MATLAB.

\section*{Modelscape Workflow}

Use Modelscape to implement workflows for creating, documenting, validating, deploying, and managing financially regulated models and associated data.

This figure shows how these components work together and the corresponding audience for each of the workflow steps.

Modelscape includes these workflow tools:
- "Modelscape Governance" on page 5-4 - Bring together the management of the whole lifecycle across the model inventory, workflow, risk tiering, and management reporting.
- "Modelscape Develop" on page 5-6 - Work with reusable components and automatic model documentation.
- "Modelscape Validate" on page 5-9 - Bring languages, tools, datasets, and application programming interfaces (APIs) together in one place.
- "Modelscape Test" on page 5-12 - Collate model artifacts for quality assurance, packaging, and deployment.
- "Modelscape Deploy" on page 5-13 - Securely execute, scale, and audit cross-language model that you store onsite or in cloud.

\section*{See Also}

\section*{More About}
- Model Risk Management Lifecycle
- MathWorks Modelscape Model Risk Management (1 min 38 sec)
- Improving Model Governance with MATLAB

\section*{Modelscape Governance}

Modelscape Governance \({ }^{\mathrm{TM}}\) is an interactive environment that comprises a regulatory-compliant governance solution for all models in a business area. Use Modelscape Governance if you develop, validate, review, test, deploy, monitor, and use models. Modelscape Governance brings together Modelscape models, model versions, and lifecycles. To customize the environment further for your needs, see "Extensibility" on page 5-15.

Use Modelscape Governance to perform these tasks:
- Model metadata management for any programming language or spreadsheet
- Metadata tracking for data you use in the model development process
- Dependency analysis and tracking for models and data
- Inspection, viewing, and analysis of model and data relationships
- Viewing and reporting on the model state within the model lifecycle
- Management of the model hierarchy and dependencies

You can also extend and customize Modelscape Governance to perform these tasks:
- Score model risk and automate reporting.
- Customize workflow and approval procedures.
- Review, comment on, and approve models for state changes across the model lifecycle.
- Generate reports and customized dashboards for model governance.
- Integrate models with internal or vendor applications.

For more information about extending and customizing Modelscape Governance, see "Extensibility" on page 5-15.

\section*{Modelscape Governance Workflow}

\section*{Working with Modelscape Models and Model Versions}

Modelscape models are quantitative solutions that apply statistical, economic, or other techniques to given inputs to produce an output. You can use these outputs to guide pricing or other business decisions. Modelscape models must be backed by a Git \({ }^{\text {TM }}\) repository and associated with a lifecycle.

Each Modelscape model has multiple model versions. Model versions are committed updates of a Modelscape model. For example, Probability of Default for Retail Credit in Europe is a Modelscape model, and its 2015 and 2020 versions are the model versions. While a Modelscape model corresponds to a Git repository, a model version refers to a Git commit.

\section*{Create Lifecycles Using Lifecycle Designer}

Each Modelscape model must be associated with a lifecycle. A lifecycle represents the steps of a model version from drafting and proposal to retiring and decommissioning. At any time, each model version is in one specific state of the model lifecycle. This figure shows a simplified example lifecycle:

To create and edit lifecycles, use the Lifecycle Designer app.

\section*{Create Modelscape Models and Add Dependencies Between Modelscape Models}

You can use the Inventory Browser app to create new models.
When you have more than one model, you can add dependencies between the models using the Dependency Editor in the Inventory Browser app.

\section*{See Also}

\section*{Apps \\ Inventory Browser | Lifecycle Designer}

\section*{More About}
- MathWorks Modelscape Governance (1 min 41 sec)
- Facilitating Model Governance with the MathWorks Model Inventory

\section*{Modelscape Develop}

Modelscape Develop \({ }^{T M}\) is a set of model development and documentation tools. These tools are intended for risk managers, analysts, and quants who develop, test, and document models for risk assessment and decision support.

Modelscape Develop comprises these tools:
- Interactive apps for data preparation, model construction, model testing, and validation
- A comprehensive library of validation statistics, machine and deep learning, financial, risk, and economic algorithms
- Customizable and reusable model development templates
- Automated model documentation generation

You can use Modelscape Develop to perform these tasks:
- Build, test, experiment with, and validate multiple models in parallel.
- Create models from validated pre-built functions instead of writing code or building your own libraries.
- Automate iterative workflows through code generation and reuse.
- Integrate algorithms and internal IP developed in any language or application.
- Generate live, auditable, and traceable documentation for model validation and governance.
- Preserve model development history for auditability, transparency, and knowledge transfer.

\section*{Modelscape Develop Workflow}

Use Modelscape Develop to develop statistical and machine learning models in MATLAB.
This figure shows how to use the Modelscape Develop workflow in parallel with the Modelscape Validate \({ }^{\mathrm{TM}}\) workflow. The Develop workflow comprises the white boxes and the Validate workflow comprises the orange boxes. You can also perform the validation workflow independently after the development workflow.

Collaborative Development and Review Process

\section*{Development activity} Review activity

\section*{Preprocess Data Using Live Tasks}

Load data for your models in MATLAB. You can preprocess the data using the Remove Risk Factors and Screen Risk Factors live tasks.

Use Remove Risk Factors to interactively inspect variables from a data table and filter them out. You can also add the reasons for including or excluding variables and use the live task to document your analysis. For more information on how to do this, see "Remove Risk Factors" on page 5-22.

Use the Screen Risk Factors live task to interactively use predefined, customizable screening criteria to filter out input variables based on their predictive power. You can also add the reasons for including or excluding variables and use the live task to document your analysis. For more information on how to do this, see "Screen Risk Factors by Custom Criteria" on page 5-30.

You can also use the suite of metrics in Modelscape to analyze the bias in your data set. For more details, see "Fairness Metrics in Modelscape" on page 5-26.

\section*{Train Models Using MATLAB}

After preprocessing your input features, you can use MATLAB to train your machine learning models. For example, you can use the Classification Learner and Regression Learner apps to train your models.

You can also use the suite of metrics in Modelscape to analyze the bias in your models. For more details, see "Fairness Metrics in Modelscape" on page 5-26.

\section*{Check Performance of Models}

You can check the performance of your model using validation metrics available in Modelscape. For more details, see "Modelscape Validate" on page 5-9. After you compare models, you can select a model that suits your needs.

\section*{Perform Model Comparisons Using Experiment Manager}

You can compare the performance of your models against each other or against existing models using the app. For more information, see "Model Development and Experiment Manager" on page 5-16.

\section*{Document Model Development Process}

Document the results and analyses of the model in a Microsoft \({ }^{\oplus}\) Word document from MATLAB. Many workflows in financial institutions involve writing and submitting reports to internal control functions or regulatory bodies. These documents often conform to a given house style and are typically Microsoft Word documents. Using Modelscape, you can add text, visualization, and tabular content to a Microsoft Word document from MATLAB. For more information, see "Model Documentation in Modelscape" on page 5-35.

After you develop a model, you can pass it to one of these stages:
- Validation stage - For more information, see "Modelscape Validate" on page 5-9.
- Test stage - For more information, see "Modelscape Test" on page 5-12.
- Deployment stage - For more information, see "Modelscape Deploy" on page 5-13.

\section*{See Also}

\section*{Apps}

Remove Risk Factors | Screen Risk Factors

\section*{Related Examples}
- "Remove Risk Factors" on page 5-22
- "Screen Risk Factors by Custom Criteria" on page 5-30
- "Model Development and Experiment Manager" on page 5-16
- "Fairness Metrics in Modelscape" on page 5-26
- "Model Documentation in Modelscape" on page 5-35

\section*{More About}
- MathWorks Modelscape Develop (1 min 29 sec)

\section*{Modelscape Validate}

Modelscape Validate is a model validation and documentation workflow. Use this workflow if you review business line data, models, assumptions, or if you build challenger models. Use Modelscape Validate to validate models written in any programming language.

You can record anomalies or observations related to models and the appropriate closure measures or actions and export the findings to a PDF file using the Review Editor app. The app also logs and stores all activity with the model, which ensures traceability and reproducibility.

Modelscape Validate comprises these features:
- Interactive apps for data preparation, model construction, model testing, and validation
- A comprehensive library of validation statistics, machine and deep learning, financial, risk, and economic algorithms
- Customizable and reusable model development and documentation templates
- Automated model documentation generation

You can use Modelscape Validate to perform these tasks:
- Build, test, experiment with, and validate multiple models in parallel.
- Create models from validated pre-built functions instead of writing code or building your own libraries.
- Automate iterative workflows through code generation and reuse.
- Integrate algorithms and internal IP.
- Generate live, auditable, and traceable documentation for model validation and governance.
- Preserve model development history for auditability, transparency, and knowledge transfer.

\section*{Modelscape Validate Workflow}

This figure shows how to use the Modelscape Develop workflow in parallel with the Modelscape Validate workflow. The Develop workflow comprises the white boxes and the Validate workflow comprises the orange boxes. You can also perform the validation workflow independently after the development workflow.

After you develop a model version, you can propose to deploy it. To deploy the model version, you must first validate it.

\title{
Collaborative Development and Review Process
}

\section*{Development activity}

Review activity

\section*{Raise Review Request}

To begin validation for a model version, lock the commit version of the Modelscape model in the GitHub \({ }^{\circledR}\) repository and raise a review request for that model version. This action sends a review request to the Validator team.

\section*{Open Review Editor App}

Open the Modelscape Home page, look for the model version, and open a review. Opening a review opens the Review Editor app. Use the Review Editor app to perform model validation on that model version.

\section*{Analyze Model Version}

Create live scripts using the Review Editor app and use them to explore and analyze data. You can run the models and perform what-if analyses, which include adjusting the parameters of models, using different methods for fitting models, and observing any consequent changes in the model performance.

You can use the metrics in Modelscape to analyze the bias in your models. For more details, see "Fairness Metrics in Modelscape" on page 5-26.

You can write scripts to implement model validation suites. For an example script that shows how to validate a probability of default model, see "Credit Scorecard Validation Metrics" on page 5-48. This example shows how to use the techniques in the BCBS Working Paper 14.

If your model version uses a programming language other than MATLAB, you can still use the validation tools from Modelscape. For more information, see "Validation of External Models" on page 5-60.

For an example that shows how to validate credit models using the European Central Bank template, see "Validation of Credit Models in ECB Templates" on page 5-57.

\section*{Attach Documents to Review}

You can attach documents to the Review Editor app. These documents include recommendations for improvement or evidence of model performance reports outside the Review Editor app. Use the app to attach files such as detailed model validation documents and scripts supporting such documents. By default, the Review Editor attaches the files to the project or model repository.

You can customize the location to which you save documents. See "Extensibility" on page 5-15 for more details.

\section*{Make Review Decision}

Finish your review by using the submit button and sign-off your form in the app. You can customize the Submit Review dropdown and sign-off forms based on the needs of your organization. For more details, see "Extensibility" on page 5-15.

By default, the Review Editor app provides a full review form and a reduced review form. Use the reduced review form to approve the model if the changes are trivial. If the changes are not trivial and have a significant material impact, for example on the value of trade, use the full review form.

You can choose to approve or reject the model version. The next stages depend on the model lifecycle. If you do not approve the model version, it could be sent back to the developer. If you approve the model version, it could be sent to production and deployment.

\section*{See Also}

\section*{Apps}

Review Editor

\section*{Related Examples}
- "Fairness Metrics in Modelscape" on page 5-26
- "Credit Scorecard Validation Metrics" on page 5-48
- "Metrics Handlers" on page 5-45
- "Validation of External Models" on page 5-60
- "Validation of Credit Models in ECB Templates" on page 5-57

\section*{More About}
- MathWorks Modelscape Validate (1 min 32 sec)
- Model Validation is Everyone's Business
- BCBS Working Paper 14

\section*{Modelscape Test}

Modelscape Test \({ }^{\mathrm{TM}}\) is a set of model implementation and testing workflow tools. Use these tools if you build, test, and deploy quantitative models to business systems and end users.

Modelscape Test supports these workflows:
- Test authoring frameworks for unit and performance testing
- Integration with continuous integration (CI) and continuous delivery (CD) tools
- Automated testing and reporting
- Pre- and post-production model verification reporting

You can use Modelscape Test to perform these tasks:
- Eliminate rework through minimizing or eliminating the need to recode quant models.
- Automate model testing, acceptance, and deployment to production.
- Generate live, auditable, and traceable documentation of model verification pre- and postproduction deployment.
- Preserve model testing and deployment history for auditability, transparency, and knowledge transfer.

\section*{Modelscape Test Workflow}

After you develop a model version, follow these steps to test your code.

\section*{Write Tests}

Use MATLAB to write tests for your code. For more information, see "Write Script-Based Unit Tests", "Write Function-Based Unit Tests", and "Author Class-Based Unit Tests in MATLAB".

\section*{Run in Cl and Get Test Results}

Set up a MATLAB project for continuous integration in a CI platform. Use this platform to create a continuous integration workflow to perform automated testing and obtain test results. For more details, see "Continuous Integration Using MATLAB Projects and Jenkins".

\section*{Modelscape Deploy}

Modelscape Deploy \({ }^{\text {TM }}\) is a model execution workflow. Use this workflow if you deploy quantitative models to business systems and end users and manage their operation.

Modelscape Deploy comprises these features:
- Automated model deployment and prediction interface registration
- Model auditing of data inputs, outputs, and model use
- Single model deployment that can be called by multiple languages, applications, and web services
- Encrypted model packaging

Use Modelscape Deploy to perform these tasks:
- Maintain a single model used by multiple business applications and programming languages.
- Operationalize models that you build in MATLAB, Python, R, SAS and other languages.
- Generate model and data use reports.
- Monitor and manage server performance programmatically or through dashboards.

\section*{Modelscape Deploy Workflow}

Follow these steps to build a Docker \({ }^{\circledR}\) image from your Modelscape model, create a build for the model, and the deploy the build.

\section*{Create Modelscape Model}

Start with your model, such as a credit default model. Your model can be written in MATLAB or another programming language. If your model is written in MATLAB, follow all of these steps to create a Docker image. Otherwise, skip to the "Create Docker Image from Model" on page 5-13 section.

Begin by implementing a subclass that inherits from mrm. execution. Model class. You can use this class to make a Modelscape model. For more details, see the Work with Modelscape Deploy section in the "Model Implementation for Modelscape Deploy" on page 5-74.

\section*{Test Modelscape Model}

Call the checkModel function with the original model, Modelscape model, and the model parameters as inputs. Performing this recommended optional step ensures that the Modelscape model has the correct set of inputs, parameters, and outputs. For more details, see checkModel.

\section*{Create Docker Image from Model}

Create an image for deployment using the packageModel function. For more details about this function, see packageModel and "Model Implementation for Modelscape Deploy" on page 5-74. Running this function on your model creates a Docker image in the local Docker registry.

If your model is not written in MATLAB, you need to create a Docker image of the model. You also need to create a Docker image of a web server that listens to port 8080 and responds to the signature/ and evaluation/ endpoints with defined payloads.

\section*{Push Docker Image to Registry}

Push the image to a registry that is visible to Modelscape using docker push imageName, where imageName is the name of your Docker image. For more information about the registry, talk to your system administrator or contact Consulting services at MathWorks \({ }^{\circledR}\).

\section*{Create Build}

Create a Build of your Docker Image using the createBuild function. For more details, see this example "Model Implementation for Modelscape Deploy" on page 5-74

\section*{Create and Execute Model Deployment}

Create or use an existing deployment environment. You can use an isolated environment in your organization with specific permissions and security provisions. Ask your system administrator for more information.

Create a deployment, which is an instance of your build in the deployment environment. Creating a deployment is equivalent to creating a container from a Docker Image.

Execute the deployment from your deployment environment.

\section*{See Also}
checkModel | packageModel

\section*{Related Examples}
- "Model Implementation for Modelscape Deploy" on page 5-74

\section*{More About}
- MathWorks Modelscape Deploy (1 min 29 sec)
- Model Execution Environment

\section*{Extensibility}

Extend and customize your Modelscape environment.

\section*{Customize Inventory Browser}

Customize the Inventory Browser app to make it specific to your organization. You can customize the model data entry and the model summary table. You can also add new filters to the Inventory Browser and find models with a particular attribute easily. For an example that shows how to customize the Inventory Browser app, see "Customizing Model Inventory: Risk Tiering" on page 5-78.

\section*{Implement Test Metrics}

You can implement different test metrics in MATLAB using Modelscape tools. For an example that shows how to implement test metrics, see "Test Metrics in Modelscape" on page 5-85.

\section*{Customize Review Editor}

You can attach review files to model reviews using the Review Editor app. These files include model validation documents and scripts supporting such documents. By default, you attach the files to the project (or model) repository. You can also store these attachments in a network folder. For an example that shows how to customize and extend your Review Editor app, see "File Attachments in Modelscape Review Editor" on page 5-68.

You can also customize the signoff forms in the Review Editor app. For an example that shows how to customize signoff forms, see "Customization of Signoff Forms in Review Editor" on page 5-70.

\section*{See Also}

\section*{Related Examples}
- "Customizing Model Inventory: Risk Tiering" on page 5-78
- "Test Metrics in Modelscape" on page 5-85
- "File Attachments in Modelscape Review Editor" on page 5-68
- "Customization of Signoff Forms in Review Editor" on page 5-70

\section*{Model Development and Experiment Manager}

This example shows how to use MATLAB® Experiment Manager with Modelscape \({ }^{\mathrm{TM}}\) at various stages of model development.

This example sets up experiments, uses Modelscape validation metrics in the process, and bridges the gap between Experiment Manager and model documentation. This example uses a feature selection process that works through all the subsets of the predictors to find the best subset using the performance metric of the area under the receiver operating characteristic (AUROC). Such exhaustive feature selection, though computationally intense, allows you to compare against more effective methods in the process of model validation.

This example uses the CreditCardData.mat data set, which contains three tables of customer information such as age, income, and employment status. After excluding the response variable (status) and the customer id, this data set has nine possible predictors. This example creates an experiment with nine trials such that the Kth trial runs through all the K-element subsets of the maximal, nine-element predictor set. This example shows how to set up hyperparameters, write and run the experiment, and document the experiment results.

\section*{Write Experiment in Experiment Manager}

Load the Experiment Manager App from the app gallery in MATLAB. Create a Blank Project and select 'Custom Training' under 'Blank Experiments'. Set a single hyperparameter.

\section*{Hyperparameters}

\section*{Strategy: Exhaustive Sweep \(\quad\) -}
\begin{tabular}{|l|l|}
\hline Name & Values \\
\hline K & \(1: 9\) \\
\hline & \\
& \\
& \\
\hline
\end{tabular}

To write the experiment function, add a function name to the 'Training Function' box.

\section*{Training Function}
```

ExhaustiveSearchExample

```


Clicking Edit opens a Live Script. Fill in the function written below. The function has two inputs. params is a struct whose fields correspond to the given hyperparameters (in this case K), and monitor is an experiments. Monitor object.
```

function output = ExhaustiveSearchExample(params,monitor)
allData = load('CreditCardData.mat');

```
```

    data = allData.data;
    monitor.Metrics = "AUROC";
    monitor.Info = ["MaxAUROC", "MeanAUROC", "StdDevAUROC"];
    allVars = data.Properties.VariableNames;
    predictorFlags = ~ismember(allVars, {'status', 'CustID'});
    predictorVars = allVars(predictorFlags);
    N = numel(predictorVars);
    K = params.K;
    numRuns = nchoosek(N, K);
    masks = mrm.data.filter.allMasks(N,K);
    bestAUROC = 0;
    allAurocs = zeros(numRuns, 1);
    for i = 1:numRuns
        % choose a set of predictors
        thesePredictors = predictorVars(masks{i});
        % fit the model for these predictors
        sc = creditscorecard(data, 'IDVar', 'CustID', 'ResponseVar', 'status', ...
            'GoodLabel', 0, 'BinMissingData', true, ...
            'PredictorVars', thesePredictors);
        sc = autobinning(sc);
        sc = fitmodel(sc, 'VariableSelection','fullmodel');
        monitor.Progress = i/numRuns*100;
        % record performance metrics
        aurocMetric = mrm.data.validation.pd.AUROC(data.status, score(sc));
        recordMetrics(monitor, i, "AUROC", aurocMetric.Metric);
        allAurocs(i) = aurocMetric.Metric;
        if aurocMetric.Metric > bestAUROC
            bestAUROC = aurocMetric.Metric;
            updateInfo(monitor, "MaxAUROC", aurocMetric.Metric);
            output.model = sc;
            output.predictors = thesePredictors;
        end
    end
    updateInfo(monitor, "StdDevAUROC", std(allAurocs), "MeanAUROC", mean(allAurocs));
    end

```

The Monitor object can record two types of data: 'Metrics' and 'Info'.
- Metrics are parametrized data (in this example by the index of the predictor subset). Save metric levels by calling recordMetrics.
- Information fields carry just a single datum per trial. Save information fields by calling updateInfo.

You can write several metrics and information fields. This example reports the maximum, the mean, and standard deviation of all the recorded AUROC scores. This allows you to compare the distribution of the achieved AUROC values with the mean value.

The output of the experiment consists of the optimal set of predictors along with a model fitted using that subset.

\section*{Analyze Experiment Results}

Run the experiment to produce the following table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Trial & Status & Progress & Elapsed Time & K & MaxAUROC & MeanAUROC & StdDevAUROC & AUROC \\
\hline 1 & - Complete & 100.0\% & 0 hr 0 min 3 sec & 1.0000 & 0.5922 & 0.5493 & 0.0283 & 0.5263 \\
\hline 2 & - Complete & 100.0\% & 0 hr 0 min 5 sec & 2.0000 & 0.6254 & 0.5793 & 0.0258 & 0.5495 \\
\hline 3 & - Complete & 100.0\% & 0 hr 0 min 10 sec & 3.0000 & 0.6412 & 0.6001 & 0.0224 & 0.5624 \\
\hline 4 & \(\bigcirc\) Complete & 100.0\% & 0 hr 0 min 16 sec & 4.0000 & 0.6487 & 0.6160 & 0.0188 & 0.6020 \\
\hline 5 & \(\bigcirc\) Complete & 100.0\% & 0 hr 0 min 19 sec & 5.0000 & 0.6542 & 0.6289 & 0.0154 & 0.6442 \\
\hline 6 & \(\bigcirc\) Complete & 100.0\% & 0 hr 0 min 15 sec & 6.0000 & 0.6579 & 0.6394 & 0.0122 & 0.6505 \\
\hline 7 & - Complete & 100.0\% & 0 hr 0 min 8 sec & 7.0000 & 0.6613 & 0.6483 & 0.0093 & 0.6545 \\
\hline 8 & \(\bigcirc\) Complete & 100.0\% & 0 hr 0 min 4 sec & 8.0000 & 0.6626 & 0.6559 & 0.0063 & 0.6557 \\
\hline 9 & - Complete & 100.0\% & 0 hr 0 min 2 sec & 9.0000 & 0.6626 & 0.6626 & 0.0000 & 0.6626 \\
\hline
\end{tabular}

The table shows you the maximum achieved AUROC along with the mean and standard deviation for each trial. The final column in the table shows the value of the AUROC metric for the last K-element predictor set.

Clicking 'Training Plot' in the Experiment Manager shows how the metric varies over the K-element subsets.

You can add 'annotations' to the summary table by right-clicking on any cell.
\begin{tabular}{|ll|}
\hline Annotations & \\
\hline Trial 2,MaxAUROC & 10/6/2021, 2:24:17 PM \\
\hline Significant improvement from K=1. & \\
\hline & \\
\hline Trial 6, MaxAUROC & \\
\hline Not much improvement from \(\mathrm{K}=5\). & \\
\hline
\end{tabular}

\section*{Document with Modelscape Reporting}

To record your findings in model documentation, use Modelscape Reporting. Use function fillReportFromWorkspace to include development artifacts such as tables in Microsoft Word documents. For more information, see "Model Documentation in Modelscape" on page 5-35.

You can extract the summary table and the annotations from the Experiment Manager outputs and insert them in documents using fillReportFromWorkspace. To do this, you need the name of the experiment and a set of results. These can be found in the Experiment Browser part of Experiment Manager.
```

Experiment Browser

- FirstExample
    - BinaryFlagsExhaustiveSearch
    - ExhaustiveSearchExample
MaxMeanAndStdDev
AllMetricsRecorded
囲
MonotonicMetrics
    - PredictorScreeningFirstExample

```

Here 'FirstExample' is the name of the project, 'ExhaustiveSearchExample' is the name of the experiment, and 'MaxMeanAndStdDev' is name of the set of results. You can rename the experiment and the results by right-clicking on these names.

Use function extractExperimentResults in either Live Script or Command Window to extract the summary table and the annotations. This call should take place in the root folder of the project otherwise use the optional ProjectFolder argument to point to the correct location.
```

[results, annotations] = extractExperimentResults('ExhaustiveSearchExample', 'MaxMeanAndStdDev')

```
```

results =
9*7 table

Trial	Status	K	AUROC	MaxAUROC	MeanAUROC	StdDevAUROC
		-				
1	"Complete"	1	0.52634	0.59218	0.54926	0.028252
2	"Complete"	2	0.54954	0.62545	0.57925	0.025846
3	"Complete"	3	0.56243	0.6412	0.60007	0.022431
4	"Complete"	4	0.60196	0.64872	0.61601	0.018835
5	"Complete"	5	0.64415	0.65425	0.62885	0.015395
6	"Complete"	6	0.65047	0.65791	0.63941	0.012217
7	"Complete"	7	0.65446	0.66129	0.64826	0.009329
8	"Complete"	8	0.65573	0.66257	0.65589	0.0063327
9	"Complete"	9	0.66258	0.66258	0.66258	0

```


You can then insert columns from these variables into placeholders titled FSSummary and FSDetails in the Word document.
```

FSSummary = results(:,{'K','MaxAUROC','MeanAUROC','StdDevAUROC'});
FSDetails = annotations(:,{'K','Header','Comment'});

```

Push these tables to the model document.
```

previewDocument = fillReportFromWorkspace('ExhaustiveDocExample.docx');

```
winopen(previewDocument)

Your tables then appear in the Word document.

Statistical Model Document v. 1.0
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Background} \\
\hline \multicolumn{4}{|l|}{Feature Selection} \\
\hline \multicolumn{4}{|l|}{The results of an exhaustive feature selection process are summarised in the following table.} \\
\hline K & MaxAUROC & MeanAUROC & StdDevAUROC \\
\hline 1 & 0.5922 & 0.5493 & 0.0283 \\
\hline 2 & 0.6254 & 0.5793 & 0.0258 \\
\hline 3 & 0.6412 & 0.6001 & 0.0224 \\
\hline 4 & 0.6487 & 0.6160 & 0.0188 \\
\hline 5 & 0.6542 & 0.6289 & 0.0154 \\
\hline 6 & 0.6579 & 0.6394 & 0.0122 \\
\hline 7 & 0.6613 & 0.6483 & 0.0093 \\
\hline 8 & 0.6626 & 0.6559 & 0.0063 \\
\hline 9 & 0.6626 & 0.6626 & 0.0000 \\
\hline \multicolumn{4}{|l|}{In our analysis of the results, we made the following observations:} \\
\hline K & Header & Comment & \\
\hline 2 & MaxAUROC & Significant imp & \(\mathrm{K}=1\). \\
\hline 6 & MaxAuroc & Not much impr & \(\mathrm{k}=5\). \\
\hline 7 & StdDevAUROC & Low standard d & \\
\hline
\end{tabular}

Model Fitting

\section*{Remove Risk Factors}

This example shows how to remove or include variables from a table and record the corresponding reasons using the Modelscape \({ }^{\mathrm{TM}}\) Remove Risk Factors task.

The example also shows how to include the results of this analysis in model documents using the Modelscape reporting feature.

All columns in a table of input data may not be relevant while developing a statistical model. Not all the data in the table is necessarily usable for a statistical model. For example, randomized user identifiers (IDs) are often irrelevant, legally sensitive data such as ethnic origin or religious beliefs cannot be used, and some data can be of poor quality. This example shows you how to select relevant variables in such a table and record your reasons.

This example uses the Credit Scorecard data set, which contains three tables of customer information such as age, income, and employment status. One such table, dataMissing, deliberately has a few blank entries in the data set. The data could be used for developing a statistical model such as a MATLAB® credit scorecard model. The example loads the data set in the Remove Risk Factors task, marks some variables for exclusion, and documents the results using Modelscape reporting.

\section*{Load Data and Launch the Tool}

Load the input data from CreditCardData.mat.
load CreditCardData
Open a new live script. There are two ways to open the Remove Risk Factors task:
1 Type remove and select Remove Risk Factors in the drop-down selection.
```

remove Risk Factors

```
\begin{tabular}{|c|c|}
\hline Remove Trends & Remove polynomial trend from data \\
\hline Remove Risk Factors & Remove variables from a table based on uni... \\
\hline fix removecats & Remove categories from categorical array \\
\hline fx removevars & Delete variables from table or timetable \\
\hline [.] removeToolbarExplo... & Remove data exploration buttons from figure.. \\
\hline
\end{tabular}
2. Search for the tool under Task in the Live Editor gallery.

In the task, select your input data, for example dataMissing variable.

\section*{Inspect and Filter Variables}

The task shows the summary statistics and the histogram for the first variable in the table (in this case CustID).

To inspect other variables, click the corresponding variable name in the Analyze data variables section. This section contains three columns that you can sort. The Variable Names column is readonly. The Exclude column allows you to exclude variables from the table. To do this, check the Exclude button to mark the corresponding variable for removal. The Comment column lets you add reasons for the exclusion (or inclusion) by double-clicking the box.

\section*{Remove Risk Factors}
filteredTable, exclusionTable \(=\) Subtable of dataMissing with 3 risk factors excluded

\section*{Select data}
```

Input table dataMissing

```

Analyze data variables
\begin{tabular}{|l|r|l|l|}
\hline Variable Names & Exclude & Comment \\
\hline CustID & \(\checkmark\) & Customer Identitier - non-economic \\
\hline CustAge & \(\checkmark\) & Sensitive information \\
\hline TmAtAddress & \(\square\) & Looks OK \\
\hline ResStatus & \(\square\) & Looks OK \\
\hline EmpStatus & \(\square\) & Too many unknowns \\
\hline
\end{tabular}

\section*{EmpStatus}

\section*{Display results}

Filtered table \(\square\) Preview summary tables

When you exclude variables and add comments, the task dynamically produces two outputs:
- filteredTable: This is a subtable of the input table without the excluded risk factors. Use this subtable in the next step of the model development process - for example feature selection.
- exclusionTable: This table includes all the data of the input table together with the exclusion flags and comments in the task. To view this information, tick the 'Preview summary tables' box in 'Display results' section. This information is stored in exclusionTable. Properties. CustomProperties meta data.
exclusionSummaryPreview \(=11 \times 3\) table
\begin{tabular}{|c|c|l|l|}
\hline & Excluded & \multicolumn{1}{|c|}{ Variable Names } & Comm... \\
\hline 1 & 1 & "CustID" & "Customer id... \\
\hline 2 & 1 & "CustAge" & "Sensitive inf... \\
\hline 3 & 0 & "TmAtAddress" & "Looks OK" \\
\hline 4 & 0 & "ResStatus" & "Looks OK" \\
\hline 5 & 1 & "EmpStatus" & "Too many u... \\
\hline 6 & 0 & "Custlncome" & \(\cdots "\) \\
\hline 7 & 0 & "TmWBank" & \(\cdots "\) \\
\hline 8 & 0 & "OtherCC" & \(\cdots "\) \\
\hline 9 & 0 & "AMBalance" & \(\cdots "\) \\
\hline
\end{tabular}
progressSummaryPreview \(=4 \times 2\) table
\begin{tabular}{|l|l|l|r|r|}
\hline \multicolumn{5}{|c|}{} \\
\hline 1 & All variables & & Risk factor count & \(\%\) of Total \\
\hline 2 & Excluded & 11 & 100 \\
\hline 3 & Included & & 3 & 27 \\
\hline 4 & Commented & 8 & 73 \\
\hline
\end{tabular}
progressSummaryPreview lists the total number of variables, the excluded variables, the included variables, and the number of variables with comments. You can use this last datum to indicate whether the removal process is complete - in the end, every variable must have a reason for either exclusion or some indication that the variable has been inspected.

\section*{Document with Modelscape Reporting}

Use Modelscape Reporting to document the findings of the analysis described above. Use the meta data stored in exclusionTable for this purpose. To include the tables shown above as exclusionSummaryPreview and progressSummaryPreview in a Word document, create document holes with titles ExclusionSummary and ProgressSummary in the Word document.
```

import mrm.data.filter.*
[ExclusionSummary, ProgressSummary] = summarizeExclusionTable(exclusionTable)

```

To create document holes in a Word document, view the Developer tab, and click the 'Rich Text Content Control' symbol Aa in the Controls area. Then click 'Properties' and fill in the Title fields.

Running fillReportFromWorkspace will then pick up these new variables from the MATLAB workspace and insert them into the model document.

For more information on fillReportFromWorkspace, see "Model Documentation in Modelscape" on page 5-35.

\section*{Fairness Metrics in Modelscape}

This example shows how to detect bias in data and statistical models using a special suite of metrics in Modelscape \({ }^{\mathrm{TM}}\).

The metrics are built on the fairnessMetrics class from Statistics and Machine Learning Toolbox \({ }^{\text {TM }}\) (SMLT).

Modelscape tools let you set thresholds for these metrics and produce reports that appear consistent with other Modelscape validation reports.

This example uses a pre-constructed SMLT fairnessMetrics object to assess bias in a credit card data set. This example assesses this data based on fifteen metrics using a RiskFairnessMetrics handler object and documents the results in a Word document.

\section*{Load Data and Create RiskFairnessMetrics Handler Object}

Load a pre-prepared Modelscape bias detection object. These objects are constructed from the SMLT fairnessMetrics objects.
load FairnessEvaluator.mat
disp(fairnessData)
fairnessMetrics with properties:
SensitiveAttributeNames: \{'AgeGroup' 'ResStatus' 'OtherCC'\}
ReferenceGroup: \{'45 < Age <= 60' 'Home Owner' 'Yes'\} ResponseName: 'Y'
PositiveClass: 1
BiasMetrics: [9x7 table] GroupMetrics: [9x20 table]

ModelNames: 'Model1'
This object carries the metrics for certain model predictions. It contains four bias metrics ("Disparate Impact", "Statistical Parity Difference", "Average Absolute Odds Difference" and "Equal Opportunity Difference"), and 11-group metrics, including "False Negative Rate" and "Rate of Positive Predictions". These metrics are based on data with three attributes ("AgeGroup", "ResStatus" and "OtherCC").

For evaluating data without model predictions, only the metrics "Disparate Impact" and "Statistical Parity Difference" would be present.

Construct a Modelscape fairness metric handler from a fairnessMetrics object to compute a metric for every bias and group metric.
```

riskFairnessMetrics(fairnessData)
ans =
RiskFairnessMetricsHandler with properties:
NegativePredictiveValue: [1x1 mrm.data.validation.fairness.NegativePredictiveValue]

```
```

StatisticalParityDifference: [1x1 mrm.data.validation.fairness.StatisticalParityDifference
FalseOmissionRate: [1x1 mrm.data.validation.fairness.FalseOmissionRate]
Accuracy: [1x1 mrm.data.validation.fairness.Accuracy]
DisparateImpact: [1x1 mrm.data.validation.fairness.DisparateImpact]
RateOfNegativePredictions: [1x1 mrm.data.validation.fairness.RateOfNegativePredictions]
RateOfPositivePredictions: [1x1 mrm.data.validation.fairness.RateOfPositivePredictions]
FalsePositiveRate: [1x1 mrm.data.validation.fairness.FalsePositiveRate]
FalseDiscoveryRate: [1x1 mrm.data.validation.fairness.FalseDiscoveryRate]
PositivePredictiveValue: [1x1 mrm.data.validation.fairness.PositivePredictiveValue]
TruePositiveRate: [1x1 mrm.data.validation.fairness.TruePositiveRate]

```

RiskFairnessMetricsHandler is one example of an Modelscape MetricsHandler. For more examples and further information on the properties of these objects, see "Metrics Handlers" on page 5-45.

The rest of this example describes the extra features available in RiskFairnessMetricsHandler not shared by the other metrics handlers.

\section*{Specify Thresholds for Fairness Metrics}

You can specify thresholds for the fairness metrics using the riskFairnessThresholds function. Depending on the metric, riskFairnessThresholds expects either a single threshold level or two threshold levels:
- DisparateImpact, StatisticalParityDifference, EqualOpportunityDifference, and the metrics for rates of positive and negative predictive value expect two inputs. A metric level between the two inputs is considered a "Pass", and values outside this range is considered a "Fail". For the rates of positive and negative predictive value, the threshold is not compared against the rate itself, but against the deviation of the rate from the true positive or negative rate.
- Other metrics require a single threshold value. A metric value is assigned a "Pass" or a "Fail" status depending on which side of this threshold the value is. riskFairnessThresholds automatically works out which way these statuses go for each metric.

To set the thresholds, specify name-value pairs using the metric names in the riskFairnessThresholds function. For example, set the thresholds for StatisticalParityDifference and FalseNegativeRate.
```

fairnessThresholds = riskFairnessThresholds("StatisticalParityDifference", [-0.15, 0.2], ...
"FalseNegativeRate", 0.6)
fairnessThresholds =
RiskFairnessThresholds with properties:

```
 FalseNegativeRate: 0.6000
 StatisticalParityDifference: [-0.1500 0.2000]

For StatisticalParityDifference, a value within the range -0.15 to 0.2 is assigned a "Pass", and values outside of this range are considered as "Fail". For False Negative Rate, values below 0.6 return a "Pass"; otherwise, a "Fail" is returned.

Construct a fairness metric handler with these thresholds.
fairnessMetricHandler = riskFairnessMetrics(fairnessData, fairnessThresholds);

\section*{Interrogate Fairness Metrics}

Use the report method to interrogate fairness metrics. This method summarizes across all the metrics, sensitive attributes, and attribute groups.
```

overallSummary = report(fairnessMetricHandler);
disp(overallSummary)

Summary Metric	Value	Status	Diagnos
Statistical Parity Difference	0.54197	Fail	(0.2, Inf)
Disparate Impact	0.050237	<undefined>	<undefined>
Equal Opportunity Difference	0.39151	<undefined>	<undefined>
Average Absolute Odds Difference	0.49949	<undefined>	<undefined>
False Positive Rate	0.775	<undefined>	<undefined>
False Negative Rate	1	Fail	(0.6, Inf)
True Positive Rate	0	<undefined>	<undefined>
True Negative Rate	0.225	<undefined>	<undefined>
False Discovery Rate	1	<undefined>	<undefined>
False Omission Rate	0.4	<undefined>	<undefined>
Positive Predictive Value	0	<undefined>	<undefined>
Negative Predictive Value	0.6	<undefined>	<undefined>
Rate of Negative Predictions	0.23438	<undefined>	<undefined>
Rate of Positive Predictions	0.76562	<undefined>	<undefined>
Accuracy	0.42188	<undefined>	<undefined>
Overall	NaN	Fail	Fails at: Statistical Parity

```

In this example, the model outputs fail both the tests. This failure is because the values shown in this table are the 'worst' levels seen across all attributes and groups.

For more details on these failures, pass extra arguments to report. For example, display detailed data about Statistical Parity Difference.
```

spdSummary = report(fairnessMetricHandler, "Metrics", "StatisticalParityDifference");

```
disp(spdSummary)
\begin{tabular}{|c|c|c|c|c|}
\hline SensitiveA & ribute | Group & StatisticalParityDifference & Status & Dia \\
\hline AgeGroup & Age <= 30 & 0.54197 & Fail & (0.2, Inf) \\
\hline AgeGroup & 30 < Age <= 45 & 0.42456 & Fail & (0.2, Inf) \\
\hline AgeGroup & 45 < Age <= 60 & 0 & Pass & (-0.15, 0.2] \\
\hline AgeGroup & Age > 60 & -0.21242 & Fail & (-Inf, -0.15] \\
\hline ResStatus & Home Owner & 0 & Pass & (-0.15, 0.2] \\
\hline ResStatus & Tenant & 0.080908 & Pass & (-0.15, 0.2] \\
\hline ResStatus & Other & -0.11961 & Pass & (-0.15, 0.2] \\
\hline OtherCC | & No & 0.19661 & Pass & (-0.15, 0.2] \\
\hline OtherCC | & Yes & 0 & Pass & (-0.15, 0.2] \\
\hline Overall & & NaN & Fail & Fails at: AgeGroup \\
\hline
\end{tabular}

In the data, the worst statistical parity difference is in the under-30s age group.
For data sets with many predictors or groups, you can focus on a single attribute or attribute group.
```

spdAgeGroupReport = report(fairnessMetricHandler, ...
"Metrics", "StatisticalParityDifference", ...
"SensitiveAttribute","AgeGroup");
disp(spdAgeGroupReport)

```

AgeGroup | Group

AgeGroup | Age <= 30
AgeGroup | 30 < Age <= 45
AgeGroup | \(45<\) Age <= 60
AgeGroup | Age > 60
Overall

StatisticalParityDifference
0.54197
0.42456
\(-0.21242\)
NaN

Status

Fail (0.2, Inf)
Fail (0.2, Inf)
Pass (-0.15, 0.2]
Fail (-Inf, -0.15]
Fail Fails at: AgeGroup

On the contrary, by omitting the "Metrics" argument, you can view a single attribute or attributegroup and see how this attribute or group measures by all the metrics.

\section*{Visualize Fairness Metrics}

The fairness metrics handler supports different visualizations that are specific to bias detection and are not inherited from the generic MetricsHandler functionality. For individual metrics, visualize returns a bar chart across all sensitive attributes and groups, with vertical dotted lines indicating the thresholds. You can also restrict the view to a specific attribute.
```

visualize(fairnessMetricHandler, "Metric", "StatisticalParityDifference", "SensitiveAttribute",

```


\section*{Screen Risk Factors by Custom Criteria}

This example shows how to use the Screen Risk Factors task to automatically exclude risk factors from a table based on their predictive power.

This example also shows how to set up the screening criteria.
Feature selection is an important step in the development of a statistical model. Input data can have hundreds or thousands of variables, and discarding some variables often improves model interpretability, training times, and other important attributes.

This example loads the Screen Risk Factors data set, which contains a table of customer information such as age, income, and employment status. This example uses pre-defined metrics to assess risk factors individually and analyzes the predictive power of each variable relative to a given (binary) response variable. This example then shows you how to select variables automatically or semiautomatically using the Screen Risk Factors task. This example also shows you how to customize the screening criteria used to assess the risk factors.

\section*{Load Data and Pre-defined Screening Criteria}

Load the example data from ScreenRiskFactorsData.mat.
load ScreenRiskFactorsData.mat
Construct pre-defined screening criteria in your workspace. Use ExampleScreeningCriteria to generate myCriteria object. This function returns a ScreeningCriteria object defined by an mrm.data.selection. TestSuiteFactory.
```

import mrm.data.selection.*

```
myCriteria = ExampleScreeningCriteria();

These criteria have been set up as follows:
1 For each variable, the Information Value and Chi-squared p-value are calculated.
2 These values are compared against certain thresholds that assign the metric a Pass, Fail or Undecided classification. In this case, the thresholds for the metrics are hard-coded but you can obtain the thresholds from the appropriate data in the development environment.

3 The overall classification works on the 'worst-of' basis. If the status for either Information Value or the Chi-squared p-value is a Fail, the overall status will be Fail, and so on.

The TestSuiteFactory sets the StatusInterpreter of the metrics handler to overallScreeningStatus. This is where the auto-generated exclusions and comments are set. For the exclusions, the function must assign to each MetricsHandler state an mrm. data. selection. ScreeningStatus object (or an ErrorTestStatus or NullStatus) to ensures that the Screen Risk Factors task automatically marks the variable for exclusion.

In addition, the percentage of missing entries is displayed. This value does not affect the overall rating.

\section*{Launch Screen Risk Factors}

Open a new live script and launch the Screen Risk Factors task. This can be done in two ways:
1) Start typing 'Screen' and select the task from the drop-down menu

\section*{screen Risk Factors}
```

Screen Risk Factors Remove variables from a table based on cus.
screeningCriteria 1×1 mrm.data.selection.ScreeningCriteria
screenpredictors Screen credit scorecard predictors for predic.
Remove Risk Factors Remove variables from a table based on uni.

```
2) Search for Screen Risk Factors in the Live Task gallery

The task opens in a reduced view until the required inputs are selected:
- Input table must be a table or a timetable; the drop-down shows all such objects in the workspace. For this example, select data.
- Response variable drop-down shows all the binary variables in the input table. For this example, select defaultIndicator.
- Criteria should be the ScreeningCriteria object you wish to apply - in this case myCriteria.

\section*{Analyze and Remove Risk Factors}

The task now expands.

The task calculates the screening metrics for each risk factor in the input table. The summary of the results is shown in the 'Analyze data variables' section. The table contains one row for each variable in the input table.
- 'Status' shows the overall classification of the variable based on the screening metrics.
- 'Exclude' shows whether the variable is to be removed from the data set.
- 'Comment' contains the reasons for excluding the variable, or for leaving the variable included.

The live task auto populates the 'Exclude' and 'Comment' columns based on the criteria. In this example, the 'Fails' are automatically excluded and 'Passes' are automatically included with automatically generated comments. The 'Undecided' risk factors are left blank for the user to analyze. You can overwrite these auto-completed values and sort the table according to any of these columns.

The area underneath the table is specific to the risk-factor variable and displays the screening metrics, as well as a double histogram that demonstrates how well (or not) the variable discriminates between the two possible responses. To switch the view to another variable, click the variable name in the table.

\section*{Document with Modelscape Reporting}

The live task dynamically produces two outputs:
- filteredTable: This is a subtable of the input table without the excluded risk factors. Use this subtable in the next step of the model development process.
- exclusionTable: This table includes all the data of the input table together with the exclusion flags and comments in the Live Task. To view this information, tick the 'Preview summary tables' box in the 'Display results' section. This information is stored in exclusionTable. Properties. CustomProperties meta data.
exclusionSummaryPreview \(=10 \times 3\) table
\begin{tabular}{|c|c|l|l|}
\hline & Excluded & \multicolumn{1}{|c|}{ Variable Names } & Comm... \\
\hline \(\mathbf{1}\) & 0 & "CustAge" & "All tests pass" \\
\hline 2 & 1 & "TmAtAddress" & "Fails at: Chi... \\
\hline 3 & 1 & "ResStatus" & "Fails at: Info... \\
\hline 4 & 1 & "EmpStatus" & "Fails at: Info... \\
\hline 5 & 0 & "Custlncome" & "All tests pass" \\
\hline 6 & 0 & "TmWBank" & ""' \\
\hline 7 & 1 & "OtherCC" & "Fails at: Info... \\
\hline 8 & 1 & "AMBalance" & "Fails at: Chi... \\
\hline 9 & 1 & "UtilRate" & "Fails at: Chi... \\
\hline
\end{tabular}
progressSummaryPreview \(=4 \times 2\) table
\begin{tabular}{|l|l|r|r|}
\hline \multicolumn{2}{|c|}{} & Risk factor count & \% of Total \\
\hline \(\mathbf{1}\) & All variables & 10 & 100 \\
\hline 2 & Excluded & & 6 \\
\hline 3 & Included & 4 & 60 \\
\hline 4 & Commented & 9 & 40 \\
\hline
\end{tabular}

You can insert the above tables into model documentation using the Modelscape Reporting feature. To achieve this, create document holes with titles, say ExclusionSummary and ProgressSummary, in the Word document.

To create document holes in a Word document, view the Developer tab, and click the 'Rich Text Content Control' symbol Aa in the Controls area. Then click 'Properties', and fill in the Title fields.
import mrm.data.filter.*
[ExclusionSummary, ProgressSummary] = summarizeExclusionTable(exclusionTable)
After you have created holes, pick up the new variables from the MATLAB workspace and insert them into the model document using fillReportFromWorkspace.

For examples of creating document holes and for more details on the use of fillReportFromWorkspace, see "Model Documentation in Modelscape" on page 5-35.

\section*{Set Up Custom Criteria}

To learn about test metrics, thresholds, and handlers used by screening criteria object, refer to the "Test Metrics in Modelscape" on page 5-85 and "Metrics Handlers" on page 5-45 examples.

You can customize the criteria used to screen variables in the Screen Risk Factors Live Task. The criteria must be in an mrm. data. selection. ScreeningCriteria object. For the class definition, run:
```

edit mrm.data.selection.ScreeningCriteria

```

This class is a holder for a handle to a function f .
```

f(inputData, 'PredictorVar', varName, 'ResponseVar', respVar)

```

The function f call must be well-defined and produce an mrm. data.validation. MetricsHandler object for any table or timetable inputData, any predictor variable varName, and for a given binary response variable respVar. TestSuiteFactory has this signature for the function call.

To see examples of these functions in the Modelscape package, run
```

edit mrm.data.selection.ExampleScreeningCriteria;
edit mrm.data.selection.TestSuiteFactory;
edit mrm.data.selection.overallScreeningStatus;

```

\section*{Model Documentation in Modelscape}

This example shows how to add content to a Microsoft \(®\) Word document from MATLAB®.
Many workflows in financial institutions involve writing and submitting reports to internal control functions or regulatory bodies. These documents often conform to a given house style and are typically Microsoft Word documents.

This example shows how to create a link from the MATLAB model development environment to the Word document. This enables the authors to push text, visualizations, and tables from MATLAB to the Microsoft Word document. This removes the need for error-prone processes involving screenshots and copy-pasting and ensures that the Word document contents are always in a consistent state. Authors can go back and forth between Microsoft Word and MATLAB, adding new text at the Microsoft Word side and refreshing the MATLAB contents as needed.

This example begins with a simple case of inserting a single MATLAB variable from the workspace to a Microsoft Word document. This example then describes the workflow you can use to insert more content from MATLAB to a Microsoft Word document.

\section*{Insert a single MATLAB Variable from Workspace to Word Document}

Open a blank Microsoft Word document and add some text such as a title to it. Create a placeholder for your MATLAB content to the document - in MATLAB Report Generator terminology these are called holes. To do this, on the Developer tab, click the 'Rich Text Content Control' symbol Aa in the Controls area. Then click 'Properties' and fill in the Title and Tag fields as follows:

The 'Title' you have entered here will be the identifier of the hole - different holes will in general have different identifiers. By contrast, the tag tells MATLAB this is a placeholder it should fill in. The tag should always be 'Hole' as shown above. Your document should now look something like this:

\title{
Simple Example Document
}

This text was written in Word.
\#HoleContent
The following content is added from MATLAB: Click or tap here to enter text.

Save your document to, say, myTestDocument. docx. Open MATLAB and navigate to the folder with the document.

Create the content you want to fill in, for example:
HoleContent = datetime("now");
The variable name must match the Title you chose earlier.
Preview how the content will appear in the document by calling fillReportFromWorkspace.
```

myDoc = "myTestDocument.docx";
previewDoc = fillReportFromWorkspace(myDoc);
winopen(previewDoc);

```

Calling fillReportFromWorkspace pushes the datetime content to a temporary document whose name is stored in previewDoc. Calling winopen opens this document.

\section*{Simple Example Document}

This text was written in Word.
The following content is added from MATLAB: 07-Apr-2021 08:47:08

If you want the datetime to be formatted in a different way, you can recreate the hole content.
```

HoleContent = datetime("now", "Format", "dd-MMM-uuuu");

```

Rerun the fillReportFromWorkspace and winopen calls. You should then see only the date in the Word document, not the hours, minutes, and seconds.
previewDoc is intended as a preview which you can discard later. To modify your original file myTestDocument.docx, close the main myTestDocument file and run:
fillReportFromWorkspace(myDoc, "OutputMode","Publish");
winopen(myDoc);
The date now appears in the main document. The HoleContent placeholder in your document remains refillable even after this operation. Running fillReportFromWorkspace in the Publish mode refreshes every time you fill the document. You will however need to close the document in Word every time you do this.

If fillReportFromWorkspace cannot find the required MATLAB content for a hole, it will insert the text "Place-holder for hole id 'HoleContent'" in red boldface font to highlight this to the user. Similarly, other formatting errors show different messages depending on the error.

\section*{Use the Model Documentation Workflow}

Use the following workflow to document in Modelscape \({ }^{\mathrm{TM}}\) Reporting.
1 Create Word document.
2 Edit Word document and add holes for the contents to be filled in from MATLAB.
3 Create MATLAB contents.
4 Fill them into a preview document using fillReportFromWorkspace (in the Preview mode).
5 Repeat steps 2-4 as required.
6 Fill the MATLAB contents to the main document using fillReportFromWorkspace in the Publish mode.

\section*{Use Optional fillReportFromWorkspace Arguments}

You can use the following optional arguments with fillReportFromWorkspace.
- OutputMode: 'Preview' or 'Publish'. 'Preview' fills the document into a copy of the input document, whereas 'Publish' overwrites the input document. The default option is 'Preview'.
- PresavedContentsFiles: an array of strings giving the names of .mat files. fillReportFromWorkspace searches for the MATLAB content to insert first from these files, then from the workspace. This argument is intended to be used primarily in multi-author projects see below.
- NewContentsFile: a string specifying the name of a .mat file. Inserted MATLAB contents will be saved to this file. If PresavedContentsFiles are provided as well, only the contents found in the workspace and not in the presaved mat files will be saved. This argument is primarily for multi-author projects.
- MappingRules: FillReportMappings object specifying the formatter mapping rules - see below for details.
- Options: FillReportOptions object specifying any overrides to formatter defaults - see below for details.

\section*{Use Supported MATLAB Content Types}

This section shows you what MATLAB contents are supported and how to format them when filling the holes in a Word document.

There are two types of holes: inline and block holes. Inline holes insert contents within paragraphs (text, scalar numbers, ...) whereas block holes are for contents that require their own paragraph (such as figures and tables). You can insert some contents only into block holes

\section*{Preview Content}

Use function previewContent to check how a MATLAB variable appears in a document.
previewDoc = previewContent(datetime("now"));
This function creates and opens a document to which the input content has been added. The resulting document is saved in a file with name Preview-xyz.docx, where xyz is the type of input content. You may delete this preview document after viewing it.

\section*{Insert Basic MATLAB Content Types}

The appearance of MATLAB contents in a Word document is governed by helper classes called formatters. The table below lists these formatters and describes how they work for the supported core MATLAB content types.
\begin{tabular}{|l|l|l|l|}
\hline Type & Inline supported & Formatter & Description \\
\hline \begin{tabular}{l}
string \\
char array
\end{tabular} & Yes & mrm.reporting.format.Text & Display text. \\
\hline numeric (scalar) & Yes & mrm.reporting.format.Scalar & \begin{tabular}{l}
Display as text, integers with no decimal places, \\
otherwise by default to 4 decimal places.
\end{tabular} \\
\hline logical & Yes & mrm.reporting.format.Logical & Display logical true as text true, logical false as text false. \\
\hline categorical & Yes & mrm.reporting.format.Categorical & Display the string corresponding to the categorical. \\
\hline datetime & Yes & mrm.reporting.format.Datetime & Display as text, respecting the datetime formatting. \\
\hline duration & Yes & mrm.reporting.format.FormalTable & Customized mlreportgen.dom.FormalTable object; \\
\hline table & No & mrmat.Duration & Display as text, respecting the duration formatting. \\
\hline timetable & No & mrm.reporting.format.Figure & See below for the workflow to capture figures correctly. \\
\hline figure & No & & Uses by default svg snapshot format. \\
\hline
\end{tabular}

To insert a plot or other kind of a figure created in a Live Script, use the following MATLAB commands.

FigureContent \(=\) figure(); \% "open" figure plot(rand(10)); \% do the work to plot the figure figure(); \% mark the work on FigureContent as finished

\section*{Insert MATLAB Report Generator Types}

If you are familiar with MATLAB Report Generator, you can bypass the Modelscape formatters by wrapping MATLAB content into ml reportgen. dom or ml reportgen. report objects. The supported types are listed below. Note however that these types are not guaranteed to support the PresavedContentFiles and NewContentsFile arguments used in multi-author projects, as the Report Generator objects do not, in general, allow saving and loading into MAT files.

\section*{Report Generator DOM Types}

The following types are supported. The type names are shortened - for class definitions, see ml reportgen.dom.Text, ml reportgen.dom. Paragraph and so on.
\begin{tabular}{|l|l|}
\hline Type & Inline supported \\
\hline Text & Yes \\
\hline Paragraph & No \\
\hline Preformatted & No \\
\hline Image & No \\
\hline MATLABTable & No \\
\hline OrderedList & No \\
\hline UnorderedList & No \\
\hline ExternalLink & Yes \\
\hline HTML & No \\
\hline HTMLFile & No \\
\hline
\end{tabular}

\section*{Report Generator Reporter Types}

The following types are supported. Again, the type names are shortened - see ml reportgen. report. Equation and so on for the class definitions.
\begin{tabular}{|l|l|}
\hline Type & Inline supported \\
\hline Equation & No \\
\hline Figure & No \\
\hline Formallmage & No \\
\hline MATLABVariable & No \\
\hline
\end{tabular}

\section*{Insert Composite Types}

Modelscape Reporting automatically handles certain "composite" types such as arrays of numerical data (or strings, or logicals, or categoricals,...) and cell arrays of mixed-type data. The logic is the same:

1 Loop through the composite structure and format each element (double, string, logical, etc.) as explained above.

2 Display this table of formatted cells.
To see an example, run the following command (and delete the resulting Preview-cell.docx file afterwards).
previewDoc = previewContent(\{pi, true, 3; "abc", datetime("now"), hours(1)\});

\section*{Insert File Contents}

You can also insert the contents of certain types of files directly from files to the target document without loading them first into the MATLAB workspace using Modelscape Reporting. In this case the MATLAB workspace must contain a file content object for each inserted file, and the name of this object must match the title of the hole to be filled.

Construct the file content objects using a fileContent helper function. For example, insert the contents of myTable. csv as a table to a hole titled TableFromFile and then use fillReportFromWorkspace. .

TableFromFile = fileContent('myTable.csv');
fileContent helper will try to infer the type of the file from its extension. The following file types and recognized extensions are supported.
- image: all the extensions are recognized by mlreportgen.dom. Image including png, svg and jpg.
- table: csv, xml, xls* and the common spreadsheet variants.
- text: txt and log.

You can explicitly specifiy the file type for unrecognized extensions.
TableOfErrors = fileContent('errorLogs.err', 'table');
You can also pass arguments to fileContent that will be understood by the returned file content class. Currently this is supported for table contents, for which fileContent accepts the parameters used by readtable.

TableFromFile = fileContent('myTable.csv', 'table', 'ReadRowNames', false);
Supply the file content type when you use these extra arguments.

\section*{Using Custom File Contents}

You can create your own file content classes. To learn more, contact MathWorks Consulting Services.

\section*{Format Controls - Individual Contents}

Usually, the document hole title names match the name of the MATLAB variables to be filled in. You can control how this content appears in the Word document.

1 You can overwrite the formatter that is used for the given content.
2 You can pass extra control parameters to the formatter (be it the default formatter or a custom one).

To use these controls, use a hole title should be of the form ClassName (ContentName, Label1, Value1, Label2, Value2,...), where
- ClassName is the name of the formatter class or function that you use (or the word Default in which case no override is used).
- ContentName is the name of the MATLAB workspace variable defining the content.
- Label1, Value1, ... are name-value pairs that you pass to the formatter.

The rules for looking up the overriding class are as follows:
- In decreasing order of priority, either the ClassName such as mrm. reporting.format.Scalar, or the mrm.reporting.customize.ClassName, or mrm. reporting.format.ClassName, is used.
- Otherwise, a placeholder with a warning that no class definition was found is inserted.

\section*{Example: Using mrm. reporting. customize. Exp for Exponential Notation}

Modelscape Reporting has an example custom class mrm. reporting.customize. Exp that you can use for displaying numerical data in the exponential notation. This class supports an argument called ExpPrecision that controls how many digits are shown after the decimal point (the default being 3).

Suppose you want to display a MATLAB variable MyNumber that carries the number 123456.54321. Using a Word document hole title MyNumber for this placeholder, this content appears in a Word document as 123456.5432 . To override this, rename the document hole.
- Exp(MyNumber) - the number appears as \(1.235 \mathrm{e}+05\).
- Exp(MyNumber, "ExpPrecision",1) - the number appears as \(1.2 \mathrm{e}+05\).

The name-value pairs can also be properties of the underlying Report Generator class. For example, \(\operatorname{Exp}(\) MyNumber, "Color", "blue") shows the text \(1.2345 \mathrm{e}+05\) in blue font in the Word document.

\section*{Format Controls at Document Level}

Formatting contents is not practical if you want to change the number of decimal places for every numeric variable inserted into a document. To apply a change to every hole in the given document, use a FillReportOptions object for these options, and pass the object to fillReportFromWorkspace using the 'Options' label. However, note that hole-level arguments take precedence over the top-level options.

The following control options are available.
- ImageSnapshotFormat: option used by Modelscape Figure formatter to control the format of the image taken of plots and other figures - defaults to svg.
- MaxNumericPrecision: number of decimal places shown in (non-integer) numeric variables defaults to 4.
- PlaceHolderColor: colour of the text placed into document holes to alert user of missing MATLAB contents etc - defaults to crimson.
- TableDisplayUnits: option used by MRM FormalTable formatter to decide whether units are displayed in the formatted table - defaults to false.

You can add any name-value pairs to the options object to pass to fillReportFromWorkspace, to be picked up by the appropriate classes. For example, change the ExpPrecision parameter in all numerical contents formatted in the exponential notation.
```

myOptions = FillReportOptions("ExpPrecision", 1);
previewDoc = fillReportFromWorkspace(myDocument, "Options", myOptions);

```

In the setup of the example in the previous section, the content 123456.54321 placed into a hole titled as \(\operatorname{Exp}\) (MyNumber) will then appear as \(1.2 \mathrm{e}+05\) and not as \(1.235 \mathrm{e}+05\).

\section*{Map Overrides}

You can use properties of Report Generator DOM objects at the document level. These will be picked up by the respective formatters. For example, adding the argument Color with value blue to the options makes the text in all the contents to appear in blue - this includes doubles, logicals, categoricals, strings and so on. However, this must be used with caution. For example, StyleName makes sense for at least table and text formatters, but the value Grid Table 2 will only be understood by tables. For these kinds of changes, it is better to use mapping overrides and custom classes.

To map overrides, use the FillReportMappings objects.
```

FillReportMappings
ans =
"categorical" "mrm.reporting.format.Categorical"
"char" "mrm.reporting.format.Text"
"datetime" "mrm.reporting.format.Datetime"
"duration" "mrm.reporting.format.Duration"
"logical" "mrm.reporting.format.Logical"
"numeric" "mrm.reporting.format.Scalar"
"string" "mrm.reporting.format.Text"
"table" "mrm.reporting.format.FormalTable"
"timetable" "mrm.reporting.format.FormalTable"
"matlab.ui.Figure" "mrm.reporting.format.Figure"

```

FillReportMappings objects contain two columns that should match the table shown above in the section "Basic MATLAB Content Types". You can override these mappings, add new mappings, and pass the customized mapping object to fillReportFromWorkspace using the MappingRules argument.

For example, Modelscape Reporting has a CheckBox formatter to display logical variables as ticked or unticked checkboxes (and not as strings 'true'/'false'). To use this formatter for all logicals in a document, you can write the following:
```

myMappings = FillReportMappings("logical", "mrm.reporting.customize.CheckBox");
previewDoc = fillReportFromWorkspace(myDocument, "MappingRules", myMappings);

```

Similarly, you can add mapping data for in-house data types that are not directly supported by Modelscape Reporting. For example, if your model development process involves a custom class EnrichedTable for which you have written a custom formatter mrm. reporting.customize.MyTableFormatter (see next section), then you can add this to the mapping rules
```

myMappings = FillReportMappings("EnrichedTable", "mrm.reporting.customize.MyTableFormatter");

```
and call fillReportFromWorkspace with this as the MappingRules argument, as above.
To find the applicable mapping, MRM Reporting runs the test isa (content, \(t\)) for all the types \(t\) that show up in the left-hand column of the FillReportMappings display. The applicable formatter
is the one corresponding to the last type for which this returns true; if no mapping is found, a placeholder with that message is inserted into the document.

\section*{Customize Formatters}

Writing new formatters may be necessary for at least two reasons:
- Changing the style of an existing formatter in a way that is not controllable through FillReportOptions.
- Creating a formatter for a new content type.

Place all custom formatters in a mrm. reporting. customize package - that is, in a +mrm \(\backslash\) +reporting \(\backslash+\) customize \(\backslash\) folder on the MATLAB path. The interface requirements for a formatter class are as follows:
- The formatter should be a subclass either mlreportgen.dom.Element or ml reportgen. report.Reporter - in practice this will mean one of the classes listed in the section "MATLAB Report Generator Types" above.
- The formatter constructor should take as inputs content (the MATLAB variable to be formatted), rpt (an ml reportgen. report.Report object) and options (a FillReportOptions object) in this order.

Alternatively, the formatter can be a function that returns either an ml reportgen.dom.Element or an mlreportgen. report. Reporter object and has the same signature as the class constructor described above.

For example, to apply Word table style Grid Table 2 to all tables in a safe way, create the following custom formatter.
```

classdef MyTableFormatter < mrm.reporting.format.FormalTable
methods
function this = MyTableFormatter(content, report, options)
arguments
content table
report(1,1) mlreportgen.report.Report = mlreportgen.report.Report()
options(1,1) FillReportOptions = FillReportOptions()
end
this@mrm.reporting.format.FormalTable(content, report, options);
this.StyleName = "Grid Table 2";
mrm.reporting.internal.setDOMOptions(this, options);
end
end
end

```

Use this for all tables.
```

myMappings = FillReportMappings('table','mrm.reporting.customize.MyTableFormatter');
previewDoc = fillReportFromWorkspace('TestDoc.docx', 'MappingRules', myMappings);
winopen(previewDoc);

```

Note that if you want to run this example, you must ensure that the Grid Table 2 style is present in your test document. To do this, create and click an empty table, hit Ctrl+Alt+S and select Grid Table 2 from the dropdown menu to apply the style. Then save the document. You can now delete your empty table. The style definition will remain in the docx file.

\section*{Work on Multi-Author Projects}

Several authors can co-operate on a documentation project simultaneously by following a slight modification of the reporting workflow explained above. Most of the work (steps 2-6) can be done by the authors in parallel; only the document creation and building the final version (steps 1, 7 and 8) should be coordinated and carried out by a lead author or similar. To avoid clashes between the hole names created by different authors, it may be advantageous to use a naming convention such as prefixing the hole names by the author's initials.

1 Create a Word document in a shared location that allows simultaneous editing, for example SharePoint.
2 Edit the Word document as before, adding holes for the contents to be filled in from MATLAB.
3 Create MATLAB contents.
4 Fill them into the Word document using fillReportFromWorkspace in the Preview mode and check that contents are correctly displayed. The authors may also use the PresavedContentsFiles argument to include any MATLAB contents the other users may have already made available.
5 Repeat steps 2-4 as required.
6 Fill in the MATLAB contents using fillReportFromWorkspace still in Preview mode but using the NewContentsFile argument to save the MATLAB contents you are contributing to the document. Store the resulting mat file next to the Word document in the shared location.
7 When all authors have contributed their document contents into different mat files, run fillReportFromWorkspace, passing in all the mat files through the PresavedContentsFiles argument. Check that all the contents are correctly displayed.
8 Run fillReportFromWorkspace, this time in Publish mode, again with all the mat files listed as the PresavedContentsFiles argument.

Note that authors are free to reference contents provided in each other's mat files.

\section*{Metrics Handlers}

This example shows how to manage Modelscape \({ }^{\mathrm{TM}}\) test metrics and their associated threshold objects using MetricsHandler objects.

MetricsHandler produces reports that summarize the metrics and the status of the metrics in the container relative to their thresholds.

For more information about test metrics and thresholds, see "Credit Scorecard Validation Metrics" on page 5-48 and "Fairness Metrics in Modelscape" on page 5-26. To learn how to write your own metrics, see "Test Metrics in Modelscape" on page 5-85.

This example shows you how to set up some metrics and thresholds for mock data of a credit scoring model. This example creates a metrics handler object to visualize the metrics and summarize the results. It shows you how to set an overall status to the handler based on various metrics.

\section*{Set Up Test Metrics and Thresholds}

Use the following random data as an example of training response data (defaultIndicators) and model predictions (scores).
```

rng('default');
scores = rand(1000,1);
defaultIndicators = double(scores + rand(1000,1) < 1);

```

Create three metrics:
1) Area under the receiver operating characteristic curve (AUROC),
2) Cumulative accuracy profile (CAP Accuracy) ratio, and
3) Kolmogorov-Smirnov statistic.

For AUROC and CAP Accuracy ratio, set values greater than 0.8 as Pass, values less than 0.7 as Fail, and values between these as Undecided, requiring further inspection. Set no thresholds for the Kolmogorov-Smirnov statistic.
```

import mrm.data.validation.TestThresholds
import mrm.data.validation.pd.*
auroc = AUROC(defaultIndicators, scores);
aurocThresholds = TestThresholds([0.7, 0.8], ["Fail", "Undecided", "Pass"]);
cap = CAPAccuracyRatio(defaultIndicators, scores);
capThresholds = TestThresholds([0.6, 0.7], ["Fail", "Undecided", "Pass"]);
ks = KSStatistic(defaultIndicators, scores);

```

\section*{Add metrics to a Metrics Handler Object}

Add the metrics created in the previous section to a MetricsHandler object.
```

import mrm.data.validation.MetricsHandler
mh = MetricsHandler();
append(mh, auroc, aurocThresholds);

```
```

append(mh, cap, capThresholds);
append(mh, ks);
disp(mh)
MetricsHandler with properties:
CAP: [1x1 mrm.data.validation.pd.CAPAccuracyRatio]
KS: [1x1 mrm.data.validation.pd.KSStatistic]
AUROC: [1x1 mrm.data.validation.pd.AUROC]

```

The handler contains these three metrics that can be accessed as properties of this handler object. This allows you to access constituent metrics' diagnostics and visualizations.
```

visualize(mh.AUROC);

```


\section*{Interrogate Metrics Handlers}

Use the report method to view the performance of the model relative to the given metrics.
```

summaryTable = report(mh);
disp(summaryTable)

```
\begin{tabular}{|c|c|c|c|}
\hline Metric & Value & Status & Diagnostic \\
\hline Area under ROC curve & 0.82905 & Pass & (0.8, Inf) \\
\hline Accuracy ratio & 0.65809 & Undecided & (0.6, 0.7] \\
\hline Kolmogorov-Smirnov statistic & 0.51462 & <undefined> & <undefined> \\
\hline
\end{tabular}

The model performs well on AUROC, whereas the "Undecided" status on the Accuracy Ratio suggests the model requires a closer look.

When the handler carries complex non-scalar metrics, use arguments Keys and Metrics arguments with report. For more information, see "Fairness Metrics in Modelscape" on page 5-26.

\section*{Set Overall Status to the Handler}

For a handler with many metrics, set an overall status to the handler by associating a 'status interpreter' to the handler. This section shows how to use an interpreter supplied with Modelscape that is compatible with your threshold objects.
```

mh.StatusInterpreter = @mrm.data.validation.overallStatus;
summaryTable = report(mh);
disp(summaryTable)

Metric	Value	Status	Diagnostic
Area under ROC curve	0.82905	Pass	(0.8, Inf)
Accuracy ratio	0.65809	Undecided	(0.6, 0.7]
Kolmogorov-Smirnov statistic	0.51462	<undefined>	<undefined>
Overall	NaN	Undecided	<undefined>

```

The overall status is in general decided based on the status descriptions of the individual metrics. In the above case, the overall status is the 'worst' of the individual statuses - 'Undecided'.

Thresholding systems with other descriptive strings - for example "Red", "Amber", "Green" require a custom status interpreter to be implemented. To do this, see the instructions before the StatusInterpreter declaration in the MetricsHandler implementation.
```

edit mrm.data.validation.MetricsHandler

```

Alternatively, modify the interpreter as required.
```

edit mrm.data.validation.overallStatus

```

You can also set the StatusInterpreter for the handler immediately at construction:
```

mh2 = MetricsHandler('StatusInterpreter', @mrm.data.validation.overallStatus)

```

\section*{Credit Scorecard Validation Metrics}

This example shows how to implement a Probability of Default (PD) model validation suite covering the techniques laid out in the BCBS Working Paper 14.

The techniques apply to any PD model. This example loads the test data, sets and computes some key quantities, and calculates various model validation metrics. The results are stored in a collection object.

MH = mrm.data.validation.MetricsHandler;
This example uses PDModelValidation data set which consists of a pre-fitted MATLAB® credit scorecard object. This example shows you how to compute various metrics and summarize them.

Prepare Data
Load the scorecard to validate.
```

modelDataFile = "PDModelValidation.mat";
inputData = load(modelDataFile);

```

Set the response variable and default indicator.
```

responseVar = 'status';
outcomeIndicator = 1;

```

Extract key data and precompute certain key quantities
```

sc = inputData.sc;
testData = sc.Data;
scores = sc.score;
defaultProbs = probdefault(sc);
defaultIndicators = testData.(responseVar) == outcomeIndicator;

```

Visualize Cumulative Accuracy Profile and Compute Accuracy Ratio
The Cumulative Accuracy Profile (CAP) curve plots the proportion of defaulting names against the proportion of all names in the test set as one goes through the scores from the lowest to the highest. The Accuracy Ratio (AR) measures how the model relates to hypothetical perfect and random models. AR of 1 indicates the model is perfect, whereas AR of 0 indicates the scoring model is no better than a random model.
```

CAPMetric = mrm.data.validation.pd.CAPAccuracyRatio(defaultIndicators, scores);
visualize(CAPMetric);

```

displayResult(CAPMetric);
Accuracy ratio is 0.3223
append(MH, CAPMetric);

\section*{Compute and Visualize Receiver Operating Characteristic}

The Receiver Operating Characteristic (ROC) curve plots the proportion of defaulting names against the proportion of non-defaulting names in the test set as the scores move from the lowest to the highest. The associated test metric is the area under the ROC curve (AUROC). AUROC of 1 indicates a perfect model.

ROCMetric = mrm.data.validation.pd.AUROC(defaultIndicators, scores); visualize(ROCMetric);

\section*{Compute and Visualize Kolmogorov-Smirnov Statistic}

The Kolmogorov-Smirnov statistic indicates the maximal separation of defaulters from non-defaulters achieved by the model. The two plots in the visualization are the fractions of defaulters and nondefaulters in the test set; these plots are referred to as the Hit Rate and the False Alarm Rate in Working Paper 14.
```

KSMetric = mrm.data.validation.pd.KSStatistic(defaultIndicators, scores);
visualize(KSMetric);

```


Pietra Index is twice the maximal area of a triangle that can be fitted between the ROC curve of the model and the diagonal. Multiplication by 2 ensures that the range of possible values for the index is [0,1].

Calculating the Pietra Index assumes that the area under the ROC is convex. In this case the Pietra Index matches the Kolmogorov-Smirnov statistic calculated previously (indicated by the vertical dotted line in the plot).
```

PietraMetric = mrm.data.validation.pd.PietraIndex(defaultIndicators, scores);
visualize(PietraMetric);

```


\section*{Compute and Visualize Bayesian Error Rate}

Define the error rate at a given score as the weighted sum
\[
E R(s)=p_{D}(1-H R(s))+\left(1-p_{D}\right) * F A R(s)
\]
where \(p D\) is the total proportion of defaulters in the test set, and \(H R\) and FAR are the Hit Rate and the False Alarm Rate functions, respectively. The Bayesian Error Rate of the model is the minimum error rate achieved in the test set. The error rate is sometimes calcualted with equal weights of 0.5 instead of \(p_{D}\) and \(1-p_{D}\); in this case the Bayesian error rate is seen to be equal to \(\frac{1}{2}(1-\mathrm{KS})\), where KS is the Kolmogorov-Smirnov statistic.

BERMetric = mrm.data.validation.pd.BayesianErrorRate(defaultIndicators, scores); visualize(BERMetric);

append(MH, BERMetric);

\section*{Calculate Mann-Whitney Statistic}

The Mann-Whitney statistic is a rank sum metric that you calculate for the defaulter and nondefaulter populations of the test set. It recovers the area under the ROC curve calculated previously, and you can use the variance of the Mann-Whitney statistic to calculate confidence intervals for the AUROC statistic.
mwConfidenceLevel \(=95 \% \quad-\);
MWMetric = mrm.data.validation.pd.MannWhitneyMetric(defaultIndicators, scores,...
mwConfidenceLevel);
displayResult(MWMetric);
Mann-Whitney statistic 0.66113, with confidence interval (0.6606,0.66165) at level 0.95
append(MH, MWMetric);

\section*{Calculate Somers' D}

To test the hypothesis that low scores correspond to high probability of default, calculate the Somers' D between the sorted scores and the default indicators (flipped, to preserve the ordering, so that survival is denoted by 1 and default by 0).

SDMetric = mrm.data.validation.pd.SomersDMetric(defaultIndicators, scores);
displayResult(SDMetric);

Somers' D is 0.3223
append(MH, SDMetric)

\section*{Display Brier Score}

The Brier score is the squared mean error of the probabilities of default predicted by the model. Calculate the Brier score also for the "trivial model" which assigns the same probability to each name (equal to the fraction of defaulting names in the dataset).
```

BrierMetric = mrm.data.validation.pd.BrierTestMetric(defaultIndicators, defaultProbs);
displayResult(BrierMetric);

```
Value

Brier score
0.20541

Brier score for trivial model
0.22138
append(MH, BrierMetric);

\section*{Perform Binomial Test}

The binomial test inspects each ratings category separately and tests whether the number of realized defaults is plausible given the predicted probability of default.

The confidence level is set using the quantity \(q\) below. For example, setting \(q=0.95\) finds the scores where the number of observed defaults exceeds the number of defaults that would be expected with \(95 \%\) confidence. These scores are highlighted in the visualization by an asterisk.
```

binConfidenceLevel = 95% * ;
BinMetric = mrm.data.validation.pd.BinomialTest(defaultIndicators, defaultProbs, scores,...
binConfidenceLevel);
visualize(BinMetric);

```

```

head(formatResult(BinMetric));
Rating Category Observed Defaults Max Expected Number of Defaults

369.4	0	1
377.86	1	1
379.78	1	1
391.81	1	1
394.77	0	1
395.78	1	1
396.95	1	1
398.37	1	1

append(MH, BinMetric);

```

\section*{Compute Hosmer-Lemeshow Metric}

This test, also known as the chi-squared test, compares number of observed defaults for each ratings category with the number that would be expected from the probability of default predicted by the model. Unlike the results of the binomial test, these measures are combined into a single quantity, which for large datasets should converge to a \(\chi_{k}^{2}\)-distribution, where \(k\) is the number of ratings categories in the model. The test statistic is the \(p\)-value of this \(\chi_{k}^{2}\)-distribution.

HLMetric = mrm.data.validation.pd.HosmerLemeshowMetric(defaultIndicators, defaultProbs, scores); displayResult(HLMetric);

Hosmer-Lemeshow p-value is 0.9177
append(MH, HLMetric);

\section*{Compute and Visualize Entropy Measures}

Conditional Information Entropy Ratio measures the capability of the model to separate the defaulters from non-defaulters. Unlike the previous metrics, it does not consider the ordering of the scores. CIER value close to zero indicates good separation of defaulting names from surviving names.

CIERMetric = mrm.data.validation.pd.EntropyMetric(defaultIndicators, scores); visualize(CIERMetric);

The plot illustrates the cumulative sum of the entropies at each score weighted by the proportion of names with a given score. jumps indicate points where the model struggles to differentiate between defaulters and non-defaulters.

\section*{Display Summary}
```

disp(report(MH))

```
\begin{tabular}{|c|c|}
\hline Metric & Value \\
\hline "Accuracy ratio" & 0.32225 \\
\hline "Area under ROC curve" & 0.66113 \\
\hline "Kolmogorov-Smirnov statistic" & 0.22324 \\
\hline "Pietra index" & 0.22324 \\
\hline "Bayesian error rate" & 0.31 \\
\hline "Mann-Whitney u-test" & 0.66113 \\
\hline "Somers' D" & 0.32225 \\
\hline "Brier score" & 0.20541 \\
\hline "Binomial test failure rate" & 0.087667 \\
\hline "Hosmer-Lemeshow p-value" & 0.91772 \\
\hline "Conditional Information Entropy Ratio" & 0.55697 \\
\hline
\end{tabular}

\section*{Validation of Credit Models in ECB Templates}

This example shows how to fill in the European Central Bank (ECB) model validation templates using Modelscape \({ }^{\text {TM }}\) in MATLAB®.

ECB has published a suite of model validation templates covering a wide array of credit models, including Probability of Default (PD) models. Find the ECB templates at this address under 'Related Documents'. Find the instructions for filling in the templates in the document Instructions for reporting the validation results of internal models - IRB Pillar I models for credit risk.

\section*{Fill in ECB Template Input Data Using Modelscape}

The ECB validation templates require three kinds of inputs:
1 Model and organization metadata - for example, model and institution names, and the start and end dates of the review period
2 Directly observable quantitative data - for example, the number of customers who defaulted during the observation period
3 Model performance metrics - for example, metrics that measure the discriminatory power of the model, or credit rating migrations

Use Modelscape function fillValidationTemplate to fill in the last two types of inputs. You can then fill in the model names, identifiers, and other variables in Excel.
```

fillValidationTemplate(fileName, ...
"InitialValidationData", initialValidationData, ...
"InitialPortfolioData", reviewStartPortfolioData, ...
"TerminalPortfolioData", reviewEndPortfolioData);

```
- fileName is the name of the spreadsheet you fill in. Use the standard format required by ECB: "[LEICode]_[ModelType]_[ModelID]_[ReferenceDate]_[VersionNumber].xlsx". For more details, see the final paragraph of Section 2.2 of the ECB instructions.
- reviewStartPortfolioData and reviewEndPortfolioData are mrm.data.validation. reporting.pd.OperationalData objects with information about the portfolio at the beginning and the end of the current review period. Examples include the model PDs, exposures, and ratings for the customer populations, as well as flags to indicate credit transferals and overrides within the populations.
- initialValidationData is an mrm.data.validation.reporting.pd.ValidationData object with the information used in the initial validation of the model, potentially many years before the current review period. Examples of such information include the original model PDs and default indicators for some validation data set.

\section*{Set Operational Data}

The templates require operational data as a table containing various data with one item per customer or entity, together with the observation date and flags such as whether the model allows technical defaults. In this section, the term name indicates a single obligor such as a customer.

Supply the following data as arrays of equal lengths:
1 IDs: a string identifier for each name in the data set

2 PDs: the probabilities of default predicted by the model
3 Ratings: the ratings assigned to the customers (as ordered categorical variables - see below for more details)

4 Exposures: the current exposure for each name
- Store Ratings as categorical variables with a fixed ascending order. Otherwise, certain data quality checks built into the ECB templates will fail. Define the categorical variables in MATLAB using the following syntax:
ratingLabels = categorical(["CCC", "B", "BB", "BBB", "A", "AA", "AAA"], ...
["CCC", "B", "BB", "BBB", "A", "AA", "AAA"], 'Ordinal', true);
- While the ECB instructions do not specify a choice of currency, express the exposures in a single reference currency. This is because various validation measures require calculating the total exposures within some classes of names.

In addition to the four vectors, the operational data must contain the following arrays of logicals of the same size as the identifier arrays. These indicate anomalous states of the names and are optional. The OperationalData class will default these values to false if you do not specify them.

The flags determine the correct in-scope sample, so it is important that you set them correctly.
1 InDefault: set to True if the name currently in default (bullet point 2.3 (c) of the ECB instructions).
2 TechnicalDefaultIndicators: set to True if the name is in technical default (2.3 (d)).
3 OtherModel: set to True if a different model is used for the name for rating or regulatory capital purposes (2.3 (e)).
4 NonDefaultablePositive: set to True if the name is non-defaultable even if it has a positive exposure (p. 10, footnote 18).
5 Deficient: set to True if the name should be excluded from the sample due to process deficiency (2.5.1 (c)).
6 Outdated: Does the name have an outdated rating or financial statements (2.5.1 (d)).
7 Overridden: set to True if the rating has been overridden (2.5.1 (e)).
8 Transferred: set to True if the name had been transferred to it the rating of some third party (2.5.1 (f)).

Finally, the OperationalData class should contain the following:
- OutdatedAllowed, TransferralAllowed, OverridesAllowed, TechnicalDefaultsAllowed: Single logical variables to indicate whether the model and assignment process allow for outdated accounts, rating transferals, overrides, or technical defaults (PD validation template, Sheet 2.0).
- Date: The 'as-of' date for the above data.

In practice, it may be convenient to save the one-datum-per-name data as a table and supply the final four logicals and the as-of date separately.

\section*{Set Validation Data}

Operational data objects contain snapshots of the model predictions and other relevant data at given time points. Validation data objects, on the other hand, carry information about how the status of the
names changes over time. Validation metrics assess how these changes relate to the PDs predicted by the model.

Each ValidationData object carries the following data.
- ObsStartDate and ObsEndDate: initial and the terminal dates of the observation period.
- IDs: string identifier for each name in the data set.
- PDs: model PDs as predicted at ObsStartDate.
- Exposures: exposures of the names in some appropriate reference currency, as of ObsStartDate.
- DefaultIndicators: logical flags indicating the names that have defaulted during the observation period.
- InitialRatings and TerminalRatings: rating grades predicted by the model at the beginning and the end of the observation period (as ordered categorical variables). The terminal ratings should have an ascending order again.

In addition, ValidationData uses an augmented set of possible ratings, where the following three extra 'ratings' are allowed (see point 2.5.1 (h) of the ECB instructions):

1 Default - for names that defaulted during the observation period
2 Migrated - for non-defaulted names that have moved to a different model during the observation period
3 Gone - for non-defaulted names that have terminated their business relationship with the credit institution during the observation period

Note that the validation data containers should have data only for the names that have been prescreened to be in scope for validation. Given operational data containers operationalDatal and operationalData2 for some reference dates, use an MRM helper function to construct the associated validation data:
validationData \(=\) mrm.data.validation.reporting.pd.validationDataFromOperationalData(operationalD
This not only performs the appropriate screening but also takes care of the augmentation of the terminal rating categories as explained above.

\section*{Validation of External Models}

This example shows how to use MATLAB® model validation tools on models existing outside of MATLAB using Modelscape \({ }^{\text {TM }}\).

Such a model could be implemented in Python®, R, SAS®, or it could be a MATLAB model deployed on a web service.

This example covers the use of external models from the point of view of a Model Validator or other model end user. Although the Validator does not need to know this, this example assumes that a model has been deployed to a microservice such as Flask (Python) or Plumber (R). The example also explains how such microservices and alternative interfaces should be implemented.

This example calls an external model from MATLAB to evaluate it with different inputs. The example then shows you how to implement the API for any external model so that it can be called from MATLAB.

\section*{Call an External Model from MATLAB}

This section shows you how to set up an interface and call an externally deployed model. This example uses a Python toy model although it could be implemented in any other programming language.

\section*{Setup the External Model}

Use the Python code in the Appendix to set up mock data of a credit scoring model. This model adds noise to the input data, scales it, and returns the value as the output credit score of the applicant.

Run the script to make this "model" available in a test development server. The URL should be clearly visible in the output when the script is run. Copy it here if different from what is shown here:

ModelURL = "http://172.26.249.170:5000/";
In an actual model validation exercise, this information could be provided by the Model Developer as part of the validation request.

To set up a connection to this model, run the following:
```

extModel = externalModelClient("RootURL", ModelURL)
extModel =
ExternalModel with properties:
InputNames: "income"
ParameterNames: "weight"
OutputNames: "score"

```

The model expects a single input called 'income' and a single parameter called 'weight', and returns a single output called 'score'.

The types and sizes of these inputs should be explained in model documentation, but you can also find this information in the InputDefinition, ParameterDefinition and OutputDefinition properties of extModel.
```

extModel.InputDefinition
ans = struct with fields:
sizes: []
dataType: [1×1 struct]
extModel.InputDefinition.dataType
ans = struct with fields:
name: "double"

```

Empty sizes property indicates that a scalar is expected.

\section*{Evaluate the Model}

Use the evaluate method of ExternalModel on your model. This method expects two inputs:
- The first input must be a table. Each row of the table must consist of the data for a single customer, or a single 'run'. The table is then a 'batch of runs'. The variable names of the table must match the InputNames shown by ExternalModel.
- The second input is a struct whose fields match the ParameterNames shown by ExternalModel. The values carried by this struct apply to all the runs in the batch. If the model has no parameters, omit this input.

The primary output is a table whose variable names match the OutputNames shown by ExternalModel. The rows correspond to the runs in the input batch. There may also be run-specific diagnostics consisting of one struct per run and a single batch diagnostic struct.

For your toy model, use random numbers in the range from 0 to 100,000 as customer incomes for the input data. For parameters, use a weight of 1.1.
```

N = 1000;
income = le5*rand(N,1);
inputData = table(income, 'VariableNames',"income");
parameters = struct('weight', 1.1);

```

Call your model.
```

[modelScores, diagnostics, batchDiagnostics] = evaluate(extModel, inputData, parameters);

```
head(modelScores)
 score
 Row_1 110.66
 Row 2137.69
 Row 32.155
 Row 487.029
 Row \(5 \quad 73.207\)
 Row \({ }^{-5} 26.722\)
 Row_7 36.671
 Row_8 24.878

The output is a table of the same size as the inputs. Not specifying the row names in input data defaults them to Row 1, Row2, and so on.

For this example, create a mock response variable by thresholding the income. Validate the scores of the above model against this response variable.
```

defaultIndicators = income < 20000; % mocked-up response data
aurocMetric = mrm.data.validation.pd.AUROC(defaultIndicators, modelScores.score);
formatResult(aurocMetric)
ans =
"Area under ROC curve is 0.8236"
visualize(aurocMetric);

```


The toy model returns some diagnostics to illustrate their size and shape. The run-specific diagnostics are a single struct with a field for every run.
diagnostics.Row_125
```

ans = struct with fields:

```
 noise: 1.7133e+04

In this case, each struct records some 'noise' term that was used in the calculation of the model prediction. Batch diagnostics consist of a single struct carrying information shared across all runs, in this case, the elapsed valuation time at the server side.
```

batchDiagnostics

```
batchDiagnostics = struct with fields:
valuationTime: 0.0080

\section*{Extra Arguments}

Under the hood, ExternalModel talks to the model through a REST API. If necessary, the headers and HTTP options used for the corresponding message exchanges can be modified by passing extra Headers and Options arguments to externalModelClient. Headers should be of type matlab.net.http. HeaderField objects and Options should be of type matlab.net.http. HTTPOptions.

For example, extend the connection timeout to 20 seconds.
```

options = matlab.net.http.HTTPOptions('ConnectTimeout',20);
extModel = externalModelClient("RootURL", ModelURL, "Options", options)

```

\section*{Implement an ExternalModel Interface}

This part of the example explains how to implement an API for an external model to call it from MATLAB.

The externalModelClient function creates an object of type
mrm.validation.external. ExternalModel. This object talks to the external model through a REST API, and it works with any model that implements the API below.

\section*{Endpoints}

The API must implement two endpoints:
- /signature must accept a GET request and return a JSON string carrying the information about inputs, parameters and outputs.
- /evaluate must accept a POST request with inputs and parameters in a JSON format and must return a payload containing outputs, diagnostics, and batch diagnostics as a JSON string.

The status code for a successful response should be 200 OK; note that this is the default in Flask, for example.

\section*{Evaluation Inputs}

The /evaluate endpoint should accept a payload of the following format.
```

{
"inputs": {
"columns": [
"customer_annual_income",
"time_to_retirement"
],
"index": [
"run_1",
"run_2",
"run_3"
],
"data": [
[*, *],
[*, *],
[*, *]
]
},
"parameters": {
"unemployment_rate": *,
"model_calibration_factor": *
}
}

```

The columns in inputs should list the input names, index should specify the row names, data should contain the actual input data one row at the time, and parameters should just record the parameters with their values. The asterisks indicate the values - for example doubles or strings.

Note that the inputs datum is compatible with the construction of Pandas DataFrames with split orientation; see the example implementation in the Appendix.

\section*{Response Formats}

The /signature endpoint should return a payload of the following format:
```

{
"inputs": [{
"name": "customer_annual_income",
"dataType": {
"name": "double",
},
"sizes": []
},
{
"name": "time_to_retirement",
"dataType": {
"name": "double",
},
"sizes": []
}],
"batchInputs": [{
"name": "unemployment_rate",
"dataType": {
"name": "double",
},
"sizes": []
},
{
"name": "model_calibration_factor",
"dataType": {
"name": "double",
},
"sizes": []
}],
"outputs": [{
"name": "probability_of_default",
"dataType": {
"name": "double",
},
"sizes": []
}]
}

```

The /evaluate endpoint should return a payload in the following format:
```

{
"outputs": {
"columns": [
"probability_of_default",
"confidence"
],
"index": [
"run_1",
"run_2",
"run_3"
],
"data": [
[*, *],
[*, *],
[*, *]
]
},
"diagnostics": {
"run_1": {"field": "value"},
"run_2": {"field": "value"},
"run_3": {"field": "value"}
},
"batchDiagnostics": {"field": "value"}
}

```

Note again that the outputs data is compatible with the JSON output of Pandas dataframes with split orientation.

See the sample code in the Appendix for an interface implementation used in the first part of this example.

\section*{Work with Alternative APIs}

This section explains how to make external models available to a Model Validator in MATLAB when the default API is either impossible or inconvenient to implement - for example when your organization already has a preferred REST API for evaluating models. For this, implement an API class that inherits from mrm.validation. external. ExternalModelBase. Package this implementation in a +mrm/+validation/+external/ folder on the MATLAB path.

This custom API must populate the InputNames, ParameterNames and OutputNames properties shown to the Validator after an externalModelClient call. It must also implement the evaluate method which should take as inputs a table and a struct as in the default API ExternalModel. It is then the responsibility of the custom API to serialise the inputs, manage the REST API calls, and deserialise the outputs into tables and structs as shown above.

When a custom API has been implemented as, say, mrm. validation.external.CustomAPI, the Validator can initialize a connection to the model through this client by adding an APIType argument to the externalModelClient call.
```

extModelNew = externalModelClient("APIType", "CustomAPI", "RootURL", ModelURL)

```

Any further arguments will also be passed through to CustomAPI.

\section*{Appendix: Flask Interface}

The following Python code was used for setting up the external model used in the first part of this example.
```

from flask import Flask, request, jsonify
import pandas as pd
import numpy as np
import time
toyModel = Flask(__name__)
@toyModel.route('/evaluate', methods=['POST'])
def calc():
start = time.time()
data = request.get_json()
inputData = data['inputs']
inputDF = pd.DataFrame(inputData['data'], columns=inputData['columns'], index=inputData['ind
parameters = data['parameters']
noise = np.random.uniform(low = -50000, high=50000, size=inputDF.shape)
outDF = inputDF.rename(columns={'income':'score'})
outDF = outDF.add(noise)
outDF = outDF.mul(parameters['weight']/1000)
diagnostics = pd.DataFrame(noise, columns=["noise"], index=inputDF.index)
end = time.time()
batchDiagnostics = {'valuationTime' : end - start}
output = {'outputs': outDF.to_json(orient='split'),
'diagnostics' : diagnostics.to_dict(orient='index'),
'batchDiagnostics' : batchDiagnostics}
return output
@toyModel.route('/signature', methods=['GET'])
def getInputs():
outData = {
'inputs': [{"name": "income", "dataType": {"name": "double"},"sizes": []}],
'parameters': [{"name": "weight", "dataType": {"name": "double"}, "sizes": []}],
'outputs': [{"name": "score", "dataType": {"name": "double"}, "sizes": []}]
}
return(jsonify(outData))
if __name__ == '__main__':
toyModel.run(debug=True, host='0.0.0.0')

```

\section*{File Attachments in Modelscape Review Editor}

This example shows how to attach files to reviews using Review Editor app in the Modescape \({ }^{\mathrm{TM}}\) Review Environment (MRE).

You can attach documents to the Review Editor app. These documents include recommendations for improvement or evidence of model performance reports outside the Review Editor app. Use the app to attach files such as detailed model validation documents and scripts supporting such documents. By default, the Review Editor attaches the files to the project or model repository You can also use the tools in the package to store the attachments in a network folder. This example explains how to use these tools, extend, and customize them.
\begin{tabular}{l}
REVIEW \\
\hline ATTACHMENTS \\
\hline Attachments \(\times\) \\
\hline Filename \\
\begin{tabular}{|l|l|}
\hline DataSet.csv & URI \\
\hline ModelDocumentation.pdf & /tmp/tpf2f0ffc8_736a_419c_aaf2_cadb380a573d/resources/modelscape/documents/DataSet.csv \\
\hline modelscape.config.json & /tmp/tpf2f0ffc8_736a_419c_aaf2_cadb380a573d/resources/modelscape/documents/ModelDocume... \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Use Custom Repositories}

Attachments repositories are subclasses of an (abstract) modelscape.review.app.filerepository.FileRepository base class. Construct such a subclass using a Review object, which defines the following functions:
- upload: how and where a given file should be stored.
- list: a list of the currently attached files.
- URI: an identifier for a given file.
- openRepositoryLocation: open the entire attachments repository for inspection.

The implementation must be in the MATLAB path.
For example, see the network folder repository:
edit modelscape.review.app.filerepository.NetworkFolderRepository;

\section*{Configure Attachment Repositories}

Use MATLAB settings to point the MRE to the correct file repository class. To see the current active value of this setting, run:
```

s = settings;
s.mrmreview.FileRepository.Type.ActiveValue
ans =
"modelscape.review.app.filerepository.ProjectRepository"

```

The default value is modelscape. review. app.filerepository. ProjectRepository. If your custom repository file, myRepository.m, is in directory /+mre/+custom/ on the MATLAB path, then point the MRE to it by running:
```

s.mrmreview.FileRepository.Type.TemporaryValue = "mre.custom.myRepository";

```

Querying the active value of the setting as above should now return mre.custom.myRepository. To reset the value of this setting, run
s.mrmreview.FileRepository.Type.TemporaryValue = s.mrmreview.FileRepository.Type.FactoryValue;

\section*{Use Network Folder Repository}

You can also define other MATLAB settings and use them for configuring project repositories. Review Editor contains a repository definition for storing attachments to a network folder. To use this repository, run:
```

s = settings;
s.mrmreview.FileRepository.Type.TemporaryValue = "modelscape.review.app.filerepository.NetworkFo

```

Set the network folder to which Review Editor must copy the files to.
```

s.mrmreview.FileRepository.Root.TemporaryValue = "//some/network/folder/name";

```

To ensure each model gets a unique directory, this repository saves the files to a directory of the form //some/network/folder/name, where name is the string returned by the ModelName method of the Modelscape Review class.

\section*{Customization of Signoff Forms in Review Editor}

This example shows how to customize review sign off forms using Review Editor app in the Modelscape \({ }^{\mathrm{TM}}\) Review Environment (MRE).

MRE comes equipped with a selection of forms that can be customized to sign off on a given review to match your validation processes. You can also create your own signoff forms using MRE.

The customization consists of two parts: formatting of the signoff forms and configuring the list of forms available to the validators.

\section*{Format Signoff Forms}

Implement customized signoff forms as subclasses of an abstract interface class modelscape. review.app.signoff.SignoffForm. Begin by opening an example form in the Model Review Environment.
edit modelscape.review.app.signoff.forms.FullReview

In most cases, you can simply copy and rename this class, and edit it as required. The class definition must be on your MATLAB path.

You must give the validator a list of labels corresponding to various steps of the validation work, and a list of controls that allow users to input their comments. Labels are strings such as "Approved?", "Materiality" or "Known weaknesses", whereas controls include drop-down menus, checkboxes, and containers for free-form text; there should be one control for each label. The form also requires submit and cancel buttons. The layout of these labels, values, submit and cancel buttons is part of the configuration. To select the form from the submit review toolstrip dropdown, you also need a method called fullName().

\section*{Configure Components of the Form}

This section shows you how to configure the components of the form.

\section*{Layout}

Control the layout of labels, controls and buttons by a matlab. ui. container.GridLayout object that uses the Parent object of the form as its parent container.
```

this.UIGrid = uigridlayout(this.Parent, [8 4],...
'ColumnWidth', {'1x','1x','1x', '1x'}, ...
'RowHeight', {25, 50, 50, 50, 50, 25, 25, 25});

```

In this case, the grid has one row per label-control pair and one row for the submit and cancel buttons. Row heights vary depending on the type of control to be used.

\section*{Labels and Controls}

Insert the labels and controls into the layout grid using utility functions in the MRE package.
```

import modelscape.review.app.signoff.helpers.formatLabel;
import modelscape.review.app.signoff.helpers.formatDropDown;
import modelscape.review.app.signoff.helpers.formatTextArea;
import mmodelscape.review.app.signoff.helpers.formatCheckBox;

```

These helper functions create the labels and controls, and place them in the layout grid. Placed them in arrays called this.Labels and this. Controls. For example, place a label "Risk rating" into the first column of the 6th row and a drop-down menu with selection "High", "Medium", "Low" (and default value "Select") into the second column of that row.
```

this.Labels{6} = formatLabel(this.UIGrid, 'Risk rating', 6, 1);
this.Controls{6}= formatDropDown(this.UIGrid, 6, 2, ...
{'Select', 'High', 'Medium', 'Low'}, 'Select');

```

Use the other two helper functions in a similar way.

\section*{Submit and Cancel Buttons}

Define the remaining two components using the following helper functions of the SignoffForm base class.
```

createSubmitReviewButton(this, 8, 3);
createDiscardReviewButton(this, 8, 4);

```

These will place the required buttons in the 3rd and 4th column of the 8th row of the layout grid. The helper functions also configure the buttons to trigger the appropriate events in the Review app.

\section*{fullName()}

For each signoff form class, define a static method fullName(), which returns the name, or a short description, of the implemented class. Use a concise string to identify this customized form in the signoff dropdown list of the MRE main toolstrip.

An example of this method definition is as follows:
```

methods (Static)
function fn = fullName()
fn = "Full review signoff";
end
end

```

\section*{Configure the Signoff Form Selection Menu}

The signoff forms for review submission are in the dropdown list under the Submit Review icon in the Review Editor app. By default, the list contains the examples of the MRE package. This section explains how to configure the list.

\section*{Configuration File}

Implement each signoff form as a class definition. Encode the list of forms shown to the user into an XML file that lists these classes in the following syntax.

1 The XML root node is called <formSelection>.
2 Define each form in the list by a <formDefinition> node. These will contain a <className> node that sets the full name of the form class to be used

For example, the following XML defines the forms shipped with the MRE package:
```

<formSelection>
    <formDefinition>
        <className>modelscape.review.app.signoff.forms.FullReview</className>
    </formDefinition>
    <formDefinition>
        <className>modelscape.review.app.signoff.forms.ReducedReview</className>
    </formDefinition>
</formSelection>
```

This file need not be stored in the MATLAB path.

\section*{MRE SignoffFormsSelection Setting}

To point the MRE to the correct XML configuration file, use MATLAB settings. To see the current value of this setting, run:
```

s = settings;
s.mrmreview.Signoff.ConfigFile.ActiveValue

```

The default value of this setting is the empty string.
If the configuration file is saved as \(\mathrm{c}: \backslash\) MRE \(\backslash\) resources \(\backslash\) formSelection. xml, set MRE to point to this file.
```

s.mrmreview.Signoff.ConfigFile.TemporaryValue = "c:\Modelscape\resources\formSelection.xml";

```

Querying the active value as shown above should then return the location of the custom XML.

To reset the default setting, run:
s.mrmreview.Signoff.ConfigFile.TemporaryValue = s.mrmreview.Signoff.ConfigFile.FactoryValue;

\section*{Model Implementation for Modelscape Deploy}

This example shows you how to use and implement the Modelscape \({ }^{\mathrm{TM}}\) Deploy \({ }^{\mathrm{TM}}\).
Modelscape Deploy supports a generic interface for specifying model inputs, model outputs, and a single method to execute models. This example explains the interface and shows you how a model developer must implement it.

This example uses a toy model that takes inputs \(x\) and \(y\) and calculates the weighted sum \(z=A^{*} x+\) \(B * y\), where \(A\) and \(B\) are scalar weights. If \(x\) and \(y\) are vectors, the evaluation of the model is a batch evaluation for each pair of elements in \(x\) and \(y\). The scalars \(A\) and \(B\) are configurable, but constant across a batch of evaluations - and are therefore regarded as parameters.

Realistic examples of inputs varying within a batch are the contract details for a book of derivative transactions, and the data corresponding to a group of credit card applicants. Examples of parameters corresponding to these inputs are the number of Monte Carlo paths used for pricing the derivatives, and certain macro-economic data used for credit-scoring the loan applicants. Note that the batch parameters are fixed for all inputs within a batch.

\section*{Work with Modelscape Deploy}

Models to be executed in Modelscape Deploy must be implemented as subclasses of mrm.execution. Model.
```

classdef WeightedSum < mrm.execution.Model

```

Both the inputs and the outputs of the model execution must be tables. Each model class defines how to interroage the input table and populate the output table.

\section*{Methods for Inputs and Outputs}

Each model must implement three methods for specifying the inputs and the outputs of the model.
- getInputs: returns the definition of the variables required for each evaluation in a batch - for example, the names and types of \(x\) and \(y\) above.
- getParameters: returns the definition of the variables that are fixed within a batch of evaluations - that is the names and types of \(A\) and \(B\) above.
- get0utputs: returns the definition of the output variables - variable \(z\) above.

The output, in each case, should be a struct with the following fields:
- name: a cell array of strings containing the names of the input/output variables.
- type: a cell array of structs defining the type of each input/output variable - each struct should have a field called name with any of the values listed in mwtype.
- sizes: a cell array of two-element arrays [a b] defining the size of each input/output variable use NaN to indicate unrestricted size, e.g. [1 NaN] for a single column of an arbitrary height.

Define the toy model as follows.
```

function parameters = getInputs(~)
doubleDatatype = struct( ...
"name", "double");
parameters = struct( ...

```
```

    "name", {"X", "Y"}, ...
    "dataType", {doubleDatatype, doubleDatatype});
    end
function parameters = getParameters(~)
doubleDatatype = struct( ...
"name", "double");
parameters = struct( ...
"name", {"A", "B"}, ...
"dataType", {doubleDatatype, doubleDatatype});
end
function parameters = getOutputs(~)
doubleDatatype = struct( ...
"name", "double");
parameters = struct( ...
"name", {"Z"}, ...
"dataType", {doubleDatatype});
end

```

\section*{Evaluation Method}

Define the evaluate method as follows.
```

[outputs, diagnostics, batchDiagnostics] = evaluate(this, inputs, parameters)

```

Here inputs should be a table, with a row for each evaluation within the batch, and parameters should be struct, that contains the variables that apply to all evaluations within the batch.

The outputs variable must be a table and contain a row for each row of the inputs table. The diagnostics output must be an array of structs, one for each row of the input table. The batchDiagnostic output is a single diagnostic for the whole batch and must be a scalar struct.

The toy model also has the following definition.
```

function [outputs, diagnostics, batchDiagnostics] = evaluate(~, inputs, parameters)
outputs = table( ...
parameters.A * inputs.X + parameters.B * inputs.Y, ...
'VariableNames', {'Z'}, ...
'RowNames', inputs.Properties.RowNames);
rawDiagnostics = [inputs.Properties.RowNames, repmat({struct()}, numel(inputs.Properties.Rowl
diagnostics = struct(rawDiagnostics{:});
batchDiagnostics = struct();
end

```

In this case the diagnostics structs are empty. In the more complicated examples listed above, they could carry, for instance, information about the Monte Carlo noise present in the valuation.

\section*{Create an image for Deployment}

To deploy a model that implements the mrm. execution. Model interface, firstly, package the executable model code into a Docker® image suitable for deployment using MATLAB® Compiler SDK. Use the helper function mrm. execution. packageModel to do this.
```

modelInstance = WeightedSum();
outputFolder = tempname();
imageName = mrm.execution.compiler.packageModel(modelInstance, ...
OutputFolder=outputFolder, ...

```
```

    Name="weighted-sum", ...
    Tag="v1")
    Runtime Image Already Exists
Sending build context to Docker daemon 278kB
Step 1/6 : FROM matlabruntime/r2023a/prerelease/update0/308000000000000000
---> 9578d4e15248
Step 2/6 : COPY ./applicationFilesForMATLABCompiler /usr/bin/mlrtapp
---> ff0709fcec70
Step 3/6 : RUN chmod -R a+rX /usr/bin/mlrtapp/*
---> Running in c83375557f83
Removing intermediate container c83375557f83
---> dald6f8978b3
Step 4/6 : RUN useradd -ms /bin/bash appuser
---> Running in aab934c26070
Removing intermediate container aab934c26070
---> 5e5490e6e58e
Step 5/6 : USER appuser
---> Running in fd6d76d6d108
Removing intermediate container fd6d76d6d108
---> 54efdb41lalb
Step 6/6 : ENTRYPOINT ["/opt/matlabruntime/R2023a/bin/glnxa64/muserve", "-a", "/usr/bin/mlrtapp/
---> Running in 4c6771bc9751
Removing intermediate container 4c6771bc9751
---> 0da443f8e974
Successfully built 0da443f8e974
Successfully tagged weighted-sum:v1
DOCKER CONTEXT LOCATION:
/tmp/tp984f0556 95f6 46b1 a428_473bcc9e54dc/docker
FOR HELP GETTING STARTED WITH MICROSERVICE IMAGES, PLEASE READ:
/tmp/tp984f0556_95f6_46b1_a428_473bcc9e54dc/docker/GettingStarted.txt
Sending build context to Docker daemon 4.608kB
Step 1/7 : FROM weighted-sum:v1
---> 0da443f8e974
Step 2/7 : COPY ./routes.json /usr/bin/mlrtapp/routes.json
---> e97e7b05ec7e
Step 3/7 : USER root
---> Running in 01c65af653f1
Removing intermediate container 01c65af653f1
---> 276549f8c441
Step 4/7 : RUN useradd -u 2000 -ms /bin/bash modeluser
---> Running in e5d62f47d4fa
Removing intermediate container e5d62f47d4fa
---> 206c7ad88b83
Step 5/7 : USER 2000
---> Running in 98307802e3cb
Removing intermediate container 98307802e3cb
---> 0ac44031eb4a
Step 6/7 : EXPOSE 8080
---> Running in 75b018a3bd8d

```
```

Removing intermediate container 75b018a3bd8d
---> 314e6255d91e
Step 7/7 : CMD ["--http", "8080","--routes-file", "/usr/bin/mlrtapp/routes.json"]
---> Running in 1549elf467cc
Removing intermediate container 1549elf467cc
---> f703f5e9bd1b
Successfully built f703f5e9bd1b
Successfully tagged weighted-sum:v1
imageName =
"weighted-sum:v1"

```

\section*{Deploy to Modelscape Deploy}

The image must be pushed to a Docker registry visible to the Modelscape API. For the next steps, choose the model version for which you want to create a model version build. Create the build, a deployment environment, and deploy your build.

\section*{Customizing Model Inventory: Risk Tiering}

This example shows how to customize the Model Inventory to hold information specific to your organization.

You can customize the model data entry and the model summary table. You can also add new filters to the Inventory Browser app to make it easy to find models with a particular value of a custom attribute.

This example uses a simple tree-based approach to Risk Tiering as an example. The model is from a paper by Mankatonia and Joshi (Measuring model risk: a practitioner's approach, RMA Journal, 2013). This example along with other examples are also discussed in a paper by Kiritz, Ravitz and Levonian (Model risk tiering: an exploration of industry practices and principles, Journal of Risk Model Validation, 2019).

\section*{Add Custom Data to Inventory Browser}

The inventory data is most likely stored outside of MATLAB®, for example, in a database. Various features of the Inventory Browser such as the model entry form do not access this external resource directly - rather, they interact with it through a client. Modelscape \({ }^{\mathrm{TM}}\) supports both database-backed and (for test use) in-memory clients.

Add new model-specific data to the Inventory Browser as references. To do this:
- If necessary, create a new type for the reference.
- Create the reference itself.
- Associate the reference to a given model.

Create a new reference type called RiskTieringData with the following attributes:
- RiskPriceValueUse: a string Unset, True or False denoting whether the model is used to measure risk, price, or value.
- CriticalUse: a string Unset, True or False denoting whether the model is used for critical business decisions, regulatory reporting, or similar.
- Exposure: a string Unset, High, Medium, or Low denoting the exposure level of the model.
- Override: a string Unset, High, Medium, or Low denoting a risk tier level override.
- RiskTier: a string Unset, High, Medium, or Low denoting the final risk tier which is worked out from the information above.

Construct a client with a model and this reference type, and attach a reference to this model. To learn more about how to do this, contact MathWorks Consulting Services.

Open an Inventory session with this client.
```

app = mrm.inventory.InventoryApp(client);
app.open

```

\section*{Customize Model Data Entry}

Customize the Inventory Browser model entry by adding new tabs next to the 'Details' included in the default view, and by changing the layout and contents of the 'Details' tab. Implement these customizations as subclasses of mrm.inventory.model. FormCustomization. Include the
subclasses in +mrm/+inventory/+custom/+model/ folder on the MATLAB path. Implement the following methods for each subclass.
- The constructor must take two inputs: the parent mrm.inventory.model. Form object and the client carried by the Form. If you want to assign these to the Form and Client properties, leave this to the base class constructor and not implement this at all.
- Use populateCustomContents(this) to set up the additional tab and any controls such as drop-downs.
- onModelSet (this) must obtain the required references through the client and set these values to the controls. Note that the identifier of the model being displayed on the forms can be obtained from the GUIDEdit property of the parent form.
- onSubmit (this) must read the values carried by the dropdowns and other controls and use the client to update the relevant references associated to the model.

Note that you can customize the 'Details' tab by modifying the layout grid, stored as the DetailsLayout property, of the parent mrm.inventory.model. Form object. Here are some examples of possible customizations.

1 Replace controls with new custom controls by hiding the existing control. To do this, use the property Visible and create a new control in the same location in the grid.
2 Add new controls to the form by resizing the DetailsLayout grid.
3 Reorganize controls by using Layout.Row properties.
Finally, you can overwrite the labels of the 'Details' tab controls in a customization class. See mrm . inventory.model. Form for the names of properties defining the labels.

The following code snippet illustrates how you can apply these customizations to implement a risk tiering form. For the form layout, populateCustomContents creates dropdowns for RiskPriceValueUse, CriticalUse, Exposure and Override, and a non-editable label to display the resulting RiskTier. There is a button to recalculate the risk tier, as you want this to happen only once all the required inputs have been considered and set. Finally, the example shows a mechanism for displaying whether the risk tier stored in the inventory is in sync with the chosen inputs - if not, the comment '(Stale)' is added to the risk tier. The new tiering data is stored in the Inventory only when the 'Update' button is pressed.
```

classdef RiskTieringCustomTab < mrm.inventory.model.FormCustomization
%Implements a custom tab for calculating the risk tier
% Copyright 2021-2023 The MathWorks, Inc.
properties (Access = private)
% Base grid
Grid(1,1) matlab.ui.container.GridLayout
% Tree model controls
UsageDD(1,1) matlab.ui.control.DropDown
CriticalUseDD(1,1) matlab.ui.control.DropDown
ExposureLevelDD(1,1) matlab.ui.control.DropDown
OverrideDD(1,1) matlab.ui.control.DropDown
CalculateButton(1,1) matlab.ui.control.Button
RiskTierLabel(1,1) matlab.ui.control.Label

```
```

    % Convenience variable for setting the stale status of the tiering
    SavedTieringData struct
    % Cache the reference type for risk tiering data
    RiskTieringReferenceType
    end
methods
function this = RiskTieringCustomTab(form, client)
this@mrm.inventory.model.FormCustomization(form, client);
this.RiskTieringReferenceType = this.Client.getReferenceTypeByName("RiskTieringData"
end
function populateCustomContent(this)
parentTab = uitab(this.Form.TabGroup, ...
'Title', 'Risk tiering', ...
'Tag', 'risktiering_tab');
% Set up grid
this.Grid = uigridlayout(parentTab, [6 2]);
this.Grid.RowHeight = repmat(30, 1, 6);
this.Grid.ColumnWidth = {'1x', '1x'};
% Row 1
uilabel(this.Grid, 'Text', 'Does the model measure risk, price or value?');
this.UsageDD = uidropdown(this.Grid, ...
'Items', ["Unset"; "True"; "False"], ...
"ItemsData", ["Unset"; "True"; "False"], ...
"ValueChangedFcn", @(~,~)this.setStaleStatus);
% Row 2
uilabel(this.Grid, 'Text', 'Is the model usage critical?', ...
'Tooltip', 'Includes use for critical business decisions, regulatory purpose
this.CriticalUseDD = uidropdown(this.Grid
'Items', ["Unset"; "True"; "False"], ...
"ItemsData", ["Unset"; "True"; "False"], ...
"ValueChangedFcn", @(~,~)this.setStaleStatus);
% Row 3
uilabel(this.Grid, 'Text', 'Exposure');
this.ExposureLevelDD = uidropdown(this.Grid, ...
'Items', ["Unset"; "High"; "Medium"; "Low"], ...
'ItemsData', ["Unset"; "High"; "Medium"; "Low"],
'ValueChangedFcn', @(~,~)this.setStaleStatus);
% Row 4
% Tier names 5-7 are 'Low (Stale)' etc, so don't include them in the drop-down.
uilabel(this.Grid, 'Text', 'Override');
this.OverrideDD = uidropdown(this.Grid, ...
'Items', ["Unset"; "Low"; "Medium"; "High"], ...
"ItemsData", ["Unset"; "Low"; "Medium"; "High"], ...
"ValueChangedFcn", @(~,~)this.setStaleStatus);
% Row 5
this.CalculateButton = uibutton(this.Grid, 'Text', 'Calculate');
this.CalculateButton.ButtonPushedFcn = @this.onCalculateRiskTier;
this.CalculateButton.Layout.Row = 5;
this.CalculateButton.Layout.Column = 2;

```
```

    % Row 6
    uilabel(this.Grid, 'Text', 'Risk tier');
    this.RiskTierLabel = uilabel(this.Grid, 'Text', '');
    end
    function onModelSet(this)
        guid = this.Form.GUIDEdit.Value;
        tieringDataForThisModel = this.Client.getReferenceByModelAndType( ...
            guid, this.RiskTieringReferenceType.GUID);
        this.SavedTieringData = tieringDataForThisModel.Attributes;
    this.UsageDD.Value = this.SavedTieringData.RiskPriceValueUse;
    this.CriticalUseDD.Value = this.SavedTieringData.CriticalUse;
    this.ExposureLevelDD.Value = this.SavedTieringData.Exposure;
    this.OverrideDD.Value = this.SavedTieringData.Override;
    this.RiskTierLabel.Text = this.SavedTieringData.RiskTier;
    end
function onSubmit(this)
guid = this.Form.GUIDEdit.Value;
data = containers.Map;
data("RiskPriceValueUse") = this.UsageDD.Value;
data("CriticalUse") = this.CriticalUseDD.Value;
data("Exposure") = this.ExposureLevelDD.Value;
data("Override") = this.OverrideDD.Value;
data("RiskTier") = this.RiskTierLabel.Text;
tieringReference = this.Client.getReferenceByModelAndType( ...
guid, this.RiskTieringReferenceType.GUID);
this.Client.updateReference(tieringReference.GUID, "Attributes", ...
data);
end
end
methods (Access = protected)
function setStaleStatus(this)
isStale = this.SavedTieringData.RiskPriceValueUse ~= this.UsageDD.Value || ...
this.SavedTieringData.CriticalUse ~= this.CriticalUseDD.Value || ...
this.SavedTieringData.Exposure ~= this.ExposureLevelDD.Value || ...
this.SavedTieringData.Override ~= this.OverrideDD.Value;
if isStale \&\& ~contains(this.RiskTierLabel.Text, "Stale") \&\& ...
this.RiskTierLabel ~= "Unset"
this.RiskTierLabel.Text = string(this.RiskTierLabel.Text) + " (Stale)";
elseif ~isStale \&\& contains(this.RiskTierLabel.Text, "Stale")
this.RiskTierLabel.Text = extractBefore(this.RiskTierLabel.Text, ...
" (Stale)");
end
end
function onCalculateRiskTier(this, ~, ~)
tieringInputs.riskpricevalueflag = this.UsageDD.Value;
tieringInputs.criticalflag = this.CriticalUseDD.Value;
tieringInputs.exposurelevel = this.ExposureLevelDD.Value;
tieringInputs.override = this.OverrideDD.Value;

```
```

        riskTier = mrm.inventory.custom.riskTierTreeSimple(tieringInputs);
        this.RiskTierLabel.Text = riskTier;
        end
    end
    end

```

\section*{Customize Model Summary Table}

Customize the summary table of model data shown in the Inventory Browser by omitting columns, including columns corresponding to the custom data set up in the previous two sections, and reordering any of the columns shown. Implement these customizations as a single subclass of mrm.inventory.model. TableCustomization that must be in a +mrm/+inventory/+custom/ + model folder on the MATLAB path. The class must implement the following methods:
- The constructor must accept a single input consisting of the user-visible headers for the default view of the model table. It must also set properties ColumnVisible, ColumnOrdering and AllHeaders.
- process(this, uit, modellds, client) takes as its inputs the uitable being customized and the ids of the model to be displayed, and performs the required customizations. Client is also supplied for looking up custom data.

The following example code illustrates how this can be done. The resulting table shows only the name and the id of each model from the base product model data, and the exposure level, risk tier and any possible override from the tiering data itself. These columns are also reordered to demonstrate this capability.
classdef TableCustomizationExample < mrm.inventory.model. TableCustomization \%Example to illustrate addition, removal and reordering of summary table \%column.
\% Copyright 2021-2023 The MathWorks, Inc.
```

methods
function this = TableCustomizationExample(parentHeaders)
this.ExtraHeaders = ["Risk Tier", "RiskPrice", "Exposure", "Critical", "Tier overrid
this.AllHeaders = [parentHeaders, this.ExtraHeaders];
baseVisible = [true, true, false]; % 1-2 of visible columns
riskTierVisible = [true, false, true, false, true]; % 3-5 of visible columns
this.ColumnVisible = [baseVisible, riskTierVisible];
this.ColumnOrdering = [2 1 3 5 4]; % for visible columns only
end
function uit = process(this, uit, modelIds, client)
arguments
this
uit matlab.ui.control.Table
modelIds(1,:) string
client
end
% Step 1: Read the risk tiering data for all the modelIds from
% the client.
tieringDataType = client.getReferenceTypeByName("RiskTieringData");

```
```

            tieringData = arrayfun(@(id)client.getReferenceByModelAndType(id, ...
            tieringDataType.GUID), modelIds);
                % Step 2: Arrange this to extraModelTable table with columns
                % corresponding to this.ExtraHeaders
                [tiers, materialUseFlags, exposures, criticalUseFlags, overrides] = ...
                arrayfun(@(ref)readRiskTierData(ref), tieringData);
            extraModelData = table(tiers', materialUseFlags', exposures', ...
                criticalUseFlags', overrides', 'VariableNames', ...
                ["riskTier", "riskPriceValue", "exposure", "critical", "override"]);
                % Step 3: Concatenate this with uit.Data:
                    uit.Data = [uit.Data, extraModelData];
                    uit.ColumnName = this.AllHeaders;
                % Step 4: Use the helper methods from TableCustomization base
                % to reset the visibility and the ordering of the columns.
                this.setVisibility(uit);
                this.setOrdering(uit);
            end
    end
    end
function [tier, materialuseflag, exposure, criticaluseflag, override] = readRiskTierData(ref)
tier = string(ref.Attributes.RiskTier);
materialuseflag = string(ref.Attributes.RiskPriceValueUse);
exposure = string(ref.Attributes.Exposure);
criticaluseflag = string(ref.Attributes.CriticalUse);
override = string(ref.Attributes.Override);
end

```

\section*{Create Custom Filters}

Inventory Browser is equipped with an interactive UI for creating filters to limit the list of models shown in the Models table. These filters make no distinction between data included in the default view and columns added as part of customization process. You can, for example, construct a filter to show only models with a 'High' risk tier.

Inventory Browser has two filters in the "Saved Filters" list of the filter editor: "Search by Name", which allows you to filter by the model name, and "Create Custom Filter", which shows a more complex filter, intended as a template for creating more complicated queries.

This section shows you how to create new filters and how to add them to the "Saved Filters" list.
To customize your own filters, implement new filters as subclasses of mrm.inventory.model.filter.FilterDefinition with the following properties.
- Name () must carry a string that is to be displayed in the Filter dropdown - for example "Filter by Risk Tier"
- Serialization must carry the default initialization of the filters as a JSON string

To understand the format of the serialization JSON, see mrm.inventory.model.filter. FilterByName for simple ("Primitive") filters that reference just a single column and see the default serialization in mrm.inventory.model.filter.CustomFilterTemplate for more complex ("Composite") filters.

To make the filters visible, implement a function called modelFilters in a \(+\mathrm{mrm} /+\) inventory/ +custom/+model/ folder on the MATLAB path. This function must take no inputs, and it must return a row array of all the filters you want to include in the Saved Filters list.

The code below illustrates this. Note that the modelFilters output can include a mixture of custom filters and filters shipped with Modelscape itself.
```

function filters = modelFilters()
%Example filter selection customization
% Copyright 2022-2023 The MathWorks, Inc.
filters = [ mrm.inventory.model.filter.FilterByName, ...
mrm.inventory.custom.model.filter.FilterByRiskTier, ...
mrm.inventory.model.filter.CustomFilterTemplate];
end

```

In the filter implementation, the variable name in uit. Data may be different from the user-visible header shows in the Inventory - here riskTier vs user-visible "Risk Tier". The implementation does not need to reside in any package folder, but it makes sense to have all customization code in a single location, so use +mrm/+inventory/+custom/+model/+filter here.
```

classdef FilterByRiskTier < mrm.inventory.model.filterDefinition
% Example defintion for filtering by risk tier in Modelscape Inventory
% Copyright 2022-2023 The MathWorks, Inc.
methods
function this = FilterByRiskTier()
this.name = "Filter by Risk Tier";
this.Serialization = ['{"type":"Primitive","header":"riskTier",', ...
'"operation":"CONTAINS","value":"","parent":[],"id":"1"}'];
end
end
end

```

\section*{Test Metrics in Modelscape}

This example shows how to implement various test metrics in MATLAB® using Modelscape \({ }^{\mathrm{TM}}\).
For information about test metrics from the model developer's or validator's point of view, see "Credit Scorecard Validation Metrics" on page 5-48 or "Fairness Metrics in Modelscape" on page 5-26.

\section*{Write Test Metrics}

The basic building block of Modelscape metrics framework is the mrm.data.validation. TestMetric class. This class defines the following properties:
- Name: a human-readable name for the test metric.
- ShortName: a concise name for accessing metrics in MetricsHandler objects. This name must be a valid MATLAB property name.
- Value: the value(s) carried by the metric. The values can be a scalar or a row vector of doubles.
- Keys: an n-by-m array of strings that parametrize the values of the metric. \(m\) is the length of Value. The keys default to an empty string.
- KeyNames: a vector of strings of size of the height of Keys. It defaults to "Key".
- Diagnostics: a free form struct carrying any diagnostics related to the calculation of the metric.

Any subclass of TestMetric must implement a constructor and a compute method to fill in these values.

For example, the Modelscape statistical parity difference (SPD) metric for bias detection has Name "Statistical Parity Difference" and ShortName "StatisticalParityDifference". The following table shows how the Keys and KeyNames are arranged.
\begin{tabular}{|c|c|c|}
\hline SensitiveAttribute & Group & StatisticalParityDifference \\
\hline "AgeGroup" & "45 < Age <= 60" & 0 \\
\hline "AgeGroup" & "Age > 60" & -0.21242 \\
\hline "AgeGroup" & "30 < Age <= 45" & 0.42456 \\
\hline "AgeGroup" & "Age <= 30" & 0.54197 \\
\hline "ResStatus" & "Tenant" & 0.080908 \\
\hline "ResStatus" & "Home Owner" & 0 \\
\hline "ResStatus" & "Other" & -0.11961 \\
\hline "OtherCC" & "Yes" & 0 \\
\hline "OtherCC" & "No" & 0.19661 \\
\hline
\end{tabular}

Here "SensitiveAttribute" and "Group" are the KeyNames, and the two columns with certain attributegroup combinations are the Keys. The ShortName appears as the third header, and the third column of the table carries the Value of the metric.

The base class has the following overridable methods:
- ComparisonValue(this): use this method to change the value against which thresholds are compared - for example, in statistical hypothesis testing, this should return the p-value associated to the computed statistic.
- formatResult(this) : returns by default a table as shown above for the SPD metric.
- project(this): returns a restriction of a (non-scalar) metric to a subset of keys. Extend the default implementation in a subclass to cover any diagnostic or auxiliary data carried by the subclass objects.

\section*{Write Metrics With Visualizations}

To write test metrics equipped with visualizations, the metrics should inherit from mrm.data.validation.TestMetricWithVisualization. This class adds an additional requirement to the TestMetric base class to implement a visualization method with the signature fig = visualize(this, options). options allows for any name value arguments that may be useful for the given metric. For example, use a particular sensitive attribute with the StatisticalParityDifference metric for visualization.
```

spdFig = visualize(spdMetric, "SensitiveAttribute","ResStatus");

```


\section*{Write Metrics Projecting onto Selected Keys}

The visualization above shows the SPD metrics for the ResStatus attribute only. This plot uses the project method of the TestMetric class that uses selected keys of a metric. For a metric with N key names, project accepts an array of up to N strings as the Keys argument. The output restricts
the metric to those keys where the first key matches the first element of the array, the second key matches the second element of the array, and so on.
spdResStatus = project(spdMetric, "Keys", "ResStatus")
returns:
```

StatisticalParityDifference with properties:
ShortName: "StatisticalParityDifference"
Name: "Statistical Parity Difference"
Value: [0.0809 0 -0.1196]
Diagnostics: [1\times1 struct]
Keys: ["ResStatus|Tenant" "ResStatus|Home Owner" "ResStatus|Other"]
KeyNames: "ResStatus|Group"

```

On specifying both keys, the results is a scalar metric:
```

spdTenant = project(spdMetric, "Keys", ["ResStatus", "Tenant"])
StatisticalParityDifference with properties:
ShortName: "StatisticalParityDifference"
Name: "Statistical Parity Difference"
Value: 0.0809
Diagnostics: [1\times1 struct]
Keys: "ResStatus|Tenant"
KeyNames: "ResStatus|Tenant"

```

The base class implementation of project does not handle diagnostics or other auxiliary data carried by the subclass. If necessary, implement this in the subclass using the secondary keySelection output in project.

\section*{Write Summarizable Metrics}

Summary metrics reveal a different aspect of non-scalar metrics. In the case of the SPD metric, across all the attribute-group pairs, the "summary" SPD value is the value with the largest deviation from the completely non-biased value of zero.
spdSummary = summary(spdMetric)
returns:
```

StatisticalParityDifference with properties:
ShortName: "StatisticalParityDifference"
Name: "Statistical Parity Difference"
Value: 0.5420
Diagnostics: [l×1 struct]
Keys: "Summary"
KeyNames: ""

```

Summarize a given TestMetric class by inheriting from
mrm.data.validation.TestMetricWithSummaryValue class and implementing the abstract summary method. This returns a metric of the same type with a singleton Value. The meaning of the summary value - if it exists- depends on the metric, so there is no default implementation for this method. However, the protected summaryCore method in TestMetricWithSummaryValue may be helpful.

\section*{Write Test Thresholds}

Test metrics are often compared against thresholds to qualitatively assess of the inputs. For example, a model validator might require that the area under ROC curve should be at least 0.8 for the model to be deemed acceptable, values under 0.7 are red flags, and values between 0.7 and 0.8 require a closer look.

Use Modelscape class mrm.data.validation.TestThresholds to implement these thresholds. Encode the thresholds and classifications into a TestThresholds object.
```

aurocThresholds = mrm.data.validation.TestThresholds([0.7, 0.8], ["Fail", "Undecided", "Pass"]);
TestThresholds with properties:
Thresholds: [0.7000 0.8000]
Labels: ["Fail" "Undecided" "Pass"]

```

These thresholds and labels govern the output of the status method of TestThresholds. For example, status(aurocThresholds, 0.72) returns the following.
```

TestStatus with properties:
Status: "Undecided"
Comment: "(0.7, 0.8]"
Diagnostics: [1*1 struct]

```

Comment indicates the interval to which the given input belongs.

\section*{Customize Thresholds}

Implement thresholding regimes, with different narrative strings as Comments, or different diagnostics, as subclasses of mrm.data.validation. TestThresholdsBase. Implement the status method of the class to populate the Comment and Diagnostics properties as required.

\section*{Write Statistical Hypothesis Tests}

In some cases, notably in statistical hypothesis testing, the relevant quantity to compare against test thresholds is the associated \(p\)-value (under some relevant null hypothesis). In these cases, use the test metric class to override the ComparisonValue method and return the p-value instead of the Value of the metric. For an example, see the Modelscape implementation of the Augmented DickeyFuller test.
edit mrm.data.validation.timeseries.ADFMetric
Set the thresholds against which to compare the p-values.
adfThreshold = mrm.data.validation. PValueThreshold(0.05)
PValueThreshold with properties:

Threshold: 0.0500
Labels: ["Reject" "Accept"]

This TestThresholds object returns status as "Reject" for \(p\)-values less than 0.05 and "Accept" otherwise.

\section*{Inventory Browser}

Create Modelscape models and add dependencies

\section*{Description}

Use the Inventory Browser app to create Modelscape models and add dependencies between models.

Modelscape models are quantitative solutions that apply statistical, economic, or other techniques to given inputs to produce an output. You can use these outputs to guide pricing or other business decisions. Modelscape models must be backed by a Git repository and associated with a lifecycle.

Each Modelscape model has multiple model versions. Model versions are committed updates of a Modelscape model. For example, Probability of Default for Retail Credit in Europe is a Modelscape model, and its 2015 and 2020 versions are the model versions. While a Modelscape model corresponds to a Git repository, a model version refers to a Git commit.

Use the model inventory browser app to create new Modelscape models and add dependencies between models.

\section*{Open the Inventory Browser App}
- Launch the Inventory Browser app from the Modelscape Home page. To host Modelscape for your organization, contact MathWorks Consulting Services.

\section*{Examples}

\section*{Create New Model}

Create a new model by clicking New Model on the menu. Associate the model with a lifecycle. To create a lifecycle for your model, see the Lifecycle Designer app.

Add the model name and other relevant fields.
Click Create to create the model. The table of models on the left shows the new model.

\section*{Launch Model in Browser}

Select a row in the Models table and click Browser under the Launch Model dropdown.
If the model has a valid repository URL, the app launches a browser that displays the repository.

\section*{Update Model Details}

On the left of the app, in the table of models, double-click the row containing the model you want to update. The app opens the details windows associated with the model.

Update the fields you want to modify.
Click Update to save your changes.

\section*{Add Dependencies Between Models}

Add dependencies between two or more Modelscape models in Inventory Browser.
Dependencies show the links between Modelscape models. When two Modelscape models are linked together by a dependency arrow, the model near the upstream link (at the head of the arrow) takes inputs from the outputs of the model near the downstream link (at the tail of the arrow).

You can also create dependencies between Modelscape models and data, or between models and Modelscape references. Modelscape references are the files or information that you can associate with a Modelscape model, model version, or Review document.

Click the Model Dependencies tab to show the existing dependencies between models.
Select upstream and downstream dependencies for the model and click Add. Alternatively, click the upstream model and hold Ctrl while you click the downstream model.

Click Save to save the dependency diagram.

\section*{Version History}

Introduced in R2023a

\section*{See Also}

\section*{Functions}

Topics
"Modelscape Governance" on page 5-4

\section*{Lifecycle Designer}

Create and edit lifecycles in Modelscape

\section*{Description}

Use the Lifecycle Designer app to create new lifecycles and edit existing lifecycles in Modelscape.
Each Modelscape model must be associated with a lifecycle and have multiple model versions. Modelscape models are quantitative methods that apply statistical, economic, or other techniques to given inputs to produce an output. A Modelscape model corresponds to a Git repository. A model version refers to a Git commit.

A lifecycle represents the steps of a model version from drafting and proposal to retiring and decommissioning. At any time, each model version is in one specific state of the model lifecycle. Using this app, you can:
- Create a new model lifecycle
- Open, view, and edit existing lifecycles

\section*{Open the Lifecycle Designer App}
- Launch the Lifecycle Designer app from the Modelscape Home page. To host Modelscape for your organization, contact MathWorks Consulting Services.

\section*{Examples}

\section*{Create New Lifecycle}

Create a new lifecycle in Lifecycle Designer by selecting the New button on the menu.

To add a new state to the lifecycle, drag the State button to the corresponding location in the app. You can rename the state by double-clicking its text box.

To add a new decision to the lifecycle, drag the Task button to the corresponding location in the app. You can rename the task by double-clicking its text box.

Add connections between the different stages of the lifecycle. To add a connection from stage 1 to stage 2, click stage 1 and then hold \(\mathbf{C t r l}\) while you click stage 2 .

To group different stages, drag a swimlane to cover the stages you want to group. You can also click and drag your mouse to select stages and click Group on the menu.

To ungroup stages in a swimlane, select the swimlane and click Ungroup on the menu.
To save your lifecycle for the first time, click Save As . . . under the Save dropdown menu. If you continue editing the lifecycle and want to save it under the same name, click Save under the Save dropdown menu.

\section*{Open and Edit Existing Lifecycle}

Open, view, and edit a preexisting lifecycle in Lifecycle Designer.
Open an existing lifecycle by clicking the Open dropdown button on the menu and clicking the corresponding lifecycle.

Edit the lifecycle by adding or deleting new stages, grouping or ungrouping elements in swimlanes, and adding or removing connections between stages. When you are finished, save the lifecycle by clicking Save under the Save dropdown menu.

\section*{Version History}

Introduced in R2023a

\section*{See Also}

\section*{Functions}

\section*{Topics}
"Modelscape Governance" on page 5-4

\section*{Review Editor}

Validate Modelscape models and submit reviews

\section*{Description}

Use the Review Editor app to validate and add reviews to Modelscape models.
After a model developer in your organization develops a model, that model can be proposed to be deployed for production. However, you must validate the model version first. You can validate the model version using the Review Editor app. Use the app to explore data and analyze the model version. You can record anomalies or observations related to models, make an appropriate closure measure, and export the findings to a PDF file. Use the app to perform any of these tasks:
- Open, view, and run models.
- Attach supporting documents.
- Make a review decision.

\section*{Open the Review Editor App}
- To launch the Review Editor app, open the Modelscape Home page. To host Modelscape for your organization, contact MathWorks Consulting Services. On the Home page, click Models on the navigation bar and open the version of the model you want to review. Open the Review Editor app to review a specific model version by clicking Open Review next to the model version.

\section*{Examples}

\section*{Analyze Model Version}

Create a new live script by clicking the New Script button on the menu.
Use the live scripts to explore data and analyze the model versions. For instance, you can perform what-if analyses, which include changing the model parameters, using different fitting methods, and observing changes in the model performance.

To perform these analyses, you can use the suite of metrics in Modelscape. For more details, see "Fairness Metrics in Modelscape" on page 5-26. You can use these metrics to analyze the bias in your models.

You can also write scripts to implement model validation suites. For an example that shows how to validate a probability-of-default model, see "Credit Scorecard Validation Metrics" on page 5-48. This example shows how to use the techniques in the BCBS Working Paper 14.

If your model version uses a programming language other than MATLAB, you can still use the validation tools from Modelscape. For more information, see "Validation of External Models" on page 5-60.

For an example that shows how to validate credit models using the European Central Bank template, see "Validation of Credit Models in ECB Templates" on page 5-57.

After you perform your analyses, save your work by clicking New Revision and describing your changes.

\section*{Attach Documents to Review}

To attach documents, click Explore on the menu, and upload file attachments using the Upload button. You can attach recommendations for improvement, evidence of model performance reports you generate outside the app, detailed model validation documents, and supporting scripts.

By default, the Review Editor attaches files to the model repository. The location to which you save documents is customizable at an organizational level. See "Extensibility" on page 5-15 for more details.

\section*{Make Review Decision}

Finish your review by using the submit button and sign-off your form in the app. You can customize the Submit Review dropdown and sign-off forms based on the needs of your organization. For more details, see "Extensibility" on page 5-15.

By default, the Review Editor app provides a full review form and a reduced review form. Use the reduced review form to approve the model if the changes are trivial. If the changes are not trivial and have a significant material impact, for example on the value of trade, use the full review form.

You can choose to approve or reject the model version. The next stages depend on the model lifecycle. If you do not approve the model version, it could be sent back to the developer. If you approve the model version, it could be sent to production and deployment.
- "File Attachments in Modelscape Review Editor" on page 5-68
- "Customization of Signoff Forms in Review Editor" on page 5-70
- "Fairness Metrics in Modelscape" on page 5-26
- "Credit Scorecard Validation Metrics" on page 5-48
- "Metrics Handlers" on page 5-45
- "Validation of External Models" on page 5-60
- "Validation of Credit Models in ECB Templates" on page 5-57

\section*{Version History}

\section*{Introduced in R2023a}

\section*{See Also}

Topics
"File Attachments in Modelscape Review Editor" on page 5-68
"Customization of Signoff Forms in Review Editor" on page 5-70
"Fairness Metrics in Modelscape" on page 5-26
"Credit Scorecard Validation Metrics" on page 5-48
"Metrics Handlers" on page 5-45
"Validation of External Models" on page 5-60
"Validation of Credit Models in ECB Templates" on page 5-57
"Modelscape Validate" on page 5-9

\section*{Remove Risk Factors}

Remove or include data and record reasons in Modelscape

\section*{Description}

Use the Modelscape Remove Risk Factors task to remove or include variables from a data table and record the corresponding reasons. Not all the data in the table is necessarily usable for a statistical model. For example, randomized user identifiers (IDs) are often irrelevant, legally sensitive data such as ethnic origin or religious beliefs cannot be used, and some data can be of poor quality. The task automatically generates MATLAB code for your live script. This task requires the Modelscape for MATLAB support package.

Using this task, you can:
- Inspect summary statistics and histograms for variables in a data table.
- Remove variables from a data table and record the corresponding reason for exclusion.
- Record reasons for including variables in a data table.
- Export the resulting subtables to MATLAB desktop.

For general information about Live Editor tasks, see "Add Interactive Tasks to a Live Script".

\section*{Open the Remove Risk Factors}

To add the Threshold Predictors task to a live script in the MATLAB Editor:
- On the Live Editor tab, select Task > Remove Risk Factors.

- In a code block in the script, type a relevant keyword, such as remove. Select Remove Risk Factors from the suggested command completions.
```

remove Risk Factors

```
\begin{tabular}{|ll|}
\hline Remove Trends & Remove polynomial trend from data \\
\hline Rembe \(^{-3}\) & Remove Risk Factors
\end{tabular} Remove variables from a table based on uni...

\section*{Examples}
- "Remove Risk Factors" on page 5-22

\section*{Parameters}

Input table - Table of input data to inspect
table of input data containing variables to inspect
Input table must be a MATLAB table or a timetable. The columns of Input table contain the variables for different data points, for example, Residence Status or Customer ID.

Filtered table - Display table of filtered variables
check box to display subtable with excluded variables
Check the Filtered table check box to display the subtable after excluding the removed variables. The filtered table contains the columns from the Input table without the variables that you mark for exclusion.

Preview summary tables - Display tables of summary
check box to display two tables with summaries of variables and progress
Check the Preview summary tables check box to display two tables of additional information about the feature selection process. The exclusionSummaryPreview table includes all the data of the input table together with the exclusion flags and comments that you record in the task. The progressSummaryPreview table shows the total number of variables that are present, excluded, included, and commented against.

\section*{Version History}

Introduced in R2021b

\section*{Topics}
"Remove Risk Factors" on page 5-22

\section*{Screen Risk Factors}

Remove risk factors from data in Modelscape

\section*{Description}

Use the Modelscape Screen Risk Factors task to automatically remove risk factors from a data table based on their predictive power relative to a binary response variable. Feature selection is an important step in the development of a statistical model. Input data can have hundreds or thousands of variables, and discarding some variables often improves model interpretability, training times, and other important attributes. The task automatically generates MATLAB code for your live script. This task requires the Modelscape for MATLAB support package.

Using this task, you can:
- Inspect summary statistics and histograms for variables in a data table.
- Use customizable screening criteria to analyze the predictive power of variables.
- Remove variables from a data table and record the corresponding reason for exclusion.
- Record reasons for including variables in a data table.
- Export the resulting subtables to MATLAB desktop.

For general information about Live Editor tasks, see "Add Interactive Tasks to a Live Script".

\section*{Open the Screen Risk Factors}

To add the Threshold Predictors task to a live script in the MATLAB Editor:
- On the Live Editor tab, select Task > Screen Risk Factors.

- In a code block in the script, type a relevant keyword, such as screen. Select Screen Risk Factors from the suggested command completions.
```

screen/ Risk Factors
Screen Risk Factors Remove variables from a table based on cus
\#creeningCriteria 1*1 mrm.data selection.ScreeningCriteria
fx screenpredictors Screen credit scorecard predictors for predic

# Remove Risk Factors Remove variables from a table based on uni.

```

\section*{Examples}
- "Screen Risk Factors by Custom Criteria" on page 5-30

\section*{Parameters}

Input table - Table of input data to inspect
table of input data containing variables to inspect
Input table must be a MATLAB table or a timetable. The columns of Input table contain the variables for different data points, for example, Residence Status or Customer ID.

Response variable - Binary variable in table
binary variable to use for prediction
Response variable must be a binary variable in the input table. The task evaluates the risk factors in the input data table based on their power to predict this response variable.

Criteria - Screening criteria to apply to input variables
screeningCriteria object
Criteria must be an object containing the criteria against which to screen the input variables. You can use the predefined criteria or customize your own screening criteria. For more details, see "Screen Risk Factors by Custom Criteria" on page 5-30.

Filtered table - Display table of filtered variables
check box to display subtable with excluded variables
Check the Filtered table check box to display the subtable after excluding the removed variables. The filtered table contains the columns from the Input table without the variables that you mark for exclusion.

Preview summary tables - Display tables of summary
check box to display two tables with summaries of variables and progress
Check the Preview summary tables check box to display two tables of additional information about the feature selection process. The exclusionSummaryPreview table includes all the data of the input table together with the exclusion flags and comments that you record in the task. The progressSummaryPreview table shows the total number of variables that are present, excluded, included, and commented against.

\author{
Version History \\ Introduced in R2021b \\ Topics \\ "Screen Risk Factors by Custom Criteria" on page 5-30
}

\section*{checkModel}

Check Modelscape model validity

\section*{Syntax}
```

result = mrm.execution.checkModel(model,inputData)
result = mrm.execution.checkModel(model,inputData,parameterData)

```

\section*{Description}
result = mrm.execution.checkModel(model,inputData) checks the validity of a Modelscape model by creating several test methods. The function determines whether the Modelscape model has the right shape for the input of the original model. The function returns the result of the tests in result. This function requires the Modelscape for MATLAB support package.
result \(=\) mrm.execution. checkModel(model,inputData, parameterData) specifies additional parameters for the model.

\section*{Examples}

\section*{Check Validity of Modelscape implementation of Generalized Linear Model (GLM)}

Create a Modelscape model as a subclass of the mrm.execution. Model class.
The model takes the inputs X 1 , and X 2 , as well as an optional parameter intercept. The function computes the output Y as the value of \(\exp (i n t e r c e p t+a l p h a 1 * X 1+a l p h a 2 * X 2)\).

The Modelscape model must also implement three methods for specifying the inputs and the outputs of the model: getInputs, getParameters, and getOutputs. For more details, see the "Model Implementation for Modelscape Deploy" on page 5-74
```

classdef glmModel < mrm.execution.Model
% implement simple GLM with two inputs X1 and X2 that computes
% Y = exp(intercept + alpha1*X1 + alpha2*X2)
properties
alpha1 = 1
alpha2 = 2
end
methods
function parameters = getInputs(~)
doubleDatatype = struct( ...
"name", "double");
parameters = struct(
"name", {"X1","X2"}, ...
"dataType", {doubleDatatype, doubleDatatype});
end

```
```

    function parameters = getParameters(~)
        doubleDatatype = struct( ...
            "name", "double");
        parameters = struct(
            "name", {"intercept"}, ...
            "dataType", {doubleDatatype});
        end
        function parameters = getOutputs(~)
        doubleDatatype = struct( ...
            "name", "double");
    parameters = struct( ...
            "name", {"Y"}, ...
            "dataType", {doubleDatatype});
    end
function [outputs,diagnostics,batchDiagnostics] = evaluate(this,inputs,parameters)
outputs = table( ...
exp(parameters.intercept + this.alpha1*inputs.X1 + this.alpha2*inputs.X2), ...
'VariableNames', {'Y'}, ...
'RowNames', inputs.Properties.RowNames);
rawDiagnostics = [inputs.Properties.RowNames repmat({struct()} numel(inputs.Properti
diagnostics = struct(rawDiagnostics{:});
batchDiagnostics = struct();
end
end
end

```

Validate the custom model.
```

result = mrm.execution.checkModel(model, inputData, parameterData);

```

\section*{Input Arguments}

\section*{model - Modelscape model}
subclass of mrm.execution. Model
Modelscape model, specified as a subclass of the mrm.execution. Model class. This model must also implement three methods for specifying the inputs and the outputs of the model: getInputs, getParameters, and getOutputs. For more details, see "Model Implementation for Modelscape Deploy" on page 5-74.

\section*{inputData - Original model inputs \\ table}

Original model inputs, specified as a table.
Data Types: table
parameterData - Original model parameters
structure
Original model parameters, specified as a structure.
Data Types: struct

\section*{Output Arguments}
```

result - Test results
matlab.unittest.TestResult class

```

Test results, returned as a matlab. unittest. TestResult class. The results include information describing whether the test pass, fail, or run to completion, as well as the duration of each test.

\section*{Version History}

Introduced in R2023a

\section*{See Also}
"Modelscape Deploy" on page 5-13

\section*{Topics}
"Model Implementation for Modelscape Deploy" on page 5-74

\section*{packageModel}

Create Docker image of Modelscape model

\section*{Syntax}
```

imageName = mrm.execution.compiler.packageModel(model)
imageName = mrm.execution.compiler.packageModel(model,Name=Value)

```

\section*{Description}
imageName = mrm.execution.compiler. packageModel(model) creates a Docker image of the model model. This function requires the Modelscape for MATLAB support package.
imageName = mrm.execution.compiler.packageModel(model,Name=Value) specifies options using one or more name-value arguments in addition to the input argument in the previous syntax.

\section*{Examples}

\section*{Create Docker Image of Modelscape Model}

Create a Modelscape model.
Specify the model name and the location and tag of the image.
Create a Docker image of the model, specifying the model name and version.
```

imageName = mrm.execution.compiler.packageModel(modelInstance,
Name="weighted-sum",
Tag="v1");

```

\section*{Input Arguments}

\section*{model - Modelscape model}
subclass of mrm.execution.Model
Modelscape model, specified as a subclass of the mrm.execution. Model class. This model must also implement three methods for specifying the inputs and the outputs of the model: getInputs, getParameters, and getOutputs. For more details, see "Model Implementation for Modelscape Deploy" on page 5-74.

\section*{Name-Value Arguments}

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

\author{
Registry - Registry of Docker Image \\ ' ' (default) | character vector | string scalar
}

Registry of the Docker image name, specified as a character vector or string scalar. The function creates a Docker image with a name in the format Registry/Repository/Name:Tag.
Data Types: char|string
Repository - Repository of Docker Image
' ' (default) | character vector | string scalar
Repository of the Docker image name, specified as a character vector or string scalar. The function creates a Docker image with a name in the format Registry/Repository/Name:Tag.
Data Types: char|string

\section*{Name - Name of Docker Image}

Modelscape model class name (default)| character vector| string scalar
Name of the Docker image, specified as a character vector or string scalar. The function creates a Docker image with a name in the format Registry/Repository/Name:Tag.

Data Types: char|string

\section*{Tag - Tag of Docker Image}
' ' (default) | character vector | string scalar
Tag of the Docker image name, specified as a character vector or string scalar. The function creates a Docker image with a name in the format Registry/Repository/Name:Tag.

Data Types: char|string

\section*{Output Arguments}
```

imageName - Name of Docker image
string scalar

```

Name of the Docker image in the local Docker registry, returned as a string scalar.

\section*{Version History \\ Introduced in R2023a}

\section*{See Also}
"Modelscape Deploy" on page 5-13

\section*{Topics}
"Model Implementation for Modelscape Deploy" on page 5-74

Functions

\section*{Binning Explorer}

Bin data and export into a creditscorecard object

\section*{Description}

The Binning Explorer app enables you to manage binning categories for a creditscorecard object. Use screenpredictors to pare down a potentially large set of predictors to a subset that is most predictive of the credit score card response variable. You can then use this subset of predictors when creating a MATLAB table of data. After creating a table of data in your MATLAB workspace, or after using creditscorecard to create a creditscorecard object, use the Binning Explorer to:
- Select an automatic binning algorithm with an option to bin missing data. (For more information on algorithms for automatic binning, see autobinning.)
- Shift bin boundaries.
- Split bins.
- Merge bins.
- Save and export a creditscorecard object.

\section*{Open the Binning Explorer App}
- MATLAB toolstrip: On the Apps tab, under Computational Finance, click the app icon.
- MATLAB command prompt:
- Enter binningExplorer to open the Binning Explorer app.
- Enter binningExplorer(data) or binningExplorer(data, Name, Value) to open a table in the Binning Explorer app by specifying a table (data) as input.
- Enter binningExplorer(sc) to open a creditscorecard object in the Binning Explorer app by specifying a creditscorecard object (sc) as input.

To access Help for the App, click the Help icon on the toolbar.

\section*{Examples}
- "Overview of Binning Explorer" on page 3-2
- "Feature Screening with screenpredictors" on page 3-64
- "Common Binning Explorer Tasks" on page 3-4
- "Bin Data to Create Credit Scorecards Using Binning Explorer" on page 3-23
- "Case Study for Credit Scorecard Analysis"
- "Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36

\section*{Version History \\ Introduced in R2016b}

\section*{See Also}

\section*{Functions}
screenpredictors|creditscorecard|autobinning

\section*{Topics}
"Overview of Binning Explorer" on page 3-2
"Feature Screening with screenpredictors" on page 3-64
"Common Binning Explorer Tasks" on page 3-4
"Bin Data to Create Credit Scorecards Using Binning Explorer" on page 3-23
"Case Study for Credit Scorecard Analysis"
"Stress Testing of Consumer Credit Default Probabilities Using Panel Data" on page 3-36
"Overview of Binning Explorer" on page 3-2
"Credit Scorecard Modeling Workflow"

\section*{External Websites}

Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

\section*{asrf}

Asymptotic Single Risk Factor (ASRF) capital

\section*{Syntax}
[capital, VaR] = asrf(PD,LGD,R)
[capital,VaR] = asrf(__, Name,Value)

\section*{Description}
[capital, VaR] = asrf(PD,LGD,R) computes regulatory capital and value-at-risk using an ASRF model.

The ASRF model is useful because the Basel II documents propose this model as the standard for certain types of capital requirements. ASRF is not a Monte-Carlo model, so you can quickly compute the capital requirements for large credit portfolios. You can use the ASRF model to perform a quick sensitivity analysis and exploring "what-if" scenarios more easily than rerunning large simulations.
[capital,VaR] = asrf(__, Name,Value) adds optional name-value pair arguments.

\section*{Examples}

\section*{Compute Necessary Capital Using an ASRF Model}

Load saved portfolio data.
```

load CreditPortfolioData.mat

```

Compute asset correlation for corporate, sovereign, and bank exposures.
```

R = 0.12 * (1-exp(-50*PD)) / (1-exp(-50)) +...
0.24 * (1 - (1-exp(-50*PD)) / (1-\operatorname{exp}(-50)));

```

Compute the asymptotic single risk factor capital. By specifying the name-value pair argument for EAD, the capital is returned in terms of currency.
```

capital = asrf(PD,LGD,R,'EAD',EAD);

```

Apply a maturity adjustment.
```

b = (0.11852 - 0.05478 * log(PD)).^2;
matAdj = (1 + (Maturity - 2.5) .* b) ./ (1 - 1.5 * b);
adjustedCapital = capital .* matAdj;
portfolioCapital = sum(adjustedCapital)
portfolioCapital = 175.7865

```

\section*{Input Arguments}

\section*{PD - Probability of default}
numeric vector with elements from 0 to 1
Probability of default, specified as a NumCounterparties-by-1 numeric vector with elements from 0 to 1 , representing the default probabilities for the counterparties.
Data Types: double

\section*{LGD - Loss given default}
numeric vector with elements from 0 to 1
Loss given default, specified as a NumCounterparties-by-1 numeric vector with elements from 0 to 1 , representing the fraction of exposure that is lost when a counterparty defaults. LGD is defined as (1 - Recovery). For example, an LGD of 0.6 implies a \(40 \%\) recovery rate in the event of a default.

Data Types: double

\section*{R - Asset correlation}
numeric vector
Asset correlation, specified as a NumCounterparties-by-1 numeric vector.
The asset correlations, R , have values from 0 to 1 and specify the correlation between assets in the same asset class.

Note The correlation between an asset value and the underlying single risk factor is sqrt(R). This value, \(\operatorname{sqrt}(R)\), corresponds to the Weights input argument to the creditDefaultCopula and creditMigrationCopula classes for one-factor models.

\section*{Data Types: double}

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Namel=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: capital = asrf(PD,LGD,R,'EAD',EAD)

\section*{EAD - Exposure at default}

1 (default) | numeric vector
Exposure at default, specified as the comma-separated pair consisting of 'EAD ' and a NumCounterparties-by-1 numeric vector of credit exposures.

If EAD is not specified, the default EAD is 1, meaning that capital and VaR results are reported as a percentage of the counterparty's exposure. If EAD is specified, then capital and VaR are returned in units of currency.
Data Types: double

\section*{VaRLevel - Value at risk level}
0.999 (99.9\%) (default) | decimal value between 0 and 1

Value at risk level used when calculating the capital requirement, specified as the comma-separated pair consisting of 'VaRLevel' and a decimal value between 0 and 1.

Data Types: double

\section*{Output Arguments}

\section*{capital - Capital for each element in portfolio}
vector
Capital for each element in the portfolio, returned as a NumCounterparties-by-1 vector. If the optional input EAD is specified, then capital is in units of currency. Otherwise, capital is reported as a percentage of each exposure.

\section*{VaR - Value-at-risk for each exposure}
vector
Value-at-risk for each exposure, returned as a NumCounterparties-by-1 vector. If the optional input EAD is specified, then VaR is in units of currency. Otherwise, VaR is reported as a percentage of each exposure.

\section*{More About}

\section*{ASRF Model Capital}

In the ASRF model, capital is defined as the loss in excess of the expected loss (EL) at a high confidence level.

The formula for capital is
```

capital = VaR - EL

```

\section*{Algorithms}

The capital requirement formula for exposures is defined as
\[
\begin{aligned}
& V a R=E A D * L G D * \Phi\left(\frac{\Phi^{-1}(P D)-\sqrt{R} \Phi^{-1}(1-\text { VaRLevel })}{\sqrt{1-R}}\right) \\
& \text { capital }=V a R-E A D * L G D * P D
\end{aligned}
\]
where
\(\phi\) is the normal CDF.
\(\phi^{-1}\) is the inverse normal CDF.
\(R\) is asset correlation.
EAD is exposure at default.
PD is probability of default.

LGD is loss given default.

\section*{Version History}

Introduced in R2017b

\section*{References}
[1] Basel Committee on Banking Supervision. "International Convergence of Capital Measurement and Capital Standards." June, 2006 (https://www.bis.org/publ/bcbs128.pdf).
[2] Basel Committee on Banking Supervision. "An Explanatory Note on the Basel II IRB Risk Weight Functions." July, 2005 (https://www.bis.org/bcbs/irbriskweight.pdf).
[3] Gordy, M.B. "A Risk-Factor Model Foundation for Ratings-Based Bank Capital Rules." Journal of Financial Intermediation. Vol. 12, pp. 199-232, 2003.

\section*{See Also}
creditDefaultCopula| creditMigrationCopula

\section*{Topics}
"Calculating Regulatory Capital with the ASRF Model" on page 4-59

\section*{bin}

Binomial test for value-at-risk (VaR) backtesting

\section*{Syntax}

TestResults = bin(vbt)
TestResults = bin(vbt,Name,Value)

\section*{Description}

TestResults = bin(vbt) generates the binomial test results for value-at-risk (VaR) backtesting.
TestResults = bin(vbt,Name,Value) adds an optional name-value pair argument for TestLevel.

\section*{Examples}

\section*{Generate Bin Test Results}

Create a varbacktest object.
```

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)
vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x1 double]
PortfolioID: "Portfolio"
VaRID: "VaR"
VaRLevel: 0.9500

```

Generate the bin test results.
```

TestResults = bin(vbt)

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & Bin & ZScoreBin & PValueBin & Observations \\
\hline "Portfolio" & "VaR" & 0.95 & accept & 0.68905 & 0.49079 & 1043 \\
\hline
\end{tabular}

\section*{Run Bin Test for VaR Backtests for Multiple VaRs at Different Confidence Levels}

Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.
```

load VaRBacktestData
vbt = varbacktest(EquityIndex,...
[Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
'PortfolioID','Equity',...
'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])
vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x6 double]
PortfolioID: "Equity"
VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95"
VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

```

Generate the bin test results using the TestLevel optional argument.
```

TestResults = bin(vbt,'TestLevel',0.90)

```


\section*{Input Arguments}

\section*{vbt - varbacktest object}
object
varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating a varbacktest object, see varbacktest.

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = bin(vbt,'TestLevel',0.99)

\section*{TestLevel - Test confidence level}

\subsection*{0.95 (default) | numeric between 0 and 1}

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric between 0 and 1 .

Data Types: double

\section*{Output Arguments}

\section*{TestResults - Bin test results}
table
Bin test results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:
- 'PortfolioID ' - Portfolio ID for given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel ' - VaR level for corresponding VaR data column
- 'Bin' - Categorical array with categories accept and reject that indicate the result of the bin test
- 'ZScoreBin' - Z-score of the number of failures
- 'PValueBin' - P-value of the bin test
- 'Observations' - Number of observations
- 'Failures' - Number of failures.
- 'TestLevel' - Test confidence level.

Note For bin test results, the terms accept and reject are used for convenience, technically a bin test does not accept a model. Rather, the test fails to reject it.

\section*{More About}

\section*{Binomial Test (Bin)}

The bin function performs a binomial test to assess if the number of failures is consistent with the VaR confidence level.

The binomial test is based on a normal approximation to the binomial distribution.

\section*{Algorithms}

The result of the binomial test is based on a normal approximation to a binomial distribution. Suppose:
- \(N\) is the number of observations.
- \(p=1-\) VaRLevel is the probability of observing a failure if the model is correct.
- \(x\) is the number of failures.

If the failures are independent, then the number of failures is distributed as a binomial distribution with parameters \(N\) and \(p\). The expected number of failures is \(N^{*} p\), and the standard deviation of the number of failures is
\[
\sqrt{N p(1-p)}
\]

The test statistic for the bin test is the z-score, defined as:
\[
\text { ZScoreBin }=\frac{(x-N p)}{\sqrt{N p(1-p)}}
\]

The z-score approximately follows a standard normal distribution. This approximation is not reliable for small values of \(N\) or small values of \(p\), but for typical uses in VaR backtesting analyses (\(N=250\) or much larger, \(p\) in the range \(1-10 \%\)) the approximation gives results in line with other tests.

The tail probability of the bin test is the probability that a standard normal distribution exceeds the absolute value of the z-score
\[
\text { TailProbability }=1-F(\mid \text { ZScoreBin } \mid)
\]
where \(F\) is the standard normal cumulative distribution. When too few failures are observed, relative to the expected failures, PValueBin is (approximately) the probability of observing that many failures or fewer. For too many failures, this is (approximately) the probability of observing that many failures or more.

The \(p\)-value of the bin test is defined as two times the tail probability. This is because the binomial test is a two-sided test. If alpha is defined as 1 minus the test confidence level, the test rejects if the tail probability is less than one half of alpha, or equivalently if
\[
\text { PValueBin }=2 * \text { TailProbability }<\text { alpha }
\]

\section*{Version History}

\section*{Introduced in R2016b}

\section*{References}
[1] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

\section*{See Also}
varbacktest|tl|pof|tuff|cc|cci|tbf|tbfi|summary|runtests

\section*{Topics}
"VaR Backtesting Workflow" on page 2-6
"Value-at-Risk Estimation and Backtesting" on page 2-10
"Overview of VaR Backtesting" on page 2-2
"Binomial Test" on page 2-2
"Comparison of ES Backtesting Methods" on page 2-26

\section*{CC}

Conditional coverage mixed test for value-at-risk (VaR) backtesting

\section*{Syntax}

TestResults = cc(vbt)
TestResults = cc(vbt,Name,Value)

\section*{Description}

TestResults \(=c c(v b t)\) generates the conditional coverage (CC) mixed test for value-at-risk (VaR) backtesting.

TestResults = cc(vbt,Name,Value) adds an optional name-value pair argument for TestLevel.

\section*{Examples}

\section*{Generate CC Test Results}

Create a varbacktest object.
load VaRBacktestData
vbt = varbacktest(EquityIndex, Normal95)
vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x1 double]
PortfolioID: "Portfolio"
VaRID: "VaR"
VaRLevel: 0.9500

Generate the cc test results.
```

TestResults = cc(vbt)
TestResults=1\times19 table

```

```

    "Portfolio"
                        "VaR"
    0.95
accept
0.72013
0.69763
accept
0.46147

```

Run the CC Test for VaR Backtests for Multiple VaRs at Different Confidence Levels
Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.
```

load VaRBacktestData
vbt = varbacktest(EquityIndex,...
[Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
'PortfolioID','Equity',...
'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])
vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x6 double]
PortfolioID: "Equity"
VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95"
VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

```

Generate the cc test results using the TestLevel optional input.
```

TestResults = cc(vbt,'TestLevel',0.90)
TestResults=6\times19 table
PortfolioID VaRID VaRLevel CC LRatioCC PValueCC POF
"Equity
"Normal95
0.95
"Equity
"Normal99"
"Equity" "Historical95"
"Equity" "Historical99"
"Equity" "EWMA95"
"Equity" "EWMA99"
-

| LRatioCC | PValueCC | POF |
| :---: | :---: | :---: |
| 0.72013 | 0.69763 | accept |
| 4.0757 | 0.13031 | reject |
| 1.0487 | 0.59194 | accept |
| 0.5073 | 0.77597 | accept |
| 0.95051 | 0.62173 | accept |
| 10.779 | 0.0045645 | rej |

```

\section*{Input Arguments}

\section*{vbt - varbacktest object}
object
varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating a varbacktest object, see varbacktest.

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = cc(vbt,'TestLevel', 0.99)

\section*{TestLevel - Test confidence level}

\subsection*{0.95 (default) | numeric between 0 and 1}

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric between 0 and 1 .

\section*{Data Types: double}

\section*{Output Arguments}

\section*{TestResults - cc test results}
table
cc test results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:
- 'PortfolioID ' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel' - VaR level for corresponding VaR data column
- 'CC' - Categorical array with the categories accept and reject that indicate the result of the cc test
- 'LRatioCC' - Likelihood ratio of the cc test
- 'PValueCC' - P-value of the cc test
- 'POF' - Categorical array with the categories accept and reject that indicate the result of the pof test
- 'LRatioPOF' - Likelihood ratio of the pof test
- 'PValuePOF' - P-value of the pof test
- 'CCI' - Categorical array with categories 'accept ' and 'reject' that indicate the result of the cci test
- 'LRatioCCI ' - Likelihood ratio of the cci test
- 'PValueCCI' - P-value of the cci test
- 'Observations ' - Number of observations
- 'Failures ' - Number of failures
- 'N00' - Number of periods with no failures followed by a period with no failures
- 'N10' - Number of periods with failures followed by a period with no failures
- 'N01' - Number of periods with no failures followed by a period with failures
- 'N11 ' - Number of periods with failures followed by a period with failures
- 'TestLevel' - Test confidence level

Note For cc test results, the terms accept and reject are used for convenience, technically a cc test does not accept a model. Rather, the test fails to reject it.

\section*{More About}

\section*{Conditional Coverage (CC) Mixed Test}

The cc function performs the conditional coverage mixed test, also known as Christoffersen's interval forecasts method.
'Mixed' means that it combines a frequency and an independence test. The frequency test is Kupiec's proportion of failures test, implemented by the pof function. The independence test is the conditional
coverage independence test implemented by the cci function. This is a likelihood ratio test proposed by Christoffersen (1998) to assess the independence of failures on consecutive time periods. The CC test combines the POF test and the CCI test.

\section*{Algorithms}

The likelihood ratio (test statistic) of the cc test is the sum of the likelihood ratios of the pof and cci tests,
LRatioCC = LRatioPOF + LRatioCCI
which is asymptotically distributed as a chi-square distribution with 2 degrees of freedom. See the Algorithms section in pof and cci for the definition of their likelihood ratios.

The \(p\)-value of the cc test is the probability that a chi-square distribution with 2 degrees of freedom exceeds the likelihood ratio LRatioCC,
\[
\text { PValueCC = } 1-F(\text { LRatioCC })
\]
where \(F\) is the cumulative distribution of a chi-square variable with 2 degrees of freedom.
The result of the cc test is to accept if
\[
F(\text { LRatioCC })<F(\text { TestLevel })
\]
and reject otherwise, where \(F\) is the cumulative distribution of a chi-square variable with 2 degrees of freedom.

\section*{Version History}

\section*{Introduced in R2016b}

\section*{References}
[1] Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol. 39, 1998, pp. 841-862.

\section*{See Also}
varbacktest|tl|tuff|bin|pof|cci|tbf|tbfi|summary|runtests

\section*{Topics}
"VaR Backtesting Workflow" on page 2-6
"Value-at-Risk Estimation and Backtesting" on page 2-10
"Overview of VaR Backtesting" on page 2-2
"Christoffersen's Interval Forecast Tests" on page 2-4
"Comparison of ES Backtesting Methods" on page 2-26

\section*{cci}

Conditional coverage independence test for value-at-risk (VaR) backtesting

\section*{Syntax}

TestResults = cci(vbt)
TestResults = cci(vbt,Name,Value)

\section*{Description}

TestResults = cci(vbt) generates the conditional coverage independence (CCI) for value-at-risk (VaR) backtesting.

TestResults = cci(vbt,Name, Value) adds an optional name-value pair argument for TestLevel.

\section*{Examples}

\section*{Generate CCI Test Results}

Create a varbacktest object.
```

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)
vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x1 double]
PortfolioID: "Portfolio"
VaRID: "VaR"
VaRLevel: 0.9500

```

Generate the cci test results.
```

TestResults = cci(vbt)
TestResults=1\times13 table
PortfolioID VaRID VaRLevel CCI LRatioCCI PValueCCI Observations
"Portfolio" "VaR"
0.95
accept
0.25866
PValueCCI Observations
"Portfolio"
"VaR"
0.95
accept
0.61104
1043

```

Fail

Run the CCI Test for VaR Backtests for Multiple VaR's at Different Confidence Levels
Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.
```

load VaRBacktestData
vbt = varbacktest(EquityIndex,...
[Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
'PortfolioID','Equity',...
'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])
vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x6 double]
PortfolioID: "Equity"
VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95"
VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

```

Generate the cci test results using the TestLevel optional input.
```

TestResults = cci(vbt,'TestLevel',0.90)

```


\section*{Input Arguments}

\section*{vbt - varbacktest object}
object
varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating a varbacktest object, see varbacktest.

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = cci(vbt,'TestLevel', 0.99)

\section*{TestLevel - Test confidence level}

\subsection*{0.95 (default) | numeric between 0 and 1}

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric between 0 and 1 .

\section*{Data Types: double}

\section*{Output Arguments}

\section*{TestResults - cci test results}
table
cci test results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:
- 'PortfolioID' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel' - VaR level for the corresponding VaR data column
- 'CCI ' - Categorical array with the categories accept and reject that indicate the result of the cci test
- 'LRatioCCI ' - Likelihood ratio of the cci test
- 'PValueCCI' - P-value of the cci test
- 'Observations ' - Number of observations
- 'Failures ' - Number of failures
- 'N00' - Number of periods with no failures followed by a period with no failures
- 'N10' - Number of periods with failures followed by a period with no failures
- 'N01' - Number of periods with no failures followed by a period with failures
- 'N11' - Number of periods with failures followed by a period with failures
- 'TestLevel' - Test confidence level

Note For cci test results, the terms accept and reject are used for convenience, technically a cci test does not accept a model. Rather, the test fails to reject it.

\section*{More About}

\section*{Conditional Coverage Independence (CCI) Test}

The cci function performs the conditional coverage independence test.
This is a likelihood ratio test proposed by Christoffersen (1998) to assess the independence of failures on consecutive time periods. For the conditional coverage mixed test, see the cc function.

\section*{Algorithms}

To define the likelihood ratio (test statistic) of the cc test, first define the following quantities:
- 'N00' - Number of periods with no failures followed by a period with no failures
- 'N10' - Number of periods with failures followed by a period with no failures
- 'N01' - Number of periods with no failures followed by a period with failures
- 'N11' - Number of periods with failures followed by a period with failures

Then define the following conditional probability estimates:
- \(p 01=\) Probability of having a failure on period \(t\), given that there was no failure on period \(t-1\)
\[
p 01=\frac{\mathrm{N} 01}{(\mathrm{~N} 00+\mathrm{N} 01)}
\]
- \(p 11=\) Probability of having a failure on period \(t\), given that there was a failure on period \(t-1\)
\[
p 11=\frac{\mathrm{N} 11}{(\mathrm{~N} 10+\mathrm{N} 11)}
\]

Define also the unconditional probability estimate of observing a failure:
\(p U C=\) Probability of having a failure on period \(t\)
\[
p U C=\frac{(\mathrm{N} 01+\mathrm{N} 11)}{(\mathrm{N} 00+\mathrm{N} 01+\mathrm{N} 10+\mathrm{N} 11)}
\]

The likelihood ratio of the CCI test is then given by
\[
\begin{aligned}
& \text { LRatioCCI }=-2 \log \left(\frac{(1-p U C)^{N 00+N 10} p U C^{N 01+N 11}}{(1-p 01)^{N 00} p 01^{N 01}(1-p 11)^{N 10} p 11^{N 11}}\right) \\
& =-2((\mathrm{~N} 00+\mathrm{N} 10) \log (1-p U C)+(\mathrm{N} 01+\mathrm{N} 11) \log (p U C)-\mathrm{N} 00 \log (1-p 01)-\mathrm{N} 01 \log (p 01)-\mathrm{N} 10 \log (1-p 11)
\end{aligned}
\]
which is asymptotically distributed as a chi-square distribution with 1 degree of freedom.
The \(p\)-value of the CCI test is the probability that a chi-square distribution with 1 degree of freedom exceeds the likelihood ratio LRatioCCI,
PValueCCI = 1-F(LRatioCCI)
where \(F\) is the cumulative distribution of a chi-square variable with 1 degree of freedom.
The result of the test is to accept if
\[
F(\text { LRatioCCI })<F(\text { TestLevel })
\]
and reject otherwise, where \(F\) is the cumulative distribution of a chi-square variable with 1 degree of freedom.

If one or more of the quantities N00, N10, N01, or N11 are zero, the likelihood ratio is handled differently. The likelihood ratio as defined above is composed of three likelihood functions of the form
\[
L=(1-p)^{n 1} \times p^{n 2}
\]

For example, in the numerator of the likelihood ratio, there is a likelihood function of the form \(L\) with \(p=p U C, n 1=\mathrm{N} 00+\mathrm{N} 10\), and \(n 2=\mathrm{N} 01+\mathrm{N} 11\). There are two such likelihood functions in the denominator of the likelihood ratio.

It can be shown that whenever \(n 1=0\) or \(n 2=0\), the likelihood function \(L\) is replaced by the constant value 1. Therefore, whenever N00, N10, N01, or N11 is zero, replace the corresponding likelihood functions by 1 in the likelihood ratio, and the likelihood ratio is well-defined.

\section*{Version History}

Introduced in R2016b

\section*{References}
[1] Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol. 39, 1998, pp. 841-862.

\section*{See Also}
varbacktest|tl|tuff|bin|pof|cc|tbf|tbfi|summary|runtests

\section*{Topics}
"VaR Backtesting Workflow" on page 2-6
"Value-at-Risk Estimation and Backtesting" on page 2-10
"Overview of VaR Backtesting" on page 2-2
"Christoffersen's Interval Forecast Tests" on page 2-4
"Comparison of ES Backtesting Methods" on page 2-26

\section*{cdfSummary}

Compute CDFs to ultimate claims for developmentTriangle object

\section*{Syntax}
selectedLinkRatiosTable = cdfSummary(developmentTriangle)

\section*{Description}
selectedLinkRatiosTable = cdfSummary(developmentTriangle) calculates the cumulative development factors (CDFs) and the percentage of total claims.

\section*{Examples}

\section*{Calculate CDFs and Percentage of Total Claims for Development Triangle}

Calculate the CDFs and the percentage of total claims for a developmentTriangle object using simulated insurance claims data.

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data.
```

dT = developmentTriangle(data)
dT =
developmentTriangle with properties:
Origin: {10x1 cell}
Development: {10x1 cell}
Claims: [10x10 double]
LatestDiagonal: [10x1 double]
Description: ""
TailFactor: 1
CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001

```

Use linkRatioAverages function to calculate the different link ratio averages.
LinkRatioAveragesTable = linkRatioAverages(dT)
LinkRatioAveragesTable=8×9 table
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 12-24 & 24-36 & 36-48 & 48-60 & 60-72 & 72-8 \\
\hline Simple Average & 1.1767 & 1.0563 & 1.0249 & 1.0107 & 1.0054 & 1.00 \\
\hline Simple Average - Latest 5 & 1.172 & 1.056 & 1.0268 & 1.0108 & 1.0054 & 1.00 \\
\hline Simple Average - Latest 3 & 1.17 & 1.0533 & 1.027 & 1.0117 & 1.0057 & 1.00 \\
\hline Medial Average - Latest 5x1 & 1.1733 & 1.0567 & 1.0267 & 1.0103 & 1.005 & 1.0 \\
\hline Volume-weighted Average & 1.1766 & 1.0563 & 1.025 & 1.0107 & 1.0054 & 1.00 \\
\hline Volume-weighted Average - Latest 5 & 1.172 & 1.056 & 1.0268 & 1.0108 & 1.0054 & 1.00 \\
\hline Volume-weighted Average - Latest 3 & 1.1701 & 1.0534 & 1.027 & 1.0117 & 1.0057 & 1.00 \\
\hline Geometric Average - Latest 4 & 1.17 & 1.055 & 1.0267 & 1.011 & 1.0055 & 1.00 \\
\hline
\end{tabular}

Use the cdfSummary function to calculate CDFs and the percentage of total claims and return a table with the selected link ratios, CDFs, and percent of total claims.
```

dT.SelectedLinkRatio = [1.1755, 1.0577, 1.0273, 1.0104, 1.0044, 1.0026, 1.0016, 1.0006, 1.0004];
selectedLinkRatiosTable = cdfSummary(dT)
selectedLinkRatiosTable=3\times10 table

| 12-24 | 24-36 | 36-48 | 48-60 | 60-72 | 72-84 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.1755 | 1.0577 | 1.0273 | 1.0104 | 1.0044 | 1.0026 |
| 1.303 | 1.1084 | 1.048 | 1.0201 | 1.0096 | 1.0052 |
| 0.76747 | 0.90216 | 0.95422 | 0.98027 | 0.99046 | 0.99482 |

```

\section*{Input Arguments}
developmentTriangle - Development triangle
developmentTriangle object
Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

\section*{Output Arguments}

\section*{selectedLinkRatiosTable - CDF to ultimate claims}
table
CDF to ultimate claims, returned as a table. The table shows the selected ratios, CDFs, and percentage of total claims.

\section*{More About}

\section*{Cumulative Development Factors}

Calculating the cumulative development factors (CDFs) of a random variable is a method to describe the distribution of random variables.

The CDF of a real-valued random variable \(X\), or just distribution function of \(X\), evaluated at \(x\), is the probability that \(X\) takes a value less than or equal to \(x\).

\section*{Ultimate Claims}

Ultimate claims are the total sum the insured, its insurer(s), and/or its reinsurer(s) pay for a fully developed loss. A fully developed loss is the paid losses plus outstanding and reported losses and incurred-but-not-reported (IBNR) losses.

\section*{Version History}

\section*{Introduced in R2020b}

\section*{See Also}
view|linkRatios|linkRatioAverages|ultimateClaims|fullTriangle |
linkRatiosPlot|claimsPlot

\section*{Topics}
"Mean Square Error of Prediction for Estimated Ultimate Claims" on page 4-161
"Bootstrap Using Chain Ladder Method" on page 4-168
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

\section*{claimsPlot}

Plot claims for development triangle

\section*{Syntax}
claimsPlot(dT)
claimsPlot(dT,Name, Value)
h = claimsPlot(ax, \(\qquad\))

\section*{Description}
claimsPlot (dT) plots one line for each origin period for all development periods.
claimsPlot (dT,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.
\(\mathrm{h}=\mathrm{claimsPlot}(\mathrm{ax}, \ldots \quad\)) additionally returns the figure handle h . Use this syntax with any of the input arguments in previous syntaxes.

\section*{Examples}

\section*{Generate Line Plot of Cumulative Claims for Each Development Period}

Generate a line plot of cumulative claims for each of the development periods using a developmentTriangle object containing simulated insurance claims data.
\begin{tabular}{l}
\begin{tabular}{l}
load InsuranceClaimsData.mat; \\
head (data) \\
OriginYear
\end{tabular} \\
\cline { 1 - 1 } \\
2010
\end{tabular}

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data.
```

dT = developmentTriangle(data)
dT =
developmentTriangle with properties:
Origin: {10x1 cell}
Development: {10x1 cell}

```
```

    Claims: [10x10 double]
    LatestDiagonal: [10x1 double]
    Description:
        TailFactor: 1
    CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001

```

Use the claimsPlot function to generate a line plot of cumulative claims.
```

claimsPlot(dT)

```


\section*{Input Arguments}

\section*{dT - Development triangle}
developmentTriangle object
Development triangle, specified as a previously created developmentTriangle object.
Data Types: object
ax - Valid axis object
object
(Optional) Valid axis object, specified as an ax object created using axes. The function creates the plot on the axes specified by the optional ax argument instead of on the current axes (gca). The optional argument ax must precede any of the input argument combinations.

\section*{Data Types: object}

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Namel=Value1, ... , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: claimsPlot(dT, 'Cumulative',false)

\section*{Cumulative - Cumulative claims}
true (default) | logical with value true or false
Cumulative claims, specified as the comma-separated pair consisting of 'Cumulative' and a logical value.

Data Types: logical

\section*{Output Arguments}

\section*{h - Figure handle \\ handle object}

Figure handle for line objects, returned as a handle object.

\section*{Version History}

\section*{Introduced in R2021a}

\section*{See Also}
view|linkRatios|linkRatioAverages|cdfSummary|ultimateClaims|fullTriangle|
linkRatiosPlot

\section*{Topics}
"Mean Square Error of Prediction for Estimated Ultimate Claims" on page 4-161
"Bootstrap Using Chain Ladder Method" on page 4-168
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

\section*{concentrationIndices}

Compute ad-hoc concentration indices for a portfolio

\section*{Syntax}
```

ci = concentrationIndices(PortfolioData)
[ci,Lorenz] = concentrationIndices(

```
\(\qquad\)
``` ,Name,Value)
```


Description

ci = concentrationIndices(PortfolioData) computes multiple ad-hoc concentration indices for a given portfolio. The concentrationIndices function supports the following indices:

- CR - Concentration ratio
- Deciles - Deciles of the portfolio weights distribution
- Gini - Gini coefficient
- HH - Herfindahl-Hirschman index
- HK - Hannah-Kay index
- HT - Hall-Tideman index
- TE - Theil entropy index
[ci,Lorenz] = concentrationIndices(\qquad ,Name, Value) adds optional name-value pair arguments.

Examples

Compute Concentration Indices for a Credit Portfolio

Compute the concentration indices for a credit portfolio using a portfolio that is described by its exposures. The exposures at default are stored in the EAD array.

Load the CreditPortfolioData.mat file that contains EAD used for the PortfolioData input argument.

```
load CreditPortfolioData.mat
ci = concentrationIndices(EAD)
ci=1\times8 table
\begin{tabular}{llllllll} 
ID & \multicolumn{1}{c}{CR} & Deciles & Gini & \(H\) & \(H\) & \(H\) & \(H\)
\end{tabular}
```


Compute Multiple Concentration Ratios

Use the CRIndex optional input to obtain the concentration ratios for the tenth and twentieth largest exposures. In the output, the CR column becomes a vector, with one value for each requested index.

Load the CreditPortfolioData.mat file that contains the EAD used for the PortfolioData input argument.

```
load CreditPortfolioData.mat
ci = concentrationIndices(EAD,'CRIndex',[10 20])
ci=1\times8 table
    ID
\(\underline{\square}\)
    "Portfolio"
0.38942
CR
```

\qquad

```
"Portfolio"
0.58836
\(1 \times 11\) double
0.55751
```

0.023919
0.013363

HK
HH

Modify the Alpha Parameter of the Hannah-Kay Index

Use the HKAlpha optional input to set the alpha parameter for the Hannah-Kay (HK) index. Use a vector of alpha values to compute the HK index for multiple parameter values. In the output, the HK column becomes a vector, with one value for each requested alpha value.

Load the CreditPortfolioData.mat file that contains EAD used for the PortfolioData input argument.

```
load CreditPortfolioData.mat
ci = concentrationIndices(EAD,'HKAlpha',[0.5 3])
ci=1\times8 table
```

ID
"Portfolio"
0.058745

```
Deciles
\(1 \times 11\) double
```

Gini
0.55751

HH
0.023919

HK
0.0133630 .029344

Create an ID to Compare Concentration Index Results

Compare the concentration measures using an ID optional argument for a fully diversified portfolio and a fully concentrated portfolio.

```
ciD = concentrationIndices([1 1 1 1 1 1],'ID','Fully diversified');
ciC = concentrationIndices([0 0 0 0 5],'ID','Fully concentrated');
disp([ciD;ciC])
```

ID	CR	Deciles	Gini	HH	HK	HT	TE
"Fully diversified"	0.2	1×11 double	0	0.2	0.2	0.2	-2.2204e-16
"Fully concentrated"	1	1×11 double	0.8	1	1	1	1.6094

Apply Scaling to Concentration Indices

Use the ScaleIndices optional input to scale the index values of Gini, HH, HK, HT, and TE. The range of ScaleIndices is from 0 through 1, independent of the number of loans.

```
ciDU = concentrationIndices([1 1 1 1 1],'ID','Diversified, unscaled');
ciDS = concentrationIndices([1 1 1 1 1],'ID','Diversified, scaled','ScaleIndices',true);
ciCU = concentrationIndices([0 0 0 0 5],'ID','Concentrated, unscaled');
ciCS = concentrationIndices([0 0 0 0 5],'ID','Concentrated, scaled','ScaleIndices',true);
disp([ciDU;ciDS;ciCU;ciCS])
```

ID	CR	Deciles	Gini	HH	HK
"Diversified, unscaled"	0.2	1×11 double	0	0.2	0.2
"Diversified, scaled"	0.2	1×11 double	0	3.4694e-17	-3.4694e-17
"Concentrated, unscaled"	1	1×11 double	0.8	1	1
"Concentrated, scaled"	1	1×11 double	1	1	1

Plot an Approximate Lorenz Curve Using Deciles Information
Load the CreditPortfolioData.mat file that contains EAD used for the PortfolioData input argument.

```
load CreditPortfolioData.mat
P = EAD;
ci = concentrationIndices(P);
```

Visualize an approximate Lorenz curve using the deciles information and also the concentration at the decile level.

```
Proportion = 0:0.1:1;
figure;
subplot(2,1,1)
area(Proportion',[ci.Deciles' Proportion'-ci.Deciles'])
axis([0 1 0 1])
title('Lorenz Curve (By Deciles)')
xlabel('Proportion of Loans')
ylabel('Proportion of Value')
subplot(2,1,2)
bar(diff(ci.Deciles))
axis([0 11 0 1])
title('Concentration by Decile')
xlabel('Decile')
ylabel('Weight')
```


Plot an Exact Lorenz Curve Using the Optional Lorenz Output

Load the CreditPortfolioData.mat file that contains the EAD used for the PortfolioData input argument. The optional output Lorenz contains the data for the exact Lorenz curve.

```
load CreditPortfolioData.mat
P = EAD;
[~,Lorenz] = concentrationIndices(P);
```

figure;
area(Lorenz.ProportionLoans, [Lorenz.ProportionValue Lorenz.ProportionLoans-Lorenz.ProportionValu axis([0 1 0 1])
title('Lorenz Curve')
xlabel('Proportion of Loans')
ylabel('Proportion of Value')

Input Arguments

PortfolioData - Nonnegative portfolio positions in \boldsymbol{N} assets
 numeric array

Nonnegative portfolio positions in N assets, specified as an N -by-1 (or 1-by-N) numeric array.

Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [ci,Lorenz] = concentrationIndices(PortfolioData,'CRIndex',100)

CRIndex - Index of interest for concentration ratio

1 (default) | nonnegative integer
Index of interest for the concentration ratio, specified as the comma-separated pair consisting of 'CRIndex' and an integer value between 1 and N, where N is the number of assets in the portfolio. The default value for CRIndex is 1 (the default CR is the largest portfolio weight). If CRIndex is a vector, the concentration ratio is computed for the index value in the given order.

Data Types: double

HKAlpha - Alpha parameter for Hannah-Kay index

0.5 (default) | nonnegative numeric

Alpha parameter for Hannah-Kay index, specified as the comma-separated pair consisting of 'HKAlpha' , and a positive number that cannot be equal to 1 . If HKAlpha is a vector, the Hannah-Kay index is computed for each alpha value in the given order.
Data Types: double
ID - User-defined ID for portfolio
"Portfolio" (default) | character vector | string object
User-defined ID for the portfolio, specified as the comma-separated pair consisting of ' ID ' and a scalar string object or character vector.
Data Types: char|string

ScaleIndices - Flag to indicate whether to scale concentration indices
 false (no scaling) (default) | logical

Flag to indicate whether to scale concentration indices, specified as the comma-separated pair consisting of 'ScaleIndices' and a logical scalar. When the ScaleIndices is set to true, the value of the Gini, HH, HK, HT, and TE indices are scaled so that all these indices have a minimum value of 0 (full diversification) and a maximum value of 1 (full concentration).

Note Scaling is applied only for portfolios with at least two assets. Otherwise, the scaling capability is undefined.

Data Types: logical

Output Arguments

ci - Concentration indices information for given portfolio

table
Concentration indices information for the given portfolio, returned as a table with the following columns:

- ID - Portfolio ID string. Use the ID name-value pair argument to set it.
- CR - Concentration ratio. By default, the concentration ratio for the first index (largest portfolio weight) is reported. Use the CRIndex name-value pair argument to choose a different index. If CRIndex is a vector of length m, then CR is a row vector of size 1-by- m. For more information, see "More About" on page 6-33.
- Deciles - Deciles of the portfolio weights distribution is a 1-by-11 row vector containing the values 0 , the nine decile cut points, and 1 . For more information, see "More About" on page 6-33.
- Gini - Gini coefficient. For more information, see "More About" on page 6-33.
- HH - Herfindahl-Hirschman index. For more information, see "More About" on page 6-33.
- HK - Hannah-Kay index (reciprocal). By default, the 'alpha' parameter is set to 0.5. Use the HKAl pha name-value pair argument to choose a different value. If HKAlpha is a vector of lengthm, then HK is a row vector of size 1-by-m. For more information, see "More About" on page 6-33.
- HT - Hall-Tideman index. For more information, see "More About" on page 6-33.
- TE - Theil entropy index. For more information, see "More About" on page 6-33.

Lorenz - Lorenz curve data

table
Lorenz curve data, returned as a table with the following columns:

- ProportionLoans $-(N+1)$-by-1 numeric array containing the values $0,1 / N, 2 / N, \ldots N / N=1$. This is the data for the horizontal axis of the Lorenz curve.
- ProportionValue - $(\mathrm{N}+1)$-by- 1 numeric array containing the proportion of portfolio value accumulated up to the corresponding proportion of loans in the ProportionLoans column. This is the data for the vertical axis of the Lorenz curve.

More About

Portfolio Notation

All the concentration indices for concentrationIndices assume a credit portfolio with an exposure to counterparties.

Let P be a given credit portfolio with exposure to N counterparties. Let $x_{1}, \ldots x_{N}$ represent the exposures to each counterparty, with $x_{i}>=0$ for all $i=1, \ldots N$. And, let x be the total portfolio exposure

$$
x=\sum_{i=1}^{N} x_{i}
$$

Assume that $x>0$, that is, at least one exposure is nonzero. The portfolio weights are given by w_{1}, \ldots, w_{N} with

$$
w_{i}=\frac{x_{i}}{\chi}
$$

The weights are sorted in non-decreasing order. The following standard notation uses brackets around the indices to denote ordered values.

$$
w_{[1]} \leq w_{[2]} \leq \ldots \leq w_{[N]}
$$

Concentration Ratio

The concentration ratio (CR) answers the question "what proportion of the total exposure is accumulated in the largest k loans?"

The formula for the concentration ratio (CR) is:

$$
C R_{k}=\sum_{i=1}^{k} w_{[N-i+1]}
$$

For example, if $k=1, C R_{1}$ is a sum of the one term $w_{[N-1+1]}=w_{[N]}$, that is, it is the largest weight. For any k, the CR index takes values from 0 through 1.

Lorenz Curve

The Lorenz curve is a visualization of the cumulative proportion of portfolio value (or cumulative portfolio weights) against the cumulative proportion of loans.

The cumulative proportion of loans (p) is defined by:

$$
p_{0}=0, p_{1}=\frac{1}{N}, p_{2}=\frac{2}{N}, \ldots, p_{N}=\frac{N}{N}=1
$$

The cumulative proportion of portfolio value L is defined as:

$$
L_{0}=0, L_{k}=\sum_{i=1}^{k} w_{[i]}
$$

The Lorenz curve is a plot of L versus p, or the cumulative proportion of portfolio value versus cumulative proportion of the number of loans (sorted from smallest to largest).

The diagonal line is indicated in the same plot because it represents the curve for the portfolio with the least possible concentration (all loans with the same weight). The area between the diagonal and the Lorenz curve is a visual representation of the Gini coefficient, which is another concentration measure.

Deciles

Deciles are commonly used in the context of income inequality.
If you sort individuals by their income level, what proportion of the total income is earned by the lowest 10% and the lowest 20% of the population? In a credit portfolio, loans can be sorted by exposure. The first decile corresponds to the proportion of the portfolio value that is accumulated by
the smallest 10% loans, and so on. Deciles are proportions, therefore they always take values from 0 through 1.

Defining the cumulative proportion of loans (p) and the cumulative proportion of values L as in "Lorenz Curve" on page 6-34, the deciles are a subset of the proportion of value array. Given indices $d 1, d 2, \ldots, d 9$ such that the proportion of loans matches exactly these values:

$$
p_{d 1}=0.1, p_{d 2}=0.2, \ldots, p_{d 9}=0.9
$$

The deciles $D_{0}, D_{1}, \ldots, D_{9}, D_{10}$ are defined as the corresponding proportion of values:

$$
D_{0}=L_{0}=0, D_{1}=L_{d 1}, D_{2}=L_{d 2}, \ldots, D_{9}=L_{d 9}, D_{10}=L_{N}=1
$$

When the total number of loans N is not divisible by 10 , no indices match the exact proportion of loans $0.1,0.2$, and so on. In that case, the decile values are linearly interpolated from the Lorenz curve data (that is, from the p and L arrays). With this definition, there are 11 values in the deciles information because the end points 0% and 100% are included.

Gini Index

The Gini index (or coefficient) is visualized on a Lorenz curve plot as the area between the diagonal and the Lorenz curve.

Technically, the Gini index is the ratio of that area to the area of the full triangle under the diagonal on the Lorenz curve plot. The Gini index is also defined equivalently as the average absolute difference between all the weights in the portfolio normalized by the average weight.

Using the proportion of values that array L defined in the Lorenz curve section, the Gini index is given by the formula:

$$
\text { Gini }=1-\frac{1}{N} \sum_{i=1}^{N}\left(L_{i-1}+L_{i}\right)
$$

Equivalently, the Gini index can be computed from the sorted weights directly with the formula:

$$
\operatorname{Gini}=\frac{1}{N} \sum_{i=1}^{N}(2 i-1) w_{[i]}-1
$$

The Gini coefficient values are always between 0 (full diversification) and 1-1/N (full concentration).

Herfindahl-Hirschman Index

The Herfindahl-Hirschman index is commonly used as a measure of market concentration.
The formula for the Herfindahl-Hirschman index is:

$$
H H=\sum_{i=1}^{N} w_{i}^{2}
$$

The Herfindahl-Hirschman index takes values between $1 / N$ (full diversification) and 1 (full concentration).

Hannah-Kay Index

The Hannah-Kay index is a generalization of the Herfindahl-Hirschman index.
The formula for the Hannah-Kay depends on a parameter $\alpha>0, a \neq 1$, as follows:

$$
H K_{\alpha}=\left(\sum_{i=1}^{N} w_{i} \alpha\right)^{1 /(\alpha-1)}
$$

This formula is the reciprocal of the original Hannah-Kay index, which is defined with $1 /(1-\alpha)$ in the exponent. For concentration analysis, the reciprocal formula is the standard because it increases as the concentration increases. This is the formula implemented in concentrationIndices. The Hannah-Kay index takes values between $1 / N$ (full diversification) and 1 (full concentration).

Hall-Tideman Index

The Hall-Tideman index is a measure commonly used for market concentration.
The formula for the Hall-Tideman index is:

$$
H T=\frac{1}{2 \sum_{i=1}^{N}(N-i+1) w_{[i]}-1}
$$

The Hall-Tideman index takes values between $1 / N$ (full diversification) and 1 (full concentration).

Theil Entropy Index

The Theil entropy index, based on a traditional entropy measure (for example, Shannon entropy), is adjusted so that it increases as concentration increases (entropy moves in the opposite direction), and shifted to make it positive.

The formula for the Theil entropy index is:

$$
T E=\sum_{i=1}^{N} w_{i} \log \left(w_{i}\right)+\log (N)
$$

The Theil entropy index takes values between 0 (full diversification) and $\log (N)$ (full concentration).

Version History

Introduced in R2017a

References

[1] Basel Committee on Banking Supervision. "Studies on Credit Risk Concentration". Working paper no. 15. November, 2006.
[2] Calabrese, R., and F. Porro. "Single-name concentration risk in credit portfolios: a comparison of concentration indices." working paper 201214, Geary Institute, University College, Dublin, May, 2012.
[3] Lütkebohmert, E. Concentration Risk in Credit Portfolios. Springer, 2009.

See Also

Topics

"Analyze the Sensitivity of Concentration to a Given Exposure" on page 4-49
"Compare Concentration Indices for Random Portfolios" on page 4-51
"Concentration Indices" on page 1-15

conditional

Conditional expected shortfall (ES) backtest by Acerbi and Szekely

Syntax

TestResults = conditional(ebts)
[TestResults,SimTestStatistic] = conditional(ebts,Name,Value)

Description

TestResults = conditional(ebts) runs the conditional ES backtest of Acerbi-Szekely (2014). The conditional test has two underlying tests, a preliminary Value-at-Risk (VaR) backtest that is specified using the name-value pair argument VaRTest, and the standalone conditional ES backtest. A 'reject ' result on either underlying test produces a 'reject' result on the conditional test.
[TestResults,SimTestStatistic] = conditional(ebts,Name,Value) adds optional namevalue pair arguments for TestLevel and VaRTest.

Examples

Run an ES Conditional Test

Create an esbacktestbysim object.

```
load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
    'Degrees0fFreedom',10,...
    'Location',Mu,...
    'Scale',Sigma,...
    'PortfolioID',"S&P",...
    'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
    'VaRLevel',VaRLevel);
```

Generate the ES conditional test report.

$\begin{gathered} \text { TestResults=3×14 } \\ \text { PortfolioID } \end{gathered}$	able VaR	RID	VaRLevel	Conditional	Conditional0nly	PValue
"S\&P"	"t(10)	95\%"	0.95	reject	reject	0
"S\&P"	"t(10)	97.5\%"	0.975	reject	reject	0.001
"S\&P"	"t(10)	99\%"	0.99	reject	reject	0.003

Input Arguments

ebts - esbacktestbysim object

object
esbacktestbysim (ebts) object, which contains a copy of the given data (the PortfolioData, VarData, ESData, and Distribution properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating an esbacktestbysim object, see esbacktestbysim.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [TestResults,SimTestStatistic] = conditional(ebts,'TestLevel', 0.99)

TestLevel - Test confidence level

0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric value between 0 and 1 .
Data Types: double

VaRTest - Indicator for VaR back test

'pof' (default)|character vector with a value of 'tl', 'bin', 'pof', 'tuff', 'cc', 'cci'', 'tbf', or 'tbfi'|string array with a value of 'tl', 'bin', 'pof','tuff', 'cc', 'cci','tbf', or 'tbfi'

Indicator for VaR back test, specified as the comma-separated pair consisting of 'VaRTest ' and a character vector or string array with a value of 'tl', 'bin', 'pof','tuff', 'cc', 'cci', 'tbf', or 'tbfi'. For more information on these VaR backtests, see varbacktest.

Note The specified VaRTest is run using the same TestLevel value that is specified with the TestLevel name-value pair argument in the conditional function.

Data Types: char | string

Output Arguments

TestResults - Results

table
Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:

- 'PortfolioID' - Portfolio ID for the given data.
- 'VaRID' - VaR ID for each of the VaR data columns provided.
- 'VaRLevel' - VaR level for the corresponding VaR data column.
- 'Conditional' - Categorical array with categories 'accept' and 'reject' indicating the result of the conditional test. This result combines the outcome of the 'Conditional0nly' column and the VaR test.
- 'Conditional0nly' - Categorical array with categories 'accept' and 'reject' indicating the result of the standalone conditional test, independent of the VaR test outcome.
- 'PValue' $-P$-value of the standalone conditional test (for the 'ConditionalOnly ' column).
- 'TestStatistic' - Conditional test statistic (for the 'ConditionalOnly' column).
- 'CriticalValue' - Critical value for the conditional test.
- 'VaRTest ' - String array indicating the selected VaR test as specified by the VaRTest argument.
- 'VaRTestResult' - Categorical array with categories 'accept' and 'reject' indicating the result of the VaR test selected with the 'VaRTest' argument.
- 'VaRTestPValue ' - P-value for the VaR backtest. If the traffic-light test (tl) is used, this is 1 minus the traffic-light test's 'Probability' column value.
- 'Observations' - Number of observations.
- 'Scenarios' - Number of scenarios simulated to get the p-values.
- 'TestLevel' - Test confidence level.

Note For the test results, the terms 'accept' and 'reject' are used for convenience. Technically, a test does not accept a model; rather, a test fails to reject it.

SimTestStatistic - Simulated values of test statistic

numeric array
Simulated values of the test statistic, returned as a NumVaRs-by-NumScenarios numeric array.

More About

Conditional Test by Acerbi and Szekely

The conditional test is also known as the first Acerbi-Szekely test.
The conditional test statistic is based on the conditional relationship

$$
E S_{t}=-E_{t}\left[X_{t} \mid X_{t}<-V a R_{t}\right]
$$

where
X_{t} is the portfolio outcome, that is the portfolio return or portfolio profit and loss for period t.
$\mathrm{VaR}_{\mathrm{t}}$ is the estimated VaR for period t.
$E S_{t}$ is the estimated expected shortfall for period t.
The number of failures is defined as

$$
\text { NumFailures }=\sum_{t=1}^{N} I_{t}
$$

where
N is the number of periods in the test window ($t=1, \ldots, \mathrm{~N}$).
I_{t} is the VaR failure indicator on period t with a value of 1 if $X_{t}<-\operatorname{VaR}$, and 0 otherwise.
The conditional test statistic is defined as:

$$
Z_{\text {cond }}=\frac{1}{\text { NumFailures }} \sum_{t=1}^{N} \frac{X_{t} I_{t}}{E S_{t}}+1
$$

The conditional test has two parts. A VaR backtest, specified by the VaRTest name-value pair argument, must be run for the number of failures (NumFailures), and a standalone conditional test is performed for the conditional test statistic $Z_{\text {cond }}$. The conditional test accepts the model only when both the VaR test and the standalone conditional test accept the model.

Significance of the Test

Under the assumption that the distributional assumptions are correct, the expected value of the test statistic $Z_{\text {cond }}$, assuming at least one VaR failure, is 0 .

This is expressed as:

$$
E\left[Z_{\text {cond }} \mid \text { NumFailures }>0\right]=0
$$

Negative values of the test statistic indicate risk underestimation. The conditional test is a one-sided test that rejects when there is evidence that the model underestimates risk (for technical details on the null and alternative hypotheses, see Acerbi-Szekely, 2014). The conditional test rejects the model when the p-value is less than 1 minus the test confidence level.

For more information on the steps to simulate the test statistics and the details for the computation of the p-values and critical values, see simulate.

Edge Cases

The conditional test statistic is undefined (NaN) when there are no VaR failures in the data (NumFailures $=0$).

The p-value is set to NaN in these cases, and test result is to 'accept ', because there is no evidence of risk underestimation.

Likewise, the simulated conditional test statistic is undefined (NaN) for scenarios with no VaR failures. These scenarios are discarded for the estimation of the significance of the test. Under the assumption that the distributional assumptions are correct, $E\left[Z_{\text {cond }} \mid\right.$ NumFailures $\left.>0\right]=0$, so the significance is computed over scenarios with at least one failure (NumFailures >0). The number of scenarios reported by the conditional test function is the number of scenarios with at least one VaR failure. The number of scenarios reported can be smaller than the total number of scenarios simulated. The critical value is estimated over the scenarios with at least one VaR failure. If the simulated test statistic is NaN for all scenarios, the critical value is set to NaN . Scenarios with no failures are more likely as the expected number of failures $\mathrm{Np}_{\mathrm{VaR}}$ gets smaller.

Version History
 Introduced in R2017b

References

[1] Acerbi, C. and Szekely, B. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

See Also

summary| runtests |unconditional|quantile| simulate|minBiasRelative| minBiasAbsolute|esbacktestbysim|tl|bin|pof|tuff|cc|cci|tbf|tbfi| esbacktestbyde

Topics

"Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"Comparison of ES Backtesting Methods" on page 2-26

conditionaIDE

Conditional Du-Escanciano (DE) expected shortfall (ES) backtest

Syntax

TestResults = conditionalDE(ebtde)
[TestResults,SimTestStatistic] = conditionalDE(\qquad ,Name, Value)

Description

TestResults = conditionalDE(ebtde) runs the conditional expected shortfall (ES) backtest by Du and Escanciano [1]. The conditional test supports critical values by large-scale approximation and by finite-sample simulation.
[TestResults,SimTestStatistic] = conditionalDE(\qquad ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input argument in the previous syntax.

Examples

Create an esbacktestbyde Object and Run a ConditionalDE Test

Create an esbacktestbyde object for a t model with 10 degrees of freedom and 2 lags, and then run a conditionalDE test.

```
load ESBacktestDistributionData.mat
    rng('default'); % For reproducibility
    ebtde = esbacktestbyde(Returns,"t",...
        'DegreesOfFreedom',T10DoF, ...
        'Location',T10Location,...
        'Scale',T10Scale,...
        'PortfolioID',"S&P",...
        'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
        'VaRLevel',VaRLevel);
    conditionalDE(ebtde,'NumLags',2)
```

ans=3×13 table
PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic
-
"S\&P"
"S\&P"
"S\&P"
$" t(10) 95 \% "$
$" t(10) 97.5 \% "$
$" t(10) 99 \% "$
0.95 reject
reject 3.2121e-09
39.113
"t(10) 99\%"
0.975 reject
0.99 reject 9.1526e-05 18.598
1.6979e-07
31.177

Input Arguments

ebtde - esbacktestbyde object
object
esbacktestbyde object, which contains a copy of the data (the PortfolioData, VarData, and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating an esbacktestbyde object, see esbacktestbyde.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: TestResults =
conditionalDE(ebtde,'CriticalValueMethod','simulation','NumLags',10,'TestLeve
l',0.99)
```

```
CriticalValueMethod - Method to compute critical values, confidence intervals, and p-
values
'large-sample' (default)| character vector with values of 'large-sample' or 'simulation' |
string with values of "large-sample" or "simulation"
```

Method to compute critical values, confidence intervals, and p-values, specified as the commaseparated pair consisting of 'CriticalValueMethod' and a character vector or string with a value of 'large-sample' or 'simulation'.

Data Types: char | string

NumLags - Number of lags in conditionalDE test

1 (default) | positive integer
Number of lags in the conditionalDE test, specified as the comma-separated pair consisting of 'NumLags ' and a positive integer.

Data Types: double

TestLevel - Test confidence level

0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric value between 0 and 1 .

Data Types: double

Output Arguments

TestResults - Results

table
Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following:

- 'PortfolioID' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR levels
- 'VaRLevel' - VaR level
- 'ConditionalDE ' - Categorical array with the categories 'accept' and 'reject', which indicate the result of the conditional DE test
- 'PValue' $-P$-value of the conditional DE test
- 'TestStatistic' - Conditional DE test statistic
- 'CriticalValue - - Critical value for the conditional DE test
- 'AutoCorrelation ' - Autocorrelation for the reported number of lags
- 'Observations ' - Number of observations
- 'CriticalValueMethod ' - Method used to compute confidence intervals and p-values
- 'NumLags ' - Number of lags
- 'Scenarios ' - Number of scenarios simulated to get the p-values
- 'TestLevel' - Test confidence level

Note If you specify CriticalValueMethod as 'large-sample', the function reports the number of 'Scenarios' as NaN.

For the test results, the terms 'accept ' and 'reject ' are used for convenience. Technically, a test does not accept a model; rather, a test fails to reject it.

SimTestStatistic - Simulated values of the test statistics

numeric array
Simulated values of the test statistics, returned as an NumVaRs-by-NumScenarios numeric array.

More About

Conditional DE Test

The conditional DE test is a one-sided test to check if the test statistic is much larger than zero.
The test statistic for the conditional DE test is derived in several steps. First, define the autocovariance for lag j :

$$
\gamma_{j}=\frac{1}{N-j} \sum_{t=j+1}^{N}\left(H_{t}-\alpha / 2\right)\left(H_{t-j}-\alpha / 2\right)
$$

where

- $\alpha=1$ - VaRLevel.
- H_{t} is the cumulative failures or violations process: $H_{t}=\left(\alpha-U_{t}\right) I\left(U_{t}<\alpha\right) / \alpha$, where $I(x)$ is the indicator function.
- U_{t} are the ranks or mapped returns $U_{t}=P_{t}\left(X_{t}\right)$, where $P_{t}\left(X_{t}\right)=P\left(X_{t} \mid \theta_{t}\right)$ is the cumulative distribution of the portfolio outcomes or returns X_{t} over a given test window $t=1, \ldots . N$ and θ_{t} are the parameters of the distribution. For simplicity, the subindex t is both the return and the parameters, understanding that the parameters are those used on date t, even though those parameters are estimated on the previous date $t-1$, or even prior to that.

The exact theoretical mean $\alpha / 2$, as opposed to the sample mean, is used in the autocovariance formula, as suggested in the paper by Du and Escanciano [1].

The autocorrelation for $\operatorname{lag} j$ is then

$$
\rho_{j}=\frac{\gamma_{j}}{\gamma_{0}}
$$

The test statistic for m lags is

$$
C_{E S}(m)=N \sum_{j=1}^{m} \rho_{j}^{2}
$$

Significance of the Test
The test statistic $C_{E S}$ is a random variable and a function of random return sequences or portfolio outcomes X_{1}, \ldots, X_{N} :

$$
C_{E S}=C_{E S}\left(X_{1}, \ldots, X_{N}\right) .
$$

For returns observed in the test window $1, \ldots, N$, the test statistic attains a fixed value:

$$
C_{E S}^{o b s}=C_{E S}\left(X_{o b s 1}, \ldots, X_{o b s N}\right) .
$$

In general, for unknown returns that follow a distribution of P_{t}, the value of $C_{E S}$ is uncertain and it follows a cumulative distribution function:

$$
P_{C}(x)=P\left[C_{E S} \leq x\right] .
$$

This distribution function computes a confidence interval and a p-value. To determine the distribution P_{C}, the esbacktestbyde class supports the large-sample approximation and simulation methods. You can specify one of these methods by using the optional name-value pair argument CriticalValueMethod.

For the large sample approximation method, the distribution P_{C} is derived from an asymptotic analysis. If the number of observations N is large, the test statistic is approximately distributed as a chi-square distribution with m degrees of freedom:

$$
C_{E S}(m) \underset{\text { dist }}{ } \chi_{m}^{2}=P_{C}
$$

Note that the limiting distribution is independent of α.
If $\mathrm{a}_{\text {test }}=1$ - test confidence level, then the critical value $C V$ is the value that satisfies the equation

$$
1-P_{C}(C V)=\alpha_{\text {test }} .
$$

The p-value is determined as

$$
P_{\text {value }} 1-P_{C}\left(C_{E S}^{o b s}\right) .
$$

The test rejects if $p_{\text {value }}<\mathrm{a}_{\text {test }}$.
For the simulation method, the distribution P_{C} is estimated as follows
1 Simulate M scenarios of returns as

$$
X^{S}=\left(X_{1}^{S}, \ldots, X_{N}^{S}\right), s=1, \ldots, M .
$$

2 Compute the corresponding test statistic as

$$
C_{E S}^{S}=C_{E S}\left(X_{1}^{S}, \ldots, X_{N}^{S}\right), s=1, \ldots, M .
$$

3 Define P_{C} as the empirical distribution of the simulated test statistic values as

$$
P_{C}=P\left[C_{E S} \leq x\right]=\frac{1}{M} I\left(C_{E S}^{S} \leq x\right),
$$

where $I($.$) is the indicator function.$
In practice, simulating ranks is more efficient than simulating returns and then transforming the returns into ranks. simulate.

For the empirical distribution, the value of 1-P $P_{C}(x)$ may be different than $P\left[C_{E S} \geq x\right]$ because the distribution may have nontrivial jumps (simulated tied values). Use the latter probability for the estimation of confidence levels and p-values.

If $\mathrm{a}_{\text {test }}=1$-test confidence level, then the critical value of levels $C V$ is the value that satisfies the equation

$$
P\left[C_{E S} \geq C V\right]=\alpha_{\text {test }} .
$$

The reported critical value $C V$ is one of the simulated test statistic values $C^{s}{ }_{E S}$ that approximately solves the preceding equation.

The p-value is determined as

$$
p_{\text {value }}=P\left[C_{E S} \geq C_{E S}^{o b s}\right] .
$$

The test rejects if $p_{\text {value }}<\mathrm{a}_{\text {test }}$.

Version History

Introduced in R2019b

References

[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk." Management Science. Vol. 63, Issue 4, April 2017.
[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk". January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also

esbacktestbyde | summary | runtests|unconditionalDE| simulate|esbacktestbysim

Topics

"Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-63
"Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and
Escanciano" on page 2-72
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"ES Backtest Using Du-Escanciano Method" on page 2-24
"Comparison of ES Backtesting Methods" on page 2-26

confidenceBands

Confidence interval bands

Syntax

```
cbTable = confidenceBands(cdc)
cbTable = confidenceBands(cdc,Name,Value)
```


Description

cbTable $=$ confidenceBands (cdc) returns a table of the requested risk measure and its associated confidence bands. confidenceBands is used to investigate how the values of a risk measure and its associated confidence interval converge as the number of scenarios increases. The simulate function must be run before confidenceBands is used. For more information on using a creditDefaultCopula object, see creditDefaultCopula.
cbTable = confidenceBands(cdc,Name,Value) adds optional name-value pair arguments.

Examples

Generate a Table of the Associated Confidence Bands for a Requested Risk Measure for a creditDefaultCopula Object

Load saved portfolio data.

```
load CreditPortfolioData.mat;
```

Create a creditDefaultCopula object with a two-factor model.

```
cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)
cdc =
    creditDefaultCopula with properties:
            Portfolio: [100x5 table]
        FactorCorrelation: [2x2 double]
                    VaRLevel: 0.9500
            UseParallel: 0
        PortfolioLosses: []
```

Set the VaRLevel to 99\%.
cdc.VaRLevel = 0.99;
Use the simulate function before running confidenceBands. Use confidenceBands with the creditDefaultCopula object to generate the cbTable.
cdc = simulate(cdc,1e5);
cbTable = confidenceBands(cdc,'RiskMeasure','Std','ConfidenceIntervalLevel', 0.9); cbTable(1:10,:)

ans=10×4 table NumScenarios	Lower			Std

Input Arguments

cdc - creditDefaultCopula object
object
creditDefaultCopula object obtained after running the simulate function.
For more information on creditDefaultCopula objects, see creditDefaultCopula.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: cbTable =
confidenceBands(cdc, 'RiskMeasure', 'Std', 'ConfidenceIntervalLevel' , 0.9, 'NumPoi nts',50)

RiskMeasure - Risk measure to investigate

'CVaR' (default) | character vector or string with values 'EL', 'Std', 'VaR', or 'CVaR'
Risk measure to investigate, specified as the comma-separated pair consisting of 'RiskMeasure' and a character vector or string. Possible values are:

- 'EL' - Expected loss, the mean of portfolio losses
- 'Std ' - Standard deviation of the losses
- 'VaR' - Value at risk at the threshold specified by the VaRLevel property of the creditDefaultCopula object
- 'CVaR' - Conditional VaR at the threshold specified by the VaRLevel property of the creditDefaultCopula object

Data Types: char|string

ConfidenceIntervalLevel - Confidence interval level

0.95 (default) | numeric between 0 and 1

Confidence interval level, specified as the comma-separated pair consisting of 'ConfidenceIntervalLevel' and a numeric between 0 and 1 . For example, if you specify 0.95 , a 95% confidence interval is reported in the output table (cbTable).

Data Types: double

NumPoints - Number of scenario samples to report

100 (default) | nonnegative integer
Number of scenario samples to report, specified as the comma-separated pair consisting of 'NumPoints ' and a nonnegative integer. The default is 100, meaning confidence bands are reported at 100 evenly spaced points of increasing sample size ranging from 0 to the total number of simulated scenarios.

Note NumPoints must be a numeric scalar greater than 1, and is typically much smaller than total number of scenarios simulated. confidenceBands can be used to obtain a qualitative idea of how fast a risk measure and its confidence interval are converging. Specifying a large value for NumPoints is not recommended and could cause performance issues with confidenceBands.

Data Types: double

Output Arguments

cbTable - Requested risk measure and associated confidence bands

table
Requested risk measure and associated confidence bands at each of the NumPoints scenario sample sizes, returned as a table containing the following columns:

- NumScenarios - Number of scenarios at the sample point
- Lower - Lower confidence band
- RiskMeasure - Requested risk measure where the column takes its name from whatever risk measure is requested with the optional input RiskMeasure
- Upper - Upper confidence band

Version History

Introduced in R2017a

References

[1] Crouhy, M., Galai, D., and Mark, R. "A Comparative Analysis of Current Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 59-117.
[2] Gordy, M. "A Comparative Anatomy of Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 119-149.
[3] Gupton, G., Finger, C., and Bhatia, M. "CreditMetrics - Technical Document." J. P. Morgan, New York, 1997.
[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.
[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.
[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, 2005.

See Also

creditDefaultCopula|table|simulate|portfolioRisk|riskContribution| getScenarios

Topics

"Credit Simulation Using Copulas" on page 4-2
"creditDefaultCopula Simulation Workflow" on page 4-5
"Modeling Correlated Defaults with Copulas" on page 4-18
"One-Factor Model Calibration" on page 4-64
"Corporate Credit Risk" on page 1-3
"Credit Simulation Using Copulas" on page 4-2

getScenarios

Counterparty scenarios

Syntax

scenarios $=$ getScenarios(cdc,scenarioIndices)

Description

scenarios $=$ getScenarios(cdc,scenarioIndices) returns counterparty scenario details as a matrix of individual losses for each counterparty for the scenarios requested in scenarioIndices.

The simulate function must be run before getScenarios is used. For more information on using a creditDefaultCopula object, see creditDefaultCopula.

Examples

Compute Individual Losses for Each Counterparty

Load saved portfolio data.

```
load CreditPortfolioData.mat;
```

Create a creditDefaultCopula object with a two-factor model.

```
cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)
cdc =
    creditDefaultCopula with properties:
```

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9500
UseParallel: 0
PortfolioLosses: []

Set the VaRLevel to 99\%.

```
cdc.VaRLevel = 0.99;
```

Use the simulate function before running getScenarios. Use the getSenarios function with the creditDefaultCopula object to generate the scenarios matrix.

```
cdc = simulate(cdc,1e5);
scenarios = getScenarios(cdc,[2,3]);
% expected loss for each scenario
mean(scenarios)
ans = 1\times2
```


Input Arguments

cdc - creditDefaultCopula object
object
creditDefaultCopula object obtained after running the simulate function.
For more information on creditDefaultCopula objects, see creditDefaultCopula.

scenarioIndices - Specifies which scenarios are returned

vector
Specifies which scenarios are returned, entered as a vector.

Output Arguments

scenarios - Counterparty losses

matrix
Counterparty losses, returned as NumCounterparties-by-N matrix where N is the number of elements in scenarioIndices.

Note If the number of scenarios requested is large, then the output matrix, scenarios, could be large and potentially limited by the available machine memory.

Version History

Introduced in R2017a

References

[1] Crouhy, M., Galai, D., and Mark, R. "A Comparative Analysis of Current Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 59-117.
[2] Gordy, M. "A Comparative Anatomy of Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 119-149.
[3] Gupton, G., Finger, C., and Bhatia, M. "CreditMetrics - Technical Document." J. P. Morgan, New York, 1997.
[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.
[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.
[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, 2005.

See Also

simulate | portfolioRisk|riskContribution | confidenceBands | creditDefaultCopula

Topics

"Credit Simulation Using Copulas" on page 4-2
"Modeling Correlated Defaults with Copulas" on page 4-18
"One-Factor Model Calibration" on page 4-64
"Corporate Credit Risk" on page 1-3
"Credit Simulation Using Copulas" on page 4-2

portfolioRisk

Generate portfolio-level risk measurements

Syntax

[riskMeasures,confidenceIntervals] = portfolioRisk(cdc)
[riskMeasures,confidenceIntervals] = portfolioRisk(cdc,Name,Value)

Description

[riskMeasures,confidenceIntervals] = portfolioRisk(cdc) returns tables of risk measurements for the portfolio losses. The simulate function must be run before portfolioRisk is used. For more information on using a creditDefaultCopula object, see creditDefaultCopula.
[riskMeasures,confidenceIntervals] = portfolioRisk(cdc,Name,Value) adds an optional name-value pair argument for ConfidenceIntervalLevel. The simulate function must be run before portfolioRisk is used.

Examples

Generate Tables for Risk Measure and Confidence Intervals for a creditDefaultCopula Object

Load saved portfolio data.
load CreditPortfolioData.mat;
Create a creditDefaultCopula object with a two-factor model.

```
cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)
cdc =
    creditDefaultCopula with properties:
            Portfolio: [100x5 table]
        FactorCorrelation: [2x2 double]
            VaRLevel: 0.9500
            UseParallel: 0
        PortfolioLosses: []
```

Set the VaRLevel to 99\%.

```
cdc.VaRLevel = 0.99;
```

Use the simulate function before running portfolioRisk. Then use portfolioRisk with the creditDefaultCopula object to generate the riskMeasure and ConfidenceIntervals tables.
cdc = simulate(cdc,1e5);
[riskMeasure,confidenceIntervals] = portfolioRisk(cdc,'ConfidenceIntervalLevel', 0.9)

View a histogram of the portfolio losses.
histogram(cdc.PortfolioLosses);
title('Distribution of Portfolio Losses');

For further analysis, use the simulate, portfolioRisk, riskContribution, confidenceBands, and getScenarios functions with the creditDefaultCopula object.

Input Arguments

cdc - creditDefaultCopula object
object
creditDefaultCopula object obtained after running the simulate function.
For more information on creditDefaultCopula objects, see creditDefaultCopula.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [riskMeasure, confidenceIntervals] = portfolioRisk(cdc,'ConfidenceIntervalLevel', 0.9)

ConfidenceIntervalLevel - Confidence interval level
0.95 (default) | numeric between 0 and 1

Confidence interval level, specified as the comma-separated pair consisting of
'ConfidenceIntervalLevel ' and a numeric between 0 and 1. For example, if you specify 0.95 , a 95% confidence interval is reported in the output table (riskMeasures).

Data Types: double

Output Arguments

riskMeasures - Risk measures

table
Risk measures, returned as a table containing the following columns:

- EL - Expected loss, the mean of portfolio losses
- Std - Standard deviation of the losses
- VaR - Value at risk at the threshold specified by the VaRLevel property of the creditDefaultCopula object
- CVaR - Conditional VaR at the threshold specified by the VaRLevel property of the creditDefaultCopula object

confidenceIntervals - Confidence intervals

table
Confidence intervals, returned as a table of confidence intervals corresponding to the portfolio risk measures reported in the riskMeasures table. Confidence intervals are reported at the level specified by the ConfidenceIntervalLevel parameter.

Version History

Introduced in R2017a

References

[1] Crouhy, M., Galai, D., and Mark, R. "A Comparative Analysis of Current Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 59-117.
[2] Gordy, M. "A Comparative Anatomy of Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 119-149.
[3] Gupton, G., Finger, C., and Bhatia, M. "CreditMetrics - Technical Document." J. P. Morgan, New York, 1997.
[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.
[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.
[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, 2005.

See Also

table|creditDefaultCopula|simulate|riskContribution|confidenceBands| getScenarios

Topics

"Credit Simulation Using Copulas" on page 4-2
"creditDefaultCopula Simulation Workflow" on page 4-5
"Modeling Correlated Defaults with Copulas" on page 4-18
"One-Factor Model Calibration" on page 4-64
"Corporate Credit Risk" on page 1-3
"Credit Simulation Using Copulas" on page 4-2

riskContribution

Generate risk contributions for each counterparty in portfolio

Syntax

Contributions = riskContribution(cdc)
Contributions = riskContribution(cdc, Name, Value)

Description

Contributions = riskContribution(cdc) returns a table of risk contributions for each counterparty in the portfolio. The risk Contributions table allocates the full portfolio risk measures to each counterparty, such that the counterparty risk contributions sum to the portfolio risks reported by portfolioRisk.

Note When creating a creditDefaultCopula object, you can set the 'UseParallel' property if you have Parallel Computing Toolbox ${ }^{\mathrm{TM}}$. Once the 'UseParallel' property is set, parallel processing is used to compute riskContribution.

The simulate function must be run before riskContribution is used. For more information on using a creditDefaultCopula object, see creditDefaultCopula.

Contributions = riskContribution(cdc,Name,Value) adds an optional name-value pair argument for VaRWindow.

Examples

Determine the Risk Contribution for Each Counterparty for a creditDefaultCopula Object

Load saved portfolio data.
load CreditPortfolioData.mat;
Create a creditDefaultCopula object with a two-factor model.

```
cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)
cdc =
    creditDefaultCopula with properties:
                            Portfolio: [100x5 table]
        FactorCorrelation: [2x2 double]
            VaRLevel: 0.9500
                UseParallel: 0
            PortfolioLosses: []
```

Set the VaRLevel to 99%.

```
cdc.VaRLevel = 0.99;
```

Use the simulate function before running riskContribution. Then use riskContribution with the creditDefaultCopula object to generate the risk Contributions table.

Note: Due to simulation noise or numerical error, the VaR contribution can sometimes be greater than the CVaR contribution.

Input Arguments

cdc - creditDefaultCopula object
object
creditDefaultCopula object obtained after running the simulate function.
For more information on creditDefaultCopula objects, see creditDefaultCopula.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Contributions = riskContribution(cdc,'VaRWindow',0.3)
VaRWindow - Size of the window used to compute VaR contributions
0.05 (default) | numeric between 0 and 1

Size of the window used to compute VaR contributions, specified as the comma-separated pair consisting of 'VaRWindow' and a scalar numeric with a percent value. Scenarios in the VaR scenario set are used to calculate the individual counterparty VaR contributions.

The default is 0.05 , meaning that all scenarios with portfolio losses within 5 percent of the VaR are included when computing counterparty VaR contributions.

Data Types: double

Output Arguments

Contributions - Risk contributions
 table

Risk contributions, returned as a table containing the following risk contributions for each counterparty:

- EL - Expected loss for the particular counterparty over the scenarios
- Std - Standard deviation of loss for the particular counterparty over the scenarios
- VaR - Value at risk for the particular counterparty over the scenarios
- CVaR - Conditional value at risk for the particular counterparty over the scenarios

The risk Contributions table allocates the full portfolio risk measures to each counterparty, such that the counterparty risk contributions sum to the portfolio risks reported by portfolioRisk.

More About

Risk Contributions

The riskContribution function reports the individual counterparty contributions to the total portfolio risk measures using four risk measures: expected loss (EL), standard deviation (Std), VaR, and CVaR.

- EL is the expected loss for each counterparty and is the mean of the counterparty's losses across all scenarios.
- Std is the standard deviation for counterparty i :

$$
\text { StdCont }_{i}=\operatorname{Std}_{i} \frac{\sum_{j} S t d_{j} \rho_{i j}}{S t d_{\rho}}
$$

where
$S t d_{\mathrm{i}}$ is the standard deviation of losses from counterparty i.
$\operatorname{Std}_{\bar{I}}$ is the standard deviation of portfolio losses.
ρ_{ij} is the correlation of the losses between counterparties i and j.

- VaR contribution is the mean of a counterparty's losses across all scenarios in which the total portfolio loss is within some small neighborhood around the Portfolio VaR. The default of the 'VaRWindow' parameter is 0.05 meaning that all scenarios in which the total portfolio loss is within 5% of the portfolio VaR are included in VaR neighborhood.
- CVaR is the mean of the counterparty's losses in the set of scenarios in which the total portfolio losses exceed the portfolio VaR.

Version History

Introduced in R2017a

References

[1] Glasserman, P. "Measuring Marginal Risk Contributions in Credit Portfolios." Journal of Computational Finance. Vol. 9, No. 2, Winter 2005/2006.
[2] Gupton, G., Finger, C., and Bhatia, M. "CreditMetrics - Technical Document." J. P. Morgan, New York, 1997.

See Also

table|creditDefaultCopula|simulate|portfolioRisk|confidenceBands |
getScenarios

Topics

"Credit Simulation Using Copulas" on page 4-2
"creditDefaultCopula Simulation Workflow" on page 4-5
"Modeling Correlated Defaults with Copulas" on page 4-18
"One-Factor Model Calibration" on page 4-64
"Corporate Credit Risk" on page 1-3
"Credit Simulation Using Copulas" on page 4-2

External Websites

Parallel Computing with MATLAB (53 min 27 sec)

simulate

Simulate credit defaults using a creditDefaultCopula object

Syntax

```
cdc = simulate(cdc,NumScenarios)
cdc = simulate(
```

\qquad

``` ,Name, Value)
```


Description

cdc = simulate(cdc,NumScenarios) performs the full simulation of credit scenarios and computes defaults and losses for the portfolio defined in the creditDefaultCopula object. For more information on using a creditDefaultCopula object, see creditDefaultCopula.

Note When creating a creditDefaultCopula object, you can set the 'UseParallel' property if you have Parallel Computing Toolbox. Once the 'UseParallel ' property is set, parallel processing is used to compute simulate.
cdc = simulate(\qquad ,Name,Value) adds optional name-value pair arguments for (Copula, DegreesOfFreedom, and BlockSize).

Examples

Run a Simulation Using a creditDefaultCopula Object

Load saved portfolio data.
load CreditPortfolioData.mat;
Create a creditDefaultCopula object with a two-factor model.

```
cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)
cdc =
    creditDefaultCopula with properties:
```

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioLosses: []
 Set the VaRLevel to 99\%.

```
cdc.VaRLevel = 0.99;
```

Use the simulate function with the creditDefaultCopula object. After using simulate, you can then use the portfolioRisk, riskContribution, confidenceBands, and getScenarios functions with the updated creditDefaultCopula object.

```
cdc = simulate(cdc,1e5)
cdc =
    creditDefaultCopula with properties:
            Portfolio: [100x5 table]
        FactorCorrelation: [2x2 double]
            VaRLevel: 0.9900
            UseParallel: 0
        PortfolioLosses: [30.1008 3.6910 3.2895 19.2151 7.5761 44.5088 19.5419 1.7909 72.1443 12.6
```

You can use riskContribution with the creditDefaultCopula object to generate the risk Contributions table.

```
Contributions = riskContribution(cdc);
```

Contributions(1:10,:)

ID	EL	Std	VaR	CVaR
1	0.036031	0.022762	0.083828	0.13625
2	0.068357	0.039295	0.23373	0.24984
3	1.2228	0.60699	2.3184	2.3775
4	0.002877	0.00079014	0.0024248	0.0013137
5	0.12127	0.037144	0.18474	0.24622
6	0.12638	0.078506	0.39779	0.48334
7	0.84284	0.3541	1.6221	1.8183
8	0.00090088	0.00011379	0.0016463	0.00089197
9	0.93117	0.87638	3.3868	3.9936
10	0.26054	0.37918	1.7399	2.3042

Input Arguments

cdc - creditDefaultCopula object

object
creditDefaultCopula object, obtained from creditDefaultCopula.
For more information on a creditDefaultCopula object, see creditDefaultCopula.

NumScenarios - Number of scenarios to simulate

nonnegative integer
Number of scenarios to simulate, specified as a nonnegative integer. Scenarios are processed in blocks to conserve machine resources.

Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: cdc = simulate(cdc,NumScenarios,'Copula','t','DegreesOfFreedom',5)

Copula - Type of copula

'Gaussian ' (default) | character vector or string with values 'Gaussian' or 't'
Type of copula, specified as the comma-separated pair consisting of 'Copula' and a character vector or string. Possible values are:

- 'Gaussian ' - A Gaussian copula
- 't' - A t copula with degrees of freedom specified using DegreesOfFreedom.

Data Types: char | string
Degrees 0 fFreedom - Degrees of freedom for \mathbf{t} copula
5 (default) | nonnegative numeric value
Degrees of freedom for a t copula, specified as the comma-separated pair consisting of 'DegreesOfFreedom' and a nonnegative numeric value. If Copula is set to 'Gaussian', the DegreesOfFreedom parameter is ignored.

Data Types: double

BlockSize - Number of scenarios to process in each iteration

nonnegative numeric value
Number of scenarios to process in each iteration, specified as the comma-separated pair consisting of 'BlockSize' and a nonnegative numeric value.

If unspecified, BlockSize defaults to a value of approximately 1,000,000 / (Number-ofcounterparties). For example, if there are 100 counterparties, the default BlockSize is 10,000 scenarios.

Data Types: double

Output Arguments

cdc - Updated creditDefaultCopula object
 object

Updated creditDefaultCopula object. The object is populated with the simulated PortfolioLosses.

For more information on a creditDefaultCopula object, see creditDefaultCopula.

Note In the simulate function, the Weights (specified when using creditDefaultCopula) are transformed to ensure that the latent variables have a mean of 0 and a variance of 1.

Version History

Introduced in R2017a

References

[1] Crouhy, M., Galai, D., and Mark, R. "A Comparative Analysis of Current Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 59-117.
[2] Gordy, M. "A Comparative Anatomy of Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 119-149.
[3] Gupton, G., Finger, C., and Bhatia, M. "CreditMetrics - Technical Document." J. P. Morgan, New York, 1997.
[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.
[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.
[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, 2005.

See Also
table|creditDefaultCopula|portfolioRisk|riskContribution|confidenceBands | getScenarios
\section*{Topics}
"Credit Simulation Using Copulas" on page 4-2
"creditDefaultCopula Simulation Workflow" on page 4-5
"Modeling Correlated Defaults with Copulas" on page 4-18
"One-Factor Model Calibration" on page 4-64
"Corporate Credit Risk" on page 1-3
"Credit Simulation Using Copulas" on page 4-2
\section*{External Websites}
Parallel Computing with MATLAB (53 min 27 sec)

confidenceBands

Confidence interval bands

Syntax

cbTable $=$ confidenceBands(cmc)
cbTable $=$ confidenceBands(cmc, Name, Value)

Description

cbTable $=$ confidenceBands (cmc) returns a table of the requested risk measure and its associated confidence bands. Use confidenceBands to investigate how the values of a risk measure and its associated confidence interval converge as the number of scenarios increases. Before you run the confidenceBands function, you must run the simulate function. For more information on using a creditMigrationCopula object, see creditMigrationCopula.
cbTable $=$ confidenceBands(cmc, Name, Value) adds optional name-value pair arguments.

Examples

Generate a Table of the Associated Confidence Bands for a Requested Risk Measure for a creditMigrationCopula Object

Load the saved portfolio data.
load CreditMigrationData.mat;
Scale the bond prices for portfolio positions for each bond.

```
migrationValues = migrationPrices .* numBonds;
```

Create a creditMigrationCopula object with a four-factor model using creditMigrationCopula.

```
cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)
cmc =
    creditMigrationCopula with properties:
            Portfolio: [250x5 table]
        FactorCorrelation: [4x4 double]
            RatingLabels: [8x1 string]
        TransitionMatrix: [8x8 double]
            VaRLevel: 0.9500
            UseParallel: 0
        PortfolioValues: []
```

Set the VaRLevel to 99%.

```
cmc.VaRLevel = 0.99;
```

Use the simulate function to simulate 100,000 scenarios, and then use the confidenceBands function to generate the cbTable.

```
cmc = simulate(cmc,le5);
cbTable = confidenceBands(cmc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.9,'NumPoints',50);
cbTable(1:10,:)
ans=10\times4 table
\begin{tabular}{ccccc} 
NumScenarios & & Lower & & Std
\end{tabular} \begin{tabular}{c} 
Upper \\
\cline { 1 - 1 } \\
\cline { 1 - 1 } \\
2000
\end{tabular}
```


Input Arguments

cmc - creditMigrationCopula object

object
creditMigrationCopula object obtained after running the simulate function.
For more information on creditMigrationCopula objects, see creditMigrationCopula.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: cbTable =
confidenceBands(cmc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.9,'NumPoi
nts',50)
```


RiskMeasure - Risk measure to investigate

'CVaR' (default)| character vector or string with values 'EL', 'Std', 'VaR', or 'CVaR'
Risk measure to investigate, specified as the comma-separated pair consisting of 'RiskMeasure' and a character vector or string. Possible values are:

- 'EL' - Expected loss, the mean of portfolio losses
- 'Std ' - Standard deviation of the losses
- 'VaR' - Value at risk at the threshold specified by the VaRLevel property of the creditMigrationCopula object
- 'CVaR' - Conditional VaR at the threshold specified by the VaRLevel property of the creditMigrationCopula object

Data Types: char|string
ConfidenceIntervalLevel - Confidence interval level
0.95 (default) | numeric between 0 and 1

Confidence interval level, specified as the comma-separated pair consisting of
'ConfidenceIntervalLevel' and a numeric between 0 and 1. For example, if you specify 0.95 , a 95% confidence interval is reported in the output table (cbTable).

Data Types: double

NumPoints - Number of scenario samples to report

100 (default) | nonnegative integer
Number of scenario samples to report, specified as the comma-separated pair consisting of 'NumPoints' and a nonnegative integer. The default is 100, meaning that confidence bands are reported at 100 evenly spaced points of increasing sample size ranging from 0 to the total number of simulated scenarios.

Note NumPoints must be a numeric scalar greater than 1. NumPoints is typically much smaller than total number of scenarios simulated. You can use confidenceBands to obtain a qualitative idea of how fast a risk measure and its confidence interval are converging. Specifying a large value for NumPoints is not recommended and can potentially cause performance issues with confidenceBands.

Data Types: double

Output Arguments

cbTable - Requested risk measure and associated confidence bands

table
Requested risk measure and associated confidence bands at each of the NumPoints scenario sample sizes, returned as a table containing the following columns:

- NumScenarios - Number of scenarios at the sample point
- Lower - Lower confidence band
- RiskMeasure - Requested risk measure, where the column takes its name from whatever risk measure is requested with the optional input RiskMeasure
- Upper - Upper confidence band

Version History
 Introduced in R2017a

References

[1] Crouhy, M., Galai, D., and Mark, R. "A Comparative Analysis of Current Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 59-117.
[2] Gordy, M. "A Comparative Anatomy of Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 119-149.
[3] Gupton, G., Finger, C., and Bhatia, M. "CreditMetrics - Technical Document." J. P. Morgan, New York, 1997.
[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.
[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.
[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, 2005.

See Also

table|creditMigrationCopula|simulate|portfolioRisk|riskContribution| getScenarios

Topics
"creditMigrationCopula Simulation Workflow" on page 4-10
"One-Factor Model Calibration" on page 4-64
"Credit Rating Migration Risk" on page 1-10

getScenarios

Counterparty scenarios

Syntax

scenarios $=$ getScenarios(cmc,scenarioIndices)

Description

scenarios = getScenarios(cmc, scenarioIndices) returns counterparty scenario details as a matrix of individual values for each counterparty for the scenarios requested in scenarioIndices.

Before you use the getScenarios function, you must run the simulate function. For more information on using a creditMigrationCopula object, see creditMigrationCopula.

Examples

Compute Individual Values for Each Counterparty

Load the saved portfolio data.
load CreditMigrationData.mat;
Scale the bond prices for portfolio positions for each bond.

```
migrationValues = migrationPrices .* numBonds;
Create a creditMigrationCopula object with a four-factor model using
creditMigrationCopula.
cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)
cmc =
    creditMigrationCopula with properties:
            Portfolio: [250x5 table]
        FactorCorrelation: [4\times4 double]
            RatingLabels: [8x1 string]
        TransitionMatrix: [8x8 double]
            VaRLevel: 0.9500
            UseParallel: 0
        PortfolioValues: []
```

Set the VaRLevel to 99\%.

```
cmc.VaRLevel = 0.99;
```

Use the simulate function to simulate 100,000 scenarios, and then use the getScenarios function to generate the scenarios matrix.

```
cmc = simulate(cmc,1e5);
scenarios = getScenarios(cmc,[2,3]);
scenarios(1:10,:)
ans = 10\times2
104 x
\begin{tabular}{ll}
1.3082 & 1.3216 \\
0.2893 & 0.2893
\end{tabular}
0.9788 0.9754
0.4503 0.4503
1.0376 1.0376
0.5795 0.5795
0.5350 0.5350
0.4956 0.4956
0.3537 0.3537
2.3492 2.3492
```


Input Arguments

cmc - creditMigrationCopula object

object
creditMigrationCopula object obtained after running the simulate function.
For more information on creditMigrationCopula objects, see creditMigrationCopula.

scenarioIndices - Specifies which scenarios are returned

vector
Specifies which scenarios are returned, entered as a vector.

Output Arguments

scenarios - Counterparty values

matrix
Counterparty values, returned as NumCounterparties-by-N matrix, where N is the number of elements in scenarioIndices.

Note If the number of scenarios requested is very large, then the output matrix, scenarios, could be very large, and potentially limited by the available machine memory.

Version History

Introduced in R2017a

References

[1] Crouhy, M., Galai, D., and Mark, R. "A Comparative Analysis of Current Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 59-117.
[2] Gordy, M. "A Comparative Anatomy of Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 119-149.
[3] Gupton, G., Finger, C., and Bhatia, M. "CreditMetrics - Technical Document." J. P. Morgan, New York, 1997.
[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.
[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.
[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, 2005.

See Also

creditMigrationCopula|simulate|portfolioRisk|riskContribution| confidenceBands

Topics

"creditMigrationCopula Simulation Workflow" on page 4-10
"One-Factor Model Calibration" on page 4-64
"Credit Rating Migration Risk" on page 1-10

portfolioRisk

Generate portfolio-level risk measurements

Syntax

[riskMeasures,confidenceIntervals] = portfolioRisk(cmc)
[riskMeasures,confidenceIntervals] = portfolioRisk(cmc,Name, Value)

Description

[riskMeasures,confidenceIntervals] = portfolioRisk(cmc) returns tables of risk measurements for the portfolio losses. Before you use the portfolioRisk function, run the simulate function. For more information on using a creditMigrationCopula object, see creditMigrationCopula.
[riskMeasures,confidenceIntervals] = portfolioRisk(cmc,Name,Value) adds an optional name-value pair argument for ConfidenceIntervalLevel.

Examples

Generate Tables for Risk Measure and Confidence Intervals for a creditMigrationCopula Object

Load the saved portfolio data.
load CreditMigrationData.mat;
Scale the bond prices for portfolio positions for each bond.

```
migrationValues = migrationPrices .* numBonds;
```

Create a creditMigrationCopula object with a four-factor model using creditMigrationCopula.

```
cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)
cmc =
    creditMigrationCopula with properties:
            Portfolio: [250x5 table]
        FactorCorrelation: [4\times4 double]
            RatingLabels: [8x1 string]
        TransitionMatrix: [8x8 double]
            VaRLevel: 0.9500
            UseParallel: 0
        PortfolioValues: []
```

Set the VaRLevel to 99%.

```
cmc.VaRLevel = 0.99;
```

Use the simulate function to simulate 100,000 scenarios, and then use the portfolioRisk function to generate the riskMeasure and ConfidenceIntervals tables.

```
cmc = simulate(cmc,1e5);
[riskMeasure,confidenceIntervals] = portfolioRisk(cmc,'ConfidenceIntervalLevel',0.9)
riskMeasure=1\times4 table
\begin{tabular}{cccc} 
EL & Std & VaR & CVaR \\
4515.9 & -12963 & 57176 & 83975
\end{tabular}
```


Input Arguments

cmc - creditMigrationCopula object
object
creditMigrationCopula object obtained after running the simulate function.
For more information on creditMigrationCopula objects, see creditMigrationCopula.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [riskMeasure,confidenceIntervals] = portfolioRisk(cmc,'ConfidenceIntervalLevel',0.9)

ConfidenceIntervalLevel - Confidence interval level

0.95 (default) | numeric between 0 and 1

Confidence interval level, specified as the comma-separated pair consisting of 'ConfidenceIntervalLevel' and a numeric between 0 and 1. For example, if you specify 0.95 , a 95% confidence interval is reported in the output table (riskMeasures).
Data Types: double

Output Arguments

riskMeasures - Risk measures

table

Risk measures, returned as a table containing the following columns:

- EL - Expected loss, the mean of portfolio losses
- Std - Standard deviation of the losses
- VaR - Value at risk at the threshold specified by the VaRLevel property of the creditMigrationCopula object
- CVaR - Conditional VaR at the threshold specified by the VaRLevel property of the creditMigrationCopula object

confidenceIntervals - Confidence intervals

table
Confidence intervals, returned as a table of confidence intervals corresponding to the portfolio risk measures reported in the riskMeasures table. Confidence intervals are reported at the level specified by the ConfidenceIntervalLevel parameter.

Version History

Introduced in R2017a

References

[1] Crouhy, M., Galai, D., and Mark, R. "A Comparative Analysis of Current Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 59-117.
[2] Gordy, M. "A Comparative Anatomy of Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 119-149.
[3] Gupton, G., Finger, C., and Bhatia, M. "CreditMetrics - Technical Document." J. P. Morgan, New York, 1997.
[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.
[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.
[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, 2005.

See Also

table|creditMigrationCopula|simulate|riskContribution|confidenceBands | getScenarios

Topics

"creditMigrationCopula Simulation Workflow" on page 4-10
"One-Factor Model Calibration" on page 4-64
"Credit Rating Migration Risk" on page 1-10

riskContribution

Generate risk contributions for each counterparty in portfolio

Syntax

Contributions = riskContribution(cmc)
Contributions = riskContribution(cmc, Name,Value)

Description

Contributions = riskContribution(cmc) returns a table of risk contributions for each counterparty in the portfolio. The risk Contributions table allocates the full portfolio risk measures to each counterparty, such that the counterparty risk contributions sum to the portfolio risks reported by portfolioRisk.

Note When creating a creditMigrationCopula object, you can set the 'UseParallel' property if you have Parallel Computing Toolbox. Once the 'UseParallel' property is set, parallel processing is used to compute riskContribution.

Before you use the riskContribution function, you must run the simulate function. For more information on using a creditMigrationCopula object, see creditMigrationCopula.

Contributions = riskContribution(cmc,Name,Value) adds an optional name-value pair argument for VaRWindow.

Examples

Determine the Risk Contribution for Each Counterparty for a creditMigrationCopula Object

Load the saved portfolio data.
load CreditMigrationData.mat;
Scale the bond prices for portfolio positions for each bond.

```
migrationValues = migrationPrices .* numBonds;
```

Create a creditMigrationCopula object with a four-factor model using creditMigrationCopula.

```
cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)
cmC =
    creditMigrationCopula with properties:
                            Portfolio: [250x5 table]
```

```
FactorCorrelation: [4x4 double]
    RatingLabels: [8x1 string]
TransitionMatrix: [8x8 double]
            VaRLevel: 0.9500
        UseParallel: 0
    PortfolioValues: []
```

Set the VaRLevel to 99\%.

```
cmc.VaRLevel = 0.99;
```

Use the simulate function to simulate 100,000 scenarios, and then use the riskContribution function to generate the Contributions table.

```
cmc = simulate(cmc,1e5);
Contributions = riskContribution(cmc);
Contributions(1:10,:)
ans=10\times5 table
    1
    15.521
                    41.153
                    238.72
                            279.18
            8.49 18.838
            8.49 18.838
            8.49 18.838
            6.0937 20.069
            113.22 181.53
            6.6964 55.885 272.23 313.25
            23.583 73.905 360.32 573.39
            10.722 114.97 445.94 728.38
            1.8393 84.754 262.32 490.39
            11.711 39.768 175.84 253.29
            2.2154 4.4038 22.797 31.039
            1.7453 2.5545 9.8801 17.603
```


Input Arguments

cmc - creditMigrationCopula object

object
creditMigrationCopula object obtained after running the simulate function.
For more information on creditMigrationCopula objects, see creditMigrationCopula.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Contributions = riskContribution(cmc, 'VaRWindow', 0.3)

VaRWindow - Size of the window used to compute VaR contributions

0.05 (default) | numeric between 0 and 1

Size of the window used to compute VaR contributions, specified as the comma-separated pair consisting of 'VaRWindow' and a scalar numeric with a percent value. Scenarios in the VaR scenario set are used to calculate the individual counterparty VaR contributions.

The default is 0.05 , meaning that all scenarios with portfolio losses within 5 percent of the VaR are included when computing counterparty VaR contributions.
Data Types: double

Output Arguments

Contributions - Risk contributions

table
Risk contributions, returned as a table containing the following risk contributions for each counterparty:

- EL - Expected loss for the particular counterparty over the scenarios
- Std - Standard deviation of loss for the particular counterparty over the scenarios
- VaR - Value at risk for the particular counterparty over the scenarios
- CVaR - Conditional value at risk for the particular counterparty over the scenarios

The risk Contributions table allocates the full portfolio risk measures to each counterparty, such that the counterparty risk contributions sum to the portfolio risks reported by portfolioRisk.

More About

Risk Contributions

The riskContribution function reports the individual counterparty contributions to the total portfolio risk measures using four risk measures: expected loss (EL), standard deviation (Std), VaR, and CVaR.

- EL is the expected loss for each counterparty and is the mean of the counterparty's losses across all scenarios.
- Std is the standard deviation for counterparty i :

$$
\text { StdCont }_{i}=\operatorname{Std}_{i} \frac{\sum_{j} S t d_{j} \rho_{i j}}{S t d_{\rho}}
$$

where
$S t d_{\mathrm{i}}$ is the standard deviation of losses from counterparty i.
$\operatorname{Std}_{\bar{I}}$ is the standard deviation of portfolio losses.
ρ_{ij} is the correlation of the losses between counterparties i and j.

- VaR contribution is the mean of a counterparty's losses across all scenarios in which the total portfolio loss is within some small neighborhood around the Portfolio VaR. The default of the 'VaRWindow' parameter is 0.05 meaning that all scenarios in which the total portfolio loss is within 5% of the portfolio VaR are included in VaR neighborhood.
- CVaR is the mean of the counterparty's losses in the set of scenarios in which the total portfolio losses exceed the portfolio VaR.

Version History

Introduced in R2017a

References

[1] Glasserman, P. "Measuring Marginal Risk Contributions in Credit Portfolios." Journal of Computational Finance. Vol. 9, No. 2, Winter 2005/2006.
[2] Gupton, G., Finger, C., and Bhatia, M. "CreditMetrics - Technical Document." J. P. Morgan, New York, 1997.

See Also

table|creditMigrationCopula|simulate|portfolioRisk|confidenceBands | getScenarios

Topics

"creditMigrationCopula Simulation Workflow" on page 4-10
"One-Factor Model Calibration" on page 4-64
"Credit Rating Migration Risk" on page 1-10
External Websites
Parallel Computing with MATLAB (53 min 27 sec)

simulate

Simulate credit migrations using creditMigrationCopula object

Syntax

```
cmc = simulate(cmc,NumScenarios)
cmc = simulate(
```

\qquad

``` ,Name, Value)
```


Description

cmc = simulate(cmc,NumScenarios) performs the full simulation of credit scenarios and computes changes in value due to credit rating changes for the portfolio defined in the creditMigrationCopula object. For more information on using a creditMigrationCopula object, see creditMigrationCopula.

Note When creating a creditMigrationCopula object, you can set the 'UseParallel' property if you have Parallel Computing Toolbox. Once the 'UseParallel' property is set, parallel processing is used to compute simulate.
cmc = simulate(,Name, Value) adds optional name-value pair arguments for (Copula, DegreesOfFreedom, and BlockSize).

Examples

Run a Simulation Using a creditMigrationCopula Object

Load the saved portfolio data.

```
load CreditMigrationData.mat;
```

Scale the bond prices for portfolio positions for each bond.

```
migrationValues = migrationPrices .* numBonds;
```

Create a creditMigrationCopula object with a four-factor model using creditMigrationCopula.

```
cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation', factorCorr)
cmc =
    creditMigrationCopula with properties:
            Portfolio: [250x5 table]
        FactorCorrelation: [4\times4 double]
            RatingLabels: [8x1 string]
        TransitionMatrix: [8x8 double]
            VaRLevel: 0.9500
            UseParallel: 0
```

```
PortfolioValues: []
```

Set the VaRLevel to 99\%.

```
cmc.VaRLevel = 0.99;
```

Use the simulate function to simulate 100,000 scenarios. After using simulate, you can then use the portfolioRisk, riskContribution, confidenceBands, and getScenarios with the updated creditMigrationCopula object.

```
cmc = simulate(cmc,le5)
cmc =
    creditMigrationCopula with properties:
                            Portfolio: [250x5 table]
        FactorCorrelation: [4x4 double]
            RatingLabels: [8x1 string]
        TransitionMatrix: [8x8 double]
            VaRLevel: 0.9900
            UseParallel: 0
        PortfolioValues: [2.0082e+06 1.9950e+06 1.9933e+06 2.0009e+06 1.9819e+06 1.9955e+06 1.9962
```

You can use the riskContribution function with the creditMigrationCopula object to generate the risk Contributions table.
Contributions = riskContribution(cmc);
Contributions(1:10,:)
ans=10×5 table
ID
ID
EL
-

1

Input Arguments

cmc - creditMigrationCopula object

object
creditMigrationCopula object, obtained from creditMigrationCopula.
For more information on a creditMigrationCopula object, see creditMigrationCopula.

NumScenarios - Number of scenarios to simulate
 nonnegative integer

Number of scenarios to simulate, specified as a nonnegative integer. Scenarios are processed in blocks to conserve machine resources.

Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: cmc =
simulate(cmc, NumScenarios, 'Copula', 't',' Degrees0fFreedom', 5, 'BlockSize', 1000)

Copula - Type of copula

'Gaussian' (default)| character vector or string with values 'Gaussian' or 't'
Type of copula, specified as the comma-separated pair consisting of 'Copula' and a character vector or string. Possible values are:

- 'Gaussian' - Gaussian copula
- ' t ' $-t$ copula with degrees of freedom specified by using DegreesOfFreedom.

Data Types: char|string
Degrees 0 fFreedom - Degrees of freedom for \mathbf{t} copula
5 (default) | nonnegative numeric value
Degrees of freedom for a t copula, specified as the comma-separated pair consisting of 'DegreesOfFreedom' and a nonnegative numeric value. If Copula is set to 'Gaussian' , the DegreesOfFreedom parameter is ignored.
Data Types: double

BlockSize - Number of scenarios to process in each iteration

nonnegative numeric value
Number of scenarios to process in each iteration, specified as the comma-separated pair consisting of 'BlockSize' and a nonnegative numeric value. Adjust BlockSize for performance, especially when executing large simulations.

If unspecified, BlockSize defaults to a value of approximately 1,000,000 / (Number-ofcounterparties). For example, if there are 100 counterparties, the default BlockSize is 10,000 scenarios.

Data Types: double

Output Arguments

cmc - Updated creditMigrationCopula object object

creditMigrationCopula object, returned as an updated object that is populated with the simulated PortfolioValues.

For more information on a creditMigrationCopula object, see creditMigrationCopula.

Note In the simulate function, the Weights (specified when using creditMigrationCopula) are transformed to ensure that the latent variables have a mean of 0 and a variance of 1.

Version History

Introduced in R2017a

References

[1] Crouhy, M., Galai, D., and Mark, R. "A Comparative Analysis of Current Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 59-117.
[2] Gordy, M. "A Comparative Anatomy of Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 119-149.
[3] Gupton, G., Finger, C., and Bhatia, M. "CreditMetrics - Technical Document." J. P. Morgan, New York, 1997.
[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.
[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.
[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, 2005.

See Also

table|creditMigrationCopula | portfolioRisk|riskContribution|confidenceBands | getScenarios

Topics

"creditMigrationCopula Simulation Workflow" on page 4-10
"One-Factor Model Calibration" on page 4-64
"Credit Rating Migration Risk" on page 1-10

External Websites

Parallel Computing with MATLAB (53 min 27 sec)

displaypoints

Return points per predictor per bin for a compactCreditScorecard object

Syntax

PointsInfo = displaypoints(csc)
[PointsInfo,MinScore,MaxScore] = displaypoints(csc)
[PointsInfo,MinScore,MaxScore] = displaypoints(\qquad ,Name,Value)

Description

PointsInfo = displaypoints(csc) returns a table of points for all bins of all predictor variables used in the compactCreditScorecard object. The PointsInfo table displays information on the predictor name, bin labels, and the corresponding points per bin.
[PointsInfo,MinScore,MaxScore] = displaypoints(csc) returns a table of points for all bins of all predictor variables used in the compactCreditScorecard object. The PointsInfo table displays information on the predictor name, bin labels, and the corresponding points per bin and displaypoints. In addition, the optional MinScore and MaxScore values are returned.
[PointsInfo,MinScore,MaxScore] = displaypoints(\qquad ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Display Points for a compactCreditScorecard Object

To create a compactCreditScorecard object, first create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).

```
load CreditCardData.mat
sc = creditscorecard(data)
sc =
    creditscorecard with properties:
            GoodLabel: 0
            ResponseVar: 'status'
                WeightsVar:
                            VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustI
        NumericPredictors: {'CustID' 'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBala
        CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
            BinMissingData: 0
                IDVar:
            PredictorVars: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustI
                    Data: [1200x11 table]
```

Before creating a compactCreditScorecard object, you must use autobinning and fitmodel with the creditscorecard object.

```
sc = autobinning(sc);
sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769
Generalized linear regression model:
        logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBal
        Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline 0.70239 & 0.064001 & 10.975 & 5.0538e-28 \\
\hline 0.60833 & 0.24932 & 2.44 & 0.014687 \\
\hline 1.377 & 0.65272 & 2.1097 & 0.034888 \\
\hline 0.88565 & 0.293 & 3.0227 & 0.0025055 \\
\hline 0.70164 & 0.21844 & 3.2121 & 0.0013179 \\
\hline 1.1074 & 0.23271 & 4.7589 & 1.9464e-06 \\
\hline 1.0883 & 0.52912 & 2.0569 & 0.039696 \\
\hline 1.045 & 0.32214 & 3.2439 & 0.001179 \\
\hline
\end{tabular}
```

1200 observations, 1192 error degrees of freedom Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p -value $=1.4 \mathrm{e}-16$
Use the creditscorecard object with compactCreditScorecard to create a compactCreditScorecard object.

```
csc = compactCreditScorecard(sc)
CSC =
    compactCreditScorecard with properties:
            Description: ''
                GoodLabel: 0
                    ResponseVar: 'status'
                    WeightsVar: ''
            NumericPredictors: {'CustAge' 'CustIncome' 'TmWBank' 'AMBalance'}
        CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
                        PredictorVars: {'CustAge' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'Other
```

Then use displaypoints with the compactCreditScorecard object to return a table of points for all bins of all predictor variables used in the compactCreditScorecard object.

```
[PointsInfo,MinScore,MaxScore] = displaypoints(csc)
```

PointsInfo=37×3 table
Predictors Bin Points

\{'CustAge'	\{'[-Inf,33)' \}	-0.15894
\{'CustAge' \}	\{'[33,37)' \}	-0.14036
\{'CustAge' \}	\{'[37,40)'	-0.060323
\{'CustAge' \}	\{'[40,46)' ${ }^{\prime}$	0.046408
\{'CustAge' \}	\{'[46,48)'	0.21445
\{'CustAge' \}	\{' $\left.[48,58)^{\prime}\right\}$	0.23039
\{'CustAge' \}	\{'[58,Inf]' \}	0.479
\{'CustAge' \}	\{'<missing>' \}	NaN
\{'ResStatus' \}	\{'Tenant' \}	-0.031252
\{'ResStatus' \}	\{'Home Owner' \}	0.12696
\{'ResStatus' \}	\{'Other' \}	0.37641
\{'ResStatus' \}	\{'<missing>' \}	NaN
\{'EmpStatus' \}	\{'Unknown' \}	-0.076317
\{'EmpStatus' \}	\{'Employed' \}	0.31449
\{'EmpStatus' \}	\{'<missing>' \}	NaN
\{'CustIncome'\}	\{'[-Inf, 29000)'\}	-0.45716

MinScore = -1.3100
MaxScore = 3.0726
displaypoints always displays a '<missing>' bin for each predictor. The value of the '<missing>' bin comes from the initial creditscorecard object, and the '<missing>' bin is set to NaN whenever the scorecard model has no information on how to assign points to missing data.

To configure the points for the '<missing>' bin, you must use the initial creditscorecard object. For predictors that have missing values in the training set, the points for the '<missing>' bin are estimated from the data if the 'BinMissingData' name-value pair argument is set to true using creditscorecard. When the 'BinMissingData' parameter is set to false, or when the data contains no missing values in the training set, use the 'Missing' name-value pair argument in formatpoints to indicate how to assign points to the missing data. Then, rebuild the compactCreditScorecard object and rerun displaypoints. Here is an example of this workflow:

```
sc = formatpoints(sc,'Missing','minpoints');
csc = compactCreditScorecard(sc);
[PointsInfo,MinScore,MaxScore] = displaypoints(csc)
```

PointsInfo=37×3 table

Predictors

	\{'CustAge' \}
	\{'CustAge'
	\{'ResStatus'
	\{'ResStatus' \}
	\{'ResStatus' \}
	\{'ResStatus' \}
	\{'EmpStatus' \}
	\{'EmpStatus' \}
	\{'EmpStatus' \}

Bin

Points

$$
\left\{\text { '[-Inf,33 }^{\prime}\right\}
$$

$$
-0.15894
$$

$$
\begin{array}{llr}
\left\{'[33,37)^{\prime}\right. & \} & -0.14036 \\
\left\{'[37,40)^{\prime}\right. & \} & -0.060323
\end{array}
$$

$$
\left\{\begin{array}{lll}
\left\{[40,46)^{\prime}\right. & \} & 0.046408
\end{array}\right.
$$

$$
\left\{'[46,48)^{\prime} \quad\right\} \quad 0.21445
$$

$$
\begin{array}{lll}
\left\{'[48,58)^{\prime}\right. & \} & 0.23039
\end{array}
$$

$$
\left\{{ }^{\prime}[58, \text { Inf }]\right\} \quad 0.479
$$

$$
\{\text { '<missing>' }\} \quad-0.15894
$$

$$
\text { \{'Tenant' \} } \quad-0.031252
$$

$$
\text { \{'Home Owner' \} } \quad 0.12696
$$

$$
\{\text { 'Other' }\} \quad 0.37641
$$

$$
\{\text { '<missing>' }\} \quad-0.031252
$$

$$
\text { \{'Unknown ' \} -0.076317 }
$$

$$
\text { \{'Employed' \} } 0.31449
$$

$$
\{\text { '<missing>' }\} \quad-0.076317
$$

```
    {'CustIncome'} {'[-Inf,29000)'} -0.45716
MinScore = -1.3100
MaxScore = 3.0726
```


Display Points for a compactCreditScorecard Object That Contains Missing Data

To create a compactCreditScorecard object, first create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011). Using the dataMissing dataset, set the 'BinMissingData' indicator to true.
load CreditCardData.mat
sc = creditscorecard(dataMissing,'BinMissingData',true);
Before creating a compactCreditScorecard object, you must use autobinning and fitmodel with the creditscorecard object. First, use autobinning with the creditscorecard object.

```
sc = autobinning(sc);
```

The binning map or rules for categorical data are summarized in a "category grouping" table, returned as an optional output. By default, each category is placed in a separate bin. Here is the information for the predictor ResStatus.

```
[bi,cg] = bininfo(sc,'ResStatus')
bi=5\times6 table
    Bin Good Bad
```


$2.0585 \quad 0.017549$
$2.4615 \quad 0.19637$
$2.0769 \quad 0.026469$ NaN

InfoValue
0.0035249
0.00013382
0.0055808
$2.3248 \mathrm{e}-05$
0.0092627

WOE	InfoValue
-0.095463	0.0035249
0.017549	0.00013382
0.19637	0.0055808
0.026469	2.3248e-05
NaN	0.0092627

```
cg=3\times2 table
    Category BinNumber
```

\qquad
\qquad

```
\begin{tabular}{ll} 
\{'Tenant' \({ }^{\text {\} }}\) & 1 \\
\(\{\) 'Home Owner' \(\}\) & 2 \\
\{'Other' & 3
\end{tabular}
```

To group categories 'Tenant ' and 'Other', modify the category grouping table cg, so the bin number for 'Other' is the same as the bin number for 'Tenant'. Then use modifybins to update the creditscorecard object.

```
cg.BinNumber(3) = 2;
sc = modifybins(sc,'ResStatus','Catg',cg);
```

Display the updated bin information using bininfo. Note that the bin labels has been updated and that the bin membership information is contained in the category grouping cg .

```
[bi,cg] = bininfo(sc,'ResStatus')
\begin{tabular}{|c|c|c|c|c|c|}
\hline Bin & Good & Bad & Odds & WOE & InfoValue \\
\hline \{'Group1' \} & 296 & 161 & 1.8385 & -0.095463 & 0.0035249 \\
\hline \{'Group2' \} & 480 & 223 & 2.1525 & 0.062196 & 0.0022419 \\
\hline \{'<missing>'\} & 27 & 13 & 2.0769 & 0.026469 & 2.3248e-05 \\
\hline \{'Totals' \} & 803 & 397 & 2.0227 & NaN & 0.00579 \\
\hline
\end{tabular}
```

```
cg=3\times2 table
```

cg=3\times2 table
Category BinNumber
Category BinNumber
{'Tenant' } 1
{'Tenant' } 1
{'Home Owner'} 2
{'Home Owner'} 2
{'Other' } 2

```
    {'Other' } 2
```

Use formatpoints with the 'Missing' name-value pair argument to indicate that missing data is assigned 'maxpoints'.
sc = formatpoints(sc,'BasePoints',true,'Missing','maxpoints','WorstAndBest',[300 800]);
Use fitmodel to fit the model.
sc = fitmodel(sc,'VariableSelection','fullmodel','Display','Off');
Use the creditscorecard object with compactCreditScorecard to create a compactCreditScorecard object.

```
csc = compactCreditScorecard(sc)
CSC =
```

 compactCreditScorecard with properties:
 Description: ''
 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar:
 NumericPredictors: \{'CustID' 'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBala
 CategoricalPredictors: \{'ResStatus' 'EmpStatus' 'OtherCC'\}
 PredictorVars: \{'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustI
 Then use displaypoints with the compactCreditScorecard object to return a table of points for all bins of all predictor variables used in the compactCreditScorecard object. By setting the displaypoints name-value pair argument for 'ShowCategoricalMembers' to true, all the members contained in each individual group are displayed.
[PointsInfo,MinScore,MaxScore] = displaypoints(csc,'ShowCategoricalMembers',true)
PointsInfo=51×3 table
Predictors Bin Points

\{'BasePoints' \}	\{'BasePoints'\}	535.25
\{'CustID' \}	\{'[-Inf, 121)'\}	12.085
\{'CustID' \}	\{'[121,241)' \}	5.4738
\{'CustID' \}	\{'[241, 1081)'\}	-1.4061
\{'CustID' \}	\{'[1081,Inf]'\}	-7.2217
\{'CustID' \}	\{'<missing>'	12.085
\{'CustAge'	\{'[-Inf,33)'	-25.973
\{'CustAge' \}	\{'[33,37)'	-22.67
\{'CustAge' \}	\{'[37,40)'	-17.122
\{'CustAge' \}	\{'[40,46)' \}	-2.8071
\{'CustAge' \}	\{'[46,48)' \}	9.5034
\{'CustAge' \}	\{' $[48,51$)' \}	10.913
\{'CustAge' \}	\{'[51,58)' \}	13.844
\{'CustAge' \}	\{'[58,Inf]' \}	37.541
\{'CustAge' \}	\{'<missing>' \}	-9.7271
\{'TmAtAddress'\}	\{'[-Inf,23)'	-9.3683

MinScore $=300.0000$
MaxScore = 800.0000

Input Arguments

csc - Compact credit scorecard model
compactCreditScorecard object
Compact credit scorecard model, specified as a compactCreditScorecard object.
To create a compactCreditScorecard object, use compactCreditScorecard or compact from Financial Toolbox.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: [PointsInfo,MinScore,MaxScore] =
displaypoints(csc,'ShowCategoricalMembers',true)
```


ShowCategoricalMembers - Indicator for how to display bins labels of categories that were

 grouped togetherfalse (default) | true or false
Indicator for how to display bins labels of categories that were grouped together, specified as the comma-separated pair consisting of 'ShowCategoricalMembers' and a logical scalar with a value of true or false.

By default, when 'ShowCategoricalMembers' is false, bin labels are displayed as Group1, Group $2, . .$. ,Groupn, or if the bin labels were modified in creditscorecard, then the user-defined bin label names are displayed.

If 'ShowCategoricalMembers' is true, all the members contained in each individual group are displayed.

Data Types: logical

Output Arguments

PointsInfo - One row per bin, per predictor, with the corresponding points

 tableOne row per bin, per predictor, with the corresponding points, returned as a table. For example:

Predictors	Bin	Points
Predictor_1	Bin_11	Points_11
Predictor_1	Bin_12	Points_12
Predictor_1	Bin_13	Points_13
	\ldots.	\ldots
Predictor_1	'<missing> '	NaN (Default)
Predictor_2	Bin_21	Points_21
Predictor_2	Bin_22	Points_22
Predictor_2	Bin_23	Points_23
	\ldots.	\ldots
Predictor_2	'<missing>'	NaN (Default)
Predictor j	Bin_ji	Points_ji
	\ldots	\ldots
Predictor_ j	'<missing> '	NaN (Default)

displaypoints always displays a '<missing>' bin for each predictor. The value of the
'<missing>' bin comes from the initial creditscorecard object, and the '<missing>' bin is set to NaN whenever the scorecard model has no information on how to assign points to missing data.

To configure the points for the '<missing>' bin, you must use the initial creditscorecard object. For predictors that have missing values in the training set, the points for the '<missing>' bin are estimated from the data if the 'BinMissingData' name-value pair argument for is set to true using creditscorecard. When the 'BinMissingData' parameter is set to false, or when the data contains no missing values in the training set, use the 'Missing' name-value pair argument in formatpoints to indicate how to assign points to the missing data. Then rebuild the compactCreditScorecard object and rerun displaypoints.

When base points are reported separately (see formatpoints), the first row of the returned PointsInfo table contains the base points.

MinScore - Minimum possible total score
scalar

Minimum possible total score, returned as a scalar.

Note Minimum score is the lowest possible total score in the mathematical sense, independently of whether a low score means high risk or low risk.

MaxScore - Maximum possible total score

scalar
Maximum possible total score, returned as a scalar.

Note Maximum score is the highest possible total score in the mathematical sense, independently of whether a high score means high risk or low risk.

Algorithms

The points for predictor j and bin i are, by default, given by

```
Points_ji = (Shift + Slope*b0)/p + Slope*(bj*W0Ej(i))
```

where $b j$ is the model coefficient of predictor j, p is the number of predictors in the model, and WOEj(i) is the Weight of Evidence (WOE) value for the i-th bin corresponding to the j-th model predictor. Shift and Slope are scaling constants.

When the base points are reported separately (see the formatpoints name-value pair argument BasePoints), the base points are given by

Base Points = Shift + Slope*b0,
and the points for the j-th predictor, i-th row are given by
Points_ji = Slope*(bj*WOEj(i))).
By default, the base points are not reported separately.
The minimum and maximum scores are:

```
MinScore = Shift + Slope*b0 + min(Slope*b1*W0E1) + ... +min(Slope*bp*W0Ep)),
MaxScore = Shift + Slope*b0 + max(Slope*b1*W0E1) + ... +max(Slope*bp*W0Ep)).
```

Use formatpoints to control the way points are scaled, rounded, and whether the base points are reported separately. See formatpoints for more information on format parameters and for details and formulas on these formatting options.

Version History

Introduced in R2019a

References

[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.
[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also

compactCreditScorecard|score | probdefault | validatemodel

Topics

"compactCreditScorecard Object Workflow" on page 3-57
"Case Study for Credit Scorecard Analysis"
"Credit Scorecard Modeling with Missing Values"
"Credit Scorecard Modeling Workflow"
"About Credit Scorecards"

fitEADModel

Create specified EAD model object type

Syntax

```
eadModel = fitEADModel(data,ModelType)
eadModel = fitEADModel(
```

\qquad

``` , Name=Value)
```


Description

eadModel = fitEADModel (data,ModelType) creates an exposure at default (EAD) model object specified by data and ModelType. fitEADModel takes in credit data in table form and fits an EAD model. ModelType is supported for a Regression, Tobit, or Beta model.
eadModel = fitEADModel(\qquad , Name=Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax. The available optional namevalue arguments depend on the specified ModelType.

Examples

Create Regression EAD Model

This example shows how to use fitEADModel to create a Regression model for exposure at default (EAD).

Load EAD Data

Load the EAD data.

load EADData.mat head(EADData)					
UtilizationRate	Age	Marriage	Limit	Drawn	EAD
0.24359	25	not married	44776	10907	44740
0.96946	44	not married	$2.1405 \mathrm{e}+05$	$2.0751 \mathrm{e}+05$	40678
0	40	married	1.6581e+05	0	$1.6567 \mathrm{e}+05$
0.53242	38	not married	$1.7375 \mathrm{e}+05$	92506	1593.5
0.2583	30	not married	26258	6782.5	54.175
0.17039	54	married	$1.7357 \mathrm{e}+05$	29575	576.69
0.18586	27	not married	19590	3641	998.49
0.85372	42	not married	$2.0712 \mathrm{e}+05$	$1.7682 \mathrm{e}+05$	$1.6454 \mathrm{e}+05$

```
rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


Select Model Type

Select a model type for Regression or Tobit.

```
ModelType \(=\) Regression \(\quad\);
```


Select Conversion Measure

Select a conversion measure for the EAD response values.
ConversionMeasure $=$ LCF \quad;

Create Regression EAD Model

Use fitEADModel to create a Regression model using EADData.

```
eadModel = fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriage'},
    ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);
```

 Regression with properties:
 ConversionTransform: "logit"
 BoundaryTolerance: 1.0000e-07
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"
 Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'BoundaryTolerance', 'LimitVar', and 'DrawnVar' name-value arguments to modify the transformation.

```
eadModel.UnderlyingModel
ans =
Compact linear regression model:
    EAD_lcf_logit ~ 1 + UtilizationRate + Age + Marriage
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -2.4745 & 0.29892 & -8.2781 & 1.6448e-16 \\
\hline 6.0045 & 0.19901 & 30.172 & 7.703e-182 \\
\hline -0.020095 & 0.0073019 & -2.752 & 0.0059471 \\
\hline -0.03509 & 0.13935 & -0.2518 & 0.8012 \\
\hline
\end{tabular}
Number of observations: 4378, Error degrees of freedom: 4374
Root Mean Squared Error: 4.48
R-squared: 0.173, Adjusted R-Squared: 0.173
F-statistic vs. constant model: 305, p-value = 5.7e-180
```


Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-vale argument.
predictedEAD = predict(eadModel, EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel, EADData(TestInd,:),ModelLevel="ConversionMeasure");

Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.
ModelLevel $=$ ConversionMeasure \quad;
[DiscMeasure1, DiscData1] = modelDiscrimination(eadModel, EADData(TestInd,:),ModelLevel=ModelLev modelDiscriminationPlot(eadModel, EADData(TestInd, :), ModelLevel=ModelLevel,SegmentBy="Marriage

Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the predictions.

YData $=$ Observed \quad;
[CalMeasure1, CalDatal] = modelCalibration(eadModel, EADData(TestInd,:), ModelLevel=ModelLevel); modelCalibrationPlot(eadModel, EADData(TestInd,:), ModelLevel=ModelLevel,YData=YData);

Scatter
Regression, R-Squared: 0.16148

Plot a histogram of observed with respect to the predicted EAD.
figure;
histogram(CalDatal.Observed);
hold on;
histogram(CalDatal.(('Predicted_' + ModelType)));
xlabel(ConversionMeasure);
legend('Observed', 'Predicted');

Input Arguments

data - Data for loss given default

table
Data for loss given default, specified as a table.
Data Types: table

ModelType - Type of EAD model

character vector with values 'Regression', 'Tobit', or 'Beta' | string with values "Regression", "Tobit", or "Beta"

Type of EAD model, specified as a scalar string or character vector. Use one of following values:

- Regression -Transform the EAD response variable and fit a linear regression model. For more information, see "Exposure at Default Regression Models" on page 6-645.
- Tobit - Fit a Tobit "censored" regression model. For more information, see "Exposure at Default Tobit Models" on page 6-656.
- Beta - Fit a Beta regression model. For more information, see "Beta Regression Models" on page 6-669.

Data Types: string | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Example: eadModel =
fitEADModel(EADData, ModelType, PredictorVars=\{'UtilizationRate', 'Age','Marriag
e'\}, ConversionMeasure="ccf", DrawnVar='Drawn', LimitVar='Limit' ,ResponseVar='EA D')

The available name-value arguments depend on the value you specify for ModelType.

- Regression - See "Regression Name-Value Arguments" on page 6-638.
- Tobit - See "Tobit Name-Value Arguments" on page 6-648.
- Beta - See "Beta Name-Value Arguments" on page 6-661.

Output Arguments

eadModel - Exposure at default model

eadModel object
Loss given default model, returned as an eadModel object for a Regression, Tobit, or Beta model.

Version History

Introduced in R2021b

R2022b: Support Beta regression for EAD model

Behavior changed in R2022b
To create a Beta model use a ModelType of "Beta".

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications. SAS Institute, 2014.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also

Regression | Tobit | Beta

Topics

"Compare Results for Regression and Tobit EAD Models" on page 4-151
"Overview of Exposure at Default Models" on page 1-34

fitLGDModel

Create specified LGD model object type

Syntax

```
lgdModel = fitLGDModel(data,ModelType)
lgdModel = fitLGDModel(
```

\qquad

``` , Name, Value)
```


Description

lgdModel = fitLGDModel(data,ModelType) creates a loss given default (LGD) model object specified by data and ModelType. fitLGDModel takes in credit data in table form and fits a LGD model. ModelType is supported for Regression, Tobit, or Beta.
lgdModel = fitLGDModel(\qquad ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax. The available optional name-value pair arguments depend on the specified ModelType.

Examples

Create Regression LGD Model

This example shows how to use fitLGDModel to create a Regression model for loss given default (LGD).

Load LGD Data

Load the LGD data.

```
load LGDData.mat
head(data)
```

LTV	Age	Type	LGD
0.89101	0.39716	residential	0.032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0.025688
0.92005	0.50253	investment	0.063182

Create Regression LGD Model

Use fitLGDModel to create a Regression model using the data.

```
lgdModel = fitLGDModel(data,'regression',...
    'ModelID','Example',...
    'Description','Example LGD regression model.',...
```

```
    'PredictorVars',{'LTV' 'Age' 'Type'},...
    'ResponseVar','LGD');
disp(lgdModel)
    Regression with properties:
    ResponseTransform: "logit"
    BoundaryTolerance: 1.0000e-05
            ModelID: "Example"
            Description: "Example LGD regression model."
        UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
            PredictorVars: ["LTV" "Age" "Type"]
                ResponseVar: "LGD"
```

Display the underlying model. The underlying model's response variable is the logit transformation of the LGD response data. Use the 'ResponseTransform' and 'BoundaryTolerance' arguments to modify the transformation.

```
lgdModel.UnderlyingModel
ans =
Compact linear regression model:
    LGD_logit ~ 1 + LTV + Age + Type
Estimated Coefficients:
\begin{tabular}{lll} 
Estimate & SE \(\quad\) tStat \(\quad\) pValue \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
(Intercept) & -5.1939 & 0.28351 & -18.32 & \(1.203 \mathrm{e}-71\) \\
LTV & 3.3217 & 0.33058 & 10.048 & \(1.9484 \mathrm{e}-23\) \\
Age & -1.4953 & 0.068658 & -21.779 & \(1.0596 \mathrm{e}-98\) \\
Type_investment & 1.3813 & 0.19406 & 7.1178 & \(1.3259 \mathrm{e}-12\)
\end{tabular}
Number of observations: 3487, Error degrees of freedom: 3483
Root Mean Squared Error: 4.3
R-squared: 0.195, Adjusted R-Squared: 0.194
F-statistic vs. constant model: 281, p-value = 2.32e-163
```


Predict LGD

For LGD prediction, the LGD model applies the inverse transformation so the predictions are in the LGD scale, not in the transformed scale used to fit the underlying model.

```
predictedLGD = predict(lgdModel,data);
histogram(predictedLGD)
title('Predicted LGD Histogram')
xlabel('Predicted LGD')
ylabel('Frequency')
```


Validate LGD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

For example, use modelDiscriminationPlot to plot the ROC curve.
modelDiscriminationPlot(lgdModel,data)

Use modelCalibrationPlot to show a scatter plot of the predictions.
modelCalibrationPlot(lgdModel,data)

Scatter

Input Arguments

data - Data for loss given default

table
Data for loss given default, specified as a table.
Data Types: table

ModelType - Type of LGD model

character vector with value 'Regression', 'Tobit', or 'Beta' | string with value "Regression", "Tobit", or "Beta"

Type of LGD model, specified as a scalar string or character vector. Use one of following values:

- Regression -Transform the LGD response variable and fit a linear regression model. For more information, see "Loss Given Default Regression Models" on page 6-677.
- Tobit - Fit a Tobit regression model. For more information, see "Loss Given Default Tobit Models" on page 6-694.
- Beta - Fit a Beta regression model. For more information, see "Beta Regression Models" on page 6-685.

Data Types: string | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: lgdModel = fitLGDModel(data,'regression','PredictorVars', \{'LTV'
'Age','Type'\},'ResponseVar','LGD','ResponseTransform','probit', 'BoundaryToler ance',1e-6)

The available name-value pair arguments depend on the value you specify for ModelType.

- Regression - See "Regression Name-Value Pair Arguments" on page 6-672.
- Tobit - See "Tobit Name-Value Pair Arguments" on page 6-688.
- Beta - See "Beta Name-Value Pair Arguments" on page 6-680.

Output Arguments

lgdModel - Loss given default model

lgdModel object
Loss given default model, returned as an lgdModel object. Supported classes are Regression, Tobit, and Beta.

Version History

Introduced in R2021a

R2022b: Support Beta regression for LGD model

Behavior changed in R2022b
To create a Beta model use a ModelType of "Beta".

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

See Also

Regression | Tobit|Beta

Topics

"Model Loss Given Default" on page 4-90
"Basic Loss Given Default Model Validation" on page 4-131
"Compare Tobit LGD Model to Benchmark Model" on page 4-133
"Compare Loss Given Default Models Using Cross-Validation" on page 4-140
"Overview of Loss Given Default Models" on page 1-31

fitLifetimePDModel

Create specified lifetime PD model object type

Syntax

```
pdModel = fitLifetimePDModel(data,ModelType)
pdModel = fitLifetimePDModel(
```

\qquad

``` , Name, Value)
```


Description

pdModel = fitLifetimePDModel(data,ModelType) creates a lifetime probability of default (PD) model object specified by data and ModelType. fitLifetimePDModel takes in credit data in panel data form and fits a lifetime PD model. ModelType is supported for Logistic, Probit, or Cox.
pdModel = fitLifetimePDModel(\qquad , Name, Value) specifies options using one or more namevalue pair arguments in addition to the input arguments in the previous syntax. The available optional name-value pair arguments depend on the specified ModelType.

Examples

Create Logistic Lifetime PD Model

This example shows how to use fitLifetimePDModel to create a Logistic model using credit and macroeconomic data.

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat disp(head(data))				
ID	ScoreGroup	YOB	Default	Year
-				
1	Low Risk	1	0	1997
1	Low Risk	2	0	1998
1	Low Risk	3		1999
1	Low Risk	4	0	2000
1	Low Risk	5	0	2001
1	Low Risk	6	0	2002
1	Low Risk	7	0	2003
1	Low Risk	8	0	2004

```
disp(head(dataMacro))
    Year GDP Market
    1997 2.72 7.61
```

1998	3.57	26.24
1999	2.86	18.1
2000	2.43	3.19
2001	1.26	-10.51
2002	-0.59	-22.95
2003	0.63	2.78
2004	1.85	9.48

Join the two data components into a single data set.

ID	ScoreGroup	YOB	Default	Year	GDP	Market
1	Low Risk	1	0	1997	2.72	7.61
1	Low Risk	2	0	1998	3.57	26.24
1	Low Risk	3	0	1999	2.86	18.1
1	Low Risk	4	0	2000	2.43	3.19
1	Low Risk	5	0	2001	1.26	-10.51
1	Low Risk	6	0	2002	-0.59	-22.95
1	Low Risk	7	0	2003	0.63	2.78
1	Low Risk	8	0	2004	1.85	9.48

Partition Data

Separate the data into training and test partitions.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```


Create Logistic Lifetime PD Model

Use fitLifetimePDModel to create a Logistic model using the training data.

```
pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Logistic",...
    'AgeVar','YOB',...
    'IDVar','ID',...
    'LoanVars','ScoreGroup', ...
    'MacroVars',{'GDP','Market'},...
    'ResponseVar','Default');
disp(pdModel)
    Logistic with properties:
            ModelID: "Logistic"
        Description: ""
    UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
        IDVar: "ID"
```

```
            AgeVar: "YOB"
    LoanVars: "ScoreGroup"
    MacroVars: ["GDP" "Market"]
ResponseVar: "Default"
```

Display the underlying model.

```
pdModel.UnderlyingModel
```

ans $=$
Compact generalized linear regression model:
logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
Distribution = Binomial
Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	-2.7422	0.10136	-27.054	3.408e-161
ScoreGroup_Medium Risk	-0.68968	0.037286	-18.497	2.1894e-76
ScoreGroup_Low Risk	-1.2587	0.045451	-27.693	8.4736e-169
YOB	-0.30894	0.013587	-22.738	1.8738e-114
GDP	-0.11111	0.039673	-2.8006	0.0051008
Market	-0.0083659	0.0028358	-2.9502	0.0031761

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value $=0$

Predict Conditional and Lifetime PD

Use the predict function to predict conditional PD values. The prediction is a row-by-row prediction.

```
dataCustomer1 = data(1:8,:);
CondPD = predict(pdModel,dataCustomer1)
CondPD = 8\times1
    0.0092
    0.0053
    0.0045
    0.0039
    0.0037
    0.0037
    0.0019
    0.0012
```

Use predictLifetime to predict the lifetime cumulative PD values (computing marginal and survival PD values is also supported). The predictLifetime function uses the ID variable (see the ' IDVar' property for the Logistic object) to transform conditional PDs to cumulative PDs for each ID.

```
LifetimePD = predictLifetime(pdModel,dataCustomer1)
LifetimePD = 8×1
    0.0092
```

0.0145
0.0189
0.0228
0.0264
0.0300
0.0319
0.0330

Validate Model

Use modelDiscrimination to measure the ranking of customers by PD.
DiscMeasure = modelDiscrimination(pdModel,data(TestDataInd,:), DataID='test data'); disp(DiscMeasure)

AUROC

Logistic, test data 0.70009
Use modelDiscriminationPlot to visualize the ROC curve.
modelDiscriminationPlot(pdModel,data(TestDataInd,:), DataID='test data');
ROC test data

Use modelCalibration to measure the calibration of the predicted PD values. The modelCalibration function requires a grouping variable and compares the accuracy of the
observed default rate in the group with the average predicted PD for the group. For example, you can group by calendar year using the 'Year' variable.

CalMeasure = modelCalibration(pdModel,data(TestDataInd,:), 'Year',DataID='test data'); disp(CalMeasure)

```
    RMSE
    Logistic, grouped by Year, test data 0.000453
```

Use modelCalibrationPlot to visualize the observed default rates compared to the predicted probabilities of default (PD).
modelCalibrationPlot(pdModel,data(TestDataInd,:),'Year',DataID='test data');

Input Arguments

data - Data
table
Data, specified as a table, in panel data form. The data must contain an ID column. The response variable must be a binary variable with the value 0 or 1 , with 1 indicating default.
Data Types: table

ModelType - Type of PD model

character vector with value 'Logistic', 'Probit', or 'Cox'| string with value "Logistic",
"Probit", or "Cox"
Type of PD model, specified as a scalar string or character vector. Use one of following values:

- Logistic -Fit a Logistic model for lifetime probability. For more information, see "Time Interval for Logistic Models" on page 6-623.
- Probit - Fit a Probit model for lifetime probability. For more information, see "Time Interval for Probit Models" on page 6-634.
- Cox - Fit a Cox model for lifetime probability. For more information, see "Cox Proportional Hazards Models" on page 6-550.

Data Types: string|char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: pdModel =
fitLifetimePDModel(data(TrainDataInd,:) ,ModelType,'AgeVar',"YOB",'IDVar',"ID"
,'LoanVars',"ScoreGroup",'MacroVars',
{'GDP','Market'},'ResponseVar',"Default")
```

The available name-value pair arguments depend on the value you specify for ModelType.

- Logistic - See "Logistic Name-Value Pair Arguments" on page 6-616.
- Probit - See "Probit Name-Value Pair Arguments" on page 6-627.
- Cox - See "Cox Name-Value Arguments" on page 6-537.

Output Arguments

pdModel - Probability of default model

pdModel object
Probability of default model, returned as a pdModel object. Supported classes are Logistic, Probit, or Cox.

Version History
 Introduced in R2020b

References

Independently published
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.

See Also
Logistic|Probit|Cox

Topics

"Basic Lifetime PD Model Validation" on page 4-129
"Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
"Compare Lifetime PD Models Using Cross-Validation" on page 4-121
"Expected Credit Loss Computation" on page 4-124
"Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
"Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 4-75
"Overview of Lifetime Probability of Default Models" on page 1-25

fullTriangle

Display full development triangle including ultimate claims

Syntax

fullTriangleTable = fullTriangle(developmentTriangle)

Description

fullTriangleTable = fullTriangle(developmentTriangle) calculates the projected claims for every origin and development period in the lower half of the development triangle.

Examples

Creates Filled Development Triangles

Calculate the projected claims for every origin and development period in the lower half of the development triangle for a developmentTriangle object containing simulated insurance claims data.

```load InsuranceClaimsData.mat; head(data)```			
OriginYear	DevelopmentYear	ReportedClaims	PaidClaims
2010	12	3995.7	1893.9
2010	24	4635	3371.2
2010	36	4866.8	4079.1
2010	48	4964.1	4487
2010	60	5013.7	4711.4
2010	72	5038.8	4805.6
2010	84	5059	4853.7
2010	96	5074.1	4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data.

```
dT = developmentTriangle(data)
dT =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10\times10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
```

Use the ultimateClaims function to calculate CDFs and the percentage of total claims and return a table with the selected link ratios, CDFs, and percentage of total claims.

```
dT.SelectedLinkRatio = [1.1755, 1.0577, 1.0273, 1.0104, 1.0044, 1.0026, 1.0016, 1.0006, 1.0004];
selectedLinkRatiosTable = cdfSummary(dT)
selectedLinkRatiosTable=3\times10 table
 12-24
 Selected
 1.1755
 1.0577
 1.0273
 1.0104
 1.0044
 1.0026
 CDF to Ultimate 1.303 1.1084
 1.048
 0.98027
 0.9904
 1.0052
```

Use the fullTriangle function to create a table containing the filled development triangle.

```
fullTriangleTable = fullTriangle(dT)
```

fullTrian	$\begin{gathered} \text { 「able= } \\ 12 \end{gathered}$	$\begin{aligned} & 11 \text { table } \\ & 24 \end{aligned}$	36	48	60	72	84	96	108
2010	3995.7	4635	4866.8	4964.1	5013.7	5038.8	5059	5074.1	5084
2011	3968	4682.3	4963.2	5062.5	5113.1	5138.7	5154.1	5169.6	5179
2012	4217	5060.4	5364	5508.9	5558.4	5586.2	5608.6	5625.4	5628
2013	4374.2	5205.3	5517.7	5661.1	5740.4	5780.6	5803.7	5813	5816
2014	4499.7	5309.6	5628.2	5785.8	5849.4	5878.7	5894	5903.4	5906
2015	4530.2	5300.4	5565.4	5715.7	5772.8	5798.2	5813.3	5822.6	5826
2016	4572.6	5304.2	5569.5	5714.3	5773.7	5799.1	5814.2	5823.5	58
2017	4680.6	5523.1	5854.4	6014.3	6076.8	6103.6	6119.4	6129.2	6132
2018	4696.7	5495.1	5812.2	5970.9	6032.9	6059.5	6075.2	6085	6088
2019	4945.9	5813.9	6149.4	6317.2	6382.9	6411	6427.7	6438	6441

## Input Arguments

developmentTriangle - Development triangle
developmentTriangle object
Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

## Output Arguments

## fullTriangleTable - Filled development triangle

table
Filled development triangle, returned as a table.

## Version History

Introduced in R2020b

## See Also

view | linkRatios | linkRatioAverages | cdfSummary | ultimateClaims | linkRatiosPlot |
claimsPlot

## Topics

"Mean Square Error of Prediction for Estimated Ultimate Claims" on page 4-161
"Bootstrap Using Chain Ladder Method" on page 4-168
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

## ibnr

Compute IBNR claims for bornhuetterFerguson object

## Syntax

```
ibnrClaims = ibnr(bf)
ibnrClaims = ibnr(
,referenceClaimsType)
```


## Description

ibnrClaims = ibnr(bf) computes incurred-but-not-reported (IBNR) claims for reported or paid claims for a bornhuetterFerguson object.
ibnrClaims = ibnr(__, referenceClaimsType) additionally specifies the type of claims data. Specify this argument after the input argument in the previous syntax.

## Examples

## Compute IBNR Claims for bornhuetterFerguson Object

Compute IBNR for either reported or paid claims for a bornhuetterFerguson object containing simulated insurance claims data.

OriginYear	DevelopmentYear	ReportedClaims	PaidClaims
2010	12	3995.7	1893.9
2010	24	4635	3371.2
2010	36	4866.8	4079.1
2010	48	4964.1	4487
2010	60	5013.7	4711.4
2010	72	5038.8	4805.6
2010	84	5059	4853.7
2010	96	5074.1	4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl
dT_reported =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
LatestDiagonal: [10x1 double]
```

```
 Description: ""
 TailFactor: 1
CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001
```

Create an expectedClaims object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.

```
earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)
ec =
 expectedClaims with properties:
 ReportedTriangle: [1xl developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 InitialClaims: [10x1 double]
 CaseOutstanding: [10x1 double]
 EstimatedClaimsRatios: [10x1 double]
 SelectedClaimsRatios: [10x1 double]
```

Create a bornhuetterFerguson object with reported claims, paid claims, and expected claims to calculate ultimate claims, cases outstanding, IBNR claims, and unpaid claims estimates.

```
bf = bornhuetterFerguson(dT_reported, dT_paid, ec.ultimateClaims)
bf =
 bornhuetterFerguson with properties:
 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1xl developmentTriangle]
 ExpectedClaims: [10x1 double]
 PercentUnreported: [10x1 double]
 PercentUnpaid: [10x1 double]
 CaseOutstanding: [10x1 double]
```

Use ibnr to compute IBNR reported claims for a bornhuetterFerguson object.

```
ibnrClaims = ibnr(bf,"reported")
```

```
ibnrClaims = 10x1
103 x
```

    0
    0.0052
    0.0167
    0.0347
    0.0572
    0.0889
    0.1496
    0.3006
    0.6118
    1.5509
    
## Input Arguments

bf - Bornhuetter-Ferguson
bornhuetterFerguson object
Bornhuetter-Ferguson object, specified as a previously created bornhuetterFerguson object.
Data Types: object
referenceClaimsType - Type of claims data
'reported ' (default) | character vector with value 'reported ' or 'paid' | string with value
"reported" or "paid"
Type of claims data, specified as a character vector or a string.
Data Types: char|string

## Output Arguments

## ibnrClaims - IBNR claims <br> array

IBNR claims, returned as an array.

## More About

## IBNR

Incurred-but-not-reported (IBNR) claims are the claims amount owed by an insurer to all valid claimants who have had a covered loss but have not yet reported it.

Since the insurer knows neither how many of these losses have occurred nor the severity of each loss, IBNR is necessarily an estimate.

## Version History

Introduced in R2020b

## See Also

ultimateClaims | unpaidClaims | summary

## Topics

"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

## ibnr

Compute IBNR claims for capeCod object

## Syntax

ibnrClaims = ibnr(cc)

## Description

ibnrClaims = ibnr(cc) computes incurred-but-not-reported (IBNR) claims for reported or paid claims for a capeCod object.

## Examples

## Compute IBNR Claims for capeCod Object

This example shows how to compute the incurred-but-not-reported (IBNR) claims for a capeCod object for simulated insurance claims data.

| load InsuranceClaimsData.mat; <br> head(data) |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| OriginYear | DevelopmentYear | ReportedClaims | PaidClaims |
| 2010 |  |  |  |
| 2010 | 12 | 3995.7 | 1893.9 |
| 2010 | 24 | 4635 | 3371.2 |
| 2010 | 36 | 4866.8 | 4079.1 |
| 2010 | 48 | 4964.1 | 4487 |
| 2010 | 60 | 5013.7 | 4711.4 |
| 2010 | 72 | 5038.8 | 4805.6 |
| 2010 | 84 | 5059 | 4853.7 |
|  | 96 | 5074.1 | 4877.9 |

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl
dT_reported =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10\times10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
```

```
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [\begin{array}{llllllllllll}{2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001}\end{array})
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001
```

Create a capeCod object where the first input argument is the reported development triangle, the second input argument is the paid development triangle, and the third input is the earned premium.

```
earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
cc = capeCod(dT_reported, dT_paid,earnedPremium)
cc =
 capeCod with properties:
 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 UsedUpPremium: [10x1 double]
 EstimatedClaimRatios: [10x1 double]
 ExpectedClaimRatio: 0.4258
 EstimatedExpectedClaims: [10x1 double]
 PercentUnreported: [10x1 double]
 CaseOutstanding: [10x1 double]
```

Use ibnr to compute the IBNR claims.

```
ibnrClaims = ibnr(cc)
ibnrClaims = 10×1
 0
 7.6650
 12.7454
 48.3382
 66.0055
 63.9011
 118.9799
 208.8065
 594.2093
 999.9805
```


## Input Arguments

## cc - Cape Cod object

capeCod object

Cape Cod object, specified as a previously created capeCod object.
Data Types: object

## Output Arguments

## ibnrClaims - IBNR claims

array
IBNR claims, returned as an array.

## More About

## IBNR

Incurred-but-not-reported (IBNR) claims are the claims amount owed by an insurer to all valid claimants who have had a covered loss but have not yet reported it.

Since the insurer knows neither how many of these losses have occurred nor the severity of each loss, IBNR is necessarily an estimate.

## Version History

Introduced in R2021a

## See Also <br> unpaidClaims|ultimateClaims|summary

## Topics

"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

## ibnr

Compute IBNR claims for chainLadder object

## Syntax

```
ibnrClaims = ibnr(cl)
ibnrClaims = ibnr(
,referenceClaimsType)
```


## Description

ibnrClaims = ibnr(cl) computes incurred-but-not-reported (IBNR) claims for a chainLadder object.
ibnrClaims = ibnr(__, referenceClaimsType) additionally specifies the type of claims data. Specify this argument after the input argument in the previous syntax.

## Examples

## Calculate IBNR Claims for chainLadder

Calculate the IBNR claims for a chainLadder object containing simulated insurance claims data.

load InsuranceClaimsData.mat;
head (data)
OriginYear

2010

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cla
dT_reported =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
```

TailFactor: 1
CumulativeDevelopmentFactors: $[1.30691 .11071 .05161 .02611 .01521 .00981 .00601 .00301 .001$ SelectedLinkRatio: $[1.17671 .05631 .02491 .01071 .00541 .00381 .00301 .00201 .001$

```
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10\times10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [\begin{array}{ll}{2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001}\end{array})=1.0
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001(
```

Create a chainLadder object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.

```
cl = chainLadder(dT_reported, dT_paid)
cl =
 chainLadder with properties:
 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 CaseOutstanding: [10x1 double]
```

Use ibnr to compute the IBNR claims.

```
ibnrClaims = ibnr(cl, 'reported')
ibnrClaims = 10×1
10}\mp@subsup{}{}{3}
 0
 0.0052
 0.0169
 0.0349
 0.0575
 0.0880
 0.1489
 0.3019
 0.6084
 1.5181
```


## Input Arguments

Chain ladder, specified as a previously created chainLadder object.
Data Types: object
referenceClaimsType - Type of claims data
'reported ' (default) | character vector with value 'reported ' or 'paid' | string with value
"reported" or "paid"
Type of claims data, specified as a character vector or string.
Data Types: char | string

## Output Arguments

## ibnrClaims - IBNR claims

array
IBNR claims, returned as an array.

## More About

## IBNR

Incurred-but-not-reported (IBNR) claims are the claims amount owed by an insurer to all valid claimants who have had a covered loss but have not yet reported it.

Since the insurer knows neither how many of these losses have occurred nor the severity of each loss, IBNR is necessarily an estimate.

## Version History

Introduced in R2020b

See Also<br>unpaidClaims | summary

## ibnr

Compute IBNR claims for expectedClaims object

## Syntax

ibnrClaims = ibnr(ec)

## Description

ibnrClaims = ibnr(ec) computes the incurred-but-not-reported (IBNR) claims for an expectedClaims object.

## Examples

## Compute IBNR Claims for expectedClaims Object

Compute the IBNR claims for an expectedClaims object containing simulated insurance claims data.


Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl
dT_reported =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10\times10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
```

```
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001
```

Create an expectedClaims object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.

```
earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)
ec =
 expectedClaims with properties:
 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 InitialClaims: [10x1 double]
 CaseOutstanding: [10x1 double]
 EstimatedClaimsRatios: [10x1 double]
 SelectedClaimsRatios: [10x1 double]
```

Use ibnr to compute the IBNR claims.

```
ibnrClaims = ibnr(ec)
ibnrClaims = 10×1
103 x
 -0.0984
 -0.0176
 -0.0399
 0.0030
 0.0204
 0.1483
 0.1753
 0.2744
 0.6423
 1.6575
```


## Input Arguments

Expected claims, specified as a previously created expectedClaims object.
Data Types: object

## Output Arguments

## ibnrClaims - IBNR claims

array
IBNR claims, returned as an array.

## More About

## IBNR

Incurred-but-not-reported (IBNR) claims are the claims amount owed by an insurer to all valid claimants who have had a covered loss but have not yet reported it.

Since the insurer knows neither how many of these losses have occurred nor the severity of each loss, IBNR is necessarily an estimate.

## Version History

Introduced in R2020b

## See Also <br> ultimateClaims|unpaidClaims|summary

## Topics

"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

## linkRatioAverages

Compute link ratio averages for developmentTriangle object

## Syntax

LinkRatioAveragesTable = linkRatioAverages(developmentTriangle)

## Description

LinkRatioAveragesTable = linkRatioAverages(developmentTriangle) calculates different link ratio averages.

## Examples

## Calculate Link Ratio Averages for a Development Triangle

Calculate different link ratio averages for a developmentTriangle object containing simulated insurance claims data.


Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data.

```
dT = developmentTriangle(data)
dT =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
```

Use the linkRatioAverages function to calculate different link ratio averages.

```
LinkRatioAveragesTable = linkRatioAverages(dT)
```

LinkRatioAveragesTable= $8 \times 9$ table

	12-24	24-36	36-48	48-60	60-72	72-8
Simple Average	1.1767	1.0563	1.0249	1.0107	1.0054	1.00
Simple Average - Latest 5	1.172	1.056	1.0268	1.0108	1.0054	1.00
Simple Average - Latest 3	1.17	1.0533	1.027	1.0117	1.0057	1.00
Medial Average - Latest 5x1	1.1733	1.0567	1.0267	1.0103	1.005	1.0
Volume-weighted Average	1.1766	1.0563	1.025	1.0107	1.0054	1.00
Volume-weighted Average - Latest 5	1.172	1.056	1.0268	1.0108	1.0054	1.00
Volume-weighted Average - Latest 3	1.1701	1.0534	1.027	1.0117	1.0057	1.00
Geometric Average - Latest 4	1.17	1.055	1.0267	1.011	1.0055	1.00

## Input Arguments

developmentTriangle - Development triangle
developmentTriangle object
Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

## Output Arguments

## LinkRatioAveragesTable - Link ratio averages

table
Link ratio averages, returned as a table. The table shows Simple Average, Medial Average, Geometric Average, and Volume-weighted-average.

## More About

## Link Ratio Averages

The link ratio average is the average of the link ratios or the age-to-age factors.

## Version History

Introduced in R2020b

```
See Also
view|linkRatios| cdfSummary|ultimateClaims| fullTriangle|linkRatiosPlot|
claimsPlot
```


## Topics

```
"Mean Square Error of Prediction for Estimated Ultimate Claims" on page 4-161
"Bootstrap Using Chain Ladder Method" on page 4-168
```

"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

## linkRatios

Compute link ratios for developmentTriangle object

## Syntax

LinkRatiosTable = linkRatios(developmentTriangle)

## Description

LinkRatiosTable = linkRatios(developmentTriangle) calculates the link ratios between the current development period and the next for each origin period. You can plot the link ratios using linkRatiosPlot.

## Examples

## Calculate Link Ratios for Development Triangle

Calculate the link ratios (age-to-age factors) for a developmentTriangle object containing simulated insurance claims data.


Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data.

```
dT = developmentTriangle(data)
dT =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
```

Use the linkRatios function to calculate link ratios between the current development period and the next period.
LinkRatiosTable $=$ linkRatios(dT)

LinkRatiosTable=10×9 table									
	$12-24$	$24-36$	$36-48$	$48-60$	$60-72$	$72-84$	$84-96$	$96-108$	$108-120$
	-	-							
2010	1.16	1.05	1.02	1.01	1.005	1.004	1.003	1.002	1.001
2011	1.18	1.06	1.02	1.01	1.005	1.003	1.003	1.002	NaN
2012	1.2	1.06	1.027	1.009	1.005	1.004	1.003	NaN	NaN
2013	1.19	1.06	1.026	1.014	1.007	1.004	NaN	NaN	NaN
2014	1.18	1.06	1.028	1.011	1.005	NaN	NaN	NaN	NaN
2015	1.17	1.05	1.027	1.01	NaN	NaN	NaN	NaN	NaN
2016	1.16	1.05	1.026	NaN	NaN	NaN	NaN	NaN	NaN
2017	1.18	1.06	NaN						
2018	1.17	NaN							
2019	NaN								

## Input Arguments

developmentTriangle - Development triangle developmentTriangle object

Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

## Output Arguments

## LinkRatiosTable - Link ratios

table
Link ratios, returned as a table.

## More About

## Link Ratios

Link ratios, also called age-to-age factors or loss development factors (LDFs), represent the ratio of loss amounts from one valuation date to another, and they are intended to capture growth patterns of losses over time.

## Version History <br> Introduced in R2020b

## See Also

view| linkRatioAverages |cdfSummary|ultimateClaims|fullTriangle | linkRatiosPlot|claimsPlot

## Topics

"Mean Square Error of Prediction for Estimated Ultimate Claims" on page 4-161
"Bootstrap Using Chain Ladder Method" on page 4-168
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

## linkRatiosPlot

Plot link ratios for development triangle

## Syntax

linkRatiosPlot(dT)
h = linkRatiosPlot(ax, $\qquad$ )

## Description

linkRatiosPlot( dT ) plots the link ratios for the development triangle.
$\mathrm{h}=$ linkRatiosPlot (ax,___) additionally specifies the axes and returns the figure handle h . Use this syntax with the required input argument in the previous syntax.

## Examples

## Generate Plot for Link Ratios

Generate a plot for the link ratios for a developmentTriangle object containing simulated insurance claims data.

OriginYear	DevelopmentYear	ReportedClaims	PaidClaims
2010	12	3995.7	1893.9
2010	24	4635	3371.2
2010	36	4866.8	4079.1
2010	48	4964.1	4487
2010	60	5013.7	4711.4
2010	72	5038.8	4805.6
2010	84	5059	4853.7
2010	96	5074.1	4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data.

```
dT = developmentTriangle(data)
dT =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
```

```
CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001(
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
```

Use the linkRatiosPlot function to plot a series of lines of the link ratios for the development triangle.
linkRatiosPlot(dT)


## Input Arguments

## dT - Development triangle

developmentTriangle object
Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

## ax - Valid axis object

object
(Optional) Valid axis object, specified as an ax object created using axes. The function creates the plot on the axes specified by the optional ax argument instead of on the current axes (gca). The optional argument ax must precede any of the input argument combinations.
Data Types: object

## Output Arguments

## h - Figure handle

handle object
Figure handle for the line objects, returned as a handle object.

## Version History

Introduced in R2021a

See Also<br>view|linkRatios|linkRatioAverages|cdfSummary|ultimateClaims|fullTriangle|<br>claimsPlot<br>\section*{Topics}<br>"Mean Square Error of Prediction for Estimated Ultimate Claims" on page 4-161<br>"Bootstrap Using Chain Ladder Method" on page 4-168<br>"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

## mertonByTimeSeries

Estimate default probability using time-series version of Merton model

## Syntax

[PD,DD,A,Sa] = mertonByTimeSeries(Equity,Liability,Rate)
[PD,DD,A,Sa] = mertonByTimeSeries( $\qquad$ ,Name, Value)

## Description

[PD,DD,A,Sa] = mertonByTimeSeries(Equity,Liability,Rate) estimates the default probability of a firm by using the Merton model.
[PD,DD,A,Sa] = mertonByTimeSeries( $\qquad$ ,Name, Value) adds optional name-value pair arguments.

## Examples

## Compute Probability of Default Using the Time-Series Approach to the Merton Model

Load the data from MertonData.mat.

```
load MertonData.mat
Dates = MertonDataTS.Dates;
Equity = MertonDataTS.Equity;
Liability = MertonDataTS.Liability;
Rate = MertonDataTS.Rate;
```

Compute the default probability by using the time-series approach of Merton's model.
[PD,DD,A,Sa] = mertonByTimeSeries(Equity,Liability,Rate); plot(Dates,PD)


## Compute Probability of Default Using the Time-Series Approach to the Merton Model With Drift

Load the data from MertonData.mat.

```
load MertonData.mat
Dates = MertonDataTS.Dates;
Equity = MertonDataTS.Equity;
Liability = MertonDataTS.Liability;
Rate = MertonDataTS.Rate;
```

Compute the plot for the default probability values by using the time-series approach of Merton's model. You compute the PD0 (blue line) by using the default values. You compute the PD1 (red line) by specifying an optional Drift value.

```
PD0 = mertonByTimeSeries(Equity,Liability,Rate);
PD1 = mertonByTimeSeries(Equity,Liability,Rate,'Drift',0.10);
plot(Dates, PD0, Dates, PD1)
```



## Input Arguments

## Equity - Market value of firm's equity

positive numeric value
Market value of the firm's equity, specified as a positive value.
Data Types: double

## Liability - Liability threshold of firm

positive numeric value
Liability threshold of the firm, specified as a positive value. The liability threshold is often referred to as the default point.

Data Types: double

## Rate - Annualized risk-free interest rate

numeric value
Annualized risk-free interest rate, specified as a numeric value.
Data Types: double

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [PD,DD,A,Sa] =
mertonByTimeSeries(Equity, Liability,Rate, 'Maturity', 4, 'Drift', 0. 22, 'Tolerance ', 1e-5,' NumPeriods',12)

## Maturity - Time to maturity corresponding to liability threshold

1 year (default) | positive numeric value
Time to maturity corresponding to the liability threshold, specified as the comma-separated pair consisting of 'Maturity' and a positive value.
Data Types: double

## Drift - Annualized drift rate

risk-free interest rate defined in Rate (default) | numeric value
Annualized drift rate, expected rate of return of the firm's assets, specified as the comma-separated pair consisting of 'Drift' and a numeric value.
Data Types: double
NumPeriods - Number of periods per year
250 trading days per year (default) | positive integer
Number of periods per year, specified as the comma-separated pair consisting of 'NumPeriods ' and a positive integer. Typical values are 250 (yearly), 12 (monthly), or 4 (quarterly).
Data Types: double

## Tolerance - Tolerance for convergence of the solver <br> 1e-6 (default) | positive scalar

Tolerance for convergence of the solver, specified as the comma-separated pair consisting of 'Tolerance' and a positive scalar value.
Data Types: double

## MaxIterations - Maximum number of iterations allowed

500 (default) | positive integer
Maximum number of iterations allowed, specified as the comma-separated pair consisting of 'MaxIterations ' and a positive integer.
Data Types: double

## Output Arguments

## PD - Probability of default of firm at maturity <br> numeric value

Probability of default of the firm at maturity, returned as a numeric.

## DD - Distance-to-default

numeric value
Distance-to-default, defined as the number of standard deviations between the mean of the asset distribution at maturity and the liability threshold (default point), returned as a numeric.

## A - Value of firm's assets

numeric value
Value of firm's assets, returned as a numeric value.
Sa - Annualized firm's asset volatility
numeric value
Annualized firm's asset volatility, returned as a numeric value.

## More About

## Merton Model for Time Series

In the Merton model, the value of a company's equity is treated as a call option on its assets, and the liability is taken as a strike price.

Given a time series of observed equity values and liability thresholds for a company, mertonByTimeSeries calibrates corresponding asset values, the volatility of the assets in the sample's time span, and computes the probability of default for each observation. Unlike mertonmodel, no equity volatility input is required for the time-series version of the Merton model. You compute the probability of default and distance-to-default by using the formulae in "Algorithms" on page 6-144.

## Algorithms

Given the time series for equity $(E)$, liability $(L)$, risk-free interest rate $(r)$, asset drift $(\mu A)$, and maturity ( $T$ ), mertonByTimeSeries sets up the following system of nonlinear equations and solves for a time series asset values (A), and a single asset volatility $\left(\sigma_{A}\right)$. At each time period $t$, where $t=$ 1...n:

$$
\begin{aligned}
& A_{1}=\left(\frac{E_{1}+L_{1} e^{-r_{1} T_{1}} N\left(d_{2}\right)}{N\left(d_{1}\right)}\right) \\
& A_{t}=\left(\frac{E_{t}+L_{t} e^{-r_{t} T_{t}} N\left(d_{2}\right)}{N\left(d_{1}\right)}\right) \\
& \ldots \\
& A_{n}=\left(\frac{E_{n}+L_{n} e^{-r_{n} T_{n}} N\left(d_{2}\right)}{N\left(d_{1}\right)}\right)
\end{aligned}
$$

where $N$ is the cumulative normal distribution. To simplify the notation, the time subscript is omitted for $d_{1}$ and $d_{2}$. At each time period, $d_{1}$, and $d_{2}$ are defined as:

$$
\begin{aligned}
& d_{1}=\frac{\ln \left(\frac{A}{L}\right)+\left(r+0.5 \sigma_{A}^{2}\right) T}{\sigma_{A} \sqrt{T}} \\
& d_{2}=d_{1}-\sigma_{A} \sqrt{T}
\end{aligned}
$$

The formulae for the distance-to-default ( $D D$ ) and default probability $(P D)$ at each time period are:
$D D=\frac{\ln \left(\frac{A}{L}\right)+\left(\mu_{A}-0.5 \sigma_{A}^{2}\right) T}{\sigma_{A} \sqrt{T}}$
$P D=1-N(D D)$

## Version History

## Introduced in R2017a

## References

[1] Zielinski, T. Merton's and KMV Models In Credit Risk Management.
[2] Loeffler, G. and Posch, P.N. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2011.
[3] Kim, I.J., Byun, S.J, Hwang, S.Y. An Iterative Method for Implementing Merton.
[4] Merton, R. C. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates." Journal of Finance. Vol. 29. pp. 449-470.

## See Also

mertonmodel|asrf

## Topics

"Comparison of the Merton Model Single-Point Approach to the Time-Series Approach" on page 4-54
"Default Probability by Using the Merton Model for Structural Credit Risk" on page 1-13

## mertonmodel

Estimates probability of default using Merton model

## Syntax

[PD,DD,A,Sa] = mertonmodel(Equity,EquityVol,Liability,Rate)
[PD,DD,A,Sa] = mertonmodel( $\qquad$ ,Name,Value)

## Description

[PD,DD,A,Sa] = mertonmodel(Equity,EquityVol,Liability,Rate) estimates the default probability of a firm by using the Merton model.
[PD,DD,A,Sa] = mertonmodel( $\qquad$ ,Name, Value) adds optional name-value pair arguments.

## Examples

## Compute the Probability of Default Using the Single-Point Approach to the Merton Model

Load the data from MertonData.mat.


Compute the default probability using the single-point approach to the Merton model.
[PD,DD,A,Sa] = mertonmodel(Equity, EquityVol, Liability, Rate,'Drift', Drift)
$P D=5 \times 1$
0.0638
0.0008
0.0000
0.0026
0.0344

```
DD = 5×1
 1.5237
 3.1679
 4.4298
 2.7916
 1.8196
```

$A=5 \times 1$
$10^{7} \times$
6.4210
6.0109
7.3063
5.9906
6.3231
Sa $=5 \times 1$
0.3010
0.1753
0.1699
0.2263
0.2511

## Input Arguments

Equity - Current market value of firm's equity
positive numeric value
Current market value of firm's equity, specified as a positive value.
Data Types: double

## EquityVol - Volatility of firm's equity

positive numeric value
Volatility of the firm's equity, specified as a positive annualized standard deviation.
Data Types: double

## Liability - Liability threshold of firm <br> positive numeric value

Liability threshold of firm, specified as a positive value. The liability threshold is often referred to as the default point.

Data Types: double
Rate - Annualized risk-free interest rate
numeric value
Annualized risk-free interest rate, specified as a numeric value.

## Data Types: double

## Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: [PD,DD,A,Sa] =
mertonmodel(Equity,EquityVol,Liability,Rate,'Maturity',4,'Drift',0.22)
```


## Maturity - Time to maturity corresponding to liability threshold

1 year (default) | positive numeric value
Time to maturity corresponding to the liability threshold, specified as the comma-separated pair consisting of 'Maturity' and a positive value.
Data Types: double

## Drift - Annualized drift rate

risk-free interest rate defined in Rate (default) | numeric value
Annualized drift rate (expected rate of return of the firm's assets), specified as the comma-separated pair consisting of 'Drift' and a numeric value.
Data Types: double
Tolerance - Tolerance for convergence of the solver
le-6 (default) | positive scalar
Tolerance for convergence of the solver, specified as the comma-separated pair consisting of 'Tolerance' and a positive scalar value.

Data Types: double
MaxIterations - Maximum number of iterations allowed
500 (default) | positive integer
Maximum number of iterations allowed, specified as the comma-separated pair consisting of 'MaxIterations ' and a positive integer.
Data Types: double

## Output Arguments

## PD - Probability of default of firm at maturity

numeric value
Probability of default of the firm at maturity, returned as a numeric value.

## DD - Distance-to-default

numeric value
Distance-to-default, defined as the number of standard deviations between the mean of the asset distribution at maturity and the liability threshold (default point), returned as a numeric value.

## A - Current value of firm's assets

numeric value
Current value of firm's assets, returned as a numeric value.

## Sa - Annualized firm's asset volatility

numeric value
Annualized firm's asset volatility, returned as a numeric value.

## More About

## Merton Model Using Single-Point Calibration

In the Merton model, the value of a company's equity is treated as a call option on its assets and the liability is taken as a strike price.
mertonmodel accepts inputs for the firm's equity, equity volatility, liability threshold, and risk-free interest rate. The mertonmodel function solves a 2 -by- 2 nonlinear system of equations whose unknowns are the firm's assets and asset volatility. You compute the probability of default and distance-to-default by using the formulae in "Algorithms" on page 6-149.

## Algorithms

Unlike the time series method (see mertonByTimeSeries), when using mertonmodel, the equity volatility $\left(\sigma_{E}\right)$ is provided. Given equity $(E)$, liability $(L)$, risk-free interest rate ( $r$ ), asset drift ( $\mu_{A}$ ), and maturity ( $T$ ), you use a 2-by-2 nonlinear system of equations. mertonmodel solves for the asset value $(A)$ and asset volatility $\left(\sigma_{A}\right)$ as follows:

$$
\begin{aligned}
& E=A N\left(d_{1}\right)-L e^{-r T} N\left(d_{2}\right) \\
& \sigma_{E}=\frac{A}{E} N\left(d_{1}\right) \sigma_{A}
\end{aligned}
$$

where $N$ is the cumulative normal distribution, $d_{1}$ and $d_{2}$ are defined as:

$$
\begin{aligned}
& d_{1}=\frac{\ln \left(\frac{A}{L}\right)+\left(r+0.5 \sigma_{A}^{2}\right) T}{\sigma_{A} \sqrt{T}} \\
& d_{2}=d_{1}-\sigma_{A} \sqrt{T}
\end{aligned}
$$

The formulae for the distance-to-default ( $D D$ ) and default probability ( $P D$ ) are:

$$
D D=\frac{\ln \left(\frac{A}{L}\right)+\left(\mu_{A}-0.5 \sigma_{A}^{2}\right) T}{\sigma_{A} \sqrt{T}}
$$

$$
P D=1-N(D D)
$$

## Version History

## Introduced in R2017a

## References

[1] Zielinski, T. Merton's and KMV Models In Credit Risk Management.
[2] Löffler, G. and Posch, P.N. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2011.
[3] Kim, I.J., Byun, S.J, Hwang, S.Y. An Iterative Method for Implementing Merton.
[4] Merton, R. C. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates." Journal of Finance. Vol. 29. pp. 449-470.

## See Also

mertonByTimeSeries |asrf

## Topics

"Comparison of the Merton Model Single-Point Approach to the Time-Series Approach" on page 4-54
"Default Probability by Using the Merton Model for Structural Credit Risk" on page 1-13

## minBiasAbsolute

Minimally biased absolute test for Expected Shortfall (ES) backtest by Acerbi-Szekely

## Syntax

TestResults = minBiasAbsolute(ebts)
[TestResults,SimTestStatistic] = minBiasAbsolute(ebts,Name,Value)

## Description

TestResults = minBiasAbsolute(ebts) runs the absolute version of the minimally biased Expected Shortfall (ES) backtest by Acerbi-Szekely (2017) using the esbacktestbysim object.
[TestResults,SimTestStatistic] = minBiasAbsolute(ebts,Name,Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.

## Examples

## Run minBiasAbsolute ES Backtest

Create an esbacktestbysim object.

```
load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
 'DegreesOfFreedom',10,...
 'Location',Mu,...
 'Scale',Sigma,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);
```

Generate the TestResults and SimTestStatistic reports for the minBiasAbsolute ES backtest.
[TestResults,SimTestStatistic] = minBiasAbsolute(ebts)
TestResults=3×10 table

PortfolioID	VaRID		VaRLevel	MinBiasAbsolute	PValue	TestStatistic
"S\&P"	"t(10)	95\%"	0.95	accept	0.062	-0.0014247
"S\&P"	"t(10)	97.5\%"	0.975	reject	0.029	-0.0026674
"S\&P"	"t(10)	99\%"	0.99	reject	0.005	-0.0060982

SimTestStatistic = 3×1000

0.0023	0.0008	-0.0018	0.0004	0.0009	0.0003	-0.0003	0.0008	-0.0001
0.0036	0.0005	-0.0032	0.0009	0.0017	0.0002	-0.0003	0.0011	-0.0001

# $\begin{array}{lllllllll}0.0052 & -0.0008 & -0.0048 & 0.0014 & 0.0027 & 0.0007 & 0.0005 & 0.0007 & 0.0001\end{array}$ 

## Input Arguments

ebts - esbacktestbysim object
object
esbacktestbysim (ebts) object, which contains a copy of the given data (the PortfolioData, VarData, ESData, and Distribution properties) and all combinations of portfolio IDs, VaR IDs, and VaR levels to be tested. For more information on creating an esbacktestbysim object, see esbacktestbysim.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = minBiasAbsolute(ebts)

## TestLevel - Test confidence level

0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric value between 0 and 1 .
Data Types: double

## Output Arguments

## TestResults - Results

table
Results, returned as a table where the rows correspond to all combinations of portfolio IDs, VaR IDs, and VaR levels to be tested. The columns correspond to the following information:

- 'PortfolioID ' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel' - VaR level for the corresponding VaR data column
- 'MinBiasAbsolute' - Categorical array with categories 'accept' and 'reject' that indicate the result of the minBiasAbsolute test
- 'PValue ' $-p$-value for the minBiasAbsolute test
- 'TestStatistic'-minBiasAbsolute test statistic
- 'CriticalValue' - Critical value for minBiasAbsolute test
- 'Observations' - Number of observations
- 'Scenarios' - Number of scenarios simulated to obtain $p$-values
- 'TestLevel' - Test confidence level

Note For the test results, the terms 'accept' and 'reject' are used for convenience. Technically, a test does not accept a model; rather, a test fails to reject it.

## SimTestStatistic - Simulated values of test statistic

numeric array
Simulated values of the test statistic, returned as a NumVaRs-by-NumScenarios numeric array.

## More About

## Minimally Biased Test, Absolute Version by Acerbi and Szekely

The absolute version of the Acerbi-Szekely test [1] computes the TestStatistic in the units of data.

The absolute version of the minimally biased test statistic is given by

$$
Z_{\text {minbias }}^{a b s}=\frac{1}{N} \sum_{t=1}^{N}\left(E S_{t}-V a R_{t}-\frac{1}{p_{V a R}}\left(X_{t}+V a R_{t}\right)_{-}\right)
$$

where
$X_{t}$ is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period $t$.
$V a R_{t}$ is the essential VaR for period $t$.
$E S_{t}$ is the expected shortfall for period $t$.
$p_{\text {VaR }}$ is the probability of VaR failure, defined as $1-\operatorname{VaR}$ level.
$N$ is the number of periods in the test window $(t=1, \ldots N)$.
$(\mathrm{x})_{-}$is the negative part function defined as $(x)_{-}=\max (0,-\mathrm{x})$.

## Significance of the Test

Negative values of the test statistic indicate risk underestimation.
The minimally biased test is a one-sided test that rejects the model when there is evidence that the model underestimates risk (for technical details, see Acerbi-Szekely [1] and [2]). The test rejects the model when the $p$-value is less than 1 minus the test confidence level. For more information on the steps to simulate the test statistics and details on the computation of the $p$-values and critical values, see simulate.

ES backtests are necessarily approximated in that they are sensitive to errors in the predicted VaR. However, the minimally biased test has only a small sensitivity to VaR errors and the sensitivity is prudential, in the sense that VaR errors lead to a more punitive ES test. For details, see AcerbiSzekely ([1] and [2]). When distribution information is available using the minimally biased test is recommended.

## Version History <br> Introduced in R2020b

## References

[1] Acerbi, Carlo, and Balazs Szekely. "General Properties of Backtestable Statistics." SSRN Electronic Journal. (January, 2017).
[2] Acerbi, Carlo, and Balazs Szekely. "The Minimally Biased Backtest for ES." Risk. (September, 2019).
[3] Acerbi, C. and D. Tasche. "On the Coherence of Expected Shortfall." Journal of Banking and Finance. Vol. 26, 2002, pp. 1487-1503.
[4] Rockafellar, R. T. and S. Uryasev. "Conditional Value-at-Risk for General Loss Distributions." Journal of Banking and Finance. Vol. 26, 2002, pp. 1443-1471.

## See Also

summary | conditional|unconditional | quantile | simulate | minBiasRelative |
esbacktestbysim|esbacktestbyde
Topics
"Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"Comparison of ES Backtesting Methods" on page 2-26

## minBiasRelative

Minimally biased relative test for Expected Shortfall (ES) backtest by Acerbi-Szekely

## Syntax

TestResults = minBiasRelative(ebts)
[TestResults,SimTestStatistic] = minBiasRelative(ebts,Name,Value)

## Description

TestResults = minBiasRelative(ebts) runs the relative version of the minimally biased Expected Shortfall (ES) back test by Acerbi-Szekely (2017) using the esbacktestbysim object.
[TestResults,SimTestStatistic] = minBiasRelative(ebts,Name,Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.

## Examples

## Run minBiasRelative ES Backtest

Create an esbacktestbysim object.

```
load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
 'DegreesOfFreedom',10,...
 'Location',Mu,...
 'Scale',Sigma,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);
```

Generate the TestResults and the SimTestStatistic reports for the minBiasRelative ES backtest.
[TestResults,SimTestStatistic] = minBiasRelative(ebts)
TestResults=3×10 table

PortfolioID	VaRID		VaRLevel	MinBiasRelative	PValue	TestStatistic
"S\&P"	"t(10)	95\%"	0.95	reject	0.003	-0.10509
"S\&P"	"t(10)	97.5\%"	0.975	reject	0	-0.15603
"S\&P"	"t(10)	99\%"	0.99	reject	0	-0.26716

SimTestStatistic = 3×1000

0.0860	0.0284	-0.0480	0.0176	0.0262	0.0309	-0.0107	0.0361	-0.0171
0.1145	0.0177	-0.0741	0.0357	0.0505	0.0275	-0.0136	0.0421	-0.0190

## Input Arguments

## ebts - esbacktestbysim object

object
esbacktestbysim (ebts) object, which contains a copy of the given data (the PortfolioData, VarData, ESData, and Distribution properties) and all combinations of portfolio IDs, VaR IDs, and VaR levels to be tested. For more information on creating an esbacktestbysim object, see esbacktestbysim.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: minBiasRelative(ebts,'TestLevel',0.99)

## TestLevel - Test confidence level

0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric value between 0 and 1 .
Data Types: double

## Output Arguments

## TestResults - Results

table
Results, returned as a table where the rows correspond to all combinations of portfolio IDs, VaR IDs, and VaR levels to be tested. The columns correspond to the following information:

- 'PortfolioID ' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel' - VaR level for the corresponding VaR data column
- 'MinBiasRelative' - Categorical array with categories'accept' and 'reject' that indicate the result of the minBiasRelative test
- 'PValue' $-p$-value for the minBiasRelative test
- 'TestStatistic' - minBiasRelative test statistic
- 'CriticalValue ' - Critical value for minBiasRelative test
- 'Observations'- Number of observations
- 'Scenarios ' - Number of scenarios simulated to obtain $p$-values
- 'TestLevel' - Test confidence level

Note For the test results, the terms 'accept' and 'reject' are used for convenience. Technically, a test does not accept a model; rather, a test fails to reject it.

## SimTestStatistic - Simulated values of test statistic

numeric array
Simulated values of the test statistic, returned as a NumVaRs-by-NumScenarios numeric array.

## More About

## Minimally Biased Test, Relative Version by Acerbi and Szekely

The relative version of the Acerbi-Szekely test ([1]) computes the TestStatistic in the units of data.

The absolute version of the minimally biased test statistic is given by

$$
Z_{\text {minbias }}^{\text {rel }}=\frac{1}{N} \sum_{t=1}^{N} \frac{1}{E S_{t}}\left(E S_{t}-V a R_{t}-\frac{1}{p_{V a R}}\left(X_{t}+V a R_{t}\right)_{-}\right)
$$

where
$X_{t}$ is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period $t$.
$V a R_{t}$ is the essential VaR for period $t$.
$E S_{t}$ is the expected shortfall for period $t$.
$p_{\text {VaR }}$ is the probability of VaR failure, defined as $1-$ VaR level.
$N$ is the number of periods in the test window $(t=1, \ldots N)$.
(x) _ is the negative part function defined as $(x)_{-}=\max (0,-x)$.

## Significance of the Test

Negative values of the test statistic indicate risk underestimation.
The minimally biased test is a one-sided test that rejects the model when there is evidence that the model underestimates risk (for technical details, see Acerbi-Szekely [1] and [2]). The test rejects the model when the $p$-value is less than 1 minus the test confidence level. For more information on the steps to simulate the test statistics and details on the computation of the $p$-values and critical values, see simulate.

ES backtests are necessarily approximated in that they are sensitive to errors in the predicted VaR. However, the minimally biased test has only a small sensitivity to VaR errors and the sensitivity is prudential, in the sense that VaR errors lead to a more punitive ES test. For details, see AcerbiSzekely ([1] and [2]). When distribution information is available using the minimally biased test is recommended.

## Version History <br> Introduced in R2020b

## References

[1] Acerbi, Carlo, and Balazs Szekely. "General Properties of Backtestable Statistics." SSRN Electronic Journal. (January, 2017).
[2] Acerbi, Carlo, and Balazs Szekely. "The Minimally Biased Backtest for ES." Risk. (September, 2019).
[3] Acerbi, C. and D. Tasche. "On the Coherence of Expected Shortfall." Journal of Banking and Finance. Vol. 26, 2002, pp. 1487-1503.
[4] Rockafellar, R. T. and S. Uryasev. "Conditional Value-at-Risk for General Loss Distributions." Journal of Banking and Finance. Vol. 26, 2002, pp. 1443-1471.

## See Also

summary | conditional |unconditional |quantile | simulate |esbacktestbysim | esbacktestbyde

Topics
"Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"Comparison of ES Backtesting Methods" on page 2-26

## modelAccuracy

Compute R-square, RMSE, correlation, and sample mean error of predicted and observed EADs

Note modelAccuracy is renamed to modelCalibration. modelAccuracy is not recommended. Use modelCalibration instead.

## Syntax

AccMeasure = modelAccuracy(eadModel,data)
[AccMeasure,AccData] = modelAccuracy( $\qquad$ ,Name=Value)

## Description

AccMeasure $=$ modelAccuracy (eadModel, data) computes the R-square, root mean square error (RMSE), correlation, and sample mean error of observed vs. predicted exposure at default (EAD) data. modelAccuracy supports comparison against a reference model and also supports different correlation types. By default, modelAccuracy computes the metrics in the EAD scale. You can use the ModelLevel name-value argument to compute metrics using the underlying model's transformed scale.
[AccMeasure,AccData] = modelAccuracy( $\qquad$ , Name=Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax.

## Input Arguments

## eadModel - Exposure at default model

Regression object | Tobit object | Beta object
Loss given default model, specified as a previously created Regression, Tobit, or Beta object using fitEADModel.

Data Types: object

## data - Data

table
Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable names and data types must be consistent with the underlying model.
Data Types: table

## Name-Value Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Example: [AccMeasure,AccData] =
modelAccuracy(eadModel,data(TestInd,:) ,DataID='Testing', CorrelationType='spea
rman')

## CorrelationType - Correlation type

"pearson" (default) | character vector with value of 'pearson', 'spearman', or 'kendall' | string with value of "pearson", "spearman", or "kendall"

Correlation type, specified as CorrelationType and a character vector or string.
Data Types: char | string

## DataID - Data set identifier

" " (default) | character vector | string
Data set identifier, specified as DataID and a character vector or string. The DataID is included in the output for reporting purposes.
Data Types: char | string

## ModelLevel - Model level

'ead ' (default) | character vector with value 'ead', 'conversionMeasure', or
'conversionTransform' | string with value "ead", "conversionMeasure", or
"conversionTransform"
Model level, specified as ModelLevel and a character vector or string.

Note Regression models support all three model levels, but a Tobit or Beta model supports model levels only for "ead" and "conversionMeasure".

Data Types: char | string

## ReferenceEAD - EAD values predicted for data by reference model

[] (default) | numeric vector
EAD values predicted for data by the reference model, specified as ReferenceEAD and a NumRows-by-1 numeric vector. The modelAccuracy output information is reported for both the eadModel object and the reference model.

## Data Types: double

## ReferenceID - Identifier for the reference model <br> 'Reference' (default)| character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string. ReferenceID is used in the modelAccuracy output for reporting purposes.
Data Types: char | string

## Output Arguments

## AccMeasure - Accuracy measure

table
Accuracy measure, returned as a table with columns 'RSquared', 'RMSE', 'Correlation', and 'SampleMeanError'. AccMeasure has one row if only the eadModel accuracy is measured and it has two rows if reference model information is given. The row names of AccMeasure report the model ID and data ID (if provided).

## AccData - Accuracy data

table
Accuracy data, returned as a table with observed EAD values, predicted EAD values, and residuals (observed minus predicted). Additional columns for predicted and residual values are included for the reference model, if provided. The ModelID and ReferenceID labels are appended in the column names.

## More About

## Model Accuracy

Model accuracy measures the accuracy of the predicted probability of EAD values using different metrics.

- R-squared - To compute the R-squared metric, modelAccuracy fits a linear regression of the observed EAD values against the predicted EAD values:

$$
E A D_{o b s}=a+b * E A D_{\text {pred }}+\varepsilon
$$

The R-square of this regression is reported. For more information, see "Coefficient of Determination (R-Squared)".

- RMSE - To compute the root mean square error (RMSE), modelAccuracy uses the following formula where $N$ is the number of observations:

$$
R M S E=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(E A D_{i}^{o b s}-E A D_{i}^{\text {pred }}\right)^{2}}
$$

- Correlation - This metric is the correlation between the observed and predicted EAD:
$\operatorname{corr}\left(E A D_{\text {obs }}, E A D_{\text {pred }}\right)$
For more information and details about the different correlation types, see corr.
- Sample mean error - This metric is the difference between the mean observed EAD and the mean predicted EAD or, equivalently, the mean of the residuals:

$$
\text { SampleMeanError }=\frac{1}{N} \sum_{i=1}^{N}\left(E A D_{i}^{\text {obs }}-E A D_{i}^{\text {pred }}\right)
$$

## Version History

## Introduced in R2021b

## R2023a: modelAccuracy function is renamed to modelCalibration function <br> Not recommended starting in R2023a

The modelAccuracy function is renamed to modelCalibration function. The use of modelAccuracy is not recommended, use modelCalibration instead.

## R2022b: Support for Beta model

Behavior changed in R2022b
The eadModel input supports an option for a Beta model object that you can create using fitEADModel.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications. SAS Institute, 2014.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

## See Also

Regression|Tobit|Beta|fitEADModel| predict|modelDiscrimination| modelDiscriminationPlot|modelAccuracyPlot

## Topics

"Compare Results for Regression and Tobit EAD Models" on page 4-151
"Overview of Exposure at Default Models" on page 1-34

## modelAccuracy

Compute R-square, RMSE, correlation, and sample mean error of predicted and observed LGDs

Note modelAccuracy is renamed to modelCalibration. modelAccuracy is not recommended. Use modelCalibration instead.

## Syntax

AccMeasure = modelAccuracy(lgdModel,data)
[AccMeasure,AccData] = modelAccuracy( $\qquad$ ,Name, Value)

## Description

AccMeasure $=$ modelAccuracy (lgdModel, data) computes the R-square, root mean square error (RMSE), correlation, and sample mean error of observed vs. predicted loss given default (LGD) data. modelAccuracy supports comparison against a reference model and also supports different correlation types. By default, modelAccuracy computes the metrics in the LGD scale. You can use the ModelLevel name-value pair argument to compute metrics using the underlying model's transformed scale.
[AccMeasure,AccData] = modelAccuracy (__ , Name,Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.

## Input Arguments

## lgdModel - Loss given default model

Regression object | Tobit object | Beta object
Loss given default model, specified as a previously created Regression, Tobit, or Beta object using fitLGDModel.
Data Types: object
data - Data
table
Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable names and data types must be consistent with the underlying model.
Data Types: table

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: [AccMeasure,AccData] =
modelAccuracy(lgdModel,data(TestInd,: ),'DataID', 'Testing', 'CorrelationType','
spearman')
CorrelationType - Correlation type
"pearson" (default) | character vector with value of 'pearson', 'spearman', or 'kendall' | string with value of "pearson", "spearman", or "kendall'"

Correlation type, specified as the comma-separated pair consisting of 'CorrelationType' and a character vector or string.
Data Types: char | string
DataID - Data set identifier
" " (default) | character vector | string
Data set identifier, specified as the comma-separated pair consisting of 'DataID' and a character vector or string. The DataID is included in the output for reporting purposes.
Data Types: char | string

## ModelLevel - Model level

'top' (default)| character vector with value 'top' or 'underlying' | string with value "top" or "underlying"

Model level, specified as the comma-separated pair consisting of 'ModelLevel' and a character vector or string.

- 'top ' - The accuracy metrics are computed in the LGD scale at the top model level.
- 'underlying ' - For a Regression model only, the metrics are computed in the underlying model's transformed scale. The metrics are computed on the transformed LGD data.

Note ModelLevel has no effect for a Tobit or Beta model because there is no response transformation.

## Data Types: char | string

## ReferenceLGD - LGD values predicted for data by reference model

[ ] (default) | numeric vector
LGD values predicted for data by the reference model, specified as the comma-separated pair consisting of 'ReferenceLGD' and a NumRows-by-1 numeric vector. The modelAccuracy output information is reported for both the lgdModel object and the reference model.
Data Types: double

## ReferenceID - Identifier for the reference model

'Reference' (default)| character vector | string
Identifier for the reference model, specified as the comma-separated pair consisting of 'ReferenceID ' and a character vector or string. 'ReferenceID' is used in the modelAccuracy output for reporting purposes.
Data Types: char \| string

## Output Arguments

## AccMeasure - Accuracy measure

table
Accuracy measure, returned as a table with columns 'RSquared', 'RMSE', 'Correlation', and 'SampleMeanError'. AccMeasure has one row if only the lgdModel accuracy is measured and it has two rows if reference model information is given. The row names of AccMeasure report the model ID and data ID (if provided).

## AccData - Accuracy data

table
Accuracy data, returned as a table with observed LGD values, predicted LGD values, and residuals (observed minus predicted). Additional columns for predicted and residual values are included for the reference model, if provided. The ModelID and ReferenceID labels are appended in the column names.

## More About

## Model Accuracy

Model accuracy measures the accuracy of the predicted probability of LGD values using different metrics.

- R-squared - To compute the R-squared metric, modelAccuracy fits a linear regression of the observed LGD values against the predicted LGD values

$$
L G D_{\text {obs }}=a+b * L G D_{\text {pred }}+\varepsilon
$$

The R-square of this regression is reported. For more information, see "Coefficient of Determination (R-Squared)".

- RMSE - To compute the root mean square error (RMSE), modelAccuracy uses the following formula where $N$ is the number of observations:

$$
R M S E=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(L G D_{i}^{o b s}-L G D_{i}^{\text {pred }}\right)^{2}}
$$

- Correlation - This is the correlation between the observed and predicted LGD:

$$
\operatorname{corr}\left(L G D_{o b s}, L G D_{\text {pred }}\right)
$$

For more information and details about the different correlation types, see corr.

- Sample mean error - This is the difference between the mean observed LGD and the mean predicted LGD or, equivalently, the mean of the residuals:

$$
\text { SampleMeanError }=\frac{1}{N} \sum_{i=1}^{N}\left(L G D_{i}^{\text {obs }}-L G D_{i}^{\text {pred }}\right)
$$

## Version History

## Introduced in R2021a

## R2023a: modelAccuracy function is renamed to modelCalibration function

 Not recommended starting in R2023aThe modelAccuracy function is renamed to modelCalibration function. The use of modelAccuracy is not recommended, use modelCalibration instead.

R2022b: Support for Beta model
Behavior changed in R2022b
The lgdModel input supports an option for a Beta model object that you can create using fitLGDModel.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

## See Also

Tobit|Regression | Beta|modelAccuracyPlot | modelDiscriminationPlot | modelDiscrimination| predict|fitLGDModel

## Topics

"Model Loss Given Default" on page 4-90
"Basic Loss Given Default Model Validation" on page 4-131
"Compare Tobit LGD Model to Benchmark Model" on page 4-133
"Compare Loss Given Default Models Using Cross-Validation" on page 4-140
"Overview of Loss Given Default Models" on page 1-31

## modelAccuracy

Compute RMSE of predicted and observed PDs on grouped data

Note modelAccuracy is renamed to modelCalibration. modelAccuracy is not recommended. Use modelCalibration instead.

## Syntax

AccMeasure = modelAccuracy(pdModel,data,GroupBy)
[AccMeasure,AccData] = modelAccuracy( $\qquad$ ,Name, Value)

## Description

AccMeasure = modelAccuracy(pdModel, data,GroupBy) computes the root mean squared error (RMSE) of the observed compared to the predicted probabilities of default (PD). GroupBy is required and can be any column in the data input (not necessarily a model variable). The modelAccuracy function computes the observed PD as the default rate of each group and the predicted PD as the average PD for each group. modelAccuracy supports comparison against a reference model.
[AccMeasure,AccData] = modelAccuracy( $\qquad$ ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.

## Input Arguments

pdModel - Probability of default model
Logistic object | Probit object | Cox object | customLifetimePDModel object
Probability of default model, specified as a previously created Logistic, Probit, or Cox object using fitLifetimePDModel. Alternatively, you can create a custom probability of default model using customLifetimePDModel.
Data Types: object
data - Data
table
Data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime predictions. The predictor names and data types must be consistent with the underlying model.
Data Types: table
GroupBy - Name of column in data input used to group the data
string | character vector
Name of column in the data input used to group the data, specified as a string or character vector. GroupBy does not have to be a model variable name. For each group designated by GroupBy, the modelAccuracy function computes the observed default rates and average predicted PDs are computed to measure the RMSE.

## Data Types: string | char

## Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [AccMeasure,AccData] = modelAccuracy(pdModel,data(Ind,:),'GroupBy',
["YOB","ScoreGroup"],'DataID',"DataSetChoice")
DataID - Data set identifier
" " (default) | character vector | string
Data set identifier, specified as the comma-separated pair consisting of 'DataID ' and a character vector or string. DataID is included in the modelAccuracy output for reporting purposes.
Data Types: char | string

## ReferencePD - Conditional PD values predicted for data by reference model

[] (default) | numeric vector
Conditional PD values predicted for data by the reference model, specified as the comma-separated pair consisting of 'ReferencePD' and a NumRows-by-1 numeric vector. The functions reports the modelAccuracy output information for both the pdModel object and the reference model.

Data Types: double

## ReferenceID - Identifier for reference model <br> 'Reference' (default)| character vector | string

Identifier for the reference model, specified as the comma-separated pair consisting of 'ReferenceID' and a character vector or string. ReferenceID is used in the modelAccuracy output for reporting purposes.
Data Types: char | string

## Output Arguments

## AccMeasure - RMSE values

table
Accuracy measure, returned as a table.
RMSE values, returned as a single-column 'RMSE ' table. The table has one row if only the pdModel accuracy is measured and it has two rows if reference model information is given. The row names of AccMeasure report the model IDs, grouping variables, and data ID.

Note The reported RMSE values depend on the grouping variable for the required GroupBy argument.

## AccData - Observed and predicted PD values for each group

table

Accuracy data, returned as a table.
Observed and predicted PD values for each group, returned as a table. The reported observed PD values correspond to the observed default rate for each group. The reported predicted PD values are the average PD values predicted by the pdModel object for each group, and similarly for the reference model. The modelAccuracy function stacks the PD data, placing the observed values for all groups first, then the predicted PDs for the pdModel, and then the predicted PDs for the reference model, if given.

The column 'ModelID' identifies which rows correspond to the observed PD, pdModel, or reference model. The table also has one column for each grouping variable showing the unique combinations of grouping values. The 'PD ' column of AccData is a the PD data. The last column of AccData is a 'GroupCount ' column with the group counts data.

## More About

## Model Accuracy

Model accuracy measures the accuracy of the predicted probability of default (PD) values.
To measure model accuracy, also called model calibration, you must compare the predicted PD values to the observed default rates. For example, if a group of customers is predicted to have an average PD of $5 \%$, then is the observed default rate for that group close to $5 \%$ ?

The modelAccuracy function requires a grouping variable to compute average predicted PD values within each group and the average observed default rate also within each group. modelAccuracy uses the root mean squared error (RMSE) to measure the deviations between the observed and predicted values across groups. For example, the grouping variable could be the calendar year, so that rows corresponding to the same calendar year are grouped together. Then, for each year the software computes the observed default rate and the average predicted PD. The modelAccuracy function then applies the RMSE formula to obtain a single measure of the prediction error across all years in the sample.

Suppose there are N observations in the data set, and there are $M$ groups $G_{1}, \ldots, G_{M}$. The default rate for group $G_{i}$ is

$$
D R_{i}=\frac{D_{i}}{N_{i}}
$$

where:
$D_{i}$ is the number of defaults observed in group $G_{i}$.
$N_{i}$ is the number of observations in group $G_{i}$.
The average predicted probability of default $P D_{i}$ for group $G_{i}$ is

$$
P D_{i}=\frac{1}{N_{i}} \sum_{j \in G_{i}} P D(j)
$$

where $P D(j)$ is the probability of default for observation $j$. In other words, this is the average of the predicted PDs within group $G_{i}$.

Therefore, the RMSE is computed as

$$
R M S E=\sqrt{\sum_{i=1}^{M}\left(\frac{N_{i}}{N}\right)\left(D R_{i}-P D_{i}\right)^{2}}
$$

The RMSE, as defined, depends on the selected grouping variable. For example, grouping by calendar year and grouping by years-on-books might result in different RSME values.

Use modelAccuracyPlot to visualize observed default rates and predicted PD values on grouped data.

## Version History

Introduced in R2020b
R2023a: modelAccuracy function is renamed to modelCalibration function Not recommended starting in R2023a

The modelAccuracy function is renamed to modelCalibration function. The use of modelAccuracy is not recommended, use modelCalibration instead.

## R2022b: Support for customLifetimePDModel model

The pdModel input supports an option for a customLifetimePDModel model object that you can create using customLifetimePDModel.

## R2022a: Additional column for AccData for GroupCount

There is an additional column for AccData for GroupCount for PD models.

## R2022a: GroupCount column automatically included in AccData outputs

Behavior changed in R2022a
Starting in R2022a, the AccData output of modelAccuracy contains an additional column for GroupCount with the group counts data.

If you extract the end column from the AccData output using AccData\{: , end\}, the end column is different than previous releases of modelAccuracy.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.

## See Also

modelDiscrimination | modelDiscriminationPlot | modelAccuracyPlot | predictLifetime|predict|fitLifetimePDModel|Logistic|Probit|Cox| customLifetimePDModel

Topics
"Basic Lifetime PD Model Validation" on page 4-129
"Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
"Compare Lifetime PD Models Using Cross-Validation" on page 4-121
"Expected Credit Loss Computation" on page 4-124
"Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
"Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 4-75
"Overview of Lifetime Probability of Default Models" on page 1-25

## modelAccuracyPlot

Scatter plot of predicted and observed EADs

Note modelAccuracyPlot is renamed to modelCalibrationPlot. modelAccuracyPlot is not recommended. Use modelCalibrationPlot instead.

## Syntax

modelAccuracyPlot(eadModel,data)
modelAccuracyPlot (__ , Name=Value)
h = modelAccuracyPlot $(a x$, $\qquad$ , Name=Value)

## Description

modelAccuracyPlot (eadModel, data) returns a scatter plot of observed vs. predicted exposure at default (EAD) data with a linear fit. modelAccuracyPlot supports comparison against a reference model. By default, modelAccuracyPlot plots in the EAD scale.
modelAccuracyPlot ( $\qquad$ , Name=Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax. You can use the ModelLevel name-value argument to compute metrics using the underlying model's transformed scale.
h = modelAccuracyPlot(ax,__, , Name=Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax and returns the figure handle h .

## Input Arguments

## eadModel - Exposure at default model

Regression object | Tobit | Beta object
Exposure at default model, specified as a previously created Regression, Tobit, or Beta object using fitEADModel.

Data Types: object

## data - Data

table
Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable names and data types must be consistent with the underlying model.
Data Types: table

## ax - Valid axis object <br> object

(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be created in the axes specified by the optional ax argument instead of in the current axes (gca). The optional argument ax must precede any of the input argument combinations.

## Data Types: object

## Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1, . . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Example:
modelAccuracyPlot (eadModel, data(TestInd, :) ,DataID=Testing, XData='residuals',Y Data='residuals')

## DataID - Data set identifier

" " (default) | character vector | string
Data set identifier, specified DataID and a character vector or string. The DataID is included in the output for reporting purposes.

## Data Types: char|string

## ModelLevel - Model level

'ead' (default)| character vector with value 'ead', 'conversionMeasure', or
'conversionTransform' | string with value "ead", "conversionMeasure", or
"conversionTransform"
Model level, specified as ModelLevel and a character vector or string.

Note Regression models support all three model levels, but a Tobit or Beta model supports model levels only for "ead" and "conversionMeasure".

Data Types: char|string

## ReferenceEAD - EAD values predicted for data by reference model

[] (default) | numeric vector
EAD values predicted for data by the reference model, specified as ReferenceEAD and a NumRows-by-1 numeric vector. The scatter plot output is plotted for both the eadModel object and the reference model.

Data Types: double

## ReferenceID - Identifier for the reference model

'Reference' (default) | character vector \| string
Identifier for the reference model, specified as ReferenceID and a character vector or string. ReferenceID is used in the scatter plot output for reporting purposes.

Data Types: char \| string

## XData - Data to plot on x-axis

'predicted ' (default)| character vector with value 'predicted', 'observed', 'residuals', or VariableName | string with value | "predicted", "observed", "residuals", or VariableName

Data to plot on $x$-axis, specified as XData and a character vector or string for one of the following:

- 'predicted ' - Plot the predicted EAD values in the $x$-axis.
- 'observed' - Plot the observed EAD values in the $x$-axis.
- 'residuals' - Plot the residuals in the x-axis.
- VariableName - Use the name of the variable in the data input, not necessarily a model variable, to plot in the $x$-axis.


## Data Types: char|string

## YData - Data to plot on $\boldsymbol{y}$-axis

'predicted' (default)| character vector with value 'predicted', 'observed', or 'residuals'
| string with value | "predicted", "observed", or "residuals"
Data to plot on $y$-axis, specified as YData and a character vector or string for one of the following:

- 'predicted ' - Plot the predicted EAD values in the $y$-axis.
- 'observed ' - Plot the observed EAD values in the $y$-axis.
- 'residuals' - Plot the residuals in the $y$-axis.

Data Types: char|string

## Output Arguments

## h - Figure handle

handle object
Figure handle for the scatter and line objects, returned as handle object.

## More About

## Model Accuracy Plot

The modelAccuracyPlot function returns a scatter plot of observed vs. predicted loss given default (EAD) data with a linear fit and reports the R-square of the linear fit.

The XData name-value pair argument allows you to change the $x$ values on the plot. By default, predicted EAD values are plotted in the $x$-axis, but predicted EAD values, residuals, or any variable in the data input, not necessarily a model variable, can be used as $x$ values. If the selected XData is a categorical variable, a swarm chart is used. For more information, see swarmchart.

The YData name-value pair argument allows users to change the $y$ values on the plot. By default, observed EAD values are plotted in the $y$-axis, but predicted EAD values or residuals can also be used as $y$ values. YData does not support table variables.

The linear fit and reported R-squared value always correspond to the linear regression model with the plotted $y$ values as response and the plotted $x$ values as the only predictor.

## Version History

Introduced in R2021b
R2023a: modelAccuracyPlot function is renamed to modelCalibrationPlot function
Not recommended starting in R2023a

The modelAccuracyPlot function is renamed to modelCalibrationPlot function. The use of modelAccuracyPlot is not recommended, use modelCalibrationPlot instead.

## R2022b: Support for Beta model

Behavior changed in R2022b
The eadModel input supports an option for a Beta model object that you can create using fitEADModel.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications. SAS Institute, 2014.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

## See Also

Regression | Tobit | Beta|fitEADModel| predict|modelDiscrimination | modelDiscriminationPlot|modelAccuracy

## Topics

"Compare Results for Regression and Tobit EAD Models" on page 4-151
"Overview of Exposure at Default Models" on page 1-34

## modelAccuracyPlot

Scatter plot of predicted and observed LGDs

Note modelAccuracyPlot is renamed to modelCalibrationPlot. modelAccuracyPlot is not recommended. Use modelCalibrationPlot instead.

## Syntax

modelAccuracyPlot(lgdModel,data)
modelAccuracyPlot (_, Name, Value)
h = modelAccuracyPlot(ax, $\qquad$ ,Name, Value)

## Description

modelAccuracyPlot(lgdModel, data) returns a scatter plot of observed vs. predicted loss given default (LGD) data with a linear fit. modelAccuracyPlot supports comparison against a reference model. By default, modelAccuracyPlot plots in the LGD scale.
modelAccuracyPlot( $\qquad$ ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax. You can use the ModelLevel name-value pair argument to compute metrics using the underlying model's transformed scale.
h = modelAccuracyPlot(ax, $\qquad$ ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax and returns the figure handle $h$.

## Input Arguments

## lgdModel - Loss given default model

Regression object | Tobit object
Loss given default model, specified as a previously created Regression, Tobit, or Beta object using fitLGDModel.

Data Types: object

## data - Data

table
Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable names and data types must be consistent with the underlying model.
Data Types: table

## ax - Valid axis object

object
(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be created in the axes specified by the optional ax argument instead of in the current axes (gca). The optional argument ax must precede any of the input argument combinations.

## Data Types: object

## Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
modelAccuracyPlot(lgdModel, data(TestInd,:),'DataID','Testing','YData','residu als','XData','LTV')

## DataID - Data set identifier

" " (default) | character vector | string
Data set identifier, specified as the comma-separated pair consisting of 'DataID' and a character vector or string. The DataID is included in the output for reporting purposes.
Data Types: char \| string

## ModelLevel - Model level

'top' (default)| character vector with value 'top' or 'underlying' | string with value "top" or "underlying"

Model level, specified as the comma-separated pair consisting of 'ModelLevel ' and a character vector or string.

- 'top ' - The accuracy metrics are computed in the LGD scale at the top model level.
- 'underlying' - For a Regression model only, the metrics are computed in the underlying model's transformed scale. The metrics are computed on the transformed LGD data.

Note ModelLevel has no effect for a Tobit or Beta model because there is no response transformation.

Data Types: char | string

## ReferenceLGD - LGD values predicted for data by reference model

[ ] (default) | numeric vector
LGD values predicted for data by the reference model, specified as the comma-separated pair consisting of 'ReferenceLGD ' and a NumRows-by-1 numeric vector. The scatter plot output is plotted for both the lgdModel object and the reference model.

Data Types: double

## ReferenceID - Identifier for the reference model

'Reference' (default)| character vector | string
Identifier for the reference model, specified as the comma-separated pair consisting of 'ReferenceID ' and a character vector or string. 'ReferenceID' is used in the scatter plot output for reporting purposes.

Data Types: char|string

## XData - Data to plot on x-axis

'predicted' (default)| character vector with value 'predicted', 'observed', 'residuals', or VariableName | string with value | "predicted", "observed", "residuals", or VariableName

Data to plot on x -axis, specified as the comma-separated pair consisting of 'XData' and a character vector or string for one of the following:

- 'predicted ' - Plot the predicted LGD values in the x-axis.
- 'observed ' - Plot the observed LGD values in the x-axis.
- 'residuals ' - Plot the residuals in the x-axis.
- VariableName - Use the name of the variable in the data input, not necessarily a model variable, to plot in the x -axis.

Data Types: char | string

## YData - Data to plot on y-axis

'predicted' (default)| character vector with value 'predicted', 'observed', or 'residuals' | string with value | "predicted", "observed", or "residuals"

Data to plot on y-axis, specified as the comma-separated pair consisting of 'YData' and a character vector or string for one of the following:

- 'predicted ' - Plot the predicted LGD values in the y-axis.
- 'observed ' - Plot the observed LGD values in the y-axis.
- 'residuals ' - Plot the residuals in the y-axis.

Data Types: char | string

## Output Arguments

## h - Figure handle

handle object
Figure handle for the scatter and line objects, returned as handle object.

## More About

## Model Accuracy Plot

The modelAccuracyPlot function returns a scatter plot of observed vs. predicted loss given default (LGD) data with a linear fit and reports the R-square of the linear fit.

The XData name-value pair argument allows you to change the $x$ values on the plot. By default, predicted LGD values are plotted in the $x$-axis, but predicted LGD values, residuals, or any variable in the data input, not necessarily a model variable, can be used as $x$ values. If the selected XData is a categorical variable, a swarm chart is used. For more information, see swarmchart.

The YData name-value pair argument allows users to change the $y$ values on the plot. By default, observed LGD values are plotted in the $y$-axis, but predicted LGD values or residuals can also be used as $y$ values. YData does not support table variables.

For Regression models, if ModelLevel is set to 'underlying', the LGD data is transformed into the underlying model's scale. The transformed data is shown on the plot. The ModelLevel namevalue pair argument has no effect for Tobit models.

The linear fit and reported R-squared value always correspond to the linear regression model with the plotted $y$ values as response and the plotted $x$ values as the only predictor.

## Version History

## Introduced in R2021a

## R2023a: modelAccuracyPlot function is renamed to modelCalibrationPlot function

Not recommended starting in R2023a
The modelAccuracyPlot function is renamed to modelCalibrationPlot function. The use of modelAccuracyPlot is not recommended, use modelCalibrationPlot instead.

## R2022b: Support for Beta model

Behavior changed in R2022b
The lgdModel input supports an option for a Beta model object that you can create using fitLGDModel.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

## See Also

Tobit|Regression | Beta|modelAccuracy |modelDiscriminationPlot | modelDiscrimination | predict|fitLGDModel

Topics
"Model Loss Given Default" on page 4-90
"Basic Loss Given Default Model Validation" on page 4-131
"Compare Tobit LGD Model to Benchmark Model" on page 4-133
"Compare Loss Given Default Models Using Cross-Validation" on page 4-140
"Overview of Loss Given Default Models" on page 1-31

## modelCalibration

Compute R-square, RMSE, correlation, and sample mean error of predicted and observed EADs

## Syntax

CalMeasure = modelCalibration(eadModel,data)
[CalMeasure,CalData] = modelCalibration( $\qquad$ ,Name=Value)

## Description

CalMeasure = modelCalibration(eadModel, data) computes the R-square, root mean square error (RMSE), correlation, and sample mean error of observed vs. predicted exposure at default (EAD) data. modelCalibration supports comparison against a reference model and also supports different correlation types. By default, modelCalibration computes the metrics in the EAD scale. You can use the ModelLevel name-value argument to compute metrics using the underlying model's transformed scale.
[CalMeasure,CalData] = modelCalibration( $\qquad$ , Name=Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax.

## Examples

## Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed Using a Tobit EAD Model

This example shows how to use fitEADModel to create a Tobit model and then use modelCalibration to compute the R-Square, RMSE, correlation, and sample mean error of predicted and observed EAD.

## Load EAD Data

Load the EAD data.

```
load EADData.mat
head(EADData)
```

UtilizationRate
$\qquad$
0.24359
0.96946
0
0.53242
0.2583
0.17039
0.18586
0.85372

Age

25
44
40
38
30
54
27
42


## not married

not married
married
not married
not married married
not married
not married

Limit
$\qquad$

## 44776

$2.1405 \mathrm{e}+05$
1.6581e+05
$1.7375 \mathrm{e}+05$
26258
$1.7357 e+05$
19590
$2.0712 e+05$

Drawn
$\qquad$

10907	44740
$2.0751 \mathrm{e}+05$	40678
0	$1.6567 \mathrm{e}+05$
92506	1593.5
6782.5	54.175
29575	576.69
3641	998.49
$1.7682 \mathrm{e}+05$	$1.6454 \mathrm{e}+05$

rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut', 0.4);
TrainingInd = training(c);
TestInd = test(c);

## Select Model Type

Select a model type for Tobit or Regression.
ModelType $=$ Tobit $\quad$;

## Select Conversion Measure

Select a conversion measure for the EAD response values.


## Create Tobit EAD Model

Use fitEADModel to create a Tobit model using EADData.

```
eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age',
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);
```

Tobit with properties:
CensoringSide: "both"
LeftLimit: 0
RightLimit: 1
ModelID: "Tobit"
Description: ""
UnderlyingModel: [1x1 risk.internal.credit. TobitModel]
PredictorVars: ["UtilizationRate" "Age" "Marriage"]
ResponseVar: "EAD"
LimitVar: "Limit"
DrawnVar: "Drawn"
ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LimitVar' and 'DrwanVar' name-value arguments to modify the transformation.
disp(eadModel.UnderlyingModel);
Tobit regression model:
EAD_lcf $=\max \left(0, \min \left(Y^{*}, 1\right)\right)$
$Y^{*}$ ~ 1 + UtilizationRate + Age + Marriage
Estimated coefficients:

pValue
(Intercept)
0.22467
0.4714
0.0014209
-0.010542
0.3618
0.03134
0.020722
0.00076326
0.01578
0.0050022
7.1689
$9.7855 \mathrm{e}-13$
UtilizationRate
Age
Marriage not married
22.749

0
(Sigma)
教
-1.8616
-0.66807
72.33
0.062771
0.50415

0

Number of observations: 2627
Number of left-censored observations: 0
Number of uncensored observations: 2626
Number of right-censored observations: 1
Log-likelihood: -1057.9

## Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-value argument.

```
predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
```

predictedConversion = predict(eadModel,EADData(TestInd,:), ModelLevel="ConversionMeasure");

## Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.
ModelLevel $=$ ead $\quad$;
[DiscMeasure1,DiscDatal] = modelDiscrimination(eadModel, EADData(TestInd, :) ,ModelLevel=ModelLevel modelDiscriminationPlot (eadModel, EADData(TestInd, :), ModelLevel=ModelLevel, SegmentBy="Marriage")


Use modelCalibration, and modelCalibrationPlot to show a scatter plot of the predictions.
YData $=$ Observed $\quad$;
[CalMeasure1,CalData1] = modelCalibration(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel)
CalMeasurel=1×4 table
RSquared RMSE Correlation SampleMeanError
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Tobit
0.3919

42494
0.62602
$-1240.7$

CalData1=1751×3 table
Observed Predicted_Tobit Residuals_Tobit
44740

54.175	8730.2	-8676
987.39	13244	-12257

$987.39 \quad 13244$-12257
$9606.4 \quad 7367.5 \quad 2238.9$
$83.809 \quad 27501$-27417
$73538 \quad 45726 \quad 27812$
$96.949 \quad 5522.5 \quad-5425.5$
$873.21 \quad 4426.3 \quad-3553.1$
$328.35 \quad 5952.4 \quad-5624.1$
$55237 \quad 2804027198$
303591904711312
392112836810843
$\begin{array}{rrr}2.0885 \mathrm{e}+05 & 1.0539 \mathrm{e}+05 & 1.0346 \mathrm{e}+05\end{array}$

1921.7	19939	-18017
15230	5427.4	9802.5

20063 9359.6 10703
modelCalibrationPlot(eadModel, EADData(TestInd, :),ModelLevel=ModelLevel,YData=YData);

## Scatter



## Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed Using a Beta EAD Model

This example shows how to use fitEADModel to create a Beta model and then use modelCalibration to compute the R-Square, RMSE, correlation, and sample mean error of predicted and observed EAD.

## Load EAD Data

Load the EAD data.
load EADData.mat
head(EADData)

UtilizationRate
$\qquad$

0.24359	25
0.96946	44
0	40
0.53242	38
0.2583	30
0.17039	54
0.18586	27
0.85372	42

Marriage
not married not married married
not married not married married
not married not married

Limit

44776
$2.1405 \mathrm{e}+05$
$1.6581 \mathrm{e}+05$
$1.7375 \mathrm{e}+05$
26258
$1.7357 \mathrm{e}+05$
19590
$2.0712 \mathrm{e}+05$

Drawn
$\qquad$
10907
$2.0751 e+05$
92506
6782.5

29575
3641
$1.7682 \mathrm{e}+05$

EAD

44740
40678
1.6567e+05
1593.5
54.175
576.69
998.49
$1.6454 \mathrm{e}+05$
rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut', 0.4);
TrainingInd = training(c);
TestInd = test(c);

## Select Model Type

Select a model type for Beta.
ModelType $=$ Beta $\quad$;

## Select Conversion Measure

Select a conversion measure for the EAD response values.
ConversionMeasure $=$ LCF $\quad$;

## Create Beta EAD Model

Use fitEADModel to create a Beta model using the TrainingInd data.

```
eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age',
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);
```

Beta with properties:
BoundaryTolerance: 1.0000e-07
ModelID: "Beta"
Description: ""
UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
PredictorVars: ["UtilizationRate" "Age" "Marriage"]
ResponseVar: "EAD"
LimitVar: "Limit"
DrawnVar: "Drawn"
ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LimitVar' and 'DrwanVar' name-value arguments to modify the transformation.
disp(eadModel.UnderlyingModel);
Beta regression model:
logit(EAD_lcf) ~ 1_mu + UtilizationRate_mu + Age_mu + Marriage_mu
$\log \left(E A D \_l \bar{c} f\right) \sim$ 1_ph$i+U t i l i z a t i o n R a t e \_\bar{p} h i+A g e \_p h i+M a r r i a g e \bar{e} p h i$
Estimated coefficients:

$\qquad$

pValue
(Intercept)_mu
-0. 65566
0.11484
-5.7093
1.2616e-08

UtilizationR̄ate_mu
1.7014
-0.0055901
Marriage_not married_mu
-0.012577
0.078094
0.0027603
21.787
-
Age_mu
-0. 50131
0.052098
-2.0252
0.042949
(Intercept)_phi
0.094625
-5. 2979
1.2686e-07

UtilizationRate_phi	0.39731	0.066707	5.956	$2.9303 e-09$
Age_phi	-0.001167	0.0023161	-0.50387	0.6144
Marriage_not married_phi	-0.013275	0.042627	-0.31143	0.7555

Number of observations: 2627
Log-likelihood: -3140.21

## Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-value argument.

```
predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
```

predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");

## Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.
ModelLevel $=$ ead $\quad$;
[DiscMeasure1,DiscDatal] = modelDiscrimination(eadModel, EADData(TestInd, :) ,ModelLevel=ModelLevel modelDiscriminationPlot (eadModel, EADData(TestInd, :), ModelLevel=ModelLevel, SegmentBy="Marriage")


Use modelCalibration, and modelCalibrationPlot to show a scatter plot of the predictions.
YData $=$ Observed $\quad$;
[CalMeasure1,CalData1] = modelCalibration(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel)
CalMeasurel=1×4 table
RSquared RMSE Correlation SampleMeanError
$\qquad$
Beta
0.38655

43817
0.62173
$-7393.4$

CalData1=1751×3 table
Observed Predicted_Beta Residuals_Beta
$\qquad$
$\qquad$ -
44740

18039
26701
54.175

10560

- 10506 987.3915551 - 14564 $\begin{array}{lll}9606.4 & 8407.7 & 1198.8\end{array}$ 83.80933318 -33234 $73538 \quad 52120 \quad 21418$ $96.949 \quad 6598.1 \quad-6501.2$ $873.21 \quad 5471.1 \quad-4597.9$ $328.35 \quad 7335 \quad-7006.6$ $55237 \quad 3258022658$ $30359 \quad 21563 \quad 8796.4$ $39211 \quad 33177 \quad 6033.6$
$\begin{array}{rrr}2.0885 \mathrm{e}+05 & 1.2586 \mathrm{e}+05 & 82987 \\ 1921.7 & 23319 & -21397\end{array}$ 1921. 23319
-21397
8664 15230 6565.9
8987.5
modelCalibrationPlot(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel,YData=YData);


## Scatter



## Input Arguments

## eadModel - Exposure at default model

Regression object | Tobit object | Beta object
Loss given default model, specified as a previously created Regression, Tobit, or Beta object using fitEADModel.
Data Types: object
data - Data
table
Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable names and data types must be consistent with the underlying model.

Data Types: table

## Name-Value Arguments

Specify optional pairs of arguments as Namel=Value1, ...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Example: [CalMeasure,CalData] =
modelCalibration(eadModel,data(TestInd,:), DataID='Testing', CorrelationType='s pearman')

## CorrelationType - Correlation type

"pearson" (default) | character vector with value of 'pearson', 'spearman', or 'kendall' | string with value of "pearson", "spearman", or "kendall"

Correlation type, specified as CorrelationType and a character vector or string.
Data Types: char \| string

## DataID - Data set identifier

" " (default) | character vector | string
Data set identifier, specified as DataID and a character vector or string. The DataID is included in the output for reporting purposes.

```
Data Types: char|string
```


## ModelLevel - Model level

'ead' (default) | character vector with value 'ead ', 'conversionMeasure', or
'conversionTransform' | string with value "ead", "conversionMeasure", or
"conversionTransform"
Model level, specified as ModelLevel and a character vector or string.

Note Regression models support all three model levels, but a Tobit or Beta model supports model levels only for "ead" and "conversionMeasure".

Data Types: char | string

## ReferenceEAD - EAD values predicted for data by reference model

[] (default) | numeric vector
EAD values predicted for data by the reference model, specified as ReferenceEAD and a NumRows-by-1 numeric vector. The modelCalibration output information is reported for both the eadModel object and the reference model.

## Data Types: double

## ReferenceID - Identifier for the reference model <br> 'Reference' (default) | character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string. ReferenceID is used in the modelCalibration output for reporting purposes.
Data Types: char | string

## Output Arguments

## CalMeasure - Calibration measure

table
Calibration measure, returned as a table with columns 'RSquared', 'RMSE', 'Correlation', and 'SampleMeanError'. CalMeasure has one row if only the eadModel accuracy is measured and it has two rows if reference model information is given. The row names of CalMeasure report the model ID and data ID (if provided).

## CalData - Calibration data

table
Calibration data, returned as a table with observed EAD values, predicted EAD values, and residuals (observed minus predicted). Additional columns for predicted and residual values are included for the reference model, if provided. The ModelID and ReferenceID labels are appended in the column names.

## More About

## Model Calibration

Model calibration measures the accuracy of the predicted probability of EAD values using different metrics.

- R-squared - To compute the R-squared metric, modelCalibration fits a linear regression of the observed EAD values against the predicted EAD values:

$$
E A D_{o b s}=a+b * E A D_{\text {pred }}+\varepsilon
$$

The R-square of this regression is reported. For more information, see "Coefficient of Determination (R-Squared)".

- RMSE - To compute the root mean square error (RMSE), modelCalibration uses the following formula where $N$ is the number of observations:

$$
R M S E=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(E A D_{i}^{\text {obs }}-E A D_{i}^{\text {pred }}\right)^{2}}
$$

- Correlation - This metric is the correlation between the observed and predicted EAD:

$$
\operatorname{corr}\left(E A D_{o b s}, E A D_{\text {pred }}\right)
$$

For more information and details about the different correlation types, see corr.

- Sample mean error - This metric is the difference between the mean observed EAD and the mean predicted EAD or, equivalently, the mean of the residuals:

$$
\text { SampleMeanError }=\frac{1}{N} \sum_{i=1}^{N}\left(E A D_{i}^{\text {obs }}-E A D_{i}^{\text {pred }}\right)
$$

## Version History

## Introduced in R2023a

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications. SAS Institute, 2014.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

## See Also

Regression| Tobit|Beta|fitEADModel| predict|modelDiscrimination| modelDiscriminationPlot|modelCalibrationPlot

## Topics

"Compare Results for Regression and Tobit EAD Models" on page 4-151
"Overview of Exposure at Default Models" on page 1-34

## modelCalibration

Compute R-square, RMSE, correlation, and sample mean error of predicted and observed LGDs

## Syntax

CalMeasure = modelCalibration(lgdModel,data)
[CalMeasure,CalData] = modelCalibration(___ ,Name,Value)

## Description

CalMeasure $=$ modelCalibration(lgdModel, data) computes the R-square, root mean square error (RMSE), correlation, and sample mean error of observed vs. predicted loss given default (LGD) data. modelCalibration supports comparison against a reference model and also supports different correlation types. By default, modelCalibration computes the metrics in the LGD scale. You can use the ModelLevel name-value pair argument to compute metrics using the underlying model's transformed scale.
[CalMeasure,CalData] = modelCalibration( $\qquad$ , Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.

## Examples

## Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed LGDs Using Regression LGD Model

This example shows how to use fitLGDModel to fit data with a Regression model and then use modelCalibration to compute the R-Square, RMSE, correlation, and sample mean error of predicted and observed LGDs.

## Load Data

Load the loss given default data.

load LGDData.mat head(data)			
LTV	Age	Type	LGD
0.89101	0.39716	residential	0.032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0.025688
0.92005	0.50253	investment	0.063182

## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Create Regression LGD Model

Use fitLGDModel to create a Regression model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'regression');
disp(lgdModel)
Regression with properties:
ResponseTransform: "logit"
BoundaryTolerance: 1.0000e-05
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.
lgdModel.UnderlyingModel
ans =
Compact linear regression model:
LGD_logit ~ 1 + LTV + Age + Type
Estimated Coefficients:
Estimate SE tStat pValue

(Intercept)	-4.7549	0.36041	-13.193	$3.0997 \mathrm{e}-38$
LTV	2.8565	0.41777	6.8377	$1.0531 \mathrm{e}-11$
Age	-1.5397	0.085716	-17.963	$3.3172 \mathrm{e}-67$
Type_investment	1.4358	0.2475	5.8012	$7.587 \mathrm{e}-09$

Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value $=2.42 \mathrm{e}-104$

## Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed LGDs

Use modelCalibration to compute the RSquared, RMSE, Correlation, and SampleMeanError of the predicted and observed LGDs for the test data set.
[CalMeasure,CalData] = modelCalibration(lgdModel,data(TestInd,:))
CalMeasure=1×4 table
RSquared RMSE Correlation SampleMeanError

| Regression | 0.070867 | 0.25988 | 0.26621 |
| :---: | ---: | :---: | ---: |$\quad 0.10759$

Generate a scatter plot of predicted and observed LGDs using modelCalibrationPlot. modelCalibrationPlot(lgdModel,data(TestInd,:),ModelLevel="underlying")

Scatter


## Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed LGDs Using Tobit LGD Model

This example shows how to use fitLGDModel to fit data with a Tobit model and then use modelCalibration to compute R-Square, RMSE, correlation, and sample mean error of predicted and observed LGDs.

## Load Data

Load the loss given default data.

LTV	Age	Type	LGD
0.89101	0.39716	residential	0.032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0.025688
0.92005	0.50253	investment	0.063182

## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Create Tobit LGD Model

Use fitLGDModel to create a Tobit model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'tobit');
```

disp(lgdModel)
Tobit with properties:
CensoringSide: "both"
LeftLimit: 0
RightLimit: 1
ModelID: "Tobit"
Description: ""
UnderlyingModel: [1x1 risk.internal.credit. TobitModel]
PredictorVars: ["LTV" "Age" "Type"]
ResponseVar: "LGD"

Display the underlying model.

```
disp(lgdModel.UnderlyingModel)
Tobit regression model:
 LGD = max(0,min(Y*,1))
 Y* ~ 1 + LTV + Age + Type
Estimated coefficients:
Estimate \(\quad\) SE \(\quad\) tStat \(\quad\) PValue
\begin{tabular}{lrrrr}
(Intercept) & 0.058257 & 0.027265 & 2.1367 & 0.032737 \\
LTV & 0.20126 & 0.031354 & 6.4189 & \(1.6932 \mathrm{e}-10\) \\
Age & -0.095407 & 0.0072653 & -13.132 & 0 \\
Type_investment & 0.10208 & 0.018058 & 5.6531 & \(1.7915 \mathrm{e}-08\) \\
(Sigma) & 0.29288 & 0.0057036 & 51.35 & 0
\end{tabular}
Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1521
Number of right-censored observations: 25
Log-likelihood: -698.383
```


## Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed LGDs

Use modelCalibration to compute RSquared, RMSE, Correlation, and SampleMeanError of predicted and observed LGDs for the test data set.
[CalMeasure,CalData] = modelCalibration(lgdModel,data(TestInd,:),CorrelationType="kendall")

R	RSquared	RMSE	Correlation	SampleMeanError
Tobit	0.08527	0.23712	0.29964	-0.034412
CalData=1394×3 table				
Observed	Predicted_Tobit		Residuals_Tobit	
0.0064766		7889	-0.081412	
0.007947		2432	-0.11638	
0.063182		2043	-0.25724	
0	0 0.09	3354	-0.093354	
0.10904		6718	-0.058144	
0	0	2382	-0.22382	
0.89463		3695	0.65768	
0	$0 \quad 0.0$	0234	-0.010234	
0.072437		1592	-0.086761	
0.036006		9893	-0.16292	
0	0	2764	-0.12764	
0.39549		4568	0.2498	
0.057675		6181	-0.20413	
0.014439		4483	-0.13039	
0	0 0.09	4123	-0.094123	
0	0	0944	-0.10944	

Generate a scatter plot of the predicted and observed LGDs using modelCalibrationPlot. modelCalibrationPlot(lgdModel,data(TestInd,:))

Scatter
Tobit, R-Squared: 0.08527


## Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed LGDs Using Beta LGD Model

This example shows how to use fitLGDModel to fit data with a Beta model and then use modelCalibration to compute R-Square, RMSE, correlation, and sample mean error of predicted and observed LGDs.

## Load Data

Load the loss given default data.

LTV	Age	Type	LGD
0.89101	0.39716	residential	0.032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0.025688
0.92005	0.50253	investment	0.063182

## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Create Beta LGD Model

Use fitLGDModel to create a Beta model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'Beta');
disp(lgdModel)
```

```
Beta with properties:
 BoundaryTolerance: 1.0000e-05
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.

```
disp(lgdModel.UnderlyingModel)
Beta regression model:
 logit(LGD) ~ 1_mu + LTV_mu + Age_mu + Type_mu
 log(LGD) ~ 1_phi + LTV_phi + Age_phi + Type_phi
Estimated coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -1.3772 & 0.13201 & -10.433 & 0 \\
\hline 0.60269 & 0.15087 & 3.9947 & 6.7023e-05 \\
\hline -0.47464 & 0.040264 & -11.788 & 0 \\
\hline 0.45372 & 0.085143 & 5.3289 & 1.094e-07 \\
\hline -0.16337 & 0.12591 & -1.2975 & 0.19462 \\
\hline 0.055892 & 0.14719 & 0.37973 & 0.70419 \\
\hline 0.22887 & 0.040335 & 5.6743 & 1.5863e-08 \\
\hline -0.14102 & 0.078155 & -1.8044 & 0.071311 \\
\hline
\end{tabular}
```

Number of observations: 2093
Log-likelihood: -5291.04

## Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed LGDs

Use modelCalibration to compute RSquared, RMSE, Correlation, and SampleMeanError of predicted and observed LGDs for the test data set.
[CalMeasure,CalData] = modelCalibration(lgdModel,data(TestInd,:),CorrelationType="kendall")














































Generate a scatter plot of the predicted and observed LGDs using modelCalibrationPlot. modelCalibrationPlot(lgdModel,data(TestInd,:))


## Input Arguments

## LgdModel - Loss given default model

Regression object | Tobit object | Beta object
Loss given default model, specified as a previously created Regression, Tobit, or Beta object using fitLGDModel.

Data Types: object
data - Data
table
Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable names and data types must be consistent with the underlying model.

Data Types: table

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Example: [CalMeasure,CalData] =
modelCalibration(lgdModel,data(TestInd,:), DataID='Testing',CorrelationType='s pearman')

## CorrelationType - Correlation type

"pearson" (default)| character vector with value of 'pearson', 'spearman', or 'kendall' | string with value of "pearson", "spearman", or "kendall' "

Correlation type, specified as CorrelationType and a character vector or string.
Data Types: char | string

## DataID - Data set identifier

" " (default) | character vector | string
Data set identifier, specified as DataID and a character vector or string. The DataID is included in the output for reporting purposes.
Data Types: char \| string

## ModelLevel - Model level

'top' (default)| character vector with value 'top' or 'underlying' | string with value "top" or "underlying"

Model level, specified as ModelLevel and a character vector or string.

- 'top ' - The accuracy metrics are computed in the LGD scale at the top model level.
- 'underlying' - For a Regression model only, the metrics are computed in the underlying model's transformed scale. The metrics are computed on the transformed LGD data.

Note ModelLevel has no effect for a Tobit or Beta model because there is no response transformation.

Data Types: char | string

## ReferenceLGD - LGD values predicted for data by reference model

[ ] (default) | numeric vector
LGD values predicted for data by the reference model, specified as ReferenceLGD and a NumRows-by-1 numeric vector. The modelCalibration output information is reported for both the lgdModel object and the reference model.

## Data Types: double

## ReferenceID - Identifier for the reference model

'Reference ' (default) | character vector | string
Identifier for the reference model, specified as ReferenceID and a character vector or string. 'ReferenceID' is used in the modelCalibration output for reporting purposes.

Data Types: char | string

## Output Arguments

## CalMeasure - Calibration measure

table
Calibration measure, returned as a table with columns 'RSquared', 'RMSE', 'Correlation', and 'SampleMeanError'. CalMeasure has one row if only the lgdModel accuracy is measured and it
has two rows if reference model information is given. The row names of CalMeasure report the model ID and data ID (if provided).

## CalData - Calibration data

table
Calibration data, returned as a table with observed LGD values, predicted LGD values, and residuals (observed minus predicted). Additional columns for predicted and residual values are included for the reference model, if provided. The ModelID and ReferenceID labels are appended in the column names.

## More About

## Model Calibration

Model calibration measures the accuracy of the predicted probability of LGD values using different metrics.

- R-squared - To compute the R-squared metric, modelCalibration fits a linear regression of the observed LGD values against the predicted LGD values

$$
L G D_{o b s}=a+b * L G D_{\text {pred }}+\varepsilon
$$

The R-square of this regression is reported. For more information, see "Coefficient of Determination (R-Squared)".

- RMSE - To compute the root mean square error (RMSE), modelCalibration uses the following formula where $N$ is the number of observations:

$$
R M S E=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(L G D_{i}^{o b s}-L G D_{i}^{\text {pred }}\right)^{2}}
$$

- Correlation - This is the correlation between the observed and predicted LGD:

$$
\operatorname{corr}\left(L G D_{\text {obs }}, L G D_{\text {pred }}\right)
$$

For more information and details about the different correlation types, see corr.

- Sample mean error - This is the difference between the mean observed LGD and the mean predicted LGD or, equivalently, the mean of the residuals:

$$
\text { SampleMeanError }=\frac{1}{N} \sum_{i=1}^{N}\left(L G D_{i}^{\text {obs }}-L G D_{i}^{\text {pred }}\right)
$$

## Version History

Introduced in R2023a

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

## See Also

Tobit | Regression | Beta|modelCalibrationPlot|modelDiscriminationPlot| modelDiscrimination | predict|fitLGDModel

Topics
"Model Loss Given Default" on page 4-90
"Basic Loss Given Default Model Validation" on page 4-131
"Compare Tobit LGD Model to Benchmark Model" on page 4-133
"Compare Loss Given Default Models Using Cross-Validation" on page 4-140
"Overview of Loss Given Default Models" on page 1-31

## modelCalibration

Compute RMSE of predicted and observed PDs on grouped data

## Syntax

CalMeasure = modelCalibration(pdModel,data, GroupBy)
[CalMeasure,CalData] = modelCalibration( $\qquad$ ,Name, Value)

## Description

CalMeasure $=$ modelCalibration(pdModel, data, GroupBy) computes the root mean squared error (RMSE) of the observed compared to the predicted probabilities of default (PD). GroupBy is required and can be any column in the data input (not necessarily a model variable). The modelCalibration function computes the observed PD as the default rate of each group and the predicted PD as the average PD for each group. modelCalibration supports comparison against a reference model.
[CalMeasure,CalData] = modelCalibration( $\qquad$ ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.

## Examples

## Compute Model Calibration for Logistic Lifetime PD Model

This example shows how to use fitLifetimePDModel to fit data with a Logistic model and then use modelCalibration to compute the root mean squared error (RMSE) of the observed probabilities of default (PDs) with respect to the predicted PDs.

## Load Data

Load the credit portfolio data.
load RetailCreditPanelData.mat disp(head(data))


1997	2.72	7.61
1998	3.57	26.24
1999	2.86	18.1
2000	2.43	3.19
2001	1.26	-10.51
2002	-0.59	-22.95
2003	0.63	2.78
2004	1.85	9.48

Join the two data components into a single data set.

```
data = join(data,dataMacro);
disp(head(data))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ID & ScoreGroup & YOB & Default & Year & GDP & Market \\
\hline 1 & Low Risk & 1 & 0 & 1997 & 2.72 & 7.61 \\
\hline 1 & Low Risk & 2 & 0 & 1998 & 3.57 & 26.24 \\
\hline 1 & Low Risk & 3 & 0 & 1999 & 2.86 & 18.1 \\
\hline 1 & Low Risk & 4 & 0 & 2000 & 2.43 & 3.19 \\
\hline 1 & Low Risk & 5 & 0 & 2001 & 1.26 & -10.51 \\
\hline 1 & Low Risk & 6 & 0 & 2002 & -0.59 & -22.95 \\
\hline 1 & Low Risk & 7 & 0 & 2003 & 0.63 & 2.78 \\
\hline 1 & Low Risk & 8 & 0 & 2004 & 1.85 & 9.48 \\
\hline
\end{tabular}
```


## Partition Data

Separate the data into training and test partitions.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % For reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```


## Create Logistic Lifetime PD Model

Use fitLifetimePDModel to create a Logistic model using the training data.

```
pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Logistic",...
 'AgeVar','YOB',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},...
 'ResponseVar','Default');
disp(pdModel)
 Logistic with properties:
 ModelID: "Logistic"
 Description: ""
```

```
UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
ResponseVar: "Default"
```

Display the underlying model.

```
pdModel.UnderlyingModel
ans =
Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -2.7422 & 0.10136 & -27.054 & 3.408e-161 \\
\hline -0.68968 & 0.037286 & -18.497 & 2.1894e-76 \\
\hline -1.2587 & 0.045451 & -27.693 & 8.4736e-169 \\
\hline -0.30894 & 0.013587 & -22.738 & 1.8738e-114 \\
\hline -0.11111 & 0.039673 & -2.8006 & 0.0051008 \\
\hline -0.0083659 & 0.0028358 & -2.9502 & 0.0031761 \\
\hline
\end{tabular}
```

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value $=0$

## Compute Model Calibration

Model calibration measures the predicted probabilities of default. For example, if the model predicts a $10 \%$ PD for a group, does the group end up showing an approximate $10 \%$ default rate, or is the eventual rate much higher or lower? While model discrimination measures the risk ranking only, model calibration measures the the predicted risk levels.
modelCalibration computes the root mean squared error (RMSE) of the observed PDs with respect to the predicted PDs. A grouping variable is required and it can be any column in the data input (not necessarily a model variable). The modelCalibration function computes the observed PD as the default rate of each group and the predicted PD as the average PD for each group.

```
DataSetChoice = Training * ;
 if DataSetChoice=="Training"
 Ind = TrainDataInd;
else
 Ind = TestDataInd;
 end
GroupingVar = YOB *;
[CalMeasure,CalData] = modelCalibration(pdModel,data(Ind,:),GroupingVar,DataID=DataSetChoice)
CalMeasure=table
```

Logistic, grouped by YOB, Training			g 0.0004142
CalData=16×4 table			
ModelID	YOB	PD	GroupCount
"Observed"	1	0.017421	58092
"Observed"	2	0.012305	56723
"Observed"	3	0.011382	55524
"Observed"	4	0.010741	54650
"Observed"	5	0.00809	53770
"Observed"	6	0.0066747	53186
"Observed"	7	0.0032198	36959
"Observed"	8	0.0018757	19193
"Logistic"	1	0.017185	58092
"Logistic"	2	0.012791	56723
"Logistic"	3	0.01131	55524
"Logistic"	4	0.010615	54650
"Logistic"	5	0.0083982	53770
"Logistic"	6	0.0058744	53186
"Logistic"	7	0.0035872	36959
"Logistic"	8	0.0023689	19193

Visualize the model calibration using modelCalibrationPlot.
modelCalibrationPlot(pdModel, data(Ind,:), GroupingVar, DataID=DataSetChoice);


You can use more than one variable for grouping. For this example, group by the variables YOB and ScoreGroup.

CalMeasure = modelCalibration(pdModel,data(Ind,:),["YOB","ScoreGroup"],DataID=DataSetChoice); disp(CalMeasure)

$$
\text { Logistic, grouped by YOB, ScoreGroup, Training } \quad
$$

Now visualize the two grouping variables using modelCalibrationPlot. modelCalibrationPlot(pdModel,data(Ind,:), ["YOB","ScoreGroup"],DataID=DataSetChoice);


## Input Arguments

## pdModel - Probability of default model

Logistic object | Probit object | Cox object | customLifetimePDModel object
Probability of default model, specified as a previously created Logistic, Probit, or Cox object using fitLifetimePDModel. Alternatively, you can create a custom probability of default model using customLifetimePDModel.

Data Types: object

## data - Data

table
Data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime predictions. The predictor names and data types must be consistent with the underlying model.
Data Types: table
GroupBy - Name of column in data input used to group the data
string | character vector
Name of column in the data input used to group the data, specified as a string or character vector. GroupBy does not have to be a model variable name. For each group designated by GroupBy, the modelCalibration function computes the observed default rates and average predicted PDs are computed to measure the RMSE.

## Data Types: string|char

## Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Example: [CalMeasure,CalData] =
modelCalibration(pdModel,data(Ind,:), GroupBy=["YOB", "ScoreGroup"], DataID="Dat aSetChoice")

## DataID - Data set identifier

"" (default) | character vector | string
Data set identifier, specified as DataID and a character vector or string. DataID is included in the modelCalibration output for reporting purposes.

Data Types: char|string

## ReferencePD - Conditional PD values predicted for data by reference model

[] (default) | numeric vector
Conditional PD values predicted for data by the reference model, specified as ReferencePD and a NumRows-by-1 numeric vector. The function reports the modelCalibration output information for both the pdModel object and the reference model.
Data Types: double
ReferenceID - Identifier for reference model
'Reference ' (default) | character vector | string
Identifier for the reference model, specified as ReferenceID and a character vector or string. ReferenceID is used in the modelCalibration output for reporting purposes.
Data Types: char|string

## Output Arguments

## CalMeasure - Calibration measure

table
Calibration measure, returned as a single-column table of RMSE values.
This table has one row if only the pdModel accuracy is measured and it has two rows if reference model information is given. The row names of CalMeasure report the model IDs, grouping variables, and data ID.

Note The reported RMSE values depend on the grouping variable for the required GroupBy argument.

## CalData - Calibration data

table
Calibration data, returned as a table of observed and predicted PD values for each group.

The reported observed PD values correspond to the observed default rate for each group. The reported predicted PD values are the average PD values predicted by the pdModel object for each group, and similarly for the reference model. The modelCalibration function stacks the PD data, placing the observed values for all groups first, then the predicted PDs for the pdModel, and then the predicted PDs for the reference model, if given.

The column 'ModelID ' identifies which rows correspond to the observed PD, pdModel, or reference model. The table also has one column for each grouping variable showing the unique combinations of grouping values. The 'PD' column of CalData is a the PD data. The last column of CalData is a 'GroupCount ' column with the group counts data.

## More About

## Model Calibration

Model calibration measures the accuracy of the predicted probability of default (PD) values.
To measure model calibration, you must compare the predicted PD values to the observed default rates. For example, if a group of customers is predicted to have an average PD of $5 \%$, then is the observed default rate for that group close to $5 \%$ ?

The modelCalibration function requires a grouping variable to compute average predicted PD values within each group and the average observed default rate also within each group.
modelCalibration uses the root mean squared error (RMSE) to measure the deviations between the observed and predicted values across groups. For example, the grouping variable could be the calendar year, so that rows corresponding to the same calendar year are grouped together. Then, for each year the software computes the observed default rate and the average predicted PD. The modelCalibration function then applies the RMSE formula to obtain a single measure of the prediction error across all years in the sample.

Suppose there are N observations in the data set, and there are $M$ groups $G_{1}, \ldots, G_{M}$. The default rate for group $G_{\mathrm{i}}$ is

$$
D R_{i}=\frac{D_{i}}{N_{i}}
$$

where:
$D_{i}$ is the number of defaults observed in group $G_{i}$.
$N_{i}$ is the number of observations in group $G_{i}$.
The average predicted probability of default $P D_{i}$ for group $G_{i}$ is

$$
P D_{i}=\frac{1}{N_{i}} \sum_{j \in G_{i}} P D(j)
$$

where $P D(j)$ is the probability of default for observation $j$. In other words, this is the average of the predicted PDs within group $G_{i}$.

Therefore, the RMSE is computed as

$$
R M S E=\sqrt{\sum_{i=1}^{M}\left(\frac{N_{i}}{N}\right)\left(D R_{i}-P D_{i}\right)^{2}}
$$

The RMSE, as defined, depends on the selected grouping variable. For example, grouping by calendar year and grouping by years-on-books might result in different RSME values.

Use modelCalibrationPlot to visualize observed default rates and predicted PD values on grouped data.

## Version History

## Introduced in R2023a

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.

## See Also

modelDiscrimination | modelDiscriminationPlot | modelCalibrationPlot | predictLifetime|predict|fitLifetimePDModel|Logistic|Probit|Cox| customLifetimePDModel

## Topics

"Basic Lifetime PD Model Validation" on page 4-129
"Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
"Compare Lifetime PD Models Using Cross-Validation" on page 4-121
"Expected Credit Loss Computation" on page 4-124
"Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
"Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 4-75
"Overview of Lifetime Probability of Default Models" on page 1-25

## modelCalibrationPlot

Scatter plot of predicted and observed EADs

## Syntax

modelCalibrationPlot(eadModel, data)
modelCalibrationPlot( , Name=Value)
h = modelCalibrationPlot(ax, $\qquad$ ,Name=Value)

## Description

modelCalibrationPlot (eadModel, data) returns a scatter plot of observed vs. predicted exposure at default (EAD) data with a linear fit. modelCalibrationPlot supports comparison against a reference model. By default, modelCalibrationPlot plots in the EAD scale.
modelCalibrationPlot( $\qquad$ ,Name=Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax. You can use the ModelLevel name-value argument to compute metrics using the underlying model's transformed scale.
h = modelCalibrationPlot(ax, $\qquad$ ,Name=Value) specifies options using one or more namevalue arguments in addition to the input arguments in the previous syntax and returns the figure handle h .

## Examples

## Generate Scatter Plot of Predicted and Observed EADs Using a Tobit EAD Model

This example shows how to use fitEADModel to create a Tobit model and then use modelCalibrationPlot to generate a scatter plot for predicted and observed EADs.

## Load EAD Data

Load the EAD data.

load EADData.mat head(EADData)					
UtilizationRate	Age	Marriage	Limit	Drawn	EAD
0.24359	25	not married	44776	10907	44740
0.96946	44	not married	$2.1405 \mathrm{e}+05$	$2.0751 \mathrm{e}+05$	40678
0	40	married	1.6581e+05	0	1.6567e+05
0.53242	38	not married	$1.7375 \mathrm{e}+05$	92506	1593.5
0.2583	30	not married	26258	6782.5	54.175
0.17039	54	married	$1.7357 \mathrm{e}+05$	29575	576.69
0.18586	27	not married	19590	3641	998.49
0.85372	42	not married	$2.0712 \mathrm{e}+05$	$1.7682 \mathrm{e}+05$	$1.6454 \mathrm{e}+05$

rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut', 0.4);
TrainingInd = training(c);
TestInd = test(c);

## Select Model Type

Select a model type for Tobit or Regression.
ModelType $=$ Tobit $\quad$;

## Select Conversion Measure

Select a conversion measure for the EAD response values.
ConversionMeasure $=$ CCF $\quad$;

## Create Tobit EAD Model

Use fitEADModel to create a Tobit model using the TrainingInd data.

```
eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age',
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);
```

Tobit with properties:
CensoringSide: "right"
LeftLimit: NaN
RightLimit: 1
ModelID: "Tobit"
Description: ""
UnderlyingModel: [1x1 risk.internal.credit. TobitModel]
PredictorVars: ["UtilizationRate" "Age" "Marriage"]
ResponseVar: "EAD"
LimitVar: "Limit"
DrawnVar: "Drawn"
ConversionMeasure: "ccf"

Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the transformation.
disp(eadModel.UnderlyingModel);
Tobit regression model, right-censored:
EAD ccf $=\min \left(Y^{*}, 1\right)$
$Y^{*}$ ~ 1 + UtilizationRate + Age + Marriage
Estimated coefficients:
(Intercept)
UtilizationRate
Age
Marriage not married (Sigma)

```
Estimate
```

SE
0.51514
-1.5872
-0.005808
0.007784
1.4689
$\qquad$
0. 88065
0.7043
0.017758
0.11996
0.025508

## tStat

$\qquad$
0. 58496
-2.2535 0.024307
-0.32706 0.74365
0.064888
57.588
0.55863
pValue

$$
\begin{aligned}
& 0.74365 \\
& 0.94827
\end{aligned}
$$

Number of observations: 2627
Number of left-censored observations: 0
Number of uncensored observations: 2626
Number of right-censored observations: 1
Log-likelihood: -6311.87

## Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-value argument.

```
predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
```

predictedConversion = predict(eadModel,EADData(TestInd,:), ModelLevel="ConversionMeasure");

## Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.
ModelLevel $=$ ead $\quad$;
[DiscMeasure1,DiscDatal] = modelDiscrimination(eadModel, EADData(TestInd, :) ,ModelLevel=ModelLevel modelDiscriminationPlot (eadModel, EADData(TestInd, :),ModelLevel=ModelLevel,SegmentBy="Marriage")


Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the predictions.

```
YData = Observed *;
[CalMeasure1,CalData1] = modelCalibration(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel)
CalMeasure1=1\times4 table
 RSquared RMSE Correlation SampleMeanError
 Tobit
 0.33743
 4 7 2 9 9
 0.58089
 7285.1
CalData1=1751\times3 table
 Observed Predicted_Tobit Residuals_Tobit
 -
 44740
 3337.3
 4 1 4 0 3
 54.175 1654.8 -1600.6
 987.39 11361 -10374
 9606.4 9702.4 -95.943
 83.809 2044.5 -1960.7
 73538 70963 2575.3
 96.949 846.22 -749.27
 873.21 640.46 232.75
 328.35 1357.3 -1028.9
 55237 21710 33527
 30359 29015 1344.2
 39211 27048 12163
 2.0885e+05 42571 1.6628e+05
 1921.7 11162 -9240.8
 15230 1542 13688
 20063 6298.9 13764
modelCalibrationPlot(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel,YData=YData);
```



## Generate Scatter Plot of Predicted and Observed EADs Using a Beta EAD Model

This example shows how to use fitEADModel to create a Beta model and then use modelCalibrationPlot to generate a scatter plot for predicted and observed EADs.

## Load EAD Data

Load the EAD data.
load EADData.mat
head(EADData)

UtilizationRate
$\qquad$

0.24359	25
0.96946	44
0	40
0.53242	38
0.2583	30
0.17039	54
0.18586	27
0.85372	42

Age
Marriage
not married
not married married
not married not married married not married not married

Limit
$\qquad$
44776
$2.1405 \mathrm{e}+05$
$1.6581 \mathrm{e}+05$
$1.7375 \mathrm{e}+05$
26258
$1.7357 \mathrm{e}+05$
19590
$2.0712 \mathrm{e}+05$

Drawn
$\qquad$

10907	44740
$2.0751 \mathrm{e}+05$	40678
0	$1.6567 \mathrm{e}+05$
92506	1593.5
6782.5	54.175
29575	576.69
3641	998.49
$1.7682 \mathrm{e}+05$	$1.6454 \mathrm{e}+05$

EAD

44740
40678
1593.5
54.175
576.69
998.49
$1.6454 \mathrm{e}+05$
rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut', 0.4);
TrainingInd = training(c);
TestInd = test(c);

## Select Model Type

Select a model type for Beta.
ModelType $=$ Beta ;

## Select Conversion Measure

Select a conversion measure for the EAD response values.
ConversionMeasure $=$ LCF $\quad$;

## Create Beta EAD Model

Use fitEADModel to create a Beta model using the TrainingInd data.

```
eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age',
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);
```

```
Beta with properties:
 BoundaryTolerance: 1.0000e-07
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"
```

Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the transformation.

```
disp(eadModel.UnderlyingModel);
Beta regression model:
 logit(EAD_lcf) ~ 1_mu + UtilizationRate_mu + Age_mu + Marriage_mu
 log(EAD_l\overline{c}f) ~ 1_p\overline{h}i + UtilizationRate_\overline{phi + Age_phi + Marriage_phi}
Estimated coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -0.65566 & 0.11484 & -5.7093 & 1.2616e-08 \\
\hline 1.7014 & 0.078094 & 21.787 & 0 \\
\hline -0.0055901 & 0.0027603 & -2.0252 & 0.042949 \\
\hline -0.012577 & 0.052098 & -0.24141 & 0.80926 \\
\hline -0.50131 & 0.094625 & -5.2979 & 1.2686e-07 \\
\hline 0.39731 & 0.066707 & 5.956 & 2.9303e-09 \\
\hline 0.001167 & 0.0023161 & -0.50387 & 0.6144 \\
\hline
\end{tabular}
```

Marriage_not married_phi
-0.013275
0.042627
$-0.31143$
0.7555

Number of observations: 2627
Log-likelihood: -3140.21

## Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-value argument.
predictedEAD = predict(eadModel,EADData(TestInd,:), ModelLevel="ead");
predictedConversion = predict(eadModel, EADData(TestInd,:),ModelLevel="ConversionMeasure");

## Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.
ModelLevel $=$ ead ;
[DiscMeasure1,DiscDatal] = modelDiscrimination(eadModel,EADData(TestInd,:), ModelLevel=ModelLevel modelDiscriminationPlot(eadModel, EADData(TestInd, :),ModelLevel=ModelLevel,SegmentBy="Marriage")


Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the predictions.

YData $=$ Observed $\quad$;
[CalMeasure1,CalDatal] = modelCalibration(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel)
CalMeasurel=1×4 table
RSquared RMSE Correlation SampleMeanError

Beta
0.38655

43817
0.62173
$-7393.4$

CalDatal=1751×3 table
Observed Predicted_Beta Residuals_Beta
$\qquad$ 44740 54.175 $987.39-15551 \quad-14564$ $\begin{array}{lll}9606.4 & 8407.7 & 1198.8\end{array}$ $83.809 \quad 33318$-33234 $73538 \quad 52120 \quad 21418$ $96.949 \quad 6598.1 \quad-6501.2$ $873.21 \quad 5471.1 \quad-4597.9$ $328.35 \quad 7335$-7006.6 $55237 \quad 3258022658$ $30359 \quad 21563 \quad 8796.4$ $39211 \quad 33177 \quad 6033.6$
$2.0885 \mathrm{e}+05$
$\begin{array}{rr}1.2586 \mathrm{e}+05 & 82987 \\ 23319 & -21397\end{array}$ $\begin{array}{rrr}1921.7 & 23319 & -21397 \\ 15230 & 6565.9 & 8664\end{array}$ $20063 \quad 11075 \quad 8987.5$
modelCalibrationPlot(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel,YData=YData);

## Scatter



## Input Arguments

## eadModel - Exposure at default model

Regression object | Tobit | Beta object
Exposure at default model, specified as a previously created Regression, Tobit, or Beta object using fitEADModel.

Data Types: object

## data - Data

table
Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable names and data types must be consistent with the underlying model.
Data Types: table

## ax - Valid axis object

object
(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be created in the axes specified by the optional ax argument instead of in the current axes (gca). The optional argument ax must precede any of the input argument combinations.
Data Types: object

## Name-Value Arguments

Specify optional pairs of arguments as Namel=Value1, ...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

## Example:

modelCalibrationPlot (eadModel, data(TestInd,:) ,DataID=Testing,XData='residuals
', YData='residuals')

## DataID - Data set identifier

" " (default) | character vector | string
Data set identifier, specified DataID and a character vector or string. The DataID is included in the output for reporting purposes.
Data Types: char | string

## ModelLevel - Model level

'ead ' (default) | character vector with value 'ead ', 'conversionMeasure', or
'conversionTransform' | string with value "ead", "conversionMeasure", or
"conversionTransform"
Model level, specified as ModelLevel and a character vector or string.

Note Regression models support all three model levels, but a Tobit or Beta model supports model levels only for "ead" and "conversionMeasure".

## Data Types: char|string

## ReferenceEAD - EAD values predicted for data by reference model

[] (default) | numeric vector
EAD values predicted for data by the reference model, specified as ReferenceEAD and a NumRows-by-1 numeric vector. The scatter plot output is plotted for both the eadModel object and the reference model.

## Data Types: double

## ReferenceID - Identifier for the reference model <br> 'Reference' (default) | character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string. ReferenceID is used in the scatter plot output for reporting purposes.
Data Types: char \| string

## XData - Data to plot on $\mathbf{x}$-axis

'predicted ' (default)| character vector with value 'predicted', 'observed', 'residuals', or VariableName | string with value | "predicted", "observed", "residuals", or VariableName

Data to plot on $x$-axis, specified as XData and a character vector or string for one of the following:

- 'predicted ' - Plot the predicted EAD values in the $x$-axis.
- 'observed ' - Plot the observed EAD values in the $x$-axis.
- 'residuals' - Plot the residuals in the x-axis.
- VariableName - Use the name of the variable in the data input, not necessarily a model variable, to plot in the $x$-axis.

Data Types: char | string

## YData - Data to plot on $\boldsymbol{y}$-axis

'predicted' (default)| character vector with value 'predicted', 'observed', or 'residuals' | string with value | "predicted", "observed", or "residuals"

Data to plot on $y$-axis, specified as YData and a character vector or string for one of the following:

- 'predicted ' - Plot the predicted EAD values in the $y$-axis.
- 'observed' - Plot the observed EAD values in the $y$-axis.
- 'residuals ' - Plot the residuals in the $y$-axis.

Data Types: char | string

## Output Arguments

## h - Figure handle

handle object
Figure handle for the scatter and line objects, returned as handle object.

## More About

## Model Calibration Plot

The modelCalibrationPlot function returns a scatter plot of observed vs. predicted loss given default (EAD) data with a linear fit and reports the R-square of the linear fit.

The XData name-value pair argument allows you to change the $x$ values on the plot. By default, predicted EAD values are plotted in the $x$-axis, but predicted EAD values, residuals, or any variable in the data input, not necessarily a model variable, can be used as $x$ values. If the selected XData is a categorical variable, a swarm chart is used. For more information, see swarmchart.

The YData name-value pair argument allows users to change the $y$ values on the plot. By default, observed EAD values are plotted in the $y$-axis, but predicted EAD values or residuals can also be used as $y$ values. YData does not support table variables.

The linear fit and reported R-squared value always correspond to the linear regression model with the plotted $y$ values as response and the plotted $x$ values as the only predictor.

## Version History

Introduced in R2023a

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications. SAS Institute, 2014.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

## See Also

Regression| Tobit|Beta|fitEADModel| predict|modelDiscrimination| modelDiscriminationPlot|modelCalibration

## Topics

"Compare Results for Regression and Tobit EAD Models" on page 4-151
"Overview of Exposure at Default Models" on page 1-34

## modelCalibrationPlot

Scatter plot of predicted and observed LGDs

## Syntax

```
modelCalibrationPlot(lgdModel,data)
modelCalibrationPlot(
 ,Name,Value)
h = modelCalibrationPlot(ax,
```

$\qquad$

``` ,Name, Value)
```


## Description

modelCalibrationPlot(lgdModel, data) returns a scatter plot of observed vs. predicted loss given default (LGD) data with a linear fit. modelCalibrationPlot supports comparison against a reference model. By default, modelCalibrationPlot plots in the LGD scale.
modelCalibrationPlot( $\qquad$ ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax. You can use the ModelLevel name-value pair argument to compute metrics using the underlying model's transformed scale.
h = modelCalibrationPlot(ax, $\qquad$ ,Name, Value) specifies options using one or more namevalue pair arguments in addition to the input arguments in the previous syntax and returns the figure handle $h$.

## Examples

## Generate a Scatter Plot of Predicted and Observed LGDs Using Regression LGD Model

This example shows how to use fitLGDModel to fit data with a Regression model and then use modelCalibrationPlot to generate a scatter plot for predicted and observed LGDs.

## Load Data

Load the loss given default data.

LTV	Age	Type	LGD
0.89101	0.39716	residential	0.032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0.025688
0.92005	0.50253	investment	0.063182

## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Create Regression LGD Model

Use fitLGDModel to create a Regression model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'regression');
disp(lgdModel)
Regression with properties:
 ResponseTransform: "logit"
 BoundaryTolerance: 1.0000e-05
 ModelID: "Regression"
 Description:
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.
lgdModel.UnderlyingModel
ans =
Compact linear regression model:
LGD_logit ~ 1 + LTV + Age + Type
Estimated Coefficients:
Estimate SE tStat pValue

(Intercept)	-4.7549	0.36041	-13.193	$3.0997 \mathrm{e}-38$
LTV	2.8565	0.41777	6.8377	$1.0531 \mathrm{e}-11$
Age	-1.5397	0.085716	-17.963	$3.3172 \mathrm{e}-67$
Type_investment	1.4358	0.2475	5.8012	$7.587 \mathrm{e}-09$

Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value $=2.42 \mathrm{e}-104$

## Generate Scatter Plot of Predicted and Observed LGDs

Use modelCalibrationPlot to generate a scatter plot of predicted and observed LGDs for the test data set. The ModelLevel name-value pair argument modifies the output only for Regression models, not Tobit models, because there are no response transformations for the Tobit model.
modelCalibrationPlot(lgdModel,data(TestInd,:),ModelLevel="underlying")

Scatter


## Generate Scatter Plot of Predicted and Observed LGDs Using Tobit LGD Model

This example shows how to use fitLGDModel to fit data with a Tobit model and then use modelCalibrationPlot to generate a scatter plot of predicted and observed LGDs.

## Load Data

Load the loss given default data.
load LGDData.mat head(data)

LTV	Age	Type	LGD
0.89101	0.39716	residential	0.032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0.025688
0.92005	0.50253	investment	0.063182

## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Create Tobit LGD Model

Use fitLGDModel to create a Tobit model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'tobit');
disp(lgdModel)
Tobit with properties
 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.

```
disp(lgdModel.UnderlyingModel)
Tobit regression model:
 LGD = max(0,min(Y*,1))
 Y* ~ 1 + LTV + Age + Type
Estimated coefficients:
\begin{tabular}{rrrrr}
Estimate & \multicolumn{1}{c}{ SE } & \multicolumn{2}{c}{ tStat } &
\end{tabular} pValue
```

Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1521
Number of right-censored observations: 25
Log-likelihood: -698.383
Generate Scatter Plot of Predicted and Observed LGDs
Use modelCalibrationPlot to generate a scatter plot of predicted and observed LGDs for the test data set.

```
modelCalibrationPlot(lgdModel,data(TestInd,:))
```


## Scatter

Tobit, R-Squared: 0.08527


## Generate Scatter Plot of Predicted and Observed LGDs Using Beta LGD Model

This example shows how to use fitLGDModel to fit data with a Beta model and then use modelCalibrationPlot to generate a scatter plot of predicted and observed LGDs.

## Load Data

Load the loss given default data.
load LGDData.mat
head(data)

LTV	Age	Type	LGD
0.89101	0.39716	residential	0.032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0.025688
0.92005	0.50253	investment	0.063182

## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Create Beta LGD Model

Use fitLGDModel to create a Beta model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'Beta');
disp(lgdModel)
Beta with properties:
 BoundaryTolerance: 1.0000e-05
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.
disp(lgdModel.UnderlyingModel)
Beta regression model:
logit(LGD) ~ 1_mu + LTV_mu + Age_mu + Type_mu
log(LGD) ~ 1_phi + LTV_phi + Age_phi + Type_phi
Estimated coefficients:

Estimate	SE	tStat	pValue
-1.3772	0.13201	-10.433	$\bigcirc$
0.60269	0.15087	3.9947	6.7023e-05
-0.47464	0.040264	-11.788	0
0.45372	0.085143	5.3289	1.094e-07
-0.16337	0.12591	-1.2975	0.19462
0.055892	0.14719	0.37973	0.70419
0.22887	0.040335	5.6743	1.5863e-08
-0.14102	0.078155	-1.8044	0.071311

Number of observations: 2093
Log-likelihood: -5291.04

## Generate Scatter Plot of Predicted and Observed LGDs

Use modelCalibrationPlot to generate a scatter plot of predicted and observed LGDs for the test data set.

```
modelCalibrationPlot(lgdModel,data(TestInd,:))
```


## Scatter

## Beta, R-Squared: 0.080804



## Visualize Calibration for Residuals or Other Variables

modelCalibrationPlot generates a scatter plot of observed vs. predicted LGD values. The 'XData' and 'YData' name-value arguments allow you to visualize the residuals or generate a scatter plot against a variable of interest.

## Load Data

Load the loss given default data.

load LGDData.mat head(data)			
LTV	Age	Type	LGD
0.89101	0.39716	residential	0.032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0.025688
0.92005	0.50253	investment	0.063182

## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Create Regression LGD Model

Use fitLGDModel to create a Regression model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'regression');
disp(lgdModel)
Regression with properties:
ResponseTransform: "logit"
BoundaryTolerance: 1.0000e-05
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.

Compact linear regression model:   LGD logit ~ 1 + LTV + Age + Type				
Estimated Coefficients:				
	Estimate	SE	tStat	pValue
(Intercept)	-4.7549	0.36041	-13.193	3.0997e-38
LTV	2.8565	0.41777	6.8377	1.0531e-11
Age	-1.5397	0.085716	-17.963	3.3172e-67
Type_investment	1.4358	0.2475	5.8012	7.587e-09

Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value = 2.42e-104

Generate Scatter Plot of Predicted and Observed LGDs
Use modelCalibrationPlot to generate a scatter plot of residuals against LTV values. modelCalibrationPlot(lgdModel,data(TestInd,:),XData='LTV',YData='residuals')

## Scatter



For Regression models, the 'ModelLevel' name-value argument allows you to visualize the plot using the underlying model scale.
modelCalibrationPlot(lgdModel,data(TestInd, :),XData='LTV',YData='residuals',ModelLevel='underlyi


For categorical variables, modelCalibrationPlot uses a swarm chart. For more information, see swarmchart.
modelCalibrationPlot(lgdModel, data(TestInd,:),XData='Type',YData='residuals',ModelLevel='underly


## Input Arguments

## lgdModel - Loss given default model

Regression object | Tobit object
Loss given default model, specified as a previously created Regression, Tobit, or Beta object using fitLGDModel.
Data Types: object

## data - Data

table
Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable names and data types must be consistent with the underlying model.
Data Types: table

## ax - Valid axis object

object
(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be created in the axes specified by the optional ax argument instead of in the current axes (gca). The optional argument ax must precede any of the input argument combinations.
Data Types: object

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Example:
modelCalibrationPlot(lgdModel, data(TestInd, :), DataID='Testing',YData=residual s,XData='LTV')

## DataID - Data set identifier

"" (default) | character vector | string
Data set identifier, specified as DataID and a character vector or string. The DataID is included in the output for reporting purposes.
Data Types: char|string

## ModelLevel - Model level

'top' (default)| character vector with value 'top' or 'underlying' | string with value "top" or "underlying"

Model level, specified as ModelLevel and a character vector or string.

- 'top ' - The accuracy metrics are computed in the LGD scale at the top model level.
- 'underlying' - For a Regression model only, the metrics are computed in the underlying model's transformed scale. The metrics are computed on the transformed LGD data.

Note ModelLevel has no effect for a Tobit or Beta model because there is no response transformation.

Data Types: char | string
ReferenceLGD - LGD values predicted for data by reference model
[ ] (default) | numeric vector
LGD values predicted for data by the reference model, specified as ReferenceLGD and a NumRows-by-1 numeric vector. The scatter plot output is plotted for both the lgdModel object and the reference model.

Data Types: double

## ReferenceID - Identifier for the reference model <br> 'Reference' (default) | character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string. 'ReferenceID' is used in the scatter plot output for reporting purposes.
Data Types: char | string
XData - Data to plot on x-axis
'predicted' (default)| character vector with value 'predicted', 'observed', 'residuals', or VariableName | string with value | "predicted", "observed", "residuals", or VariableName

Data to plot on x-axis, specified as XData and a character vector or string for one of the following:

- 'predicted ' - Plot the predicted LGD values in the $x$-axis.
- 'observed ' - Plot the observed LGD values in the x-axis.
- 'residuals ' - Plot the residuals in the x-axis.
- VariableName - Use the name of the variable in the data input, not necessarily a model variable, to plot in the x -axis.

Data Types: char | string

## YData - Data to plot on y-axis

'predicted' (default)| character vector with value 'predicted', 'observed', or 'residuals' | string with value | "predicted", "observed", or "residuals"

Data to plot on y-axis, specified as YData and a character vector or string for one of the following:

- 'predicted ' - Plot the predicted LGD values in the y-axis.
- 'observed ' - Plot the observed LGD values in the y-axis.
- 'residuals ' - Plot the residuals in the y-axis.

Data Types: char | string

## Output Arguments

## h - Figure handle

handle object
Figure handle for the scatter and line objects, returned as handle object.

## More About

## Model Calibration Plot

The modelCalibrationPlot function returns a scatter plot of observed vs. predicted loss given default (LGD) data with a linear fit and reports the R-square of the linear fit.

The XData name-value pair argument allows you to change the $x$ values on the plot. By default, predicted LGD values are plotted in the $x$-axis, but predicted LGD values, residuals, or any variable in the data input, not necessarily a model variable, can be used as $x$ values. If the selected XData is a categorical variable, a swarm chart is used. For more information, see swarmchart.

The YData name-value pair argument allows users to change the $y$ values on the plot. By default, observed LGD values are plotted in the $y$-axis, but predicted LGD values or residuals can also be used as $y$ values. YData does not support table variables.

For Regression models, if ModelLevel is set to 'underlying', the LGD data is transformed into the underlying model's scale. The transformed data is shown on the plot. The ModelLevel namevalue pair argument has no effect for Tobit models.

The linear fit and reported R-squared value always correspond to the linear regression model with the plotted $y$ values as response and the plotted $x$ values as the only predictor.

## Version History

Introduced in R2023a

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

## See Also

Tobit | Regression | Beta | modelCalibration | modelDiscriminationPlot | modelDiscrimination| predict|fitLGDModel

## Topics

"Model Loss Given Default" on page 4-90
"Basic Loss Given Default Model Validation" on page 4-131
"Compare Tobit LGD Model to Benchmark Model" on page 4-133
"Compare Loss Given Default Models Using Cross-Validation" on page 4-140
"Overview of Loss Given Default Models" on page 1-31

## modelCalibrationPlot

Plot observed default rates compared to predicted PDs on grouped data

## Syntax

modelCalibrationPlot(pdModel, data, GroupBy) modelCalibrationPlot( ,Name, Value)
h = modelCalibrationPlot(ax, $\qquad$ ,Name, Value)

## Description

modelCalibrationPlot(pdModel, data, GroupBy) plots the observed default rates compared to the predicted probabilities of default (PD). GroupBy is required and can be any column in the data input (not necessarily a model variable). The modelCalibrationPlot function computes the observed PD as the default rate of each group and the predicted PD as the average PD for each group. modelCalibrationPlot supports comparison against a reference model.
modelCalibrationPlot( $\qquad$ , Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.
h = modelCalibrationPlot(ax, $\qquad$ ,Name, Value) specifies options using one or more namevalue pair arguments in addition to the input arguments in the previous syntax and returns the figure handle h .

## Examples

Plot RMSE of Observed Compared to Predicted Probabilities of Default
This example shows how to use modelCalibrationPlot to plot the root mean squared error (RMSE) of the observed probabilities of default (PDs) with respect to the predicted PDs.

## Load Data

Load the credit portfolio data.

```
load RetailCreditPanelData.mat
disp(head(data))
```

ID	ScoreGroup	YOB	Default	Year
1	Low Risk	1	0	1997
1	Low Risk	2	0	1998
1	Low Risk	3	0	1999
1	Low Risk	4	0	2000
1	Low Risk	5	0	2001
1	Low Risk	6	0	2002
1	Low Risk	7	0	2003
1	Low Risk	8	0	2004

[^0]| Year | GDP | Market |
| :---: | :---: | :---: |
| 1997 | 2.72 | 7.61 |
| 1998 | 3.57 | 26.24 |
| 1999 | 2.86 | 18.1 |
| 2000 | 2.43 | 3.19 |
| 2001 | 1.26 | -10.51 |
| 2002 | -0.59 | -22.95 |
| 2003 | 0.63 | 2.78 |
| 2004 | 1.85 | 9.48 |

Join the two data components into a single data set.

```
data = join(data,dataMacro);
disp(head(data))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ID & ScoreGroup & YOB & Default & Year & GDP & Market \\
\hline 1 & Low Risk & 1 & 0 & 1997 & 2.72 & 7.61 \\
\hline 1 & Low Risk & 2 & 0 & 1998 & 3.57 & 26.24 \\
\hline 1 & Low Risk & 3 & 0 & 1999 & 2.86 & 18.1 \\
\hline 1 & Low Risk & 4 & 0 & 2000 & 2.43 & 3.19 \\
\hline 1 & Low Risk & 5 & 0 & 2001 & 1.26 & -10.51 \\
\hline 1 & Low Risk & 6 & 0 & 2002 & -0.59 & -22.95 \\
\hline 1 & Low Risk & 7 & 0 & 2003 & 0.63 & 2.78 \\
\hline 1 & Low Risk & 8 & 0 & 2004 & 1.85 & 9.48 \\
\hline
\end{tabular}
```


## Partition Data

Separate the data into training and test partitions.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % For reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```


## Create Logistic Lifetime PD Model

Use fitLifetimePDModel to create a Logistic model using the training data.

```
pdModel = fitLifetimePDModel(data(TrainDataInd,:),'logistic',...
 'ModelID','Example',...
 'Description','Lifetime PD model using RetailCreditPanelData.',...
 'IDVar','ID',...
 'AgeVar','YOB',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP' 'Market'},...
 'ResponseVar','Default');
disp(pdModel)
```

```
 Logistic with properties:
 ModelID: "Example"
 Description: "Lifetime PD model using RetailCreditPanelData."
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"
 pdModel.UnderlyingModel
ans =
Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -2.7422 & 0.10136 & -27.054 & 3.408e-161 \\
\hline -0.68968 & 0.037286 & -18.497 & 2.1894e-76 \\
\hline -1.2587 & 0.045451 & -27.693 & 8.4736e-169 \\
\hline -0.30894 & 0.013587 & -22.738 & 1.8738e-114 \\
\hline -0.11111 & 0.039673 & -2.8006 & 0.0051008 \\
\hline -0.0083659 & 0.0028358 & -2.9502 & 0.0031761 \\
\hline
\end{tabular}
3 8 8 0 9 7 \text { observations, 388091 error degrees of freedom}
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0
```


## Visualize Model Calibration

Use modelCalibrationPlot to visualize the model calibration on test data, grouping by age. modelCalibrationPlot(pdModel,data(TestDataInd,:), 'YOB')


## Input Arguments

## pdModel - Probability of default model

Logistic object | Probit object | Cox object | customLifetimePDModel object
Probability of default model, specified as a Logistic, Probit, or Cox object previously created using fitLifetimePDModel. Alternatively, you can create a custom probability of default model using customLifetimePDModel.

Note The 'ModelID' property of the pdModel object is used as the identifier or tag for pdModel.

Data Types: object
data - Data
table
Data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime predictions. The predictor names and data types must be consistent with the underlying model.

Data Types: table
GroupBy - Name of column in data input used to group the data
string | character vector

Name of column in the data input used to group the data, specified as a string or character vector. GroupBy does not have to be a model variable name. For each group designated by GroupBy, the modelCalibrationPlot function computes the observed default rates and average predicted PDs are computed to measure the RMSE. modelCalibrationPlot supports up to two grouping variables.

Data Types: string | char
ax - Valid axis object
object
(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be created in the axes specified by the optional ax argument instead of in the current axes (gca). The optional argument ax must precede any of the input argument combinations.
Data Types: object

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

## Example:

modelCalibrationPlot(pdModel, data(Ind,:), GroupBy=["YOB", "ScoreGroup"],DataID= "DataSetChoice")

## DataID - Data set identifier

" " (default) | character vector | string
Data set identifier, specified as DataID and a character vector or string. DataID is included in the plot title for reporting purposes.

Data Types: char|string

## ReferencePD - Conditional PD values predicted for data by reference model <br> [ ] (default) | numeric vector

Conditional PD values predicted for data by the reference model, specified as ReferencePD and a NumRows-by-1 numeric vector. The predicted PD is plotted for both the pdModel object and the reference model.

Data Types: double

## ReferenceID - Identifier for reference model <br> 'Reference' (default)| character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string. ReferenceID is used in the plot for reporting purposes.
Data Types: char|string

## Output Arguments

## h - Figure handle

handle object

Figure handle for the line objects, returned as handle object.

## More About

## Model Calibration

Model calibration measures the accuracy of the predicted probability of default (PD) values.
The modelCalibrationPlot function allows you to visually compare the predicted PD values to the observed default rates. The modelCalibrationPlot function requires a grouping variable to compute average predicted PD values within each group and the average observed default rate also within each group. The predicted PD values and the observed default rates by group are plotted against the grouping variable values.

Up to two grouping variables are supported in modelCalibrationPlot. When two grouping variables are specified, the average predicted PD and default rates are computed for all the groups defined by the combination of the two grouping variables. The data is plotted against the first grouping variable, and the second variable is used to differentiate the data on the plot with different colors.

The root mean square error (RMSE) of the grouped data is reported on the title of the plot. To get the RMSE metric programmatically, use modelCalibration.

## Version History

Introduced in R2023a

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.

## See Also

modelDiscrimination |modelDiscriminationPlot|modelCalibration | predictLifetime | predict|fitLifetimePDModel|Logistic|Probit|Cox|customLifetimePDModel

## Topics

"Basic Lifetime PD Model Validation" on page 4-129
"Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
"Compare Lifetime PD Models Using Cross-Validation" on page 4-121
"Expected Credit Loss Computation" on page 4-124
"Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
"Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 4-75
"Overview of Lifetime Probability of Default Models" on page 1-25

## modelAccuracyPlot

Plot observed default rates compared to predicted PDs on grouped data

Note modelAccuracyPlot is renamed to modelCalibrationPlot. modelAccuracyPlot is not recommended. Use modelCalibrationPlot instead.

## Syntax

modelAccuracyPlot(pdModel, data, GroupBy)
modelAccuracyPlot( ,Name, Value)
h = modelAccuracyPlot $(a x$, $\qquad$ , Name, Value)

## Description

modelAccuracyPlot (pdModel, data, GroupBy) plots the observed default rates compared to the predicted probabilities of default (PD). GroupBy is required and can be any column in the data input (not necessarily a model variable). The modelAccuracyPlot function computes the observed PD as the default rate of each group and the predicted PD as the average PD for each group. modelAccuracyPlot supports comparison against a reference model.
modelAccuracyPlot (__ ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.
h = modelAccuracyPlot (ax, $\qquad$ , Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax and returns the figure handle $h$.

## Input Arguments

## pdModel - Probability of default model

Logistic object | Probit object | Cox object | customLifetimePDModel object
Probability of default model, specified as a Logistic, Probit, or Cox object previously created using fitLifetimePDModel. Alternatively, you can create a custom probability of default model using customLifetimePDModel.

Note The 'ModelID ' property of the pdModel object is used as the identifier or tag for pdModel.

Data Types: object
data - Data
table
Data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime predictions. The predictor names and data types must be consistent with the underlying model.
Data Types: table

## GroupBy - Name of column in data input used to group the data <br> string | character vector

Name of column in the data input used to group the data, specified as a string or character vector. GroupBy does not have to be a model variable name. For each group designated by GroupBy, the modelAccuracyPlot function computes the observed default rates and average predicted PDs are computed to measure the RMSE. modelAccuracyPlot supports up to two grouping variables.
Data Types: string | char

## ax - Valid axis object <br> object

(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be created in the axes specified by the optional ax argument instead of in the current axes (gca). The optional argument ax must precede any of the input argument combinations.
Data Types: object

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: modelAccuracyPlot (pdModel, data(Ind, : ), 'GroupBy' ,
["YOB","ScoreGroup"], 'DataID', "DataSetChoice")

## DataID - Data set identifier

" " (default) | character vector | string
Data set identifier, specified as the comma-separated pair consisting of 'DataID ' and a character vector or string. DataID is included in the plot title for reporting purposes.
Data Types: char | string

## ReferencePD - Conditional PD values predicted for data by reference model

[ ] (default) | numeric vector
Conditional PD values predicted for data by the reference model, specified as the comma-separated pair consisting of 'ReferencePD' and a NumRows-by-1 numeric vector. The predicted PD is plotted for both the pdModel object and the reference model.
Data Types: double

## ReferenceID - Identifier for reference model <br> 'Reference' (default) | character vector | string

Identifier for the reference model, specified as the comma-separated pair consisting of 'ReferenceID ' and a character vector or string. ReferenceID is used in the plot for reporting purposes.

Data Types: char|string

## Output Arguments

h - Figure handle
handle object
Figure handle for the line objects, returned as handle object.

## More About

## Model Accuracy

Model accuracy measures the accuracy of the predicted probability of default (PD) values.
The modelAccuracyPlot function allows you to visually compare the predicted PD values to the observed default rates. The modelAccuracyPlot function requires a grouping variable to compute average predicted PD values within each group and the average observed default rate also within each group. The predicted PD values and the observed default rates by group are plotted against the grouping variable values.

Up to two grouping variables are supported in modelAccuracyPlot. When two grouping variables are specified, the average predicted PD and default rates are computed for all the groups defined by the combination of the two grouping variables. The data is plotted against the first grouping variable, and the second variable is used to differentiate the data on the plot with different colors.

The root mean square error (RMSE) of the grouped data is reported on the title of the plot. To get the RMSE metric programmatically, use modelAccuracy.

## Version History

Introduced in R2021a
R2023a: modelAccuracyPlot function is renamed to modelCalibrationPlot function
Not recommended starting in R2023a
The modelAccuracyPlot function is renamed to modelCalibrationPlot function. The use of modelAccuracyPlot is not recommended, use modelCalibrationPlot instead.

## R2022b: Support for customLifetimePDModel model

The pdModel input supports an option for a customLifetimePDModel model object that you can create using customLifetimePDModel.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.

## See Also

modelDiscrimination | modelDiscriminationPlot | modelAccuracy|predictLifetime | predict|fitLifetimePDModel|Logistic| Probit|Cox|customLifetimePDModel

## Topics

"Basic Lifetime PD Model Validation" on page 4-129
"Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
"Compare Lifetime PD Models Using Cross-Validation" on page 4-121
"Expected Credit Loss Computation" on page 4-124
"Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
"Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 4-75
"Overview of Lifetime Probability of Default Models" on page 1-25

## modelDiscrimination

Compute AUROC and ROC data

## Syntax

DiscMeasure = modelDiscrimination(eadModel,data)
[DiscMeasure,DiscData] = modelDiscrimination( $\qquad$ ,Name=Value)

## Description

DiscMeasure = modelDiscrimination(eadModel, data) computes the area under the receiver operating characteristic curve (AUROC). modelDiscrimination supports segmentation and comparison against a reference model and alternative methods to discretize the EAD response into a binary variable.
[DiscMeasure,DiscData] = modelDiscrimination( $\qquad$ , Name=Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax.

## Examples

## Compute AUROC and ROC Using Tobit EAD Model

This example shows how to use fitEADModel to create a Tobit model and then use modelDiscrimination to compute AUROC and ROC.

## Load EAD Data

Load the EAD data.

load EADData.mat head(EADData)					
UtilizationRate	Age	Marriage	Limit	Drawn	EAD
0.24359	25	not married	44776	10907	44740
0.96946	44	not married	$2.1405 \mathrm{e}+05$	$2.0751 \mathrm{e}+05$	40678
0	40	married	$1.6581 \mathrm{e}+05$	-	$1.6567 \mathrm{e}+05$
0.53242	38	not married	$1.7375 \mathrm{e}+05$	92506	1593.5
0.2583	30	not married	26258	6782.5	54.175
0.17039	54	married	$1.7357 \mathrm{e}+05$	29575	576.69
0.18586	27	not married	19590	3641	998.49
0.85372	42	not married	$2.0712 \mathrm{e}+05$	$1.7682 \mathrm{e}+05$	$1.6454 \mathrm{e}+05$

```
rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Select Model Type

Select a model type for Tobit or Regression.
ModelType $=$ Tobit -

## Select Conversion Measure

Select a conversion measure for the EAD response values.
ConversionMeasure $=$ LCF ;

## Create Tobit EAD Model

Use fitEADModel to create a Tobit model using the TrainingInd data.

```
eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age',
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);
```

    Tobit with properties:
        CensoringSide: "both"
            LeftLimit: 0
            RightLimit: 1
                            ModelID: "Tobit"
                Description: ""
        UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
            PredictorVars: ["UtilizationRate" "Age" "Marriage"]
                ResponseVar: "EAD"
            LimitVar: "Limit"
            DrawnVar: "Drawn"
    ConversionMeasure: "lcf"
    Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LiimitVar' and 'DrwanVar' name-value arguments to modify the transformation.
disp(eadModel.UnderlyingModel);
Tobit regression model:
EAD_lcf $=\max \left(0, \min \left(\mathrm{Y}^{*}, 1\right)\right)$
Y* ~ 1 + UtilizationRate + Age + Marriage
Estimated coefficients:

Estimate	SE	tStat	pValue
0.22467	0.03134	7.1689	9.7855e-13
0.4714	0.020722	22.749	0
-0.0014209	0.00076326	-1.8616	0. 062771
-0.010542	0.01578	-0.66807	0.50415
0.3618	0.0050022	72.33	0

Number of observations: 2627
Number of left-censored observations: 0
Number of uncensored observations: 2626

Number of right-censored observations: 1
Log-likelihood: -1057.9

## Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-value argument.

```
predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");
```


## Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

```
ModelLevel = ConversionMeasure * ;
[DiscMeasure1,DiscDatal] = modelDiscrimination(eadModel,EADData(TestInd,:),ShowDetails=true,Mode
DiscMeasurel=1\times3 table
 AUROC Segment SegmentCount
 Tobit 0.70893 "all_data" 1751
DiscDatal=1534\times3 table
\begin{tabular}{ll}
\(X\) & \(Y\) \\
\hline
\end{tabular}
\begin{tabular}{rrr}
0 & 0 & 0.63602 \\
0 & 0.0027778 & 0.63602 \\
0 & 0.0041667 & 0.63489 \\
0.00096993 & 0.0055556 & 0.63377 \\
0.00096993 & 0.0069444 & 0.63265 \\
0.0019399 & 0.0083333 & 0.63152 \\
0.0029098 & 0.0097222 & 0.6304 \\
0.0029098 & 0.015278 & 0.62927 \\
0.0029098 & 0.016667 & 0.62922 \\
0.0029098 & 0.018056 & 0.6288 \\
0.0029098 & 0.019444 & 0.62864 \\
0.0038797 & 0.022222 & 0.62814 \\
0.0038797 & 0.025 & 0.62767 \\
0.0048497 & 0.026389 & 0.62701 \\
0.0048497 & 0.033333 & 0.62654 \\
0.0058196 & 0.033333 & 0.62618
\end{tabular}
```

modelDiscriminationPlot(eadModel, EADData(TestInd, :) , ModelLevel=ModelLevel, SegmentBy="Marriage");


## Compute AUROC and ROC Using Beta EAD Model

This example shows how to use fitEADModel to create a Beta model and then use modelDiscrimination to compute AUROC and ROC.

## Load EAD Data

Load the EAD data.
load EADData.mat
head(EADData)

UtilizationRate
$\qquad$

0.24359	25
0.96946	44
0	40
0.53242	38
0.2583	30
0.17039	54
0.18586	27
0.85372	42

Age
Marriage

> not married not married married
> not married not married married not married not married

Limit
$\qquad$
44776
$2.1405 \mathrm{e}+05$
$1.6581 \mathrm{e}+05$
$1.7375 \mathrm{e}+05$
26258
$1.7357 \mathrm{e}+05$
19590
$2.0712 \mathrm{e}+05$

Drawn
$\qquad$
10907
$2.0751 \mathrm{e}+05$
92506 6782.5

29575
3641
$1.7682 \mathrm{e}+05$

EAD

44740
40678

1. $6567 e+05$
1593.5
54.175
576.69
998.49
$1.6454 \mathrm{e}+05$
rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut', 0.4);
TrainingInd = training(c);
TestInd = test(c);

## Select Model Type

Select a model type for a Beta model.
ModelType $=$ Beta $\quad$;

## Select Conversion Measure

Select a conversion measure for the EAD response values.

```
ConversionMeasure \(=\) LCF \(\quad\);
```


## Create Beta EAD Model

Use fitEADModel to create a Beta model using the TrainingInd data.

```
eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age',
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);
```

```
Beta with properties:
 BoundaryTolerance: 1.0000e-07
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"
```

Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LiimitVar' and 'DrwanVar' name-value arguments to modify the transformation.

```
disp(eadModel.UnderlyingModel);
Beta regression model:
 logit(EAD_lcf) ~ 1_mu + UtilizationRate_mu + Age_mu + Marriage_mu
 log(EAD_l\overline{c}f) ~ 1_p\overline{h}i + UtilizationRate_\overline{phi + Age_phi + Marriage_phi}
Estimated coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -0.65566 & 0.11484 & -5.7093 & 1.2616e-08 \\
\hline 1.7014 & 0.078094 & 21.787 & 0 \\
\hline -0.0055901 & 0.0027603 & -2.0252 & 0.042949 \\
\hline -0.012577 & 0.052098 & -0.24141 & 0.80926 \\
\hline -0.50131 & 0.094625 & -5.2979 & 1.2686e-07 \\
\hline 0.39731 & 0.066707 & 5.956 & 2.9303e-09 \\
\hline 0.001167 & 0.0023161 & -0.50387 & 0.6144 \\
\hline
\end{tabular}
```

```
Marriage_not married_phi -0.013275 0.042627 -0.31143 0.7555
```

Number of observations: 2627
Log-likelihood: -3140.21

## Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-value argument.
predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel, EADData(TestInd,:), ModelLevel="ConversionMeasure");

## Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.
ModelLevel $=$ ConversionMeasure $\quad$;
[DiscMeasure1,DiscData1] = modelDiscrimination(eadModel,EADData(TestInd,:) ,ShowDetails=true,Mode
DiscMeasure1=1×3 table

AUROC	Segment	SegmentCount
0.70895	"all_data"	1751

DiscDatal=1534×3 table

X	Y	T
0	0	0.71675
0	0.0027778	0.71675
0	0.0041667	0.71561
0	0.0055556	0.71533
0.00096993	0.0069444	0.71447
0.00096993	0.0097222	0.71419
0.00096993	0.011111	0.71333
0.00096993	0.018056	0.71304
0.0019399	0.018056	0.7128
0.0029098	0.019444	0.71218
0.0048497	0.019444	0.7119
0.0058196	0.020833	0.71104
0.0067895	0.020833	0.71075
0.0067895	0.022222	0.71022
0.0067895	0.027778	0.70989
0.0067895	0.029167	0.70968

modelDiscriminationPlot(eadModel, EADData(TestInd, :), ModelLevel=ModelLevel, SegmentBy="Marriage")


## Input Arguments

## eadModel - Exposure at default model

Regression object | Tobit object | Beta object
Exposure at default model, specified as a previously created Regression, Tobit, or Beta object using fitEADModel.

Data Types: object
data - Data
table
Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable names and data types must be consistent with the underlying model.

Data Types: table

## Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

```
Example: [DiscMeasure,DiscData] =
modelDiscrimination(eadModel,data(TestInd,:),DataID='Testing',DiscretizeBy='m
edian')
```


## DataID - Data set identifier

" " (default) | character vector | string
Data set identifier, specified as DataID and a character vector or string. The DataID is included in the output for reporting purposes.

Data Types: char | string
DiscretizeBy - Discretization method for EAD data at defined ModelLevel
'mean ' (default)|character vector with value 'mean' or 'median' | string with value "mean" or "median"

Discretization method for EAD data at the defined ModelLevel, specified as DiscretizeBy and a character vector or string.

- 'mean' - Discretized response is 1 if observed EAD is greater than or equal to the mean EAD, 0 otherwise.
- 'median' - Discretized response is 1 if observed EAD is greater than or equal to the median EAD, 0 otherwise.

Data Types: char | string

## SegmentBy - Name of column in data input used to segment data set <br> " " (default) | character vector | string

Name of a column in the data input, not necessarily a model variable, to be used to segment the data set, specified as SegmentBy and a character vector or string. One AUROC is reported for each segment, and the corresponding ROC data for each segment is returned in the optional output.

Data Types: char|string
ShowDetails - Indicates if output includes columns showing segment value and segment count
false (default) | logical
Indicates if the output includes columns showing segment value and segment count, specified as the comma-separated pair consisting of 'ShowDetails' and a scalar logical.

## Data Types: logical

## ModelLevel - Model level

"ead" (default) | character vector with value 'ead', 'conversionMeasure', or
' conversionTransform' | string with value "ead", "conversionMeasure", or
"conversionTransform"
Model level, specified as ModelLevel and a character vector or string.

Note Regression models support all three model levels, but a Tobit or Beta model supports only a ModelLevel for "ead" and "conversionMeasure".

Data Types: char | string

## ReferenceEAD - EAD values predicted for data by reference model

[] (default) | numeric vector

EAD values predicted for data by the reference model, specified as ReferenceEAD and a NumRows-by-1 numeric vector. The modelDiscrimination output information is reported for both the eadModel object and the reference model.
Data Types: double

## ReferenceID - Identifier for the reference model <br> 'Reference' (default) | character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string. 'ReferenceID' is used in the modelDiscrimination output for reporting purposes.
Data Types: char \| string

## Output Arguments

## DiscMeasure - AUROC information for each model and each segment

table
AUROC information for each model and each segment, returned as a table. DiscMeasure has a single column named 'AUROC' and the number of rows depends on the number of segments and whether you use a ReferenceID for a reference model. The row names of DiscMeasure report the model IDs, segment, and data ID. If the optional ShowDetails name-value argument is true, the DiscMeasure output displays Segment and SegmentCount columns.

Note If you do not specify SegmentBy and use ShowDetails to request the segment details, the two columns are added and show the Segment column as "all_data" and the sample size (minus $\underline{\text { missing values) for the SegmentCount column. }}$

## DiscData - ROC data for each model and each segment

table
ROC data for each model and each segment, returned as a table. There are three columns for the ROC data, with column names ' X ', ' Y ', and ' T ', where the first two are the X and Y coordinates of the ROC curve, and T contains the corresponding thresholds. For more information, see "Model Discrimination" on page 6-259 or perfcurve.

If you use SegmentBy, the function stacks the ROC data for all segments and DiscData has a column with the segmentation values to indicate where each segment starts and ends.

If reference model data is given, the DiscData outputs for the main and reference models are stacked, with an extra column 'ModelID' indicating where each model starts and ends.

## More About

## Model Discrimination

Model discrimination measures the risk ranking.
The modelDiscrimination function computes the area under the receiver operator characteristic (AUROC) curve, sometimes called simply the area under the curve (AUC). This metric is between 0 and 1 and higher values indicate better discrimination.

To compute the AUROC, you need a numeric prediction and a binary response. For EAD models, the predicted EAD is used directly as the prediction. However, the observed EAD must be discretized into a binary variable. By default, observed EAD values greater than or equal to the mean observed EAD are assigned a value of 1 , and values below the mean are assigned a value of 0 . This discretized response is interpreted as "high EAD" vs. "low EAD." Therefore, the modelDiscrimination function measures how well the predicted EAD separates the "high EAD" vs. the "low EAD" observations. You can change the level to compute the model discrimination with the ModelLevel name-value pair argument and the discretization criterion with the DiscretizeBy name-value pair argument.

To plot the receiver operator characteristic (ROC) curve, use the modelDiscriminationPlot function. However, if you need the ROC curve data, use the optional DiscData output argument from the modelDiscrimination function.

The ROC curve is a parametric curve that plots the proportion of

- High EAD cases with predicted EAD greater than or equal to a parameter $t$, or true positive rate (TPR)
- Low EAD cases with predicted EAD greater than or equal to the same parameter $t$, or false positive rate (FPR)

The parameter $t$ sweeps through all the observed predicted EAD values for the given data. The DiscData optional output contains the TPR in the ' $X$ ' column, the FPR in the ' $Y$ ' column, and the corresponding parameters $t$ in the ' $T$ ' column. For more information about ROC curves, see "ROC Curve and Performance Metrics".

## Version History

## Introduced in R2021b

## R2022b: Support for Beta model

Behavior changed in R2022b
The eadModel input supports an option for a Beta model object that you can create using fitEADModel.

## R2022a: Additional option for ShowDetails

Behavior changed in R2022a
There is an additional name-value pair for ShowDetails to indicate if the DiscMeasure output includes columns for Segment value and the SegmentCount.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications. SAS Institute, 2014.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

## See Also

Regression | Tobit|fitEADModel|predict|modelDiscriminationPlot | modelCalibration|modelCalibrationPlot

Topics
"Compare Results for Regression and Tobit EAD Models" on page 4-151
"Overview of Exposure at Default Models" on page 1-34

## modelDiscrimination

Compute AUROC and ROC data

## Syntax

DiscMeasure = modelDiscrimination(lgdModel,data)
[DiscMeasure,DiscData] = modelDiscrimination( $\qquad$ ,Name, Value)

## Description

DiscMeasure = modelDiscrimination(lgdModel,data) computes the area under the receiver operating characteristic curve (AUROC). modelDiscrimination supports segmentation and comparison against a reference model and also alternative methods to discretize the LGD response into a binary variable.
[DiscMeasure,DiscData] = modelDiscrimination( $\qquad$ ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.

## Examples

## Compute AUROC and ROC Using a Regression LGD Model

This example shows how to use fitLGDModel to fit data with a Regression model and then use modelDiscrimination to compute AUROC and ROC.

## Load Data

Load the loss given default data.

load LGDData.mat head(data)			
LTV	Age	Type	LGD
0.89101	0.39716	residential	0.032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0.025688
0.92005	0.50253	investment	0.063182

## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
```

```
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Create a Regression LGD Model

Use fitLGDModel to create a Regression model using training data. You can also use fitLGDModel to create a Tobit model by changing the lgdModel input argument to 'Tobit '.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'Regression');
disp(lgdModel)
Regression with properties:
 ResponseTransform: "logit"
 BoundaryTolerance: 1.0000e-05
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.
disp(lgdModel.UnderlyingModel)

```
Compact linear regression model:
 LGD_logit ~ 1 + LTV + Age + Type
Estimated Coefficients:
 Estimate SE tStat pValue
\begin{tabular}{lrrrr}
(Intercept) & -4.7549 & 0.36041 & -13.193 & \(3.0997 e-38\) \\
LTV & 2.8565 & 0.41777 & 6.8377 & \(1.0531 \mathrm{e}-11\) \\
Age & -1.5397 & 0.085716 & -17.963 & \(3.3172 \mathrm{e}-67\) \\
Type_investment & 1.4358 & 0.2475 & 5.8012 & \(7.587 \mathrm{e}-09\)
\end{tabular}
Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value = 2.42e-104
```


## Compute AUROC and ROC Data

Use modelDiscrimination to compute the AUROC and ROC for the test data set.

```
[DiscMeasure,DiscData] = modelDiscrimination(lgdModel,data(TestInd,:),'ShowDetails',true)
DiscMeasure=1\times3 table
 AUROC Segment SegmentCount
 0.67897
 "all_data"
 1 3 9 4
DiscData=1395*3 table
 X Y
 T
```

0	0	0.87604	
0	0.0029326	0.87604	
0	0.0058651	0.7515	
0.00094967	0.0058651	0.44074	
0.0018993	0.0058651	0.43569	
0.0018993	0.0087977	0.40058	
0.002849		0.0087977	0.31703
0.002849	0.01173	0.30375	
0.002849		0.014663	0.28789
0.002849		0.017595	0.27996
0.0037987		0.017595	0.27026
0.0047483		0.017595	0.26868
0.005698	0.017595	0.26854	
0.005698	0.020528	0.26682	
0.0066477	0.020528	0.26668	
0.0066477	0.02346	0.24923	

You can visualize the ROC data using modelDiscriminationPlot.
modelDiscriminationPlot(lgdModel, data(TestInd,:))


## Compute AUROC and ROC Using Tobit LGD Model

This example shows how to use fitLGDModel to fit data with a Tobit model and then use modelDiscrimination to compute AUROC and ROC.

## Load Data

Load the loss given default data.


## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Create a Tobit LGD Model

Use fitLGDModel to create a Tobit model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'tobit');
disp(lgdModel)
 Tobit with properties:
 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.

```
disp(lgdModel.UnderlyingModel)
```

Tobit regression model:
$\operatorname{LGD}=\max \left(0, \min \left(Y^{*}, 1\right)\right)$


## Compute AUROC and ROC Data

Use modelDiscrimination to compute the AUROC and ROC for the test data set.

```
DiscMeasure = modelDiscrimination(lgdModel,data(TestInd,:),'ShowDetails',true,'SegmentBy',"Type"
DiscMeasure=2\times3 table
\begin{tabular}{cccc}
AUROC & Segment & & SegmentCount \\
& & & \\
\begin{tabular}{lll}
0.70101
\end{tabular} & "residential" & & 1152 \\
0.73252 & "investment" & & 242
\end{tabular}
```

You can visualize the ROC using modelDiscriminationPlot. modelDiscriminationPlot(lgdModel,data(TestInd,:),'SegmentBy',"Type",'DiscretizeBy',"median")


## Compute AUROC and ROC Using Beta LGD Model

This example shows how to use fitLGDModel to fit data with a Beta model and then use modelDiscrimination to compute AUROC and ROC.

## Load Data

Load the loss given default data.
load LGDData.mat head(data)

LTV	Age	Type	LGD
0.89101	0.39716	residential	0.032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0.025688
0.92005	0.50253	investment	0.063182

## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Create a Beta LGD Model

Use fitLGDModel to create a risk_ug\#object_model_beta_lgd model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'Beta');
disp(lgdModel)
 Beta with properties:
 BoundaryTolerance: 1.0000e-05
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.

```
disp(lgdModel.UnderlyingModel)
Beta regression model:
 logit(LGD) ~ 1 mu + LTV mu + Age mu + Type mu
 log(LGD) ~ 1_phi + LTV_phi + Age_phi + Type_phi
Estimated coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -1.3772 & 0.13201 & -10.433 & 0 \\
\hline 0.60269 & 0.15087 & 3.9947 & 6.7023e-05 \\
\hline -0.47464 & 0.040264 & -11.788 & 0 \\
\hline 0.45372 & 0.085143 & 5.3289 & 1.094e-07 \\
\hline -0.16337 & 0.12591 & -1.2975 & 0.19462 \\
\hline 0.055892 & 0.14719 & 0.37973 & 0.70419 \\
\hline 0.22887 & 0.040335 & 5.6743 & 1.5863e-08 \\
\hline -0.14102 & 0.078155 & -1.8044 & 0.071311 \\
\hline
\end{tabular}
```

Number of observations: 2093
Log-likelihood: -5291.04

## Compute AUROC and ROC Data

Use modelDiscrimination to compute the AUROC and ROC for the test data set.

```
DiscMeasure = modelDiscrimination(lgdModel,data(TestInd,:),'ShowDetails',true,'SegmentBy',"Type"
DiscMeasure=2\times3 table
AUROC Segment SegmentCount
```

```
Beta, Type=residential
Beta, Type=investment
```

0.70031
0.73037
"residential"
1152

You can visualize the ROC using modelDiscriminationPlot.


## Input Arguments

## lgdModel - Loss given default model

Regression object | Tobit object | Beta object
Loss given default model, specified as a previously created Regression, Tobit, or Beta object using fitLGDModel.
Data Types: object

## data - Data

table
Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable names and data types must be consistent with the underlying model.
Data Types: table

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [DiscMeasure,DiscData] =
modelDiscrimination(lgdModel,data(TestInd,:),'DataID','Testing','DiscretizeBy ','median')

## DataID - Data set identifier

" " (default) | character vector | string
Data set identifier, specified as the comma-separated pair consisting of 'DataID ' and a character vector or string. The DataID is included in the output for reporting purposes.
Data Types: char|string

## DiscretizeBy - Discretization method for LGD data

'mean' (default)| character vector with value 'mean', 'median', 'positive', or 'total'|string with value "mean", "median", "positive", or "total"

Discretization method for LGD data, specified as the comma-separated pair consisting of 'DiscretizeBy' and a character vector or string.

- 'mean' - Discretized response is 1 if observed LGD is greater than or equal to the mean LGD, 0 otherwise.
- 'median ' - Discretized response is 1 if observed LGD is greater than or equal to the median LGD, 0 otherwise.
- 'positive' - Discretized response is 1 if observed LGD is positive, 0 otherwise (full recovery).
- 'total' - Discretized response is 1 if observed LGD is greater than or equal to 1 (total loss), 0 otherwise.

Data Types: char | string

## SegmentBy - Name of column in data input used to segment data set <br> " " (default) | character vector | string

Name of a column in the data input, not necessarily a model variable, to be used to segment the data set, specified as the comma-separated pair consisting of 'SegmentBy' and a character vector or string. One AUROC is reported for each segment, and the corresponding ROC data for each segment is returned in the optional output.
Data Types: char | string

## ShowDetails - Indicates if output includes columns showing segment value and segment count <br> false (default) | logical

Indicates if the output includes columns showing segment value and segment count, specified as the comma-separated pair consisting of 'ShowDetails' and a scalar logical.
Data Types: logical

## ReferenceLGD - LGD values predicted for data by reference model

## [] (default) | numeric vector

LGD values predicted for data by the reference model, specified as the comma-separated pair consisting of 'ReferenceLGD' and a NumRows-by-1 numeric vector. The modelDiscrimination output information is reported for both the lgdModel object and the reference model.

Data Types: double

## ReferenceID - Identifier for the reference model

'Reference' (default) | character vector | string
Identifier for the reference model, specified as the comma-separated pair consisting of 'ReferenceID ' and a character vector or string. 'ReferenceID' is used in the modelDiscrimination output for reporting purposes.

Data Types: char | string

## Output Arguments

## DiscMeasure - AUROC information for each model and each segment <br> table

AUROC information for each model and each segment, returned as a table. DiscMeasure has a single column named 'AUROC' and the number of rows depends on the number of segments and whether you use a ReferenceID for a reference model. The row names of DiscMeasure report the model IDs, segment, and data ID. If the optional ShowDetails name-value argument is true, the DiscMeasure output displays Segment and SegmentCount columns.

Note If you do not specify SegmentBy and use ShowDetails to request the segment details, the two columns are added and show the Segment column as "all_data" and the sample size (minus missing values) for the SegmentCount column.

## DiscData - ROC data for each model and each segment table

ROC data for each model and each segment, returned as a table. There are three columns for the ROC data, with column names ' X ', ' Y ', and ' T ', where the first two are the X and Y coordinates of the ROC curve, and T contains the corresponding thresholds. For more information, see "Model Discrimination" on page 6-271 or perfcurve.

If you use SegmentBy, the function stacks the ROC data for all segments and DiscData has a column with the segmentation values to indicate where each segment starts and ends.

If reference model data is given, the DiscData outputs for the main and reference models are stacked, with an extra column 'ModelID ' indicating where each model starts and ends.

## More About

## Model Discrimination

Model discrimination measures the risk ranking.

The modelDiscrimination function computes the area under the receiver operator characteristic (AUROC) curve, sometimes called simply the area under the curve (AUC). This metric is between 0 and 1 and higher values indicate better discrimination.

To compute the AUROC, you need a numeric prediction and a binary response. For loss given default (LGD) models, the predicted LGD is used directly as the prediction. However, the observed LGD must be discretized into a binary variable. By default, observed LGD values greater than or equal to the mean observed LGD are assigned a value of 1 , and values below the mean are assigned a value of 0 . This discretized response is interpreted as "high LGD" vs. "low LGD." Therefore, the modelDiscrimination function measures how well the predicted LGD separates the "high LGD" vs. the "low LGD" observations. You can change the discretization criterion with the DiscretizeBy name-value pair argument.

To plot the receiver operator characteristic (ROC) curve, use the modelDiscriminationPlot function. However, if the ROC curve data is needed, use the optional DiscData output argument from the modelDiscrimination function.

The ROC curve is a parametric curve that plots the proportion of

- High LGD cases with predicted LGD greater than or equal to a parameter $t$, or true positive rate (TPR)
- Low LGD cases with predicted LGD greater than or equal to the same parameter $t$, or false positive rate (FPR)

The parameter $t$ sweeps through all the observed predicted LGD values for the given data. The DiscData optional output contains the TPR in the ' $X$ ' column, the FPR in the ' $Y$ ' column, and the corresponding parameters $t$ in the ' $T$ ' column. For more information about ROC curves, see "ROC Curve and Performance Metrics".

## Version History

Introduced in R2021a

## R2022b: Support for Beta model

Behavior changed in R2022b
The lgdModel input supports an option for a Beta model object that you can create using fitLGDModel.

## R2022a: Additional option for ShowDetails

Behavior changed in R2022a
There is an additional name-value pair for ShowDetails to indicate if the DiscMeasure output includes columns for Segment value and the SegmentCount.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

## See Also

Tobit| Regression|modelCalibration | modelCalibartionPlot| modelDiscriminationPlot| predict|fitLGDModel

## Topics

"Model Loss Given Default" on page 4-90
"Basic Loss Given Default Model Validation" on page 4-131
"Compare Tobit LGD Model to Benchmark Model" on page 4-133
"Compare Loss Given Default Models Using Cross-Validation" on page 4-140
"Overview of Loss Given Default Models" on page 1-31

## modelDiscriminationPlot

Plot ROC curve

## Syntax

modelDiscriminationPlot(pdModel, data)
modelDiscriminationPlot( ,Name, Value)
h = modelDiscriminationPlot(ax, $\qquad$ ,Name, Value)

## Description

modelDiscriminationPlot(pdModel, data) plots the receiver operating characteristic curve (ROC). modelDiscriminationPlot supports segmentation and comparison against a reference model.
modelDiscriminationPlot( __ ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.
h = modelDiscriminationPlot(ax, $\qquad$ ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax and returns the figure handle h .

## Examples

## Plot ROC Curve

This example shows how to use modelDiscriminationPlot to plot the ROC curve.

## Load Data

Load the credit portfolio data.

ID	ScoreGroup	YOB	Default	Year
1	Low Risk	1	0	1997
1	Low Risk	2	0	1998
1	Low Risk	3	0	1999
1	Low Risk	4	0	2000
1	Low Risk	5	0	2001
1	Low Risk	6	0	2002
1	Low Risk	7	0	2003
1	Low Risk	8	0	2004
disp(head(dataMacro))				
Year	GDP	rket		


1997	2.72	7.61
1998	3.57	26.24
1999	2.86	18.1
2000	2.43	3.19
2001	1.26	-10.51
2002	-0.59	-22.95
2003	0.63	2.78
2004	1.85	9.48

Join the two data components into a single data set.

ID	ScoreGroup	YOB	Default	Year	GDP	Market
1	Low Risk	1	0	1997	2.72	7.61
1	Low Risk	2	0	1998	3.57	26.24
1	Low Risk	3	0	1999	2.86	18.1
1	Low Risk	4	0	2000	2.43	3.19
1	Low Risk	5	0	2001	1.26	-10.51
1	Low Risk	6	0	2002	-0.59	-22.95
1	Low Risk	7	0	2003	0.63	2.78
1	Low Risk	8	0	2004	1.85	9.48

## Partition Data

Separate the data into training and test partitions.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % For reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```


## Create Logistic Lifetime PD Model

Use fitLifetimePDModel to create a Logistic model using the training data.

```
pdModel = fitLifetimePDModel(data(TrainDataInd,:),'logistic',...
 'ModelID','Example',...
 'Description','Lifetime PD model using RetailCreditPanelData.',...
 'IDVar','ID',...
 'AgeVar','YOB',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP' 'Market'},...
 'ResponseVar','Default');
disp(pdModel)
```

    Logistic with properties:
    ```
 ModelID: "Example"
 Description: "Lifetime PD model using RetailCreditPanelData."
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"
disp(pdModel.UnderlyingModel)
Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -2.7422 & 0.10136 & -27.054 & 3.408e-161 \\
\hline -0.68968 & 0.037286 & -18.497 & \(2.1894 \mathrm{e}-76\) \\
\hline -1.2587 & 0.045451 & -27.693 & 8.4736e-169 \\
\hline -0.30894 & 0.013587 & -22.738 & \(1.8738 \mathrm{e}-114\) \\
\hline -0.11111 & 0.039673 & -2.8006 & 0.0051008 \\
\hline -0.0083659 & 0.0028358 & -2.9502 & 0.0031761 \\
\hline
\end{tabular}
```

388097 observations, 388091 error degrees of freedom Dispersion: 1 Chi^2-statistic vs. constant model: 1.85e+03, p-value $=0$

## Visualize Model Discrimination

Use modelDiscriminationPlot to plot the ROC for the test data.
modelDiscriminationPlot(pdModel, data(TestDataInd,:))


## Input Arguments

## pdModel - Probability of default model

Logistic object | Probit object | Cox object \| customLifetimePDModel object
Probability of default model, specified as a Logistic, Probit, or Cox object previously created using fitLifetimePDModel. Alternatively, you can create a custom probability of default model using customLifetimePDModel.

Note The 'ModelID' property of the pdModel object is used as the identifier or tag for pdModel.

Data Types: object
data - Data
table
Data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime predictions. The predictor names and data types must be consistent with the underlying model.

Data Types: table
ax - Valid axis object
object
(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be created in the axes specified by the optional ax argument instead of in the current axes (gca). The optional argument ax must precede any of the input argument combinations.

## Data Types: object

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: modelDiscriminationPlot(pdModel,data(Ind,:),'DataID',"DataSetChoice")

## DataID - Data set identifier

" " (default) | character vector | string
Data set identifier, specified as the comma-separated pair consisting of 'DataID ' and a character vector or string. The DataID is included in the plot title for reporting purposes.
Data Types: char | string

## SegmentBy - Name of column in data input used to segment data set

" " (default) | character vector | string
Name of a column in the data input, not necessarily a model variable, to be used to segment the data set, specified as the comma-separated pair consisting of 'SegmentBy' and a character vector or string. modelDiscriminationPlot plots one ROC for each segment.
Data Types: char | string

## ReferencePD - Conditional PD values predicted for data by reference model

[ ] (default) | numeric vector
Conditional PD values predicted for data by the reference model, specified as the comma-separated pair consisting of 'ReferencePD' and a NumRows-by-1 numeric vector. The ROC curve output information is plotted for both the pdModel object and the reference model.
Data Types: double

## ReferenceID - Identifier for reference model <br> 'Reference ' (default) | character vector | string

Identifier for the reference model, specified as the comma-separated pair consisting of 'ReferenceID ' and a character vector or string. 'ReferenceID' is used in the plot for reporting purposes.
Data Types: char|string

## Output Arguments

h - Figure handle
handle object
Figure handle for the line objects, returned as handle object.

## More About

## Model Discrimination

Model discrimination measures the risk ranking.
Higher-risk loans should get higher predicted probability of default (PD) than lower-risk loans. The modelDiscrimination function computes the area under the receiver operator characteristic curve (AUROC), sometimes called simply the area under the curve (AUC). This metric is between 0 and 1 and higher values indicate better discrimination.

The receiver operator characteristic (ROC) curve is a parametric curve that plots the proportion of

- Defaulters with PD higher than or equal to a reference PD value $p$
- Nondefaulters with PD higher than or equal to the same reference PD value $p$

The reference PD value $p$ parametizes the curve, and the software sweeps through the unique predicted PD values observed in a data set. The proportion of actual defaulters are assigned a PD higher than or equal to $p$ is the true positive rate. The proportion of actual nondefaulters that are assigned a PD higher than or equal to $p$ is the false positive rate." For more information about ROC curves, see "ROC Curve and Performance Metrics".

The AUROC is reported on the plot created by modelDiscriminationPlot. To get the AUROC metric programmatically, use modelDiscrimination.

## Version History

## Introduced in R2021a

## R2022b: Support for customLifetimePDModel model

The pdModel input supports an option for a customLifetimePDModel model object that you can create using customLifetimePDModel.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.

## See Also

predictLifetime|predict|modelDiscrimination|modelCalibration | modelCalibrationPlot|fitLifetimePDModel|Logistic| Probit|Cox| customLifetimePDModel

## Topics

"Basic Lifetime PD Model Validation" on page 4-129
"Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
"Compare Lifetime PD Models Using Cross-Validation" on page 4-121
"Expected Credit Loss Computation" on page 4-124
"Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
"Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 4-75
"Overview of Lifetime Probability of Default Models" on page 1-25

## modelDiscrimination

Compute AUROC and ROC data

## Syntax

DiscMeasure = modelDiscrimination(pdModel,data)
[DiscMeasure,DiscData] = modelDiscrimination( $\qquad$ ,Name, Value)

## Description

DiscMeasure = modelDiscrimination(pdModel, data) computes the area under the receiver operating characteristic curve (AUROC). modelDiscrimination supports segmentation and comparison against a reference model.
[DiscMeasure,DiscData] = modelDiscrimination( $\qquad$ ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.

## Examples

## Generate AUROC and ROC for Logistic Lifetime PD Model

This example shows how to use fitLifetimePDModel to fit data with a Logistic model and then generate the area under the receiver operating characteristic curve (AUROC) and ROC curve.

## Load Data

Load the credit portfolio data.


| 1999 | 2.86 | 18.1 |
| ---: | ---: | ---: |
| 2000 | 2.43 | 3.19 |
| 2001 | 1.26 | -10.51 |
| 2002 | -0.59 | -22.95 |
| 2003 | 0.63 | 2.78 |
| 2004 | 1.85 | 9.48 |

Join the two data components into a single data set.

| ID | ScoreGroup | YOB | Default | Year | GDP | Market |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Low Risk | 1 | 0 | 1997 | 2.72 | 7.61 |
| 1 | Low Risk | 2 | 0 | 1998 | 3.57 | 26.24 |
| 1 | Low Risk | 3 | 0 | 1999 | 2.86 | 18.1 |
| 1 | Low Risk | 4 | 0 | 2000 | 2.43 | 3.19 |
| 1 | Low Risk | 5 | 0 | 2001 | 1.26 | -10.51 |
| 1 | Low Risk | 6 | 0 | 2002 | -0.59 | -22.95 |
| 1 | Low Risk | 7 | 0 | 2003 | 0.63 | 2.78 |
| 1 | Low Risk | 8 | 0 | 2004 | 1.85 | 9.48 |

## Partition Data

Separate the data into training and test partitions.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```


## Create a Logistic Lifetime PD Model

Use fitLifetimePDModel to create a Logistic model.

```
pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Logistic",...
 'AgeVar','YOB',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},...
 'ResponseVar','Default');
disp(pdModel)
```

```
Logistic with properties:
 ModelID: "Logistic"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
```

```
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
ResponseVar: "Default"
```

Display the underlying model.

```
pdModel.UnderlyingModel
ans =
Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -2.7422 & 0.10136 & -27.054 & 3.408e-161 \\
\hline -0.68968 & 0.037286 & -18.497 & \(2.1894 \mathrm{e}-76\) \\
\hline -1.2587 & 0.045451 & -27.693 & 8.4736e-169 \\
\hline -0.30894 & 0.013587 & -22.738 & 1.8738e-114 \\
\hline -0.11111 & 0.039673 & -2.8006 & 0.0051008 \\
\hline -0.0083659 & 0.0028358 & -2.9502 & 0.0031761 \\
\hline
\end{tabular}
388097 observations, 388091 error degrees of freedom Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0
pdModel.UnderlyingModel.Coefficients
ans \(=6 \times 4\) table
\begin{tabular}{rrrrr}
\multicolumn{1}{c}{ Estimate } & \multicolumn{1}{c}{ SE } & & \multicolumn{1}{c}{ tStat } &
\end{tabular} \begin{tabular}{l}
pValue \\
\\
\\
\\
\\
-2.7422
\end{tabular}
```


## Model Discrimination to Generate AUROC and ROC

Model "discrimination" measures how effectively a model ranks customers by risk. You can use the AUROC and ROC outputs to determine whether customers with higher predicted PDs actually have higher risk in the observed data.

```
DataSetChoice = Training * ;
if DataSetChoice=="Training"
 Ind = TrainDataInd;
 else
 Ind = TestDataInd;
 end
```

DiscMeasure = modelDiscrimination(pdModel,data(TrainDataInd,:),'ShowDetails',true,'DataID',DataS
disp(DiscMeasure)

|  | AUROC | Segment |  | SegmentCount |
| :---: | :---: | :---: | :---: | :---: |
| Logistic, Training | 0.69377 |  | "all_data" |  |
| $3.881 e+05$ |  |  |  |  |

Visualize the ROC for the Logistic model using modelDiscriminationPlot. modelDiscriminationPlot(pdModel,data(TrainDataInd,:));


Data can be segmented to get the AUROC per segment and the corresponding ROC data.
SegmentVar $=\mathrm{YOB} \quad \vee$;
DiscMeasure = modelDiscrimination(pdModel,data(Ind,:),'ShowDetails',true,'SegmentBy',SegmentVar, disp(DiscMeasure)

|  | AUROC | Segment | SegmentCount |
| :---: | :---: | :---: | :---: |
| Logistic, YOB=1, Training | 0.63989 | 1 | 58092 |
| Logistic, YOB=2, Training | 0.64709 | 2 | 56723 |
| Logistic, YOB=3, Training | 0.6534 | 3 | 55524 |
| Logistic, YOB=4, Training | 0.6494 | 4 | 54650 |
| Logistic, YOB=5, Training | 0.63479 | 5 | 53770 |
| Logistic, YOB=6, Training | 0.66174 | 6 | 53186 |
| Logistic, YOB=7, Training | 0.64328 | 7 | 36959 |
| Logistic, YOB=8, Training | 0.63424 | 8 | 19193 |

Visualize the ROC segmented by YOB, ScoreGroup, or Year using modelDiscriminationPlot.
modelDiscriminationPlot(pdModel,data(Ind,:),'SegmentBy',SegmentVar,'DataID',DataSetChoice);


## Input Arguments

## pdModel - Probability of default model

Logistic object | Probit object | Cox object | customLifetimePDModel object
Probability of default model, specified as a Logistic, Probit, or Cox object previously created using fitLifetimePDModel. Alternatively, you can create a custom probability of default model using customLifetimePDModel.

Note The 'ModelID ' property of the pdModel object is used as the identifier or tag for pdModel.

Data Types: object
data - Data
table
Data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime predictions. The predictor names and data types must be consistent with the underlying model.
Data Types: table

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [PerfMeasure,PerfData] =
modelDiscrimination(pdModel,data(Ind,:),'DataID',"DataSetChoice")

## DataID - Data set identifier

" " (default) | character vector | string
Data set identifier, specified as the comma-separated pair consisting of 'DataID ' and a character vector or string.
Data Types: char | string

## SegmentBy - Name of column in data input used to segment data set <br> " " (default) | character vector | string

Name of a column in the data input, not necessarily a model variable, to be used to segment the data set, specified as the comma-separated pair consisting of 'SegmentBy' and a character vector or string.

One AUROC value is reported for each segment and the corresponding ROC data for each segment is returned in the PerfData optional output.

Data Types: char | string

## ShowDetails - Indicates if output includes columns showing segment value and segment count <br> false (default) | logical

Indicates if the output includes columns showing segment value and segment count, specified as the comma-separated pair consisting of 'ShowDetails' and a scalar logical.

## Data Types: logical

## ReferencePD - Conditional PD values predicted for data by reference model <br> [ ] (default) | numeric vector

Conditional PD values predicted for data by the reference model, specified as the comma-separated pair consisting of 'ReferencePD' and a NumRows-by-1 numeric vector. The modelDiscrimination output information is reported for both the pdModel object and the reference model.

## Data Types: double

## ReferenceID - Identifier for reference model

'Reference' (default) | character vector | string
Identifier for the reference model, specified as the comma-separated pair consisting of 'ReferenceID' and a character vector or string. 'ReferenceID' is used in the modelDiscrimination output for reporting purposes.
Data Types: char | string

## Output Arguments

## DiscMeasure - AUROC information for each model and each segment table

AUROC information for each model and each segment., returned as a table. DiscMeasure has a single column named 'AUROC' and the number of rows depends on the number of segments and whether you use a ReferenceID for a reference model and ReferencePD for reference data. The row names of DiscMeasure report the model IDs, segment, and data ID. If the optional ShowDetails name-value argument is true, the DiscMeasure output displays Segment and SegmentCount columns.

Note If you do not specify SegmentBy and use ShowDetails to request the segment details, the two columns are added and show the Segment column as "all_data" and the sample size (minus missing values) for the SegmentCount column.

## DiscData - ROC data for each model and each segment <br> table

ROC data for each model and each segment, returned as a table. There are three columns for the ROC data, with column names ' X ', ' Y ', and ' T ', where the first two are the X and Y coordinates of the ROC curve, and T contains the corresponding thresholds.

If you use SegmentBy, the function stacks the ROC data for all segments and DiscData has a column with the segmentation values to indicate where each segment starts and ends.

If reference model data is given using ReferenceID and ReferencePD, the DiscData outputs for the main and reference models are stacked, with an extra column 'ModelID' indicating where each model starts and ends.

## More About

## Model Discrimination

Model discrimination measures the risk ranking.
Higher-risk loans should get higher predicted probability of default (PD) than lower-risk loans. The modelDiscrimination function computes the Area Under the Receiver Operator Characteristic curve (AUROC), sometimes called simply the Area Under the Curve (AUC). This metric is between 0 and 1 and higher values indicate better discrimination.

For more information about the Receiver Operator Characteristic (ROC) curve, see "Model Discrimination" on page 6-279 and "ROC Curve and Performance Metrics".

## Version History

## Introduced in R2020b

## R2022b: Support for customLifetimePDModel model

The pdModel input supports an option for a customLifetimePDModel model object that you can create using customLifetimePDModel.

## R2022a: Additional option for ShowDetails

There is an additional name-value pair for ShowDetails to indicate if the DiscMeasure output includes columns for Segment value and the SegmentCount.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.

## See Also

predictLifetime | predict | modelDiscriminationPlot | modelCalibration | modelCalibrationPlot|fitLifetimePDModel|Logistic|Probit|Cox| customLifetimePDModel

## Topics

"Basic Lifetime PD Model Validation" on page 4-129
"Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
"Compare Lifetime PD Models Using Cross-Validation" on page 4-121
"Expected Credit Loss Computation" on page 4-124
"Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
"Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 4-75 "Overview of Lifetime Probability of Default Models" on page 1-25

## modelDiscriminationPlot

Plot ROC curve

## Syntax

modelDiscriminationPlot(eadModel,data)
modelDiscriminationPlot( ,Name=Value)
$\mathrm{h}=$ modelDiscriminationPlot $(\mathrm{ax}$, $\qquad$ , Name=Value)

## Description

modelDiscriminationPlot (eadModel, data) generates the receiver operating characteristic (ROC) curve. modelDiscriminationPlot supports segmentation and comparison against a reference model.
modelDiscriminationPlot( $\qquad$ , Name=Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax.
h = modelDiscriminationPlot(ax, $\qquad$ ,Name=Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax and returns the figure handle $h$.

## Examples

## Plot ROC Using a Tobit EAD Model

This example shows how to use fitEADModel to create a Tobit model and then use modelDiscriminationPlot to plot the ROC.

## Load EAD Data

Load the EAD data.

```
load EADData.mat
head(EADData)
```

| UtilizationRate | Age |  | Marriage |  | Limit |  | Drawn |
| ---: | :--- | :--- | :--- | :--- | :--- | ---: | :--- |

rng('default');
NumObs = height(EADData);

```
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Select Model Type

Select a model type for Tobit or Regression.
ModelType $=$ Tobit $\quad$;

## Select Conversion Measure

Select a conversion measure for the EAD response values.
ConversionMeasure $=$ LCF $\quad$;

## Create Tobit EAD Model

Use fitEADModel to create a Tobit model using the TrainingInd data.

```
eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age',
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);
```

    Tobit with properties:
        CensoringSide: "both"
            LeftLimit: 0
            RightLimit: 1
                ModelID: "Tobit"
            Description: ""
        UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
            PredictorVars: ["UtilizationRate" "Age" "Marriage"]
            ResponseVar: "EAD"
            LimitVar: "Limit"
            DrawnVar: "Drawn"
    ConversionMeasure: "lcf"
    Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the transformation.
disp(eadModel.UnderlyingModel);
Tobit regression model:
EAD lcf $=\max \left(0, \min \left(Y^{*}, 1\right)\right)$
Y* ~ 1 + UtilizationRate + Age + Marriage
Estimated coefficients:


> pValue
(Intercept)
UtilizationRate
Age
Marriage_not married
(Sigma)

$$
\begin{array}{r}
0.22467 \\
0.4714 \\
-0.0014209 \\
-0.010542 \\
0.3618
\end{array}
$$

0.03134
0.020722
0.00076326
0.01578
0.0050022
7.1689
9.7855e-13
22.749
-785e-13
$-1.8616$
0.062771
-0.66807
0.50415
72.33

0

Number of observations: 2627
Number of left-censored observations: 0
Number of uncensored observations: 2626
Number of right-censored observations: 1
Log-likelihood: -1057.9

## Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-value argument.
predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");

## Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.
ModelLevel $=$ ead ;
[DiscMeasurel,DiscDatal] = modelDiscrimination(eadModel,EADData(TestInd,:) ,ModelLevel=ModelLevel modelDiscriminationPlot (eadModel, EADData(TestInd, :) , ModelLevel=ModelLevel, SegmentBy="Marriage") ;


## Plot ROC Using a Beta EAD Model

This example shows how to use fitEADModel to create a Beta model and then use modelDiscriminationPlot to plot the ROC.

## Load EAD Data

Load the EAD data.
load EADData.mat
head(EADData)

UtilizationRate
$\qquad$

| 0.24359 | 25 |
| ---: | ---: |
| 0.96946 | 44 |
| 0 | 40 |
| 0.53242 | 38 |
| 0.2583 | 30 |
| 0.17039 | 54 |
| 0.18586 | 27 |
| 0.85372 | 42 |


| Age |
| :--- |
|  |
| 25 |
| 44 |
| 40 |
| 38 |
| 30 |
| 54 |
| 27 |
| 42 |

Marriage
not married
not married married
not married not married married
not married not married

Limit
$\qquad$
44776
$2.1405 \mathrm{e}+05$
$1.6581 \mathrm{e}+05$
$1.7375 \mathrm{e}+05$
26258
$1.7357 \mathrm{e}+05$
19590
$2.0712 \mathrm{e}+05$

Drawn
$\qquad$
10907
$2.0751 e+05$
92506 6782.5

29575
3641
$1.7682 \mathrm{e}+05$

EAD

44740
40678

1. $6567 \mathrm{e}+05$
1593.5
54.175
576.69
998.49
$1.6454 \mathrm{e}+05$
rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut', 0.4);
TrainingInd = training(c);
TestInd = test(c);

## Select Model Type

Select a model type for Beta.
ModelType $=$ Beta $\quad$;

## Select Conversion Measure

Select a conversion measure for the EAD response values.

```
ConversionMeasure \(=\) LCF \(\quad\);
```


## Create Beta EAD Model

Use fitEADModel to create a Beta model using the TrainingInd data.

```
eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age',
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);
```

```
Beta with properties:
 BoundaryTolerance: 1.0000e-07
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"
```

Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the transformation.

```
disp(eadModel.UnderlyingModel);
Beta regression model:
 logit(EAD_lcf) ~ 1_mu + UtilizationRate_mu + Age_mu + Marriage_mu
 log(EAD_l\overline{cf}) ~ 1_phi + UtilizationRate_phi + Age_phi + Marriage_phi
Estimated coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -0.65566 & 0.11484 & -5.7093 & 1.2616e-08 \\
\hline 1.7014 & 0.078094 & 21.787 & 0 \\
\hline -0.0055901 & 0.0027603 & -2.0252 & 0.042949 \\
\hline -0.012577 & 0.052098 & -0.24141 & 0.80926 \\
\hline -0.50131 & 0.094625 & -5.2979 & 1.2686e-07 \\
\hline 0.39731 & 0.066707 & 5.956 & 2.9303e-09 \\
\hline 0.001167 & 0.002 & -0 & 0.6144 \\
\hline
\end{tabular}
```


## $\begin{array}{lllll}\text { Marriage_not married_phi } & -0.013275 \quad 0.042627 & -0.31143 & 0.7555\end{array}$

Number of observations: 2627
Log-likelihood: -3140.21

## Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-value argument.
predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");

## Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.
ModelLevel $=$ ead $\quad$;
[DiscMeasure1,DiscDatal] = modelDiscrimination(eadModel, EADData(TestInd, :) ,ModelLevel=ModelLevel modelDiscriminationPlot (eadModel, EADData(TestInd, :) , ModelLevel=ModelLevel, SegmentBy="Marriage");


## Input Arguments

## eadModel - Exposure at model

Regression object | Tobit object | Beta object
Exposure at default model, specified as a previously created Regression, Tobit, or Beta object using fitEADModel.

Data Types: object
data - Data
table
Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable names and data types must be consistent with the underlying model.
Data Types: table

## ax - Valid axis object

object
(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be created in the axes specified by the optional ax argument instead of in the current axes (gca). The optional argument ax must precede any of the input argument combinations.
Data Types: object

## Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

```
Example:
modelDiscriminationPlot(eadModel,data(TestInd,:),DataID='Testing',DiscretizeB
y='median')
DataID - Data set identifier
"" (default)| character vector | string
```

Data set identifier, specified as DataID and a character vector or string. The DataID is included in the output for reporting purposes.
Data Types: char \| string

## DiscretizeBy - Discretization method for EAD data at defined ModelLevel

'mean' (default)|character vector with value 'mean' or 'median' | string with value "mean" or "median"

Discretization method for EAD data at the defined ModelLevel, specified as DiscretizeBy and a character vector or string.

- 'mean' - Discretized response is 1 if observed EAD is greater than or equal to the mean EAD, 0 otherwise.
- 'median ' - Discretized response is 1 if observed EAD is greater than or equal to the median EAD, 0 otherwise.


## Data Types: char | string

## SegmentBy - Name of column in data input used to segment data set

" " (default) | character vector | string
Name of a column in the data input, not necessarily a model variable, to be used to segment the data set, specified as SegmentBy and a character vector or string. One AUROC is reported for each segment, and the corresponding ROC data for each segment is returned in the optional output.
Data Types: char | string

## ModelLevel - Model level

"ead" (default) | character vector with value 'ead', 'conversionMeasure', or
'conversionTransform' | string with value "ead", "conversionMeasure", or
"conversionTransform"
Model level, specified as ModelLevel and a character vector or string.

Note Regression models support all three model levels, but a Tobit or Beta model supports model levels only for "ead" and "conversionMeasure".

## Data Types: char | string

## ReferenceEAD - EAD values predicted for data by reference model

[] (default) | numeric vector

EAD values predicted for data by the reference model, specified as ReferenceEAD and a NumRows-by-1 numeric vector. The ROC curve is plotted for both the eadModel object and the reference model.

Data Types: double
ReferenceID - Identifier for the reference model
'Reference' (default)| character vector | string
Identifier for the reference model, specified as ReferenceID and a character vector or string.
'ReferenceID' is used in the plot for reporting purposes.
Data Types: char|string

## Output Arguments

## h - Figure handle

handle object
Figure handle for the line objects, returned as handle object.

## More About

## Model Discrimination Plot

The modelDiscriminationPlot function plots the receiver operator characteristic (ROC) curve.
The modelDiscriminationPlot function also shows the area under the receiver operator characteristic (AUROC) curve, sometimes called simply the area under the curve (AUC). This metric is between 0 and 1 and higher values indicate better discrimination.

A numeric prediction and a binary response are needed to plot the ROC and compute the AUROC. For EAD models, the predicted EAD is used directly as the prediction. However, the observed EAD must be discretized into a binary variable. By default, observed EAD values greater than or equal to the mean observed EAD are assigned a value of 1, and values below the mean are assigned a value of 0 . This discretized response is interpreted as "high EAD" vs. "low EAD." The ROC curve and the AUROC curve measure how well the predicted EAD separates the "high EAD" vs. the "low EAD" observations. You can change the level to compute the model discrimination with the ModelLevel name-value pair argument and the discretization criterion with the DiscretizeBy name-value pair argument.

The ROC curve is a parametric curve that plots the proportion of

- High EAD cases with predicted EAD greater than or equal to a parameter $t$, or true positive rate (TPR)
- Low EAD cases with predicted EAD greater than or equal to the same parameter $t$, or false positive rate (FPR)

The parameter $t$ sweeps through all the observed predicted EAD values for the given data. If the AUROC value or the ROC curve data are needed programmatically, use the modelDiscrimination function. For more information about ROC curves, see "ROC Curve and Performance Metrics".

## Version History <br> Introduced in R2021b

## R2022b: Support for Beta model

Behavior changed in R2022b
The eadModel input supports an option for a Beta model object that you can create using fitEADModel.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications. SAS Institute, 2014.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

## See Also

Regression | Tobit|fitEADModel| predict |modelDiscrimination|modelCalibration | modelCalibrationPlot

## Topics

"Compare Results for Regression and Tobit EAD Models" on page 4-151
"Overview of Exposure at Default Models" on page 1-34

## modelDiscriminationPlot

Plot ROC curve

## Syntax

modelDiscriminationPlot(lgdModel,data)
modelDiscriminationPlot( ,Name, Value)
h = modelDiscriminationPlot(ax, $\qquad$ ,Name, Value)

## Description

modelDiscriminationPlot(lgdModel, data) generates the receiver operating characteristic (ROC) curve. modelDiscriminationPlot supports segmentation and comparison against a reference model.
modelDiscriminationPlot (__, Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.
h = modelDiscriminationPlot(ax, $\qquad$ ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax and returns the figure handle h .

## Examples

## Plot ROC Using Regression LGD Model

This example shows how to use fitLGDModel to fit data with a Regression model and then use modelDiscriminationPlot to plot the ROC.

## Load Data

Load the loss given default data.

| LTV | Age | Type | LGD |
| :---: | :---: | :---: | :---: |
| 0.89101 | 0.39716 | residential | 0.032659 |
| 0.70176 | 2.0939 | residential | 0.43564 |
| 0.72078 | 2.7948 | residential | 0.0064766 |
| 0.37013 | 1.237 | residential | 0.007947 |
| 0.36492 | 2.5818 | residential | 0 |
| 0.796 | 1.5957 | residential | 0.14572 |
| 0.60203 | 1.1599 | residential | 0.025688 |
| 0.92005 | 0.50253 | investment | 0.063182 |

## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Create a Regression LGD Model

Use fitLGDModel to create a Regression model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'regression');
disp(lgdModel)
 Regression with properties:
 ResponseTransform: "logit"
 BoundaryTolerance: 1.0000e-05
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.

```
disp(lgdModel.UnderlyingModel)
Compact linear regression model:
 LGD_logit ~ 1 + LTV + Age + Type
Estimated Coefficients:
\begin{tabular}{lll}
Estimate & SE \(\quad\) tStat \(\quad\) pValue \\
\hline
\end{tabular}
\begin{tabular}{lrrrr}
(Intercept) & -4.7549 & 0.36041 & -13.193 & \(3.0997 \mathrm{e}-38\) \\
LTV & 2.8565 & 0.41777 & 6.8377 & \(1.0531 \mathrm{e}-11\) \\
Age & -1.5397 & 0.085716 & -17.963 & \(3.3172 \mathrm{e}-67\) \\
Type_investment & 1.4358 & 0.2475 & 5.8012 & \(7.587 \mathrm{e}-09\)
\end{tabular}
Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value = 2.42e-104
```


## Plot ROC Data

Use modelDiscriminationPlot to plot the ROC for the test data set.
modelDiscriminationPlot(lgdModel,data(TestInd,:))


## Plot ROC Using Tobit LGD Model

This example shows how to use fitLGDModel to fit data with a Tobit model and then use modelDiscriminationPlot to plot the ROC.

## Load Data

Load the loss given default data.
load LGDData.mat head(data)

| LTV | Age | Type | LGD |
| :---: | :---: | :---: | :---: |
| 0.89101 | 0.39716 | residential | 0.032659 |
| 0.70176 | 2.0939 | residential | 0.43564 |
| 0.72078 | 2.7948 | residential | 0.0064766 |
| 0.37013 | 1.237 | residential | 0.007947 |
| 0.36492 | 2.5818 | residential | 0 |
| 0.796 | 1.5957 | residential | 0.14572 |
| 0.60203 | 1.1599 | residential | 0.025688 |
| 0.92005 | 0.50253 | investment | 0.063182 |

## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Create a Tobit LGD Model

Use fitLGDModel to create a Tobit model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'tobit');
disp(lgdModel)
Tobit with properties:
 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.

```
disp(lgdModel.UnderlyingModel)
```

Tobit regression model:
LGD $=\max \left(0, \min \left(Y^{*}, 1\right)\right)$
$Y^{*} \sim 1+$ LTV + Age + Type
Estimated coefficients:
Estimate SE tStat pValue

| (Intercept) | 0.058257 | 0.027265 | 2.1367 | 0.032737 |
| :--- | ---: | ---: | ---: | ---: |
| LTV | 0.20126 | 0.031354 | 6.4189 | $1.6932 \mathrm{e}-10$ |
| Age | -0.095407 | 0.0072653 | -13.132 | 0 |
| Type_investment | 0.10208 | 0.018058 | 5.6531 | $1.7915 \mathrm{e}-08$ |
| (Sigma) | 0.29288 | 0.0057036 | 51.35 | 0 |

Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1521
Number of right-censored observations: 25
Log-likelihood: -698.383

## Plot ROC Data

Use modelDiscriminationPlot to plot the ROC for the test data set.
modelDiscriminationPlot(lgdModel,data(TestInd,:),"SegmentBy","Type","DiscretizeBy","median")


## Plot ROC Using Beta LGD Model

This example shows how to use fitLGDModel to fit data with a Beta model and then use modelDiscriminationPlot to plot the ROC.

## Load Data

Load the loss given default data.
load LGDData.mat head(data)

| LTV | Age | Type | LGD |
| :---: | :---: | :---: | :---: |
| 0.89101 | 0.39716 | residential | 0.032659 |
| 0.70176 | 2.0939 | residential | 0.43564 |
| 0.72078 | 2.7948 | residential | 0.0064766 |
| 0.37013 | 1.237 | residential | 0.007947 |
| 0.36492 | 2.5818 | residential | 0 |
| 0.796 | 1.5957 | residential | 0.14572 |
| 0.60203 | 1.1599 | residential | 0.025688 |
| 0.92005 | 0.50253 | investment | 0.063182 |

## Partition Data

Separate the data into training and test partitions.
rng('default'); \% for reproducibility
NumObs = height(data);
$\mathrm{c}=$ cvpartition(NumObs,'HoldOut', 0.4);
TrainingInd = training(c);
TestInd = test(c);

## Create a Beta LGD Model

Use fitLGDModel to create a Beta model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'Beta');
disp(lgdModel)
Beta with properties:
 BoundaryTolerance: 1.0000e-05
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.

```
disp(lgdModel.UnderlyingModel)
```

Beta regression model:
logit(LGD) ~ 1_mu + LTV_mu + Age_mu + Type_mu
$\log ($ LGD $) ~ \sim ~ 1 \_p \bar{h} i+L T V \_$phi + Age_phi + Type_phi
Estimated coefficients:

| Estimate | SE |  | tStat |  |
| ---: | ---: | ---: | ---: | ---: | pValue

Number of observations: 2093
Log-likelihood: -5291.04

## Plot ROC Data

Use modelDiscriminationPlot to plot the ROC for the test data set.

```
modelDiscriminationPlot(lgdModel,data(TestInd,:),"SegmentBy","Type","DiscretizeBy","median")
```



## Input Arguments

## lgdModel - Loss given default model

Regression object | Tobit object | Beta object
Loss given default model, specified as a previously created Regression, Tobit, or Beta object using fitLGDModel.

Data Types: object
data - Data
table
Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable names and data types must be consistent with the underlying model.
Data Types: table

## ax - Valid axis object

object
(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be created in the axes specified by the optional ax argument instead of in the current axes (gca). The optional argument ax must precede any of the input argument combinations.
Data Types: object

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
modelDiscriminationPlot(lgdModel,data(TestInd,:),'DataID','Testing','Discreti zeBy','median')

## DataID - Data set identifier

" " (default) | character vector | string
Data set identifier, specified as the comma-separated pair consisting of 'DataID ' and a character vector or string. The DataID is included in the output for reporting purposes.
Data Types: char|string

## DiscretizeBy - Discretization method for LGD data

'mean' (default)| character vector with value 'mean', 'median', 'positive', or 'total'|string with value "mean", "median", "positive", or "total"

Discretization method for LGD data, specified as the comma-separated pair consisting of 'DiscretizeBy' and a character vector or string.

- 'mean' - Discretized response is 1 if observed LGD is greater than or equal to the mean LGD, 0 otherwise.
- 'median ' - Discretized response is 1 if observed LGD is greater than or equal to the median LGD, 0 otherwise.
- 'positive' - Discretized response is 1 if observed LGD is positive, 0 otherwise (full recovery).
- 'total' - Discretized response is 1 if observed LGD is greater than or equal to 1 (total loss), 0 otherwise.

Data Types: char | string

## SegmentBy - Name of column in data input used to segment data set <br> " " (default) | character vector | string

Name of a column in the data input, not necessarily a model variable, to be used to segment the data set, specified as the comma-separated pair consisting of 'SegmentBy' and a character vector or string. One AUROC is reported for each segment, and the corresponding ROC data for each segment is returned in the optional output.
Data Types: char | string

## ReferenceLGD - LGD values predicted for data by reference model

[ ] (default) | numeric vector
LGD values predicted for data by the reference model, specified as the comma-separated pair consisting of 'ReferenceLGD' and a NumRows-by-1 numeric vector. The ROC curve is plotted for both the lgdModel object and the reference model.
Data Types: double

## ReferenceID - Identifier for the reference model <br> 'Reference' (default)| character vector | string

Identifier for the reference model, specified as the comma-separated pair consisting of 'ReferenceID ' and a character vector or string. 'ReferenceID' is used in the plot for reporting purposes.

Data Types: char | string

## Output Arguments

## h - Figure handle

handle object
Figure handle for the line objects, returned as handle object.

## More About

## Model Discrimination Plot

The modelDiscriminationPlot function plots the receiver operator characteristic (ROC) curve.
The modelDiscriminationPlot function also shows the area under the receiver operator characteristic (AUROC) curve, sometimes called simply the area under the curve (AUC). This metric is between 0 and 1 and higher values indicate better discrimination.

A numeric prediction and a binary response are needed to plot the ROC and compute the AUROC. For LGD models, the predicted LGD is used directly as the prediction. However, the observed LGD must be discretized into a binary variable. By default, observed LGD values greater than or equal to the mean observed LGD are assigned a value of 1, and values below the mean are assigned a value of 0 . This discretized response is interpreted as "high LGD" vs. "low LGD." The ROC curve and the AUROC curve measure how well the predicted LGD separates the "high LGD" vs. the "low LGD" observations. The discretization criterion can be changed with the DiscretizeBy name-value pair argument for modelDiscriminationPlot.

The ROC curve is a parametric curve that plots the proportion of

- High LGD cases with predicted LGD greater than or equal to a parameter $t$, or true positive rate (TPR)
- Low LGD cases with predicted LGD greater than or equal to the same parameter $t$, or false positive rate (FPR)

The parameter $t$ sweeps through all the observed predicted LGD values for the given data. If the AUROC value or the ROC curve data are needed programmatically, use the modelDiscrimination function. For more information about ROC curves, see "ROC Curve and Performance Metrics".

## Version History

Introduced in R2021a

## R2022b: Support for Beta model

Behavior changed in R2022b

The lgdModel input supports an option for a Beta model object that you can create using fitLGDModel.

## R2022a: Support for reference LGD outside of [0,1] range

Behavior changed in R2022a
The Regression and Tobit LGD models support a reference LGD outside of the [0,1] range.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

## See Also

Tobit | Regression | modelCalibration | modelCalibartionPlot | modelDiscrimination | predict|fitLGDModel

## Topics

"Model Loss Given Default" on page 4-90
"Basic Loss Given Default Model Validation" on page 4-131
"Compare Tobit LGD Model to Benchmark Model" on page 4-133
"Compare Loss Given Default Models Using Cross-Validation" on page 4-140
"Overview of Loss Given Default Models" on page 1-31

## pof

Proportion of failures test for value-at-risk (VaR) backtesting

## Syntax

TestResults $=$ pof(vbt)
TestResults $=$ pof(vbt,Name,Value)

## Description

TestResults $=$ pof(vbt) generates the proportion of failures (POF) test for value-at-risk (VaR) backtesting.

TestResults = pof(vbt,Name, Value) adds an optional name-value pair argument for TestLevel.

## Examples

## Generate POF Test Results

Create a varbacktest object.

```
load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)
vbt =
 varbacktest with properties:
 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9500
```

Generate the pof test results.

```
TestResults = pof(vbt,'TestLevel',0.99)
TestResults=1\times9 table
 PortfolioID VaRID VaRLevel POF LRatioPOF PValuePOF Observations Fail
 "Portfolio" "VaR" 0.95 accept 0.46147 0.49694 1043
```

Run the POF Test for VaR Backtests for Multiple VaRs at Different Confidence Levels
Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.

```
load VaRBacktestData
 vbt = varbacktest(EquityIndex,...
 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
 'PortfolioID','Equity',...
 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])
vbt =
 varbacktest with properties:
 PortfolioData: [1043x1 double]
 VaRData: [1043x6 double]
 PortfolioID: "Equity"
 VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95"
 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]
```

Generate the pof test results using the TestLevel optional input.

```
TestResults = pof(vbt,'TestLevel',0.90)
```

| TestResults=6×9 PortfolioID | VaRID | VaRLevel | P0F | LRatioP0F | PValueP0F | Observation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| "Equity" | "Normal95" | 0.95 | accept | 0.46147 | 0.49694 | 1043 |
| "Equity" | "Normal99" | 0.99 | reject | 3.5118 | 0.060933 | 1043 |
| "Equity" | "Historical95" | 0.95 | accept | 0.91023 | 0.34005 | 1043 |
| "Equity" | "Historical99" | 0.99 | accept | 0.22768 | 0.63325 | 1043 |
| "Equity" | "EWMA95" | 0.95 | accept | 0.91023 | 0.34005 | 1043 |
| "Equity" | "EWMA99" | 0.99 | reject | 9.8298 | 0.0017171 | 1043 |

## Input Arguments

## vbt - varbacktest object

object
varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating a varbacktest object, see varbacktest.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = pof(vbt,'TestLevel',0.99)

## TestLevel - Test confidence level

### 0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric between 0 and 1 .

## Data Types: double

## Output Arguments

## TestResults - pof test results

table
pof test results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR level to be tested. The columns correspond to the following information:

- 'PortfolioID ' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel' - VaR level for the corresponding VaR data column
- 'POF' - Categorical array with the categories accept and reject that indicate the result of the pof test
- 'LRatioPOF' - Likelihood ratio of the pof test
- 'PValuePOF' - P-value of the pof test
- 'Observations ' - Number of observations
- 'Failures ' - Number of failures
- 'TestLevel' - Test confidence level

Note For pof test results, the terms accept and reject are used for convenience, technically a pof test does not accept a model. Rather, the test fails to reject it.

## More About

## Proportion of Failures (POF) Test

The pof function performs Kupiec's proportion of failures test.
The POF test is a likelihood ratio test proposed by Kupiec (1995) to assess if the proportion of failures (number of failures divided by number of observations) is consistent with the VaR confidence level.

## Algorithms

The likelihood ratio (test statistic) of the pof test is given by

$$
\text { LRatioPOF }=-2 \log \left(\frac{(1-p V a R)^{N-x} p V a R^{\chi}}{\left(1-\frac{x}{N}\right)^{N-x}\left(\frac{x}{N}\right)^{x}}\right)=-2\left[(N-x) \log \left(\frac{N(1-p V a R)}{N-x}\right)+x \log \left(\frac{N p V a R}{x}\right)\right]
$$

where $N$ is the number of observations, $x$ is the number of failures, and $p V a R=1-$ VaRLevel. This test statistic is asymptotically distributed as a chi-square distribution with 1 degree of freedom. By the properties of the logarithm,

$$
\text { LRatioPOF }=-2 N \log (1-p \text { Var }) \text { if } x=0
$$

and

$$
\text { LRatioPOF }=-2 N \log (p \text { Var }) \text { if } x=N .
$$

The $p$-value of the POF test is the probability that a chi-square distribution with 1 degree of freedom exceeds the likelihood ratio LRatioPOF

$$
\text { PValuePOF = } 1-F(\text { LRatioPOF })
$$

where $F$ is the cumulative distribution of a chi-square variable with 1 degree of freedom.
The result of the test is to accept if
PValuePOF < F(TestLevel)
and reject otherwise, where $F$ is the cumulative distribution of a chi-square variable with 1 degree of freedom.

## Version History

Introduced in R2016b

## References

[1] Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal of Derivatives. Vol. 3, 1995, pp. 73-84.

## See Also

varbacktest|tl|tuff|bin|cc|cci|tbf|tbfi|summary|runtests
Topics
"VaR Backtesting Workflow" on page 2-6
"Value-at-Risk Estimation and Backtesting" on page 2-10
"Overview of VaR Backtesting" on page 2-2
"Kupiec's POF and TUFF Tests" on page 2-3
"Comparison of ES Backtesting Methods" on page 2-26

## predict

Predict exposure at default

## Syntax

```
predictedEAD = predict(eadModel,data)
predictedEAD = predict(
```

$\qquad$

``` ,Name=Value)
```


## Description

predictedEAD $=$ predict(eadModel, data) computes the exposure at default (EAD).
When using a Regression model, the predict function operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale.
predictedEAD = predict (__ , Name=Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax.

## Examples

## Use Tobit EAD Model to Predict EAD

This example shows how to use fitEADModel to create a Tobit model and then predict exposure at default (EAD) values.

## Load EAD Data

Load the EAD data.

```
load EADData.mat
head(EADData)
```

UtilizationRate	Age		Marriage		Limit		Drawn

```
rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Select Model Type

Select a model type for Tobit or Regression.
ModelType $=$ Tobit -

## Select Conversion Measure

Select a conversion measure for the EAD response values.
ConversionMeasure $=$ LCF ;

## Create Tobit EAD Model

Use fitEADModel to create a Tobit model using the TrainingInd data.

```
eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age',
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);
```

    Tobit with properties:
        CensoringSide: "both"
            LeftLimit: 0
            RightLimit: 1
            ModelID: "Tobit"
                Description: ""
        UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
            PredictorVars: ["UtilizationRate" "Age" "Marriage"]
                ResponseVar: "EAD"
            LimitVar: "Limit"
            DrawnVar: "Drawn"
    ConversionMeasure: "lcf"
    Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the transformation.
disp(eadModel.UnderlyingModel);
Tobit regression model:
EAD_lcf $=\max \left(0, \min \left(Y^{*}, 1\right)\right)$
$Y^{*}$ ~ 1 + UtilizationRate + Age + Marriage
Estimated coefficients:

Estimate	SE	tStat	pValue
0.22467	0.03134	7.1689	9.7855e-13
0.4714	0.020722	22.749	0
-0.0014209	0.00076326	-1.8616	0.062771
-0.010542	0.01578	-0.66807	0.50415
0.3618	0.0050022	72.33	0

Number of observations: 2627
Number of left-censored observations: 0
Number of uncensored observations: 2626

Number of right-censored observations: 1
Log-likelihood: -1057.9

## Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-value argument.

```
predictedEAD = predict(eadModel, EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel, EADData(TestInd,:),ModelLevel="ConversionMeasure");
```


## Use Beta EAD Model to Predict EAD

This example shows how to use fitEADModel to create a Beta model and then predict exposure at default (EAD) values.

## Load EAD Data

Load the EAD data.

load EADData.mat head(EADData)					
UtilizationRate	Age	Marriage	Limit	Drawn	EAD
0.24359	25	not married	44776	10907	44740
0.96946	44	not married	$2.1405 \mathrm{e}+05$	$2.0751 \mathrm{e}+05$	40678
0	40	married	1.6581e+05	0	1.6567e+05
0.53242	38	not married	$1.7375 \mathrm{e}+05$	92506	1593.5
0.2583	30	not married	26258	6782.5	54.175
0.17039	54	married	$1.7357 \mathrm{e}+05$	29575	576.69
0.18586	27	not married	19590	3641	998.49
0.85372	42	not married	$2.0712 \mathrm{e}+05$	$1.7682 \mathrm{e}+05$	$1.6454 \mathrm{e}+05$

```
rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Select Model Type

Select a model type for Beta.
ModelType $=$ Beta $\quad$;

## Select Conversion Measure

Select a conversion measure for the EAD response values.


## Create Beta EAD Model

Use fitEADModel to create a Beta model using EADData.

```
eadModel = fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriage'},
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);
```

    Beta with properties:
        BoundaryTolerance: 1.0000e-07
            ModelID: "Beta"
            Description: ""
            UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
            PredictorVars: ["UtilizationRate" "Age" "Marriage"]
            ResponseVar: "EAD"
                        LimitVar: "Limit"
                            DrawnVar: "Drawn"
        ConversionMeasure: "lcf"
    Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the transformation.
disp(eadModel.UnderlyingModel);
Beta regression model:
logit(EAD_lcf) ~ 1_mu + UtilizationRate_mu + Age_mu + Marriage_mu
log(EAD_lcf) ~ 1_phi + UtilizationRate_phi + Age_phi + Marriage_phi
Estimated coefficients:

| Estimate | SE | tStat |  |  |
| ---: | ---: | ---: | ---: | ---: | pValue

Number of observations: 4378
Log-likelihood: -5255. 12

## Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-value argument.

```
predictedEAD = predict(eadModel, EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel, EADData(TestInd,:),ModelLevel="ConversionMeasure");
```


## Input Arguments

## eadModel - Exposure at default model

Regression object | Tobit object | Beta object
Exposure at default model, specified as a previously created Regression, Tobit, or Beta object using fitEADModel.

Data Types: object

## data - Data

table
Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable names and data types must be consistent with the underlying model.

Data Types: table

## Name-Value Arguments

Specify optional pairs of arguments as Namel=Value1, ... , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Example: predictedEAD = predict(eadModel, EADData(TestInd, : ),ModelLevel='ead')

## ModelLevel - Model level

"ead" (default) | character vector with value 'ead', 'conversionMeasure', or
'conversionTransform' | string with value "ead", "conversionMeasure", or
"conversionTransform"
Model level, specified as ModelLevel and a character vector or string.

Note Regression models support all three model levels, but a Tobit or Beta model supports model levels only for 'ead ' and 'conversionMeasure'.

Data Types: char|string

## Output Arguments

predictedEAD - Exposure at default predicted values
vector
Exposure at default predicted values, returned as a NumRows-by-1 numeric vector.

## More About

Prediction with EAD Models
Use a Regression, Tobit, or Beta model to predict EAD.

Regression, Tobit, or Beta EAD models first predict on the transformed space using the underlying linear regression model, and then apply the inverse transformation to return predictions on the EAD scale.

## Version History

## Introduced in R2021b

R2022b: Support for Beta model
Behavior changed in R2022b
The eadModel input supports an option for a Beta model object that you can create using fitEADModel.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications. SAS Institute, 2014.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

## See Also

Regression | Tobit|Beta|fitEADModel|modelDiscrimination| modelDiscriminationPlot|modelCalibration|modelCalibrationPlot

## Topics

"Compare Results for Regression and Tobit EAD Models" on page 4-151
"Overview of Exposure at Default Models" on page 1-34

## predict

Predict loss given default

## Syntax

LGD = predict(lgdModel,data)

## Description

LGD = predict(lgdModel, data) computes the loss given default (LGD).
When using a Regression model, the predict function operates on the underlying compact statistical model and then transforms the predicted values back to the LGD scale.

When using a Tobit model, the predict function operates on the underlying Tobit regression model and returns the unconditional expected value of the response, given the predictor values.

## Examples

## Use Regression LGD Model to Predict LGD

This example shows how to use fitLGDModel to fit data with a Regression model and then predict the loss given default (LGD) values.

## Load Data

Load the loss given default data.

LTV	Age	Type	LGD
0.89101	0.39716	residential	0.032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0.025688
0.92005	0.50253	investment	0.063182

## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
```

TrainingInd = training(c);
TestInd = test(c);

## Create Regression LGD Model

Use fitLGDModel to create a Regression model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'regression');
disp(lgdModel)
Regression with properties:
 ResponseTransform: "logit"
 BoundaryTolerance: 1.0000e-05
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.

```
disp(lgdModel.UnderlyingModel)
Compact linear regression model:
 LGD_logit ~ 1 + LTV + Age + Type
Estimated Coefficients:
\begin{tabular}{lll}
Estimate \(\quad\) SE \(\quad\) tStat \(\quad\) pValue \\
\hline
\end{tabular}
\begin{tabular}{lrrrr}
(Intercept) & -4.7549 & 0.36041 & -13.193 & \(3.0997 \mathrm{e}-38\) \\
LTV & 2.8565 & 0.41777 & 6.8377 & \(1.0531 \mathrm{e}-11\) \\
Age & -1.5397 & 0.085716 & -17.963 & \(3.3172 \mathrm{e}-67\) \\
Type investment & 1.4358 & 0.2475 & 5.8012 & \(7.587 \mathrm{e}-09\)
\end{tabular}
```

Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value = 2.42e-104

## Predict LGD on Test Data

Use predict to predict the LGD for the test data set.
predictedLGD $=$ predict(lgdModel,data(TestInd,:))
predictedLGD $=1394 \times 1$
0.0009
0.0037
0.1877
0.0011
0.0112
0.0420
0.0529
0.0000
0.0090

You can analyze and validate these predictions using modelDiscrimination and modelCalibration.

## Use Tobit LGD Model to Predict LGD

This example shows how to use fitLGDModel to fit data with a Tobit model and then predict the loss given default (LGD) values.

## Load Data

Load the loss given default data.


## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Create Tobit LGD Model

Use fitLGDModel to create a Tobit model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'tobit');
disp(lgdModel)
 Tobit with properties:
 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
```

```
PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.
disp(lgdModel.UnderlyingModel)
Tobit regression model:
LGD $=\max \left(0, \min \left(Y^{*}, 1\right)\right)$
Y* ~ 1 + LTV + Age + Type
Estimated coefficients:

Estimate	SE	tStat	pValue
0.058257	0.027265	2.1367	0.032737
0.20126	0.031354	6.4189	$1.6932 \mathrm{e}-10$
-0.095407	0.0072653	-13.132	0
0.10208	0.018058	5.6531	$1.7915 \mathrm{e}-08$
0.29288	0.0057036	51.35	0

Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1521
Number of right-censored observations: 25
Log-likelihood: -698.383

## Predict LGD on Test Data

Use predict to predict the LGD for the test data set.

```
predictedLGD = predict(lgdModel,data(TestInd,:))
predictedLGD = 1394×1
 0.0879
 0.1243
 0.3204
 0.0934
 0.1672
 0.2238
 0.2370
 0.0102
 0.1592
 0.1989
```

You can analyze and validate these predictions using modelDiscrimination and modelCalibration.

## Use Beta LGD Model to Predict LGD

This example shows how to use fitLGDModel to fit data with a Beta model and then predict the loss given default (LGD) values.

## Load Data

Load the loss given default data.

```
load LGDData.mat
head(data)
```

LTV	Age	Type	LGD
0.89101	0.39716	residential	0.032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0.025688
0.92005	0.50253	investment	0.063182

## Partition Data

Separate the data into training and test partitions.

```
rng('default'); % for reproducibility
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


## Create Beta LGD Model

Use fitLGDModel to create a Beta model using training data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'Beta');
disp(lgdModel)
Beta with properties:
 BoundaryTolerance: 1.0000e-05
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"
```

Display the underlying model.

```
disp(lgdModel.UnderlyingModel)
```

Beta regression model:
logit(LGD) ~ 1_mu + LTV_mu + Age_mu + Type_mu
$\log (L G D) ~ \sim ~ 1 \_p \bar{h} i ~+~ L T V \_\bar{p} h i+A g e \_p h i ~+~ T y p e ̄ \_p h i$
Estimated coefficients:

Estimate SE tStat $\quad$|  |
| :--- | :--- | :--- |

(Intercept) mu	-1.3772	0.13201	-10.433	0


LTV_mu	0.60269	0.15087	3.9947	$6.7023 \mathrm{e}-05$
Age_mu	-0.47464	0.040264	-11.788	0
Type_investment_mu	0.45372	0.085143	5.3289	$1.094 \mathrm{e}-07$
(Intercept)_phi	-0.16337	0.12591	-1.2975	0.19462
LTV_phi	0.055892	0.14719	0.37973	0.70419
Age_phi	0.22887	0.040335	5.6743	$1.5863 \mathrm{e}-08$
Type_investment_phi	-0.14102	0.078155	-1.8044	0.071311

Number of observations: 2093
Log-likelihood: -5291.04

## Predict LGD on Test Data

Use predict to predict the LGD for the test data set.
predictedLGD $=$ predict(lgdModel,data(TestInd,:))
predictedLGD = $1394 \times 1$
0.0937
0.1492
0.3526
0.0964
0.1886
0.2595
0.2677
0.0213
0.1774
0.2256

You can analyze and validate these predictions using modelDiscrimination and modelCalibration.

## Input Arguments

lgdModel - Loss given default model
Regression object | Tobit object | Beta object
Loss given default model, specified as a previously created Regression, Tobit, or Beta object using fitLGDModel.
Data Types: object
data - Data
table
Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable names and data types must be consistent with the underlying model.

Data Types: table

## Output Arguments

## LGD - Loss given default values

vector

Loss given default values, returned as a NumRows-by-1 numeric vector.

## More About

## Prediction with LGD Models

Use a Regression, Tobit, or Beta model to predict LGD.
Regression LGD models first predict on the transformed space using the underlying linear regression model, and then apply the inverse transformation to return predictions on the LGD scale. For more information on the supported transformations and their inverses, see "Loss Given Default Regression Models" on page 6-677.

Tobit LGD models return the unconditional expected value of the response, given the predictor values. For more information, see "Loss Given Default Tobit Models" on page 6-694.

Beta LGD models return the mean of the beta distribution, given the predictor values. For more information, see "Beta Regression Models" on page 6-685.

## Version History

## Introduced in R2021a

## R2022b: Support for Beta model

Behavior changed in R2022b
The lgdModel input supports an option for a Beta model object that you can create using fitLGDModel.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

## See Also

Tobit|Regression | Beta|modelCalibration | modelCalibartionPlot | modelDiscriminationPlot|modelDiscrimination|fitLGDModel

## Topics

"Model Loss Given Default" on page 4-90
"Basic Loss Given Default Model Validation" on page 4-131
"Compare Tobit LGD Model to Benchmark Model" on page 4-133
"Compare Loss Given Default Models Using Cross-Validation" on page 4-140
"Overview of Loss Given Default Models" on page 1-31

## predict

Compute conditional PD

## Syntax

conditionalPD = predict(pdModel,data)

## Description

conditionalPD = predict(pdModel,data) computes the conditional probability of default (PD).

## Examples

Use Probit Lifetime PD Model to Predict Conditional PD
This example shows how to use fitLifetimePDModel to fit data with a Probit model and then predict the conditional probability of default (PD).

## Load Data

Load the credit portfolio data.
load RetailCreditPanelData.mat disp(head(data))

ID	ScoreGroup	YOB	Default	Year
1	Low Risk	1	0	1997
1	Low Risk	2	0	1998
1	Low Risk	3	0	1999
1	Low Risk	4	0	2000
1	Low Risk	5	0	2001
1	Low Risk	6	0	2002
1	Low Risk	7	0	2003
1	Low Risk	8	0	2004
disp(head(dataMacro))				
Year	GDP	Market		
1997	2.72	7.61		
1998	3.57	26.24		
1999	2.86	18.1		
2000	2.43	3.19		
2001	1.26	-10.51		
2002	-0.59	-22.95		
2003	0.63	2.78		
2004	1.85	9.48		

Join the two data components into a single data set.

```
data = join(data,dataMacro);
disp(head(data))
\begin{tabular}{lrllllllr}
ID & ScoreGroup & YOB & & Default & & Year & & GDP
\end{tabular}
```


## Partition Data

Separate the data into training and test partitions.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```


## Create a Probit Lifetime PD Model

Use fitLifetimePDModel to create a Probit model.

```
pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Probit",...
 'AgeVar','YOB',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},...
 'ResponseVar','Default');
disp(pdModel)
```

Probit with properties:
ModelID: "Probit"
Description: ""
UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
IDVar: "ID"
AgeVar: "YOB"
LoanVars: "ScoreGroup"
MacroVars: ["GDP" "Market"]
ResponseVar: "Default"

Display the underlying model.
pdModel.UnderlyingModel
ans =
Compact generalized linear regression model:

d	Estimate	SE	tStat	pValue
(Intercept)	-1.6267	0.03811	-42.685	0
ScoreGroup_Medium Risk	-0.26542	0.01419	-18.704	4.5503e-78
ScoreGroup_Low Risk	-0.46794	0.016364	-28.595	7.775e-180
YOB	-0.11421	0.0049724	-22.969	9.6208e-117
GDP	-0.041537	0.014807	-2.8052	0.0050291
Market	-0.0029609	0.0010618	-2.7885	0.0052954

```
3 8 8 0 9 7 \text { observations, 388091 error degrees of freedom}
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0
```


## Predict on Training and Test Data

Predict the PD for training or test data sets.

```
DataSetChoice = Training *;
if DataSetChoice=="Training"
 Ind = TrainDataInd;
 else
 Ind = TestDataInd;
 end
% Predict conditional PD
PD = predict(pdModel,data(Ind,:));
head(data(Ind,:))
```

ID	ScoreGroup	YOB	Default	Year	GDP	Market
1	Low Risk	1	0	1997	2.72	7.61
1	Low Risk	2	0	1998	3.57	26.24
1	Low Risk	3	0	1999	2.86	18.1
1	Low Risk	4	0	2000	2.43	3.19
1	Low Risk	5	0	2001	1.26	-10.51
1	Low Risk	6	0	2002	-0.59	-22.95
1	Low Risk	7	0	2003	0.63	2.78
1	Low Risk	8	0	2004	1.85	9.48

$\operatorname{disp}(P D(1: 8))$
0.0095
0.0054
0.0045
0.0039
0.0036
0.0036
0.0017
0.0009

You can analyze and validate these predictions using modelDiscrimination and modelCalibration.

## Use Cox Lifetime PD Model to Predict Conditional PD

This example shows how to use fitLifetimePDModel to fit data with a Cox model and then predict the conditional probability of default (PD).

## Load Data

Load the credit portfolio data.

```
load RetailCreditPanelData.mat
disp(head(data))
\begin{tabular}{|c|c|c|c|c|}
\hline ID & ScoreGroup & YOB & Default & Year \\
\hline 1 & Low Risk & 1 & 0 & 1997 \\
\hline 1 & Low Risk & 2 & 0 & 1998 \\
\hline 1 & Low Risk & 3 & 0 & 1999 \\
\hline 1 & Low Risk & 4 & 0 & 2000 \\
\hline 1 & Low Risk & 5 & 0 & 2001 \\
\hline 1 & Low Risk & 6 & 0 & 2002 \\
\hline 1 & Low Risk & 7 & 0 & 2003 \\
\hline 1 & Low Risk & 8 & 0 & 2004 \\
\hline
\end{tabular}
disp(head(dataMacro))
\begin{tabular}{|c|c|c|}
\hline Year & GDP & Market \\
\hline 1997 & 2.72 & 7.61 \\
\hline 1998 & 3.57 & 26.24 \\
\hline 1999 & 2.86 & 18.1 \\
\hline 2000 & 2.43 & 3.19 \\
\hline 2001 & 1.26 & -10.51 \\
\hline 2002 & -0.59 & -22.95 \\
\hline 2003 & 0.63 & 2.78 \\
\hline 2004 & 1.85 & 9.4 \\
\hline
\end{tabular}
```

Join the two data components into a single data set.

```
data = join(data,dataMacro);
disp(head(data))
```

ID	ScoreGroup	YOB		Default		Year		GDP

## Partition Data

Separate the data into training and test partitions.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```


## Create a Cox Lifetime PD Model

Use fitLifetimePDModel to create a Cox model.

```
ModelType \(=\) cox \(\quad\);
pdModel = fitLifetimePDModel(data(TrainDataInd,:),ModelType,...
 'IDVar','ID','AgeVar','YOB',...
 'LoanVars','ScoreGroup','MacroVars',\{'GDP' 'Market'\},...
 'ResponseVar','Default');
disp(pdModel)
 Cox with properties:
 TimeInterval: 1
 ExtrapolationFactor: 1
 ModelID: "Cox"
 Description: ""
 UnderlyingModel: [1x1 CoxModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"
```

Display the underlying model.

```
disp(pdModel.UnderlyingModel)
Cox Proportional Hazards regression model
\begin{tabular}{|c|c|c|c|c|}
\hline & Beta & SE & zStat & pValue \\
\hline ScoreGroup_Medium Risk & -0.6794 & 0.037029 & -18.348 & 3.4442e-75 \\
\hline ScoreGroup_Low Risk & -1.2442 & 0.045244 & -27.501 & 1.7116e-166 \\
\hline GDP & -0.084533 & 0.043687 & -1.935 & 0.052995 \\
\hline Market & -0.0084411 & 0.0032221 & -2.6198 & 0.0087991 \\
\hline
\end{tabular}
```

Log-likelihood: -41742.871

## Predict on Age Values not Observed in the Training Data

Cox models make predictions for the range of age values observed in the training data. To extrapolate for ages larger than the maximum age in the training data, an extrapolation rule is needed.

When using predict with a Cox model, you can set the ExtrapolationFactor property of the Cox model. By default, the ExtrapolationFactor is set to 1. For age values (AgeVar) greater than the maximum age observed in the training data, predict computes the conditional PD using the maximum age observed in the training data. In particular, the predicted PD value is constant if the predictor values do not change and only the age values change when the ExtrapolationFactor is 1.

To illustrate this, select the rows corresponding to a single ID and add new rows with new, incremental age values beyond the maximum observed age in the training data. The maximum age observed in the training data is 8 ; for illustration purposes, add rows with ages $9,10,11$, and 12.

```
% Select rows corresponding to one ID
% ID 1 goes from row 1 through 8
% Only the ID, Age (YOB) and predictor variables are needed
dataNewAge = data(1:8,{'ID' 'YOB' 'ScoreGroup' 'GDP' 'Market'});
% Allocate more rows
% This line copies the same predictor values going forward
dataNewAge(9:12,:) = repmat(dataNewAge(8,:),4,1);
% Reset age values to 9, 10, 11, 12
dataNewAge.YOB(9:12) = (9:12)';
% Show the new dataset
disp(dataNewAge)
\begin{tabular}{|c|c|c|c|c|}
\hline ID & YOB & ScoreGroup & GDP & Market \\
\hline 1 & 1 & Low Risk & 2.72 & 7.61 \\
\hline 1 & 2 & Low Risk & 3.57 & 26.24 \\
\hline 1 & 3 & Low Risk & 2.86 & 18.1 \\
\hline 1 & 4 & Low Risk & 2.43 & 3.19 \\
\hline 1 & 5 & Low Risk & 1.26 & -10.51 \\
\hline 1 & 6 & Low Risk & -0.59 & -22.95 \\
\hline 1 & 7 & Low Risk & 0.63 & 2.78 \\
\hline 1 & 8 & Low Risk & 1.85 & 9.48 \\
\hline 1 & 9 & Low Risk & 1.85 & 9.48 \\
\hline 1 & 10 & Low Risk & 1.85 & 9.48 \\
\hline 1 & 11 & Low Risk & 1.85 & 9.48 \\
\hline 1 & 12 & Low Risk & 1.85 & 9.48 \\
\hline
\end{tabular}
```

When the predictor values are constant in the rows with new age values and the extrapolation factor is 1 , the predicted PD values are constant. If the extrapolation factor is set to a value smaller than 1 , then the predicted PD values decrease more and more for larger age values and decrease towards zero exponentially.

```
% Extrapolation factor can be adjusted
pdModel.ExtrapolationFactor = 1
% Store predicted conditional PD in the same table
dataNewAge.PD = predict(pdModel,dataNewAge);
disp(dataNewAge)
ID YOB ScoreGroup GDP Market PD
```

1	1	Low Risk	2.72	7.61	0.0092197
1	2	Low Risk	3.57	26.24	0.005158
1	3	Low Risk	2.86	18.1	0.0046079
1	4	Low Risk	2.43	3.19	0.0041351
1	5	Low Risk	1.26	-10.51	0.003645
1	6	Low Risk	-0.59	-22.95	0.0041128
1	7	Low Risk	0.63	2.78	0.0017034
1	8	Low Risk	1.85	9.48	0.00092551
1	9	Low Risk	1.85	9.48	0.00092551
1	10	Low Risk	1.85	9.48	0.00092551
1	11	Low Risk	1.85	9.48	0.00092551
1	12	Low Risk	1.85	9.48	0.00092551

Also, it is useful to see the effect of the extrapolation factor on the lifetime prediction.
Plot the predicted conditional PD values and the lifetime PD values to see the effect of the extrapolation factor on both probabilities. The vertical dotted line separates the known age values (up to, and including, the age value 8), from the age values not observed in the training data (anything greater than 8 ). If the extrapolation factor is 1 , the lifetime PD has a steady upward trend and the conditional PDs are constant. If the extrapolation factor is set to a smaller value like 0.5 , the lifetime PD flattens quickly, as the conditional PD quickly drops towards zero.

```
dataNewAge.LifetimePD = predictLifetime(pdModel,dataNewAge);
figure;
yyaxis left
plot(dataNewAge.YOB,dataNewAge.PD,'*')
ylabel('Conditional PD')
yyaxis right
plot(dataNewAge.YOB,dataNewAge.LifetimePD)
ylabel('Lifetime PD')
title('Extrapolated PD for Unobserved Age Values')
xlabel('Age')
xline(8,':','Out-of-Sample')
grid on
```



## Input Arguments

## pdModel - Probability of default model

Logistic object | Probit object | Cox object | customLifetimePDModel object
Probability of default model, specified as a previously created Logistic, Probit, or Cox object using fitLifetimePDModel. Alternatively, you can create a custom probability of default model using customLifetimePDModel.

Data Types: object
data - Data
table
Data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime predictions. The predictor names and data types must be consistent with the underlying model.

Data Types: table

## Output Arguments

conditionalPD - Predicted conditional probability of default values
vector
Predicted conditional probability of default values, returned as a NumRows-by-1 numeric vector.

## More About

## Conditional PD

Conditional PD is the probability of defaulting, given no default yet.
For example, the predicted conditional PD for the second year is the probability that the borrower defaults in the second year, given that the borrower did not default in the first year.

The formula for conditional PD is

$$
P D(t)=P\{t-\Delta t<T \leq t \mid T>t-\Delta t\}
$$

where

- $T$ is the time to default.
- $\Delta t$ is the "time interval" consistent with the periodicity of the panel training data (for example, one row per year) and the definition of the default indicator values.

The default indicator is 1 if there is a default over a 1 -year period. For more information on time intervals, see "Time Interval for Logistic Models" on page 6-623, "Time Interval for Probit Models" on page 6-634, and "Time Interval for Cox Models" on page 6-551.

In the formulas that follow for Logistic, Probit, and Cox models, the notation is:

- $X(t)$ is the predictor data for the row corresponding to time $t$.
- $\quad \beta$ is the vector of coefficients of the underlying model.

For Logistic models, the conditional PD is computed as:

$$
P D_{\text {cond }}(t)=\frac{1}{1+\exp (-X(t) \beta)}
$$

For Probit models, the conditional PD is computed as:

$$
P D_{\text {cond }}(t)=\phi(X(t) \beta)
$$

For Cox models, the conditional PD is computed as

$$
P D_{\text {cond }}(t)=1-\frac{S(t)}{S(t-\Delta t)}
$$

where $S$ is the survival function. The survival function depends on the predictor values through the hazard ratio. For more information, see "Cox Proportional Hazards Models" on page 6-550. There are different ways to represent the dependence of the PD on the predictors explicitly. The implementation in the predict function uses the baseline cumulative hazard rate function given by

$$
H_{0}(t)=\int_{0}^{t} h_{0}(u) d u
$$

where $h_{0}$ is the baseline hazard rate. For more information, see "Cox Proportional Hazards Models" on page 6-550. Using the baseline cumulative hazard rate, the PD formula for the Cox model is written as:

$$
P D_{\text {cond }}(t)=1-\exp \left(-\left(H_{0}(t)-H_{0}(t-\Delta t)\right) \exp (X(t) \beta)\right)
$$

## Extrapolation for Cox Models

The baseline cumulative hazard function $H_{0}$ for Cox models is fitted to the observed age values (that is, the observed "times-to-event") in a nonparametric way.

Therefore, some form of interpolation or extrapolation is needed to make predictions for age values not observed in the training data. In the predict function, linear interpolation is used as follows:

- If the known age values are $t_{1}, t_{2}, \ldots, t_{N}$, with $t_{i}-t_{i-1}=\Delta t$, and if $t_{0}=t_{1}-\Delta t$, then:
- $H_{0}(t)=0$, for all $t \leq t_{0}$.
- $H_{0}(t)$ is interpolated linearly for $t_{i-1} \leq t \leq t_{i}$, for $i=0, \ldots N$.
- $H_{0}(t)$ is extrapolated linearly for $t>t_{N}$, following the slope defined by the last two known values $H_{0}\left(t_{N-1}\right)$ and $H_{0}\left(t_{N}\right)$.

This implies the baseline hazard rate $h_{0}$ is piecewise constant and remains constant after the last fitted value. By default, after the last known age value, the PD is evaluated as follows

$$
P D_{\text {cond }}(t \mid X(t))=P D_{\text {cond }}\left(t_{N} \mid X(t)\right)
$$

for $t>t_{N}$. This behavior is adjusted with the ExtrapolationFactor property of the Cox model. For more information, see "Use Cox Lifetime PD Model to Predict Conditional PD" on page 6-329.

## Extrapolation Factor for Cox Models

The extrapolation formula implemented in the predict function includes the ExtrapolationFactor property value

$$
P D_{\text {cond }}\left(t_{N+k} \mid X\left(t_{N+k}\right)\right)=(\text { ExtrapolationFactor })^{k} P D_{\text {cond }}\left(t_{N} \mid X\left(t_{N+k}\right)\right)
$$

where $t_{N+k}$ is the time value $k$ periods after the largest age observed in the training data $t_{N}$, that is, $t_{N+k}=t_{N}+k^{*} \Delta t$.

By default, the extrapolation factor is 1 , resulting in the formula in the "Extrapolation for Cox Models" on page 6-335 section, where the PD values remain constant as the age increases - if the predictor values do not change. If the extrapolation factor is set to a value smaller than 1 , the predicted PD values decrease exponentially towards 0 . The smaller the factor, the faster the conditional PD values decrease, and the faster the lifetime PD values flatten out.

In general, PD values tend to go down towards the end of the life of a loan, since the pool of borrowers gets cured earlier on. How fast this happens depends on the product and must be calibrated on a case-by-case basis.

Note that Logistic and Probit models need no special considerations regarding interpolation or extrapolation. These models are fully parametric models and predict the conditional PD for any values, in between, or beyond the numeric values observed in the dataset.

## Version History

Introduced in R2020b

## R2022b: Support for customLifetimePDModel model

The pdModel input supports an option for a customLifetimePDModel model object that you can create using customLifetimePDModel.

## References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.

## See Also

modelDiscrimination | modelDiscriminationPlot|modelCalibration| modelCalibrationPlot|predictLifetime|fitLifetimePDModel|Logistic|Probit|Cox | customLifetimePDModel

## Topics

"Basic Lifetime PD Model Validation" on page 4-129
"Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
"Compare Lifetime PD Models Using Cross-Validation" on page 4-121
"Expected Credit Loss Computation" on page 4-124
"Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
"Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 4-75
"Overview of Lifetime Probability of Default Models" on page 1-25

## predictLifetime

Compute cumulative lifetime PD, marginal PD, and survival probability

## Syntax

LifeTimePredictedPD = predictLifetime(pdModel,data)
LifeTimePredictedPD = predictLifetime( $\qquad$ ,Name, Value)

## Description

LifeTimePredictedPD = predictLifetime(pdModel,data) computes the cumulative lifetime probability of default (PD), marginal PD, and survival probability.

LifeTimePredictedPD = predictLifetime( $\qquad$ ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.

## Examples

## Use Probit Lifetime PD Model to Predict Lifetime PD

This example shows how to use fitLifetimePDModel to fit data with a Probit model and then predict the lifetime probability of default (PD).

## Load Data

Load the credit portfolio data.

ID	ScoreGroup	YOB	Default	Year
1	Low Risk	1	0	1997
1	Low Risk	2	0	1998
1	Low Risk	3	0	1999
1	Low Risk	4	0	2000
1	Low Risk	5	0	2001
1	Low Risk	6	0	2002
1	Low Risk	7	0	2003
1	Low Risk	8	0	2004
disp(head(dataMacro))				
Year	GDP	Market		
1997	2.72	7.61		
1998	3.57	26.24		
1999	2.86	18.1		
2000	2.43	3.19		


2001	1.26	-10.51
2002	-0.59	-22.95
2003	0.63	2.78
2004	1.85	9.48

Join the two data components into a single data set.

```
data = join(data,dataMacro);
disp(head(data))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ID & ScoreGroup & YOB & Default & Year & GDP & Market \\
\hline 1 & Low Risk & 1 & 0 & 1997 & 2.72 & 7.61 \\
\hline 1 & Low Risk & 2 & 0 & 1998 & 3.57 & 26.24 \\
\hline 1 & Low Risk & 3 & 0 & 1999 & 2.86 & 18.1 \\
\hline 1 & Low Risk & 4 & 0 & 2000 & 2.43 & 3.19 \\
\hline 1 & Low Risk & 5 & 0 & 2001 & 1.26 & -10.51 \\
\hline 1 & Low Risk & 6 & 0 & 2002 & -0.59 & -22.95 \\
\hline 1 & Low Risk & 7 & 0 & 2003 & 0.63 & 2.78 \\
\hline 1 & Low Risk & 8 & 0 & 2004 & 1.85 & 9.48 \\
\hline
\end{tabular}
```


## Partition Data

Separate the data into training and test partitions.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```


## Create a Probit Lifetime PD Model

Use fitLifetimePDModel to create a Probit model using the training data.

```
pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Probit",...
 'AgeVar','YOB',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},...
 'ResponseVar','Default');
disp(pdModel)
 Probit with properties:
 ModelID: "Probit"
 Description:
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
```

```
 MacroVars: ["GDP" "Market"]
ResponseVar: "Default"
```

Display the underlying model.

```
disp(pdModel.Model)
Compact generalized linear regression model:
 probit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|c|}
\hline & Estimate & SE & tStat & pValue \\
\hline (Intercept) & -1.6267 & 0.03811 & -42.685 & 0 \\
\hline ScoreGroup Medium Risk & -0.26542 & 0.01419 & -18.704 & 4.5503e-78 \\
\hline ScoreGroup_Low Risk & -0.46794 & 0.016364 & -28.595 & 7.775e-180 \\
\hline YOB & -0.11421 & 0.0049724 & -22.969 & 9.6208e-117 \\
\hline GDP & -0.041537 & 0.014807 & -2.8052 & 0.0050291 \\
\hline Market & -0.0029609 & 0.0010618 & -2.7885 & 0.0052954 \\
\hline
\end{tabular}
```

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0

## Predict Lifetime PD on Training and Test Data

Use the predictLifetime function to get lifetime PDs on the training or the test data. To get conditional PDs, use the predict function. For model validation, use the modelDiscrimination and modelCalibration functions on the training or test data.

```
DataSetChoice = Testing * ;
if DataSetChoice=="Training"
 Ind = TrainDataInd;
else
 Ind = TestDataInd;
end
% Predict lifetime PD
PD = predictLifetime(pdModel,data(Ind,:));
head(data(Ind,:))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ID & ScoreGroup & YOB & Default & Year & GDP & Market \\
\hline 2 & Medium Risk & 1 & 0 & 1997 & 2.72 & 7.61 \\
\hline 2 & Medium Risk & 2 & 0 & 1998 & 3.57 & 26.24 \\
\hline 2 & Medium Risk & 3 & 0 & 1999 & 2.86 & 18.1 \\
\hline 2 & Medium Risk & 4 & 0 & 2000 & 2.43 & 3.19 \\
\hline 2 & Medium Risk & 5 & 0 & 2001 & 1.26 & -10.51 \\
\hline 2 & Medium Risk & 6 & 0 & 2002 & -0.59 & -22.95 \\
\hline 2 & Medium Risk & 7 & 0 & 2003 & 0.63 & 2.78 \\
\hline 2 & Medium Risk & 8 & 0 & 2004 & 1.85 & 9.48 \\
\hline
\end{tabular}
```


## Predict Lifetime PD on New Data

Lifetime PD models are used to make predictions on existing loans. The predictLifetime function requires projected values for both the loan and macro predictors for the remainder of the life of the loan.

The DataPredictLifetime.mat file contains projections for two loans and also for the macro variables. One loan is three years old at the end of 2019, with a lifetime of 10 years, and the other loan is six years old with a lifetime of 10 years. The ScoreGroup is constant and the age values are incremental. For the macro variables, the forecasts for the macro predictors must span the longest lifetime in the portfolio.


LifetimeData $=$ join(LoanData,MacroScenario); disp(LifetimeData)

ID	ScoreGroup	YOB	Year	GDP	Market
1304	"Medium Risk"	4	2020	1.1	4.5
1304	"Medium Risk"	5	2021	0.9	1.5
1304	"Medium Risk"	6	2022	1.2	5
1304	"Medium Risk"	7	2023	1.4	5.5
1304	"Medium Risk"	8	2024	1.6	6
1304	"Medium Risk"	9	2025	1.8	6.5
1304	"Medium Risk"	10	2026	1.8	6.5
2067	"Low Risk"	7	2020	1.1	4.5


2067	"Low Risk"	8	2021	0.9	1.5
2067	"Low Risk"	9	2022	1.2	5
2067	"Low Risk"	10	2023	1.4	5.5

Predict lifetime PDs and store the output as a new table column for convenience.

```
LifetimeData.PredictedPD = predictLifetime(pdModel,LifetimeData);
disp(LifetimeData)
```

ID	ScoreGroup	YOB	Year	GDP	Market	PredictedPD
1304	"Medium Risk"	4	2020	1.1	4.5	0.0080202
1304	"Medium Risk"	5	2021	0.9	1.5	0.014093
1304	"Medium Risk"	6	2022	1.2	5	0.018156
1304	"Medium Risk"	7	2023	1.4	5.5	0.020941
1304	"Medium Risk"	8	2024	1.6	6	0.022827
1304	"Medium Risk"	9	2025	1.8	6.5	0.024086
1304	"Medium Risk"	10	2026	1.8	6.5	0.024945
2067	"Low Risk"	7	2020	1.1	4.5	0.0015728
2067	"Low Risk"	8	2021	0.9	1.5	0.0027146
2067	"Low Risk"	9	2022	1.2	5	0.003431
2067	"Low Risk"	10	2023	1.4	5.5	0.0038939

Visualize the predicted lifetime PD for a company.

```
CompanyIDChoice = 1304 * ;
CompanyID = str2double(CompanyIDChoice);
IndPlot = LifetimeData.ID==CompanyID;
plot(LifetimeData.YOB(IndPlot),LifetimeData.PredictedPD(IndPlot))
grid on
xlabel('YOB')
xticks(LifetimeData.YOB(IndPlot))
ylabel('Lifetime PD')
title(strcat("Company ",CompanyIDChoice))
```



## Lifetime Prediction and Time Interval

This example shows how time interval plays an important role for lifetime prediction when using a Logistic, Probit, or Cox model for probability of default (PD). Each PD value is a probability of default for the given "time interval" (for example, a time interval of 1 year), The data rows passed in for lifetime prediction must have the same periodicity as the time interval (that is, you can't pass a row that represents a quarter, and then a row that represents a year, and then one that represents 5 years. You must pass data for periods $1,2,3,4, \ldots$, but not $1,3,7,10,20$. Or if the time interval is 3 , you must pass periods $3,6,9, \ldots$ or $2,5,8, \ldots$, but not $3,7,15,30$.

## Fit and Validate Model

```
load RetailCreditPanelData.mat
data = join(data,dataMacro);
head(data)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ID & ScoreGroup & YOB & Default & Year & GDP & Market \\
\hline 1 & Low Risk & 1 & 0 & 1997 & 2.72 & 7.61 \\
\hline 1 & Low Risk & 2 & 0 & 1998 & 3.57 & 26.24 \\
\hline 1 & Low Risk & 3 & 0 & 1999 & 2.86 & 18.1 \\
\hline 1 & Low Risk & 4 & 0 & 2000 & 2.43 & 3.19 \\
\hline 1 & Low Risk & 5 & 0 & 2001 & 1.26 & -10.51 \\
\hline 1 & Low Risk & 6 & 0 & 2002 & -0.59 & -22.95 \\
\hline
\end{tabular}
```

1	Low Risk	7	0	2003	0.63	2.78
1	Low Risk	8	0	2004	1.85	9.48

Select a model type. The behavior of the data validation in predictLifetime depends on the model type. For more information, see "Validation of Data Input for Lifetime Prediction" on page 6-349.

The time interval in this example is 1 . This value is stored in Cox models as the TimeInterval property and it is used for fitting and prediction.Logistic and Probit models do not store the time interval information.

```
ModelType = cox - ;
pdModel = fitLifetimePDModel(data,ModelType,...
 'IDVar','ID','AgeVar','YOB',...
 'LoanVars','ScoreGroup','MacroVars',{'GDP' 'Market'},...
 'ResponseVar','Default');
disp(pdModel)
 Cox with properties:
 TimeInterval: 1
 ExtrapolationFactor: 1
 ModelID: "Cox"
 Description: ""
 UnderlyingModel: [1x1 CoxModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"
```


## Conditional PD and Model Validation

The conditional PD values returned by predict are consistent with the time interval used for training the model. In this example, all PD values returned by predict are 1-year probabilities of default. There is no validation of the periodicity in the data input for predict.

```
dataPredictExample = data([1 2 6 10 15],:);
pdExample = predict(pdModel,dataPredictExample)
pdExample = 5x1
 0.0089
 0.0052
 0.0038
 0.0094
 0.0031
```

Model validation is done using the conditional PD returned by predict. Therefore, there is no row periodicity validation in modelDiscrimination or modelCalibration. However, model validation requires observed values of the response variable, and the definition of default used for the validation response values must be consistent with the training data. In other words, if the training data uses a time interval of 1 , the validation response data cannot be defined with quarterly default data. There are no row-periodicity checks for modelDiscrimination or modelCalibration, it is assumed that the default definition in the validation data is consistent with the training data.
modelCalibrationPlot(pdModel,data, \{'YOB','ScoreGroup'\})


## Lifetime PD

The predictLifetime function is used to compute lifetime PD. When making lifetime predictions:

- A different data set is likely used, not the data you used for training and validation, but a new data set with forward-looking projections for different loans.
- The projected values in the lifetime prediction data set span several periods ahead, potentially several years ahead.

Load the DataPredictLifetime.mat data for lifetime prediction. Note that for prediction, you don't need to pass the response data, you only pass predictors. You only pass response values for fitting or validation, not for prediction.

```
load DataPredictLifetime.mat
LifetimeData = join(LoanData,MacroScenario);
disp(LifetimeData)
```

ID	ScoreGroup	YOB	Year	GDP	Market
1304	"Medium Risk"	4	2020	1.1	4.5
1304	"Medium Risk"	5	2021	0.9	1.5
1304	"Medium Risk"	6	2022	1.2	5
1304	"Medium Risk"	7	2023	1.4	5.5
1304	"Medium Risk"	8	2024	1.6	6


1304	"Medium Risk"	9	2025	1.8	6.5
1304	"Medium Risk"	10	2026	1.8	6.5
2067	"Low Risk"	7	2020	1.1	4.5
2067	"Low Risk"	8	2021	0.9	1.5
2067	"Low Risk"	9	2022	1.2	5
2067	"Low Risk"	10	2023	1.4	5.5

The rows have yearly data, consistent with the time interval used for training. You can see this in both the Year variable and the YOB variable. There are no flags in this data set for lifetime predictions.

Lifetime LifetimeD	. $\mathrm{PD}=$ predict   a.LifetimePD =	edict	fetime	dMod	ifetim		
LifetimeD	$11 \times 8$ table						
ID	ScoreGroup	YOB	Year	GDP	Market	PD	LifetimePD
1304	"Medium Risk"	4	2020	1.1	4.5	0.0081336	0.0081336
1304	"Medium Risk"	5	2021	0.9	1.5	0.0063861	0.014468
1304	"Medium Risk"	6	2022	1.2	5	0.0047416	0.019141
1304	"Medium Risk"	7	2023	1.4	5.5	0.0028262	0.021913
1304	"Medium Risk"	8	2024	1.6	6	0.0014844	0.023365
1304	"Medium Risk"	9	2025	1.8	6.5	0.0014517	0.024783
1304	"Medium Risk"	10	2026	1.8	6.5	0.0014517	0.026198
2067	"Low Risk"	7	2020	1.1	4.5	0.0016091	0.0016091
2067	"Low Risk"	8	2021	0.9	1.5	0.0009006	0.0025082
2067	"Low Risk"	9	2022	1.2	5	0.00085273	0.0033588
2067	"Low Risk"	10	2023	1.4	5.5	0.00083391	0.0041899

When the periodicity of the rows does not match the periodicity in the training data, the lifetime PD values cannot be correctly computed.

Modify the selected rows using the SelectedRows variable in the code to see the behavior of predictLifetime as the periodicity of the data changes. (Alternatively, the YOB values can be manually modified to enter age increments inconsistent with the time interval of 1 year.)


1304	"Medium Risk"	9	2025	1.8	6.5		
1304	"Medium Risk"	10	2026	1.8	6.5		
2067	"Low Risk"	7	2020	1.1	4.5		
2067	"Low Risk"	8	2021	0.9	1.5		
2067	"Low Risk"	9	2022	1.2	5		
2067	"Low Risk"	10	2023	1.4	5.5		
LifetimeData2. PD = predict(pdModel, LifetimeData2) ;							
```LifetimeData2.LifetimePD = predictLifetime(pdModel,LifetimeData2); disp(LifetimeData2)```							
ID	ScoreGroup	YOB	Year	GDP	Market	PD	LifetimePD
1304	"Medium Risk"	4	2020	1.1	4.5	0.0081336	0.0081336
1304	"Medium Risk"	5	2021	0.9	1.5	0.0063861	0.014468
1304	"Medium Risk"	6	2022	1.2	5	0.0047416	0.019141
1304	"Medium Risk"	7	2023	1.4	5.5	0.0028262	0.021913
1304	"Medium Risk"	8	2024	1.6	6	0.0014844	0.023365
1304	"Medium Risk"	9	2025	1.8	6.5	0.0014517	0.024783
1304	"Medium Risk"	10	2026	1.8	6.5	0.0014517	0.026198
2067	"Low Risk"	7	2020	1.1	4.5	0.0016091	0.0016091
2067	"Low Risk"	8	2021	0.9	1.5	0.0009006	0.0025082
2067	"Low Risk"	9	2022	1.2	5	0.00085273	0.0033588
2067	"Low Risk"	10	2023	1.4	5.5	0.00083391	0.0041899

The differences in behavior depend on the model type and whether the age variable is part of the model. You can change the model type in the fitting step to see the behavior for different model types. Remove the age variable (AgeVar) for Logistic and Probit models to observe the behavior when an age input argument is not part of the model. Note that an age input (AgeVar) argument is required for a Cox model. For more information, see "Time Interval and Data Input for Lifetime Prediction" on page 6-348.

Input Arguments

pdModel - Probability of default model
Logistic object | Probit object | Cox object | customLifetimePDModel object
Probability of default model, specified as a previously created Logistic, Probit, or Cox object using fitLifetimePDModel. Alternatively, you can create a custom probability of default model using customLifetimePDModel.

Data Types: object

data - Lifetime data

table
Lifetime data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime predictions. The predictor names and data types must be consistent with the underlying model. The IDVar property of the pdModel input is used to identify the column containing the ID values in the table, and the IDs are used to identify rows corresponding to the different IDs and to make lifetime predictions for each ID.

Note

- Rows passed in data for lifetime prediction must have the same periodicity as the time interval used to fit the model. For example, if the time interval used for training was one year, the data input for lifetime prediction cannot have quarterly data, or data for every five years.
- Consecutive rows for the same ID must correspond to consecutive periods. For example, if the time interval used for training was one year, you cannot skip years and pass data for years $1,2,5$, and 10.

For more information, see "Data Input for Lifetime Prediction" on page 6-348 and "Time Interval and Data Input for Lifetime Prediction" on page 6-348.

Data Types: table

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: LifetimeData = predictLifetime(pdModel,Data,'ProbabilityType','survival')
```

ProbabilityType - Probability type
'cumulative' (default)| character vector with value 'cumulative', 'marginal', or
'survival' | string with value "cumulative", "marginal", or "survival"
Probability type, specified as the comma-separated pair consisting of 'ProbabilityType' and a character vector or string.
Data Types: char | string

Output Arguments

LifeTimePredictedPD - Predicted lifetime PD values

vector
Predicted lifetime PD values, returned as a NumRows-by-1 numeric vector.

More About

Lifetime PD

Lifetime PD is the probability of a default event over the lifetime of a financial asset.
Lifetime PD typically refers to the cumulative default probability, given by

$$
P D_{\text {cumulative }}(t)=P\{T \leq t\}
$$

where T is the time to default.
For example, the predicted lifetime, cumulative PD for the second year is the probability that the borrower defaults any time between now and two years from now.

A closely related concept used for the computation of the lifetime Expected Credit Loss (ECL) is the marginal PD, given by

$$
P D_{\text {marginal }}=P D_{\text {cumulative }}(t)-P D_{\text {cumulative }}(t-1)
$$

A closely related probability is the survival probability, which is the complement of the cumulative probability and is reported as

$$
S(t)=P\{T>t\}=1-P D_{\text {cumulative }}(t)
$$

The following recursive formula shows the relationship between the conditional PDs and the survival probability:

$$
\begin{aligned}
& S\left(t_{0}\right)=1 \\
& S\left(t_{1}\right)=S\left(t_{0}\right)\left(1-P D\left(t_{1}\right)\right) \\
& \ldots \\
& S\left(t_{n}\right)=S\left(t_{n-1}\right)\left(1-P D\left(t_{n}\right)\right)
\end{aligned}
$$

Where $t_{\mathrm{i}}-t_{\mathrm{i}}-1=\Delta t$ for all $i=1, \ldots, n$, and Δt is the time interval used to fit the model. For more information, see "Time Interval for Logistic Models" on page 6-623 and "Time Interval for Probit Models" on page 6-634. In other words, because the PD values on the right-hand side of the formulas are probabilities of default for a period of length Δt, the increments between consecutive times in the recursion must always be of length Δt for all periods $i=1,2, \ldots, n$.

The predictLifetime function calls the predict function to get the conditional PD and then converts it to survival, marginal, or lifetime cumulative PD using the previous formulas.

Data Input for Lifetime Prediction

Lifetime PD is the cumulative probability of default over multiple periods.
The input for the predictLifetime function should contain multiple rows per ID, where rows represent sequential time periods regularly spaced. In other words, the data should be in panel data form. The time interval between adjacent rows must be consistent with the time interval used to define the default binary variable in the training data. For more information, see "Time Interval and Data Input for Lifetime Prediction" on page 6-348.

If a dataset with one row per ID is passed, the output of predictLifetime is the same as the output of predict because the PD is predicted for one period only (see formulas in predict section). A dataset with multiple rows per ID allows predictLifetime to aggregate the default probability over multiple periods to get the cumulative PD.

The predictLifetime function is typically used for predictions on outstanding loans, where the predictor variable values must be projected, period by period, for several periods into the future. Although historical (training or testing) data sets in panel data form can be passed to predictLifetime, the typical workflow requires data preparation. It starts out with outstanding loans, where only the most recent values of the predictor variables are known. The data preparation then projects the predictor variable values into the future for multiple time periods, typically until the maturity of the loan for a lifetime analysis. For example, see "Create Custom Lifetime PD Model for Decision Tree Model with Function Handle" on page 4-224.

Time Interval and Data Input for Lifetime Prediction

The time interval used for fitting the model plays an important role for lifetime prediction.

The data input for predictLifetime is in panel data form, with multiple rows for each ID. There is an implicit or explicit time stamp for each row, and the time increments between consecutive rows must be the same as the time interval used to fit the model. For more information on time intervals, see "Time Interval for Cox Models" on page 6-551, "Time Interval for Logistic Models" on page 6-623, and "Time Interval for Probit Models" on page 6-634.

Following the notation of the lifetime PD recursive formulas described in "Lifetime PD" on page 6347 , the time stamps $t_{1}, t_{2}, \ldots, t_{\mathrm{n}}$ between consecutive rows must satisfy $t_{i}-t_{i-1}=\Delta t$ for all $i=1, \ldots, n$, where Δt is the time interval used to fit the model. In other words:

- Rows passed in the data input for lifetime prediction must have the same periodicity as the time interval used to fit the model. For example, if the time interval used for training was 1 year, the data input for lifetime prediction cannot have quarterly data, or data for every 5 years.
- consecutive rows for the same ID must correspond to consecutive periods. For example, if the time interval used for training was 1 year, you cannot skip years and pass data for years 1, 2, 5, and 10.

Suppose, for concreteness, that the time interval Δt used to fit the model is 1 year. Then the PD values on the right-hand side of the formulas in "Lifetime PD" on page 6-347 are 1-year PDs.
Therefore:

- Lifetime PD for quarterly data cannot be computed because $\mathrm{S}(1.25) \neq \mathrm{S}(1)(1-\mathrm{PD}(1.25))$, since $\mathrm{PD}(1.25)$ is a 1 -year PD spanning the default over the interval going from 0.25 to 1.25 .
- Lifetime PD for data every 5 years cannot be computed because $\mathrm{S}(10) \neq \mathrm{S}(5)(1-\mathrm{PD}(10))$, since $\mathrm{PD}(10)$ is a 1 -year PD spanning the default over the interval going from 9 to 10.
- Lifetime PD for non-consecutive rows cannot be computed. For example, if the data input has rows corresponding to years $1,2,5$ and 10 , then $\mathrm{S}(1)$ and $\mathrm{S}(2)$ can be computed correctly, however $\mathrm{S}(5) \neq \mathrm{S}(2)(1-\mathrm{PD}(5))$ because $\mathrm{PD}(5)$ is a 1 -year PD spanning the default over the interval going from 4 to 5 , and similarly for $S(10)$.

Validation of Data Input for Lifetime Prediction

The validation of the row periodicity in the data input for predictLifetime depends on the model type (ModelType) and whether the model contains an age variable (AgeVar).

Cox models can validate the periodicity of the data because the age variable (AgeVar) is a required input argument and Cox models store the time interval (TimeInterval) used to fit the model. The TimeInterval is used both to fit the model and to predict PD values. For more information on time intervals for a Cox model, see "Time Interval for Cox Models" on page 6-551. The age variable (AgeVar) is used as the time dimension. For each ID, if the periodicity of the data input, measured by the increments in the age variable, does not match the time interval used to train the model, a warning is displayed and the lifetime PD values are filled with NaNs.

Logistic and Probit models do not store the time interval value. However the predicted PD values are still consistent with the (explicit or implicit) time interval in the training data. For more information, see "Time Interval for Logistic Models" on page 6-623 and "Time Interval for Probit Models" on page 6-634. Moreover, for Logistic and Probit models, the age variable (AgeVar) is optional, and there is no other way to specify a time dimension in the model. Therefore:

- If the Logistic or Probit model has no age variable information, there is no way to validate the periodicity of the data. The lifetime PD is computed using the recursion in "Lifetime PD" on page $6-347$, assuming that the periodicity is correct. It is the responsibility of the caller to ensure that the periodicity of the data rows is consistent with the time interval in the training data.
- If the Logistic or Probit model has an age variable (AgeVar), this is used as a time dimension. However, because the time interval used to train the data is unknown for Logistic and Probit models, these models can only validate that the age increments are regular as follows, but cannot compare against a reference time interval.
- For each ID, when the age shows irregular age increments, there is a warning and the lifetime PD values are set to NaNs.
- When the age increments are regular within each ID, but some IDs have different age increments than others, a warning is displayed, but it is unknown which ID has the wrong increments. The lifetime PD values are computed using the recursion in "Lifetime PD" on page 6-347 for all IDs. It is the responsibility of the caller to ensure that the periodicity of the data rows for all IDs is consistent with the time interval in the training data.

For an example, see "Lifetime Prediction and Time Interval" on page 6-342.

Version History

Introduced in R2020b

R2022b: Support for customLifetimePDModel model

The pdModel input supports an option for a customLifetimePDModel model object that you can create using customLifetimePDModel.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.

See Also

predict|modelDiscrimination|modelDiscriminationPlot|modelCalibration| modelCalibrationPlot|fitLifetimePDModel|Logistic|Probit|Cox| customLifetimePDModel

Topics

"Basic Lifetime PD Model Validation" on page 4-129
"Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
"Compare Lifetime PD Models Using Cross-Validation" on page 4-121
"Expected Credit Loss Computation" on page 4-124
"Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
"Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 4-75
"Create Custom Lifetime PD Model for Decision Tree Model with Function Handle" on page 4-224 "Overview of Lifetime Probability of Default Models" on page 1-25

probdefault

Likelihood of default for given dataset for a compactCreditScorecard object

Syntax

pd = probdefault(csc,data)

Description

pd = probdefault(csc,data) computes the probability of default for the compactCreditScorecard (csc) based on the data.

Examples

Calculate the Probability of Default for a compactCreditScorecard Object with New Data

To create a compactCreditScorecard object, first create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).

```
load CreditCardData.mat
sc = creditscorecard(data)
sc =
```

 creditscorecard with properties:
 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ' '
 VarNames: \{'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustI
 NumericPredictors: \{'CustID' 'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBala
 CategoricalPredictors: \{'ResStatus' 'EmpStatus' 'OtherCC'\}
 BinMissingData: 0
 IDVar: '
 PredictorVars: \{'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustI
 Data: [1200x11 table]
 Before creating a compactCreditScorecard object, you must use autobinning and fitmodel with the creditscorecard object.

```
sc = autobinning(sc);
sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769
```

```
Generalized linear regression model:
    logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBal
    Distribution = Binomial
Estimated Coefficients:
```



```
\begin{tabular}{lrrrr} 
(Intercept) & 0.70239 & 0.064001 & 10.975 & \(5.0538 \mathrm{e}-28\) \\
CustAge & 0.60833 & 0.24932 & 2.44 & 0.014687 \\
ResStatus & 1.377 & 0.65272 & 2.1097 & 0.034888 \\
EmpStatus & 0.88565 & 0.293 & 3.0227 & 0.0025055 \\
CustIncome & 0.70164 & 0.21844 & 3.2121 & 0.0013179 \\
TmWBank & 1.1074 & 0.23271 & 4.7589 & \(1.9464 \mathrm{e}-06\) \\
OtherCC & 1.0883 & 0.52912 & 2.0569 & 0.039696 \\
AMBalance & 1.045 & 0.32214 & 3.2439 & 0.0011792
\end{tabular}
```

```
1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16
```

Use the creditscorecard object with compactCreditScorecard to create a compactCreditScorecard object.

```
csc = compactCreditScorecard(sc)
```

CSC =
compactCreditScorecard with properties:

```
                Description: ''
                GoodLabel: 0
                    ResponseVar: 'status'
                WeightsVar:
            NumericPredictors: {'CustAge' 'CustIncome' 'TmWBank' 'AMBalance'}
        CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
```

 PredictorVars: \{'CustAge' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'Other
 Then use probdefault with the compactCreditScorecard object. For the purpose of illustration, suppose that a few rows from the original data are our "new" data. Use the data input argument in the probdefault function to obtain the probability of default using the newdata.

```
newdata = data(10:20,:);
pd = probdefault(csc,newdata)
pd = 11\times1
    0.3047
    0.3418
    0.2237
    0.2793
    0.3615
    0.1653
    0.3799
    0.4055
    0.4269
    0.1915
```


Input Arguments

csc - Compact credit scorecard model
compactCreditScorecard object
Credit scorecard model, specified as a compactCreditScorecard object.
To create a compactCreditScorecard object, use compactCreditScorecard or compact from Financial Toolbox.

data - Dataset to apply probability of default rules

table
Dataset to apply probability of default rules, specified as a MATLAB table, where each row corresponds to individual observations. The data must contain columns for each of the predictors in the compactCreditScorecard object.
Data Types: table

Output Arguments

pd - Probability of default
array
Probability of default, returned as a NumObs-by-1 numerical array of default probabilities.

More About

Default Probability

After the unscaled scores are computed (see "Algorithms for Computing and Scaling Scores"), the probability of the points being "Good" is represented by the following formula:

ProbGood $=1 . /(1+\exp (-U n s c a l e d S c o r e s))$
Thus, the probability of default is

```
pd = 1 - ProbGood
```


Version History

Introduced in R2019a

References

[1] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also

compactCreditScorecard|score | displaypoints | validatemodel

Topics

"Case Study for Credit Scorecard Analysis"
"Credit Scorecard Modeling with Missing Values"
"Credit Scorecard Modeling Workflow"
"About Credit Scorecards"

quantile

Quantile expected shortfall (ES) backtest by Acerbi and Szekely

Syntax

TestResults = quantile(ebts)
[TestResults,SimTestStatistic] = quantile(ebts,Name,Value)

Description

TestResults = quantile(ebts) runs the quantile ES backtest of Acerbi-Szekely (2014).
[TestResults,SimTestStatistic] = quantile(ebts,Name, Value) adds an optional namevalue pair argument for TestLevel.

Examples

Run an ES Quantile Test

Create an esbacktestbysim object.

```
load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
    'Degrees0fFreedom',10,...
    'Location',Mu,...
    'Scale',Sigma,...
    'PortfolioID',"S&P",...
    'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
    'VaRLevel',VaRLevel);
```

Generate the ES quantile test report.

```
TestResults = quantile(ebts)
TestResults=3\times10 table
    PortfolioID VaRID VaRLevel Quantile PValue
            "S&P" 
            "S&P"
            "S&P"
                                reject
                            0.99
                                reject
```

0.002

0
0

TestStatistic

$$
\begin{aligned}
& -0.10602 \\
& -0.15697 \\
& -0.26561
\end{aligned}
$$

Input Arguments

ebts - esbacktestbysim object
object
esbacktestbysim (ebts) object, which contains a copy of the given data (the PortfolioData, VarData, ESData, and Distribution properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating an esbacktestbysim object, see esbacktestbysim.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [TestResults,SimTestStatistic] = quantile(ebts,'TestLevel',0.99)

TestLevel - Test confidence level

0.95 (default) | numeric with values between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric value between 0 and 1 .

Data Types: double

Output Arguments

TestResults - Results

table
Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:

- 'PortfolioID' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel' - VaR level for the corresponding VaR data column
- 'Quantile' - Categorical array with categories 'accept' and 'reject' indicating the result of the quantile test
- 'PValue ' $-P$-value of the quantile test
- 'TestStatistic' - Quantile test statistic
- 'CriticalValue' - Critical value for the quantile test
- 'Observations' - Number of observations
- 'Scenarios' - Number of scenarios simulated to get the p-values
- 'TestLevel' - Test confidence level

SimTestStatistic - Simulated values of test statistic

numeric array
Simulated values of the test statistic, returned as a NumVaRs-by-NumScenarios numeric array.

More About

Quantile Test by Acerbi and Szekely

The quantile test (also known as the third Acerbi-Szekely test) uses a sample estimator of the expected shortfall.

The expected shortfall for a sample $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{N}}$ is:

$$
\overparen{E S}(Y)=-\frac{1}{\left\lfloor N p_{V a R}\right\rfloor} \sum_{i=1}^{\left\lfloor N p_{V a R}\right\rfloor} Y_{[i]}
$$

where
N is the number of periods in the test window $(t=1, \ldots, \mathrm{~N})$.
$P_{\text {VaR }}$ is the probability of VaR failure defined as 1-VaR level.
$\mathrm{Y}_{[1]}, \ldots, \mathrm{Y}_{[\mathrm{N}]}$ are the sorted sample values (from smallest to largest), and $\left[N p_{V a R}\right]$ is the largest integer less than or equal to $\mathrm{Np}_{\text {Var }}$.

To compute the quantile test statistic, a sample of size N is created at each time t as follows. First, convert the portfolio outcomes to X_{t} to ranks $U_{1}=P_{1}\left(X_{1}\right), \ldots, U_{N}=P_{N}\left(X_{N}\right)$ using the cumulative distribution function P_{t}. If the distribution assumptions are correct, the rank values $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{N}}$ are uniformly distributed in the interval $(0,1)$. Then at each time t :

- Invert the ranks $\mathrm{U}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{N}}\right)$ to get N quantiles $P_{t}^{-1}(U)=\left(P_{t}^{-1}\left(U_{1}\right), \ldots, P_{t}^{-1}\left(U_{N}\right)\right)$.
- Compute the sample estimator $\overparen{E S}\left(P_{t}^{-1}(U)\right)$.
- Compute the expected value of the sample estimator $E\left[\overparen{E S}\left(P_{t}^{-1}(V)\right)\right]$
where $V=\left(V_{1}, \ldots, V_{N}\right.$ is a sample of N independent uniform random variables in the interval $(0,1)$. This value can be computed analytically.

Define the quantile test statistic as

$$
Z_{\text {quantile }}=-\frac{1}{N} \sum_{t=1}^{N} \frac{\overparen{E S}\left(P_{t}^{-1}(U)\right)}{E\left[\widehat{E S}\left(P_{t}^{-1}(V)\right)\right]}+1
$$

The denominator inside the sum can be computed analytically as

$$
E\left[\overparen{E S}\left(P_{t}^{-1}(V)\right)\right]=-\frac{N}{\left[N_{p V a R}\right]} \int^{1} I_{1-p}\left(N-\left[N_{p V a R}\right],\left[N_{p V a R}\right]\right) P_{t}^{-1}(p) d p
$$

where $I_{x}(z, w)$ is the regularized incomplete beta function. For more information, see betainc.

Significance of the Test

Assuming that the distributional assumptions are correct, the expected value of the test statistic $Z_{\text {quantile }}$ is 0 .

This is expressed as:

$$
E\left[Z_{\text {quantile }}\right]=0
$$

Negative values of the test statistic indicate risk underestimation. The quantile test is a one-sided test that rejects the model when there is evidence that the model underestimates risk. (For technical details on the null and alternative hypotheses, see Acerbi-Szekely, 2014). The quantile test rejects the model when the p-value is less than 1 minus the test confidence level.

For more information on simulating the test statistics and computing the p-values and critical values, see simulate.

Edge Cases

The quantile test statistic is well-defined when there are no VaR failures in the data.
However, when the expected number of failures $N p_{\text {VaR }}$ is small, an adjustment is required. The sample estimator of the expected shortfall takes the average of the smallest $N_{\text {tail }}$ observations in the sample, where $N_{t a i l}=\left\lfloor N_{p V a R}\right\rfloor$. If $N p_{\mathrm{VaR}}<1$, then $N_{\text {tail }}=0$, the sample estimator of the expected shortfall becomes an empty sum, and the quantile test statistic is undefined.

To account for this, whenever $N p_{V a R}<1$, the value of $N_{\text {tail }}$ is set to 1 . Thus, the sample estimator of the expected shortfall has a single term and is equal to the minimum value of the sample. With this adjustment, the quantile test statistic is then well-defined and the significance analysis is unchanged.

Version History

Introduced in R2017b

References

[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

See Also

summary | runtests | conditional| unconditional| simulate|minBiasRelative|
minBiasAbsolute|esbacktestbysim|esbacktestbyde
Topics
"Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"Comparison of ES Backtesting Methods" on page 2-26

runtests

Run all tests in varbacktest

Syntax

TestResults = runtests(vbt)
TestResults = runtests(vbt,Name,Value)

Description

TestResults $=$ runtests (vbt) runs all the tests in the varbacktest object. runtests reports only the final test result. For test details such as likelihood ratios, run individual tests:

- tl - Traffic light test
- bin - Binomial test
- pof - Proportion of failures
- tuff - Time until first failure
- cc - Conditional coverage mixed
- cci - Conditional coverage independence
- tbf - Time between failures mixed
- tbfi - Time between failures independence

TestResults $=$ runtests(vbt,Name, Value) adds an optional name-value pair argument for TestLevel.

Examples

Run All VaR Backtests

Create a varbacktest object.

```
load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)
vbt =
    varbacktest with properties:
        PortfolioData: [1043x1 double]
            VaRData: [1043x1 double]
        PortfolioID: "Portfolio"
            VaRID: "VaR"
            VaRLevel: 0.9500
```

Generate the TestResults report for all VaR backtests.
TestResults = runtests(vbt,'TestLevel',0.99)

TestResults=1×11 table								
PortfolioID	VaRID	VaRLevel	TL	Bin	POF	TUFF	CC	CCI
"Portfolio"	"VaR"	0.95	green	accept	accept	accept	accept	accept

Generate the TestResults report for all VaR backtests using the name-value argument for 'ShowDetails' to display the test confidence level.

TestResults = runtests(vbt,'TestLevel',0.99,"ShowDetails",true)

Run All VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a varbacktest object and run all tests.
load VaRBacktestData

> vbt = varbacktest(EquityIndex, . . .
[Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
'PortfolioID', 'Equity', ..
'VaRID',\{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'\},...
'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);
runtests(vbt)

Input Arguments

vbt - varbacktest object
object
varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = runtests(vbt,'TestLevel', 0.99)

TestLevel - Test confidence level

0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric between 0 and 1 .
Data Types: double

ShowDetails - Indicates if the output displays a column showing the test confidence level

 false (default) | scalar logical with a value of true or falseIndicates if the output displays a column showing the test confidence level, specified as the commaseparated pair consisting of 'ShowDetails' and a scalar logical value.
Data Types: logical

Output Arguments

TestResults - Results

table
Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:

- 'PortfolioID ' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel ' - VaR level for the corresponding VaR data column
- 'TL' - Categorical (ordinal) array with categories green, yellow, and red that indicate the result of the traffic light (tl) test
- 'Bin' - Categorical array with categories accept and reject that indicate the result of the bin test
- 'POF' - Categorical array with the categories accept and reject that indicate the result of the pof test.
- 'TUFF' - Categorical array with the categories accept and reject that indicate the result of the tuff test
- 'CC' - Categorical array with the categories accept and reject that indicate the result of the cc test
- 'CCI' - Categorical array with the categories accept and reject that indicate the result of the cci test
- 'TBF' - Categorical array with the categories accept and reject that indicate the result of the tbf test
- 'TBFI' - Categorical array with the categories accept and reject that indicate the result of the tbfi test

Note For the test results, the terms 'accept ' and 'reject' are used for convenience, technically a test does not accept a model. Rather, a test fails to reject it.

Version History
 Introduced in R2016b

See Also

varbacktest|tl|pof|tuff|cc|cci|tbf|tbfi|summary

Topics

"VaR Backtesting Workflow" on page 2-6
"Value-at-Risk Estimation and Backtesting" on page 2-10
"Overview of VaR Backtesting" on page 2-2
"Comparison of ES Backtesting Methods" on page 2-26

runtests

Run all expected shortfall (ES) backtests for esbacktest object

Syntax

TestResults $=$ runtests(ebt)
TestResults $=$ runtests(ebt,Name,Value)

Description

TestResults = runtests(ebt) runs all the tests for the esbacktest object. runtests reports only the final test result. For test details, such as p-values, run the individual tests:

- unconditionalNormal
- unconditionalT

TestResults = runtests(ebt,Name,Value) adds an optional name-value pair argument for TestLevel.

Examples

Run All ES Backtests

Create an esbacktest object.

```
load ESBacktestData
ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel'',VaRLevel)
ebt =
    esbacktest with properties:
        PortfolioData: [1966x1 double]
            VaRData: [1966x1 double]
            ESData: [1966x1 double]
        PortfolioID: "Portfolio"
                VaRID: "VaR"
            VaRLevel: 0.9750
```

Generate the TestResults report for all ES backtests.
TestResults = runtests(ebt,'TestLevel',0.99)
TestResults=1×5 table

PortfolioID	VaRID VaRLevel "Portfolio" "VaR" UnconditionalNormalUnconditionalT	reject		accept

Generate the TestResults report for all ES backtests using the name-value argument for 'ShowDetails' to display the test confidence level.

```
TestResults = runtests(ebt,'TestLevel',0.99,'ShowDetails',true)
TestResults=1\times6 table
    PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT TestLevel
    "Portfolio" "VaR" 0.975 reject accept 0.99
```


Input Arguments

ebt - esbacktest object
object
esbacktest (ebt) object, which contains a copy of the given data (the PortfolioData, VarData, and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating an esbacktest object, see esbacktest.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = runtests(ebt,'TestLevel',0.99)

TestLevel - Test confidence level

0.95 (default) | numeric value between 0.5 and 0.9999

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric value between 0.5 and 0.9999.

Data Types: double
ShowDetails - Indicates if the output displays a column showing the test confidence level false (default) | scalar logical with a value of true or false

Indicates if the output displays a column showing the test confidence level, specified as the commaseparated pair consisting of 'ShowDetails' and a scalar logical value.
Data Types: logical

Output Arguments

TestResults - Results

table
Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:

- 'PortfolioID ' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel' - VaR level for the corresponding VaR data column
- 'UnconditionalNormal ' - Categorical array with categories 'accept' and 'reject' that indicate the result of the unconditional normal test
- 'UnconditionalT' - Categorical array with categories 'accept' and 'reject' that indicate the result of the unconditional t test

Note For the test results, the terms 'accept' and 'reject' are used for convenience. Technically, a test does not accept a model; rather, a test fails to reject it.

Version History

Introduced in R2017b

See Also

esbacktest|summary|unconditionalNormal|unconditionalT

Topics

"Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information" on page 2-30
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"Comparison of ES Backtesting Methods" on page 2-26

runtests

Run all expected shortfall backtests (ES) for esbacktestbysim object

Syntax

TestResults $=$ runtests(ebts)
TestResults = runtests(ebts,Name,Value)

Description

TestResults $=$ runtests (ebts) runs all the tests for the esbacktestbysim object. runtests reports only the final test result. For test details, such as p-values, run the individual tests:

- conditional
- unconditional
- quantile

TestResults = runtests(ebts,Name, Value) adds an optional name-value pair argument for TestLevel.

Examples

Run All ES Backtests

Create an esbacktestbysim object.

```
load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
    'Degrees0fFreedom',10,...
    'Location',Mu,...
    'Scale',Sigma,...
    'PortfolioID',"S&P",...
    'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
    'VaRLevel',VaRLevel);
```

Generate the TestResults report for all ES backtests.
TestResults = runtests(ebts,'TestLevel',0.99)
TestResults=3×8 table

PortfolioID	VaRID	VaRLevel	Conditional	Unconditional	Quantile
"S\&P"	"t(10) 95\%"	0.95	reject	accept	reject
"S\&P"	"t(10) 97.5\%"	0.975	reject	accept	reject
"S\&P"	"t(10) 99\%"	0.99	reject	reject	reject

Generate the TestResults report for all ES backtests using the name-value argument for 'ShowDetails ' to display the test confidence level.

```
TestResults = runtests(ebts,'TestLevel',0.99,'ShowDetails',true)
TestResults=3\times9 table
\begin{tabular}{|c|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & Conditional & Unconditional & Quantile \\
\hline "S\&P" & "t(10) 95\%" & 0.95 & reject & accept & reject \\
\hline "S\&P" & "t(10) 97.5\%" & 0.975 & reject & accept & reject \\
\hline "S\&P" & "t(10) 99\%" & 0.99 & reject & reject & reject \\
\hline
\end{tabular}
```


Input Arguments

ebts - esbacktestbysim object
object
esbacktestbysim (ebts) object, which contains a copy of the given data (the PortfolioData, VarData, ESData, and Distribution properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating an esbacktestbysim object, see esbacktestbysim.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = runtests(ebts,'TestLevel',0.99)

TestLevel - Test confidence level

0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric value between 0 and 1.

Data Types: double
ShowDetails - Indicates if the output displays a column showing the test confidence level false (default) | scalar logical with a value of true or false

Indicates if the output displays a column showing the test confidence level, specified as the commaseparated pair consisting of 'ShowDetails' and a scalar logical value.
Data Types: logical

Output Arguments

TestResults - Results

table
Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:

- 'PortfolioID' - Portfolio ID for the given data
- 'VaRID ' - VaR ID for each of the VaR data columns provided
- 'VaRLevel' - VaR level for the corresponding VaR data column
- 'Conditional' - Categorical array with categories 'accept' and 'reject' indicating the result of the conditional test
- 'Unconditional' - Categorical array with categories 'accept' and 'reject' indicating the result of the unconditional test
- 'Quantile' - Categorical array with categories 'accept' and 'reject' indicating the result of the quantile test
- 'minBiasAbsolute' - Categorical array with categories 'accept' and 'reject' indicating the result of the minBiasAbsolute test
- 'minBiasRelative' - Categorical array with categories 'accept' and 'reject' indicating the result of the minBiasRelative test

Note If you request to show additional details by setting the ShowDetails optional input to true, then the output also contains a TestLevel column for the confidence level.

For the test results, the terms 'accept' and 'reject' are used for convenience. Technically, a test does not accept a model; rather, a test fails to reject it.

Version History

Introduced in R2017b

See Also

summary | conditional|unconditional | quantile | simulate|minBiasRelative | minBiasAbsolute|esbacktestbysim|esbacktestbyde

Topics

"Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"Comparison of ES Backtesting Methods" on page 2-26

runtests

Run all expected shortfall (ES) backtests for esbacktestbyde object

Syntax

TestResults = runtests(ebtde)
TestResults = runtests(\qquad ,Name, Value)

Description

TestResults = runtests(ebtde) runs all the tests for the esbacktestbyde object. runtests reports only the final test result. For test details such as p-values, run the individual tests:

- unconditionalDE
- conditionalDE

TestResults = runtests(\qquad ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input argument in the previous syntax.

Examples

Create an esbacktestbyde Object and Run ES Backtests

Create an esbacktestbyde object for a t model with 10 degrees of freedom, and then run ES backtests.

```
load ESBacktestDistributionData.mat
    rng('default'); % For reproducibility
    ebtde = esbacktestbyde(Returns,"t",...
        'Degrees0fFreedom',T10DoF,...
        'Location',T10Location,...
        'Scale',T10Scale,...
        'PortfolioID',"S&P",...
        'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
        'VaRLevel',VaRLevel);
    runtests(ebtde)
ans=3\times5 table
    PortfolioID VaRID VaRLevel ConditionalDE UnconditionalDE
\begin{tabular}{llrll} 
"S\&P" & "t(10) \(95 \%\) " & 0.95 & reject & accept \\
"S\&P" & \(" t(10) 97.5 \% "\) & 0.975 & reject & accept \\
"S\&P" & \(" t(10) 99 \% "\) & 0.99 & reject & reject
\end{tabular}
```

To view complete details for the tests, use the name-value pair argument 'ShowDetails'.

```
runtests(ebtde,'ShowDetails',true)
```

ans=3×8 table
PortfolioID VaRID VaRLevel ConditionalDE UnconditionalDE CriticalValu
\qquad
"S\&P"
"S\&P"
"S\&P"
"S\&P"

$$
\begin{aligned}
& " t(10) 95 \% " \\
& " t(10) 97.5 \% " \\
& t \mathrm{t}(10) 99 \% "
\end{aligned}
$$

0.95
0.975
0.99
reject
reject
reject
reject
reject
reject
reject
accept
accept
reject
"large-sam
" large-samp
"large-sam

Input Arguments

ebtde - esbacktestbyde object object
esbacktestbyde object, which contains a copy of the data (the PortfolioData, VarData, and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating an esbacktestbyde object, see esbacktestbyde.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: TestResults =
runtests(ebtde,'CriticalValueMethod','simulation','TestLevel',0.99,'ShowDetai
ls',true)
```

CriticalValueMethod - Method to compute critical values, confidence intervals, and pvalues
'large-sample' (default)| character vector with values of 'large-sample' or 'simulation'| string with values of "large-sample" or "simulation"

Method to compute critical values, confidence intervals, and p-values, specified as the commaseparated pair consisting of 'CriticalValueMethod ' and character vector or string with a value of 'large-sample' or 'simulation'.

Data Types: char | string

NumLags - Number of lags in the conditionalDE test

1 (default) | positive integer
Number of lags in the conditionalDE test, specified as the comma-separated pair consisting of 'NumLags ' and a positive integer.
Data Types: double

TestLevel - Test confidence level

0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric value between 0 and 1 .
Data Types: double

ShowDetails - Flag to display all details in output

false (default) | scalar logical with a value of true or false
Flag to display all details in output including the columns for critical-value method, number of lags tested, and test confidence level, specified as the comma-separated pair consisting of 'ShowDetails' and a scalar logical value.

Data Types: logical

Output Arguments

TestResults - Results

table
Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following:

- 'PortfolioID ' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR levels
- 'VaRLevel' - VaR level
- 'ConditionalDE' - Categorical array with the categories 'accept' and 'reject', which indicate the result of the conditionalDE test
- 'UnconditionalDE' - Categorical array with the categories 'accept' and 'reject', which indicate the result of the unconditionalDE test
$\overline{\text { Note For the test results, the terms 'accept' and 'reject' are used for convenience. Technically, }}$ a test does not accept a model; rather, a test fails to reject it.

If you set the ShowDetails optional name-value argument to true, the TestResults table also includes 'CriticalValueMethod', 'NumLags', and 'TestLevel' columns.

Version History

Introduced in R2019b

References

[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk."
Management Science. Vol. 63, Issue 4, April 2017.
[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk". January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also

esbacktestbyde | summary | unconditionalDE | conditionalDE | simulate |
esbacktestbysim

Topics

"Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-63
"Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-72
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information" on page 2-30
"Overview of Expected Shortfall Backtesting" on page 2-20
"ES Backtest Using Du-Escanciano Method" on page 2-24
"Comparison of ES Backtesting Methods" on page 2-26

score

Compute credit scores for given dataset for a compactCreditScorecard object

Syntax

[Scores,Points] = score(csc,data)

Description

[Scores,Points] = score(csc,data) computes the credit scores and points for the compactCreditScorecard object (csc) based on the data. Missing data translates into NaN values for the corresponding points.

Examples

Obtain a Score for a compactCreditScorecard Object with New Data

To create a compactCreditScorecard object, first create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).

```
load CreditCardData.mat
sc = creditscorecard(data)
sc =
    creditscorecard with properties:
            GoodLabel: 0
            ResponseVar: 'status'
                WeightsVar: ''
                            VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustI
            NumericPredictors: {'CustID' 'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBala,
        CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
            BinMissingData: 0
                        IDVar: '
                        PredictorVars: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustI
                Data: [1200x11 table]
```

Before creating a compactCreditScorecard object, you must use autobinning and fitmodel with the creditscorecard object.

```
sc = autobinning(sc);
sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769
```

```
Generalized linear regression model:
    logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBal
    Distribution = Binomial
Estimated Coefficients:
    Estimate SE tStat pValue
        -
    0.064001
        10.975 5.0538e-28
        (Intercept)
        0.70239
        0.064001
        .
        CustAge
    0.60833
        0.24932
        0.65272
        2.44
        0.014687
        1.377
        2.1097
        0.034888
        ResStatus
    0.88565
        0.293
        2.1097
        0.0025055
        EmpStatus
        lrrrr
        lrustIncome 
        TmWBank
        1.1074 0.23271 4.7589
        1.9464e-06
        1.0883 0.52912 2.0569
        0.039696
        OtherCC
        AMBalance
        1.045
    0.32214 3.2439
    0.0011792
1200 observations, }1192\mathrm{ error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16
```

Use the creditscorecard object with compactCreditScorecard to create a compactCreditScorecard object.

```
csc = compactCreditScorecard(sc)
CSC =
    compactCreditScorecard with properties:
            Description: ''
                        GoodLabel: 0
                ResponseVar: 'status'
                        WeightsVar: ''
            NumericPredictors: {'CustAge' 'CustIncome' 'TmWBank' 'AMBalance'}
        CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
```

 PredictorVars: \{'CustAge' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'Other
 Then use score with the compactCreditScorecard object. For the purpose of illustration, suppose that a few rows from the original data are our "new" data. Use the data input argument in the score function to obtain the scores for the newdata.

```
newdata = data(10:20,:);
[Scores,Points] = score(csc,newdata)
Scores = 11\times1
    0.8252
    0.6553
    1.2443
    0.9478
    0.5690
    1.6192
    0.4899
    0.3824
    0.2945
```

1.4401						
Points=11×7 table						
CustAge	ResStatus	EmpStatus	CustIncome	TmWBank	OtherCC	AMBalance
0.23039	0.12696	-0.076317	0.43693	-0.033752	0.15842	-0.017472
0.23039	-0.031252	-0.076317	0.052329	-0.033752	0.15842	0.35551
0.23039	0.37641	-0.076317	0.24473	-0.044811	0.15842	0.35551
0.479	0.12696	-0.076317	0.43693	-0.18257	-0.19168	0.35551
0.046408	0.37641	-0.076317	0.092433	-0.033752	-0.19168	0.35551
0.21445	0.37641	0.31449	0.24473	-0.044811	0.15842	0.35551
-0.14036	0.12696	0.31449	0.081611	-0.033752	0.15842	-0.017472
-0.060323	-0.031252	0.31449	0.052329	-0.033752	0.15842	-0.017472
-0.15894	0.12696	0.31449	-0.45716	-0.044811	0.15842	0.35551
0.23039	0.12696	0.31449	0.43693	-0.18257	0.15842	0.35551
0.23039	0.37641	-0.076317	0.24473	-0.044811	0.15842	-0.064636

Input Arguments

csc - Compact credit scorecard model

compactCreditScorecard object
Compact credit scorecard model, specified as a compactCreditScorecard object.
To create a compactCreditScorecard object, use compactCreditScorecard or compact from Financial Toolbox.

data - Dataset to be scored

table
Dataset to be scored, specified as a MATLAB table where each row corresponds to individual observations. The data must contain columns for each of the predictors in the compactCreditScorecard object.

Output Arguments

Scores - Scores for each observation

vector
Scores for each observation, returned as a vector.

Points - Points per predictor for each observation

table
Points per predictor for each observation, returned as a table.

Algorithms

The score of an individual i is given by the formula

```
Score(i) = Shift + Slope*(b0 + b1*WOE1(i) + b2*WOE2(i)+ ... +bp*WOEp(i))
```

where $b j$ is the coefficient of the j-th variable in the model, and WOEj(i) is the Weight of Evidence (WOE) value for the i-th individual corresponding to the j-th model variable. Shift and Slope are scaling constants that can be controlled with formatpoints.

If the data for individual i is in the i-th row of a given dataset, to compute a score, the data (i, j) is binned using existing binning maps, and converted into a corresponding Weight of Evidence value WOEj(i). Using the model coefficients, the unscaled score is computed as

```
s = b0 + b1*WOE1(i) + ... +bp*WOEp(i).
```

For simplicity, assume in the description above that the j-th variable in the model is the j-th column in the data input, although, in general, the order of variables in a given dataset does not have to match the order of variables in the model, and the dataset could have additional variables that are not used in the model.

The formatting options can be controlled using formatpoints.

Version History

Introduced in R2019a

References

[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.
[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also

compactCreditScorecard|probdefault|displaypoints|validatemodel

Topics

"compactCreditScorecard Object Workflow" on page 3-57
"Case Study for Credit Scorecard Analysis"
"Credit Scorecard Modeling with Missing Values"
"Credit Scorecard Modeling Workflow"
"About Credit Scorecards"

screenpredictors

Screen credit scorecard predictors for predictive value

Syntax

```
metric_table = screenpredictors(data)
metric_table = screenpredictors(___ ,Name, Value)
```


Description

metric_table = screenpredictors(data) returns the output variable, metric_table, a MATLAB table containing the calculated values for several measures of predictive power for each predictor variable in the data.

Use the screenpredictors function as a preprocessing step in the "Credit Scorecard Modeling Workflow" to reduce the number of predictor variables before you create the credit scorecard using the creditscorecard function from Financial Toolbox. In addition, you can use Threshold Predictors from Risk Management Toolboxto interactively set credit scorecard predictor thresholds using the output from screenpredictors before you create the credit scorecard using the creditscorecard.
metric_table = screenpredictors(\qquad ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Screen Predictors for a creditscorecard Object

Reduce the number of predictor variables by screening predictors before you create a credit scorecard.

Use the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).
load CreditCardData.mat
Define 'IDVar' and 'ResponseVar'.

```
idvar = 'CustID';
responsevar = 'status';
```

Use screenpredictors to calculate the predictor screening metrics. The function returns a table containing the metrics values. Each table row corresponds to a predictor from the input table data.

```
metric_table = screenpredictors(data,'IDVar', idvar,'ResponseVar', responsevar)
metric_table=9\times7 table
    InfoValue AccuracyRatio AUROC Entropy Gini Chi2PValue
    CustAge
        0.18863
        0.17095
                                0.58547
    0.88729
    0.42626
\begin{tabular}{lrrrrrr} 
TmWBank & 0.15719 & 0.13612 & 0.56806 & 0.89167 & 0.42864 & 0.0054591 \\
CustIncome & 0.15572 & 0.17758 & 0.58879 & 0.891 & 0.42731 & 0.0018428 \\
TmAtAddress & 0.094574 & 0.010421 & 0.50521 & 0.90089 & 0.43377 & 0.182 \\
UtilRate & 0.075086 & 0.035914 & 0.51796 & 0.90405 & 0.43575 & 0.45546 \\
AMBalance & 0.07159 & 0.087142 & 0.54357 & 0.90446 & 0.43592 & 0.48528 \\
EmpStatus & 0.048038 & 0.10886 & 0.55443 & 0.90814 & 0.4381 & 0.00037823 \\
OtherCC & 0.014301 & 0.044459 & 0.52223 & 0.91347 & 0.44132 & 0.047616 \\
ResStatus & 0.0097738 & 0.05039 & 0.5252 & 0.91422 & 0.44182 & 0.27875
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline metric_table=9×7 & InfoValue & AccuracyRatio & AUROC & Entropy & Gini & Chi2PValue \\
\hline CustIncome & 0.15572 & 0.17758 & 0.58879 & 0.891 & 0.42731 & 0.0018428 \\
\hline CustAge & 0.18863 & 0.17095 & 0.58547 & 0.88729 & 0.42626 & 0.00074524 \\
\hline TmWBank & 0.15719 & 0.13612 & 0.56806 & 0.89167 & 0.42864 & 0.0054591 \\
\hline EmpStatus & 0.048038 & 0.10886 & 0.55443 & 0.90814 & 0.4381 & 0.00037823 \\
\hline AMBalance & 0.07159 & 0.087142 & 0.54357 & 0.90446 & 0.43592 & 0.48528 \\
\hline ResStatus & 0.0097738 & 0.05039 & 0.5252 & 0.91422 & 0.44182 & 0.27875 \\
\hline OtherCC & 0.014301 & 0.044459 & 0.52223 & 0.91347 & 0.44132 & 0.047616 \\
\hline UtilRate & 0.075086 & 0.035914 & 0.51796 & 0.90405 & 0.43575 & 0.45546 \\
\hline TmAtAddress & 0.094574 & 0.010421 & 0.50521 & 0.90089 & 0.43377 & 0.182 \\
\hline
\end{tabular}

Based on the AccuracyRatio metric, select the top predictors to use when you create the creditscorecard object.
```

varlist = metric_table.Row(metric_table.AccuracyRatio > 0.09)
varlist = 4x1 cell
{'CustIncome'}
{'CustAge' }
{'TmWBank' }
{'EmpStatus' }

```

Use creditscorecard to create a createscorecard object based on only the "screened" predictors.
```

sc = creditscorecard(data,'IDVar', idvar,'ResponseVar', responsevar, 'PredictorVars', varlist)
sc =
creditscorecard with properties:
GoodLabel: 0
ResponseVar: 'status'
WeightsVar:
VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustI
NumericPredictors: {'CustAge' 'CustIncome' 'TmWBank'}
CategoricalPredictors: {'EmpStatus'}
BinMissingData: 0
IDVar: 'CustID'
PredictorVars: {'CustAge' 'EmpStatus' 'CustIncome' 'TmWBank'}
Data: [1200x11 table]

```

\section*{Input Arguments}

\section*{data - Data for creditscorecard object}
table | tall table | tall timetable
Data for the creditscorecard object, specified as a MATLAB table, tall table, or tall timetable, where each column of data can be any one of the following data types:
- Numeric
- Logical
- Cell array of character vectors
- Character array
- Categorical
- String

\section*{Data Types: table}

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
```

Example:metric_table =
screenpredictors(data,'IDVar','CustAge','ResponseVar','status','PredictorVars
',{'CustID','CustIncome'})

```

\section*{IDVar - Name of identifier variable}
' ' (default) | character vector
Name of identifier variable, specified as the comma-separated pair consisting of 'IDVar' and a casesensitive character vector. The 'IDVar' data can be ordinal numbers or Social Security numbers. By specifying 'IDVar', you can omit the identifier variable from the predictor variables easily.

\section*{Data Types: char}

\section*{ResponseVar - Response variable name for "Good" or "Bad" indicator \\ last column of the data input (default) | character vector}

Response variable name for the "Good" or "Bad" indicator, specified as the comma-separated pair consisting of 'ResponseVar' and a case-sensitive character vector. The response variable data must be binary.

If not specified, 'ResponseVar' is set to the last column of the input data by default.

\section*{Data Types: char}

\section*{PredictorVars - Names of predictor variables}
set difference between VarNames and \{IDVar,ResponseVar\} (default) | cell array of character vectors \| string array

Names of predictor variables, specified as the comma-separated pair consisting of
'PredictorVars ' and a case-sensitive cell array of character vectors or string array. By default,
when you create a creditscorecard object, all variables are predictors except for IDVar and ResponseVar. Any name you specify using 'PredictorVars' must differ from the IDVar and ResponseVar names.

\section*{Data Types: cell | string}

\section*{WeightsVar - Name of weights variable}
' ' (default) | character vector
Name of weights variable, specified as the comma-separated pair consisting of 'WeightsVar' and a case-sensitive character vector to indicate which column name in the data table contains the row weights.

If you do not specify 'WeightsVar' when you create a creditscorecard object, then the function uses the unit weights as the observation weights.
Data Types: char

\section*{NumBins - Number of (equal frequency) bins for numeric predictors}

20 (default) | scalar numeric
Number of (equal frequency) bins for numeric predictors, specified as the comma-separated pair consisting of 'NumBins' and a scalar numeric.

\section*{Data Types: double}

\section*{FrequencyShift - Indicates small shift in frequency tables that contain zero entries} 0.5 (default) | scalar numeric between 0 and 1

Small shift in frequency tables that contain zero entries, specified as the comma-separated pair consisting of 'FrequencyShift' and a scalar numeric with a value between 0 and 1.

If the frequency table of a predictor contains any "pure" bins (containing all goods or all bads) after you bin the data using autobinning, then the function adds the ' FrequencyShift' value to all bins in the table. To avoid any perturbation, set 'FrequencyShift' to 0.

Data Types: double

\section*{Output Arguments}

\section*{metric_table - Calculated values for predictor screening metrics \\ table}

Calculated values for the predictor screening metrics, returned as table. Each table row corresponds to a predictor from the input table data. The table columns contain calculated values for the following metrics:
- 'InfoValue' - Information value. This metric measures the strength of a predictor in the fitting model by determining the deviation between the distributions of "Goods" and "Bads".
- 'AccuracyRatio' - Accuracy ratio.
- 'AUROC ' - Area under the ROC curve.
- 'Entropy ' - Entropy. This metric measures the level of unpredictability in the bins. You can use the entropy metric to validate a risk model.
- 'Gini' - Gini. This metric measures the statistical dispersion or inequality within a sample of data.
- 'Chi2PValue' - Chi-square \(p\)-value. This metric is computed from the chi-square metric and is a measure of the statistical difference and independence between groups.
- 'PercentMissing' - Percentage of missing values in the predictor. This metric is expressed in decimal form.

\section*{Version History}

Introduced in R2019a

\section*{Extended Capabilities}

\section*{Tall Arrays}

Calculate with arrays that have more rows than fit in memory.
This function supports input data that is specified as a tall column vector, a tall table, or a tall timetable. Note that the output for numeric predictors might be slightly different when using a tall array. Categorical predictors return the same results for tables and tall arrays. For more information, see tall and "Tall Arrays".

\section*{See Also \\ creditscorecard|modifybins | modifypredictor | bininfo | Threshold Predictors}

\section*{Topics}
"Feature Screening with screenpredictors" on page 3-64

\section*{simulate}

Simulate Du-Escanciano (DE) expected shortfall (ES) test statistics

\section*{Syntax}
```

ebtde = simulate(ebtde)
ebtde = simulate(

```
\(\qquad\)
``` , Name, Value)
```


## Description

ebtde $=$ simulate(ebtde) performs a simulation of the Du-Escanciano (DE) [1] expected shortfall (ES) test statistics. simulate simulates scenarios and calculates the supported test statistics for each scenario. The function uses the simulated test statistics to estimate the significance of the ES backtests when the CriticalValueMethod name-value pair argument for unconditionalDE or conditionalDE is set to 'simulation'.
ebtde = simulate( $\qquad$ , Name , Value) specifies options using one or more name-value pair arguments in addition to the input argument in the previous syntax.

## Examples

## Create an esbacktestbyde Object and Run a Simulation

Create an esbacktestbyde object for a $t$ model with 10 degrees of freedom. First, run a conditionalDE test based on 1000 scenarios and then use the simulate function to run a second simulation with 5000 scenarios.

```
load ESBacktestDistributionData.mat
 rng('default'); % For reproducibility
 % Constructor runs simulation with }1000\mathrm{ scenarios
 ebtde = esbacktestbyde(Returns,"t",...
 'Degrees0fFreedom',T10DoF,...
 'Location',T10Location,...
 'Scale',T10Scale,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);
% Run conditionalDE tests
conditionalDE(ebtde,'CriticalValueMethod','simulation')
```

ans=3×13 table
PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic Crit
-
"S\&P"
$\begin{array}{llllll}\text { "S\&P" } & \text { "t(10) } 97.5 \% " & 0.975 & \text { reject } & 0.006 & 16.177 \\ \text { "S\&P" } & \text { "t(10) } 99 \% " & 0.99 & \text { reject } & 0.037 & 6.9975\end{array}$
"S\&P"
"t(10) 95\%"
0.95
reject
0.003
15.285

The tests report 1000 scenarios, see the Scenarios column.

Run a second simulation with 5000 scenarios

```
ebtde = simulate(ebtde,'NumScenarios',5000);
conditionalDE(ebtde,'CriticalValueMethod','simulation')
ans=3\times13 table
 PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic Crit
 L
 "S&P" "t(10) 95%" 0.95 reject
 "S&P" "t(10) 97.5%" 0.975 reject 0.0046 16.177
 "S&P" "t(10) 99%" 0.99 reject 0.0362 6.9975
```

The tests show 5000 scenarios and updated $p$-values and critical values.

## Input Arguments

ebtde - esbacktestbyde object
object
esbacktestbyde object, which contains a copy of the data (the PortfolioData, VarData, ESData, and Distribution properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating an esbacktestbyde object, see esbacktestbyde.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: ebtde =
simulate(ebtde,'NumLags',10,'NumScenarios',1000000,'BlockSize',10000,'TestLis
t','conditionalDE')
```


## NumLags - Number of lags in the conditionalDE test statistic

5 (default) | positive integer
Number of lags in the conditionalDE test statistic, specified as the comma-separated pair consisting of 'NumLags ' and a positive integer. The simulated test statistics are stored for all lags from 1 to NumLags, so that the conditionalDE test results are available for any number of lags between 1 and NumLags after running the simulate function.

Data Types: double

## NumScenarios - Number of scenarios to simulate

1000 (default) | scalar positive integer
Number of scenarios to simulate, specified using the comma-separated pair consisting of
'NumScenarios ' and a scalar positive integer.
Data Types: double

## BlockSize - Number of scenarios to simulate in single simulation block <br> 1000 (default) | scalar positive integer

Number of scenarios to simulate in a single simulation block, specified using the comma-separated pair consisting of 'BlockSize' and a scalar positive integer.

Data Types: double

## TestList - Indicator for which test statistics to simulate

["conditionalDE", "unconditionalDE"] (default)| character vector with a value of
'conditionalDE' or 'unconditionalDE' \| string with a value of "conditionalDE" or
"unconditionalDE"
Indicator for which test statistics to simulate, specified as the comma-separated pair consisting of 'TestList' and a cell array of character vectors or a string array with the value 'conditionalDE', 'unconditionalDE'.

Data Types: cell | string

## Output Arguments

## ebtde - Updated esbacktestbyde object

object
ebtde is returned as an updated esbacktestbyde object. After you run simulate, the updated esbacktestbyde object stores the simulated test statistics, which unconditionalDE uses to calculate $p$-values and generate test results.

For more information on the esbacktestbyde object, see esbacktestbyde.

## More About

## Simulation of Test Statistics

The simulation of test statistics requires simulating scenarios of returns, assuming the distribution of returns $X_{t} \sim P_{t}$ is correct (null hypothesis), and computing the corresponding tests statistics for each scenario.

More specifically, the following steps describe the simulation process. The description uses the conditional test statistic $C_{E S}$ for concreteness, but the same steps apply to the unconditional test statistic $U_{E S}$.

1 Simulate $M$ scenarios of returns as

$$
X^{S}=\left(X_{1}^{S}, \ldots, X_{N}^{S}\right), s=1, \ldots, M .
$$

2 Compute the corresponding test statistic as

$$
C_{E S}^{S}=C_{E S}\left(X_{1}^{S}, \ldots, X_{N}^{S}\right), s=1, \ldots, M .
$$

3 Define $P_{C}$ as the empirical distribution of the simulated test statistic values as

$$
P_{C}=P\left[C_{E S} \leq x\right]=\frac{1}{M} I\left(C_{E S}^{S} \leq x\right),
$$

where $I($.$) is the indicator function.$

To compute the test statistic in step 2 , the ranks or mapped returns $U_{t}=P_{t}\left(X_{t}\right)$ need to be computed (see the definition of the test statistics for unconditionalDE and conditionalDE). Assuming that the model distribution is correct, the ranks $U_{t}$ are always uniformly distributed in the unit interval. Therefore, in practice, directly simulating ranks is more efficient than simulating returns and then transforming the returns into ranks.

The simulate function implements the simulation process more efficiently as follows:
1 Simulated $M$ scenarios of returns as
$U^{S}=\left(U_{1}^{S}, \ldots, U_{N}^{S}\right), s=1, \ldots, M$,
with $U_{t}^{S} \sim \operatorname{Uniform}(0,1)$.
2 Compute the corresponding test statistic $C_{E S}$ using the simulated ranks $U^{s}$ as

$$
C_{E S}^{S}=C_{E S}\left(U_{1}^{S}, \ldots, U_{N}^{S}\right), s=1, \ldots, M
$$

3 Define $P_{C}$ as the empirical distribution of the simulated test statistic values as

$$
P_{C}=P\left[C_{E S} \leq x\right]=\frac{1}{M} I\left(C_{E S}^{S} \leq x\right)
$$

After you determine the empirical distribution of the test statistic $P_{C}$ in step 3, the significance of the test follows the descriptions provided for unconditionalDE and conditionalDE. The same steps apply to the unconditional test statistic $U_{E S}$ and its distribution function $P_{U}$.

## Version History

## Introduced in R2019b

## References

[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk." Management Science. Vol. 63, Issue 4, April 2017.
[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk". January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

## See Also

esbacktestbyde | summary | runtests | unconditionalDE|conditionalDE |
esbacktestbysim

## Topics

"Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-63
"Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-72
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"ES Backtest Using Du-Escanciano Method" on page 2-24
"Comparison of ES Backtesting Methods" on page 2-26

## simulate

Simulate expected shortfall (ES) test statistics

## Syntax

```
ebts = simulate(ebts)
ebts = simulate(ebts,Name,Value)
```


## Description

ebts = simulate(ebts) performs a simulation of ES test statistics. The simulate function simulates portfolio outcomes according to the distribution assumptions indicated in the esbacktestbysim object, and calculates all the supported test statistics under each scenario. The simulated test statistics are used to estimate the significance of the ES backtests.
ebts = simulate(ebts,Name, Value) adds optional name-value pair arguments.

## Examples

## Simulate ES Test Statistics

Create an esbacktestbysim object and run a simulation of 1000 scenarios.

```
load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
 'Degrees0fFreedom',10,...
 'Location',Mu,...
 'Scale',Sigma,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);
```

The unconditional and minBiasAbsolute tests report 1000 scenarios (see the Scenarios column in the report).
unconditional(ebts)

```
ans=3\times10 table
 PortfolioID
 "S&P"
 "S&P"
 "t(10) 95%"
 "t(10) 97.5%"
 "t(10) 99%"
 VaRLevel
 Unconditional
 PValue
 TestStatistic
 accept 0.093 -0.13342
 reject 0.031
 -0.25011
 reject 0.008
 \begin{array} { r } { 0 . 9 5 } \\ { 0 . 9 7 5 } \end{array}
 0.99
 -0.57396
minBiasAbsolute(ebts)
ans=3\times10 table
 PortfolioID VaRID VaRLevel MinBiasAbsolute PValue TestStatistic
```

"S\&P"
"S\&P"
"S\&P"


"t(10) 95\%"	0.95
$" t(10) 97.5 \% "$	0.975
"t(10) 99\%"	0.99

accept
reject
reject

0.062	-0.0014247
0.029	-0.0026674
0.005	-0.0060982

Run a second simulation with 5000 scenarios using the simulate function. Rerun the unconditional and minBiasAbsolute tests using the updated esbacktestbysim object. Notice that the tests now show 5,000 scenarios along with updated $p$-values and critical values.

```
ebts = simulate(ebts,'BlockSize',10000,'NumScenarios',5000,'TestList',["conditional","unconditio)
unconditional(ebts)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PortfolioID & \multicolumn{2}{|r|}{VaRID} & VaRLevel & Unconditional & PValue & TestStatistic & Crit \\
\hline "S\&P" & "t(10) & 95\%" & 0.95 & accept & 0.0952 & -0.13342 & - 0 \\
\hline "S\&P" & "t(10) & 97.5\%" & 0.975 & reject & 0.0456 & -0.25011 & -0 \\
\hline "S\&P" & "t(10) & 99\%" & 0.99 & reject & 0.009 & -0.57396 & -0 \\
\hline
\end{tabular}
minBiasAbsolute(ebts,"TestLevel",0.99)
ans=3\times10 table
\begin{tabular}{clllllll}
PortfolioID & \multicolumn{2}{c}{ VaRID } & VaRLevel & & MinBiasAbsolute & & PValue
\end{tabular} TestStatistic
```


## Input Arguments

ebts - esbacktestbysim object
object
esbacktestbysim (ebts) object, which contains a copy of the given data (the PortfolioData, VarData, ESData, and Distribution properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating an esbacktestbysim object, see esbacktestbysim.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, ... ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: ebts =
simulate(ebts,'NumScenarios',1000000, 'BlockSize',10000, 'TestList', 'conditiona
l')
```

NumScenarios - Number of scenarios to simulate
1000 (default) | positive integer
Number of scenarios to simulate, specified using the comma-separated pair consisting of 'NumScenarios' and a positive integer.

Data Types: double
BlockSize - Number of scenarios to simulate in single simulation block
1000 (default) | positive integer
Number of scenarios to simulate in a single simulation block, specified using the comma-separated pair consisting of 'BlockSize' and a positive integer.

Data Types: double

## TestList - Indicator for which test statistics to simulate

["conditional", "unconditional", "quantile","minBiasAbsolute", "minBiasRelative"
] (default) | character vector with value of ' conditional', 'unconditional', 'quantile',
'minBiasAbsolute', or 'minBiasRelative' | string with value of "conditional",
"unconditional", "quantile", "minBiasAbsolute", or "minBiasRelative"
Indicator for which test statistics to simulate, specified as the comma-separated pair consisting of 'TestList' and a cell array of character vectors or a string array with the value conditional, unconditional, quantile, minBiasAbsolute or minBiasRelative.

Data Types: char|cell|string

## Output Arguments

## ebts - Updated esbacktestbysim object

object
esbacktestbysim (ebts), returned as an updated object. After running simulate, the updated esbacktestbysim object stores the simulated test statistics, which are used to calculate $p$-values and generate test results.

For more information on an esbacktestbysim object, see esbacktestbysim.

## More About

## Simulation of Test Statistics and Significance of the Tests

The VaR and ES models assume that for each period $t$, the portfolio outcomes $X_{t}$ have a cumulative probability distribution $\mathrm{P}_{\mathrm{t}}$.

Under the assumption that the distributions $P_{t}$ are correct (the null hypothesis), test statistics are simulated by:

- Simulating M scenarios of N observations each, for example, $X^{S}=\left(X_{1}^{S}, \ldots, X_{t}^{S}, \ldots, X_{N}^{S}\right)$, with $X_{t}^{S} \sim P_{t}$, t $=1, \ldots, \mathrm{~N}$, and $\mathrm{s}=1, \ldots, \mathrm{M}$.
- For each simulated scenario $X^{s}$, compute the test statistic of interest $Z^{s}=Z\left(X^{s}\right), s=1, \ldots, M$.
- The resulting $M$ simulated test statistic values $Z^{1}, \ldots, Z^{M}$ from a distribution of the test statistic assuming the probability distributions $\mathrm{P}_{\mathrm{t}}$ are correct.

The $p$-value is defined as the proportion of scenarios for which the simulated test statistic is smaller than the test statistic evaluated at the observed portfolio outcomes: $Z^{o b s}=Z\left(X_{1}, \ldots X_{N}\right)$ :

$$
P_{\text {value }}=\frac{1}{M} \sum_{s=1}^{M} I\left(Z^{s} \leq Z^{o b s}\right)
$$

where $I\left(Z^{s} \leq Z^{\text {obs }}\right)$ is an indicator function with a value of 1 if $Z^{s} \leq Z^{\text {obs }}$, and 0 otherwise. If $P_{\text {test }}$ is 1 minus the test confidence level, the test result is to 'reject ' if $P_{\text {value }}<P_{\text {test }}$.

The critical value is defined as the minimum simulated test statistic $Z^{\text {crit }}$ with a $p$-value greater than or equal to $P_{\text {test }}$.

## Version History

Introduced in R2017b

## References

[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

## See Also

summary|runtests | conditional|unconditional |quantile |minBiasRelative | minBiasAbsolute | esbacktestbysim|esbacktestbyde

Topics
"Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"Comparison of ES Backtesting Methods" on page 2-26

## summary

Report on varbacktest data

## Syntax

$S=$ summary (vbt)

## Description

$S=$ summary (vbt) returns a basic report on the given varbacktest data, including the number of observations, the number of failures, the observed confidence level, and so on (see S for details).

## Examples

## Generate a Summary Report

Create a varbacktest object.

```
load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)
vbt =
 varbacktest with properties:
 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9500
```

Generate the summary report.

```
S = summary(vbt)
S=1\times10 table
 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected
 "Portfolio" "VaR" 0.95 0.94535 1043 57 52.15
```


## Run a Summary Report for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a varbacktest object and generate a summary report.

```
load VaRBacktestData
 vbt = varbacktest(EquityIndex,...
```

```
 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
 'PortfolioID','Equity',...
 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},....
 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);
S = summary(vbt)
S=6\times10 table
 PortfolioID
 "Equity"
 "Normal95"
 "Normal99"
 "Equity" "Historical95"
 "Equity" "Historical95"
 VaRID VaRLevel
 ObservedLevel Observations Failures
 0.95
 0.94535 1043
 5 7
 "Equity"
 "Equity" "EWMA95" 0.95
 0.99 0.9837 1043
 1043
 "Equity" "EWMA95" 0.95
 0.95
 1043
 17
 0.94343 1043
 "Equity"
 "Equity" "EWMA99" 0.99
 "Equity" "EWMA95" 0.95
 0.99 0.98849 1043
 5 9
 0.95 0.94343 1043
 12
 "Equity"
 59
 "Equity"
\begin{tabular}{l}
VaRID \\
\hline "Normal95" \\
"Normal99" \\
"Historical95" \\
"Historical99" \\
"EWMA95" \\
"EWMA99"
\end{tabular}
```

VaRLevel
$\qquad$

```
\begin{tabular}{ll}
& \\
1043 & 57 \\
1043 & 17 \\
1043 & 59 \\
1043 & 12 \\
1043 & 59 \\
1043 & 22
\end{tabular}
```


## Input Arguments

## vbt - varbacktest object

object
varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating a varbacktest object, see varbacktest.

## Output Arguments

## S - Summary report

table
Summary report, returned as a table. The table rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:

- 'PortfolioID ' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel ' - VaR level for the corresponding VaR data column
- 'ObservedLevel' - Observed confidence level, defined as number of periods without failures divided by number of observations
- 'Observations ' - Number of observations, where missing values are removed from the data
- 'Failures ' - Number of failures, where a failure occurs whenever the loss (negative of portfolio data) exceeds the VaR
- 'Expected ' - Expected number of failures, defined as the number of observations multiplied by one minus the VaR level
- 'Ratio' - Ratio of the number of failures to expected number of failures
- 'FirstFailure' - Number of periods until first failure
- 'Missing' - Number of periods with missing values removed from the sample


## Version History

Introduced in R2016b

## See Also

varbacktest|tl|pof|tuff|cc|cci|tbf|tbfi|runtests

## Topics

"VaR Backtesting Workflow" on page 2-6
"Value-at-Risk Estimation and Backtesting" on page 2-10
"Overview of VaR Backtesting" on page 2-2
"Comparison of ES Backtesting Methods" on page 2-26

## summary

Display summary report for Bornhuetter-Ferguson analysis

## Syntax

unpaidClaimsEstimateTable = summary(bf)

## Description

unpaidClaimsEstimateTable = summary(bf) displays a summary report of different claims estimates using the Bornhuetter-Ferguson technique. The report displays the latest diagonal of both reported and paid development triangles, projected ultimate claims, cases outstanding, IBNR claims, and total unpaid claims estimates.

## Examples

## Generate Summary Report for bornhuetterFerguson Object

Generate a summary report for a bornhuetterFerguson object containing simulated insurance claims data.

OriginYear	DevelopmentYear	ReportedClaims	PaidClaims
2010	12	3995.7	1893.9
2010	24	4635	3371.2
2010	36	4866.8	4079.1
2010	48	4964.1	4487
2010	60	5013.7	4711.4
2010	72	5038.8	4805.6
2010	84	5059	4853.7
2010	96	5074.1	4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl
dT_reported =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
```

```
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [\begin{array}{lllllllllllll}{2.4388}&{1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001}\end{array})
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001
```

Create an expectedClaims object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.

```
earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)
ec =
 expectedClaims with properties:
 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 InitialClaims: [10x1 double]
 CaseOutstanding: [10x1 double]
 EstimatedClaimsRatios: [10x1 double]
 SelectedClaimsRatios: [10x1 double]
```

Create a bornhuetterFerguson object with reported claims, paid claims, and expected claims to calculate ultimate claims, cases outstanding, IBNR claims, and unpaid claims estimates.

```
bf = bornhuetterFerguson(dT_reported, dT_paid, ec.ultimateClaims)
bf =
 bornhuetterFerguson with properties:
 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 ExpectedClaims: [10x1 double]
 PercentUnreported: [10x1 double]
 PercentUnpaid: [10x1 double]
 CaseOutstanding: [10x1 double]
```

Use summary to display the latest diagonal of both reported and paid development triangles, projected ultimate claims, cases outstanding, IBNR claims, and total unpaid claims estimates for a bornhuetterFerguson object.
unpaidClaimsEstimateTable = summary(bf)

```
unpaidClaimsEstimateTable=11\times9 table
 Reported Claims Paid Claims Projected Ultimate Reported Claims Projected
```

5089.4
5179.9
5625.4
5803.7
5878.7
5772.8
5714.3
5854.4
5495.1
4945.9

55360
4892.6
5134.4
5512.3
5728.9
5759.1
5763.6
5472.4
5171.2
4386.1
2764.8

50585
5089.4
5185.1
5642.1
5838.4
5935.8
5861.7
5863.9

6155
6106.9
6496.8

58175

## Input Arguments

bf - Bornhuetter-Ferguson
bornhuetterFerguson object
Bornhuetter-Ferguson object, specified as a previously created bornhuetterFerguson object.
Data Types: object

## Output Arguments

unpaidClaimsEstimateTable - Report of claims estimates obtained using the Bornhuetter-Ferguson technique
table
Report of claims estimates obtained using the Bornhuetter-Ferguson technique, returned as a table.

## Version History <br> Introduced in R2020b

## See Also

ultimateClaims |ibnr|unpaidClaims
Topics
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

## summary

Display summary report for Cape Cod analysis

## Syntax

```
unpaidClaimsEstimateTable = summary(cc)
```


## Description

unpaidClaimsEstimateTable = summary (cc) displays a summary report of different claims estimates using the Cape Cod technique. The report displays the latest diagonal of both reported and paid development triangles, projected ultimate claims, cases outstanding, IBNR claims, and total unpaid claims estimates.

## Examples

## Generate Summary Report for capeCod Object

This example shows how to generate a summary report for a capeCod object for simulated insurance claims data.

load InsuranceClaimsData.mat;   head(data)   OriginYear	DevelopmentYear		
2010	12	ReportedClaims	PaidClaims
2010	24	3995.7	
2010	36	4635	1893.9
2010	48	4866.8	3371.2
2010	60	4964.1	4079.1
2010	72	5013.7	4487
2010	84	5038.8	4711.4
2010	96	5059	4805.6
		5074.1	4853.7
			4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl
dT_reported =
 \overline{developmentTriangle with properties:}
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
```

CumulativeDevelopmentFactors: $\left[\begin{array}{lllllllllllllllll}1.3069 & 1.1107 & 1.0516 & 1.0261 & 1.0152 & 1.0098 & 1.00601 .0030 & 1.001\end{array}\right.$ SelectedLinkRatio: $[1.17671 .05631 .02491 .01071 .00541 .00381 .00301 .00201 .001$

```
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
```

dT_paid =
developmentTriangle with properties:
Origin: \{10x1 cell\}
Development: $\{10 \times 1$ cell\}
Claims: [10x10 double]
LatestDiagonal: [10x1 double]
Description: ""
TailFactor: 1
CumulativeDevelopmentFactors: $\left[\begin{array}{llllllllllll}2.4388 & 1.4070 & 1.1799 & 1.0810 & 1.0378 & 1.0178 & 1.00801 .00301 .001\end{array}\right.$
SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001

Create a capeCod object where the first input argument is the reported development triangle, the second input argument is the paid development triangle, and the third input is the earned premium.

```
earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
cc = capeCod(dT_reported, dT_paid,earnedPremium)
cc =
 capeCod with properties:
```

```
 ReportedTriangle: [1x1 developmentTriangle]
```

            ReportedTriangle: [1x1 developmentTriangle]
                        PaidTriangle: [1x1 developmentTriangle]
                        PaidTriangle: [1x1 developmentTriangle]
            EarnedPremium: [10x1 double]
            EarnedPremium: [10x1 double]
            UsedUpPremium: [10x1 double]
            UsedUpPremium: [10x1 double]
        EstimatedClaimRatios: [10x1 double]
        EstimatedClaimRatios: [10x1 double]
        ExpectedClaimRatio: 0.4258
        ExpectedClaimRatio: 0.4258
    EstimatedExpectedClaims: [10x1 double]
    EstimatedExpectedClaims: [10x1 double]
                PercentUnreported: [10x1 double]
                PercentUnreported: [10x1 double]
                    CaseOutstanding: [10x1 double]
    ```
 CaseOutstanding: [10x1 double]
```

Use summary to generate a summary report for the different claims estimates.

| unpaidClaim | EstimateTable=11×6 Reported Claims | table <br> Paid Claims | Ultimate Claims | Case Outstanding | IBNR |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2010 | 5089.4 | 4892.6 | 5089.4 | 196.79 | 0 |
| 2011 | 5179.9 | 5134.4 | 5187.6 | 45.46 | 7.665 |
| 2012 | 5625.4 | 5512.3 | 5638.2 | 113.15 | 12.745 |
| 2013 | 5803.7 | 5728.9 | 5852 | 74.83 | 48.338 |
| 2014 | 5878.7 | 5759.1 | 5944.7 | 119.58 | 66.006 |
| 2015 | 5772.8 | 5763.6 | 5836.7 | 9.2 | 63.901 |
| 2016 | 5714.3 | 5472.4 | 5833.2 | 241.88 | 118.98 |
| 2017 | 5854.4 | 5171.2 | 6063.2 | 683.23 | 208.81 |
| 2018 | 5495.1 | 4386.1 | 6089.3 | 1109 | 594.21 |
| 2019 | 4945.9 | 2764.8 | 5945.9 | 2181.1 | 999.98 |
| Total | 55360 | 50585 | 57480 | 4774.2 | 2120.6 |

## Input Arguments

cc - Cape Cod object

capeCod object

Cape Cod object, specified as a previously created capeCod object.
Data Types: object

## Output Arguments

unpaidClaimsEstimateTable - Report of claims estimates obtained using the Cape Cod technique

## table

Report of claims estimates obtained using the Cape Cod technique, returned as a table.

## Version History

Introduced in R2021a

## See Also

ibnr|unpaidClaims |ultimateClaims
Topics
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

## summary

Display summary report for different claims estimates

## Syntax

unpaidClaimsEstimateTable = summary(cl)

## Description

unpaidClaimsEstimateTable = summary (cl) displays the latest diagonal of both reported and paid development triangles, projected ultimate claims, case outstanding, IBNR claims, and the total unpaid claims estimates.

## Examples

## Generate Summary Report for Different Claims Estimates Using chainLadder

Generate the summary report for a chainLadder object containing simulated insurance claims data.

| OriginYear | DevelopmentYear | ReportedClaims | PaidClaims |
| :---: | :---: | :---: | :---: |
| 2010 | 12 | 3995.7 | 1893.9 |
| 2010 | 24 | 4635 | 3371.2 |
| 2010 | 36 | 4866.8 | 4079.1 |
| 2010 | 48 | 4964.1 | 4487 |
| 2010 | 60 | 5013.7 | 4711.4 |
| 2010 | 72 | 5038.8 | 4805.6 |
| 2010 | 84 | 5059 | 4853.7 |
| 2010 | 96 | 5074.1 | 4877.9 |

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl
dT reported =
 \overline{developmentTriangle with properties:}
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10\times10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
```

```
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
 developmentTriangle with properties:
 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [\begin{array}{llllllllllll}{2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001}\end{array})
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001
```

Create a chainLadder object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.

```
cl = chainLadder(dT_reported, dT_paid)
cl =
 chainLadder with properties:
 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 CaseOutstanding: [10x1 double]
```

Use ibnr to compute the incurred-but-not-reported (IBNR).

```
ibnrClaims = ibnr(cl,'reported')
ibnrClaims = 10x1
103 x
 0
 0.0052
 0.0169
 0.0349
 0.0575
 0.0880
 0.1489
 0.3019
 0.6084
 1.5181
```

Use unpaidClaims to compute the unpaid claims.

```
unpaidClaimsEstimate = unpaidClaims(cl,'reported')
unpaidClaimsEstimate = 10×1
103 x
 0.1968
 0.0506
 0.1300
 0.1097
 0.1771
```

> 0.0972
> 0.3908
> 0.9851
> 1.7175
> 3.6992

Use summary to display the latest diagonal of both reported and paid development triangles, projected ultimate claims, cases outstanding, IBNR claims, and total unpaid claims estimates.

```
unpaidClaimsEstimateTable = summary(cl)
unpaidClaimsEstimateTable=11\times9 table
 Reported Claims Paid Claims Projected Ultimate Reported Claims Projected U
 2010 5089.4 4892.6 5089.4
 2011
 2012 5625.4 5512.3 5642.3
 2013 5803.7 5728.9 5838.6
 2014 5878.7 5759.1 5936.2
 2015 5772.8 5763.6 5860.8
 2016 5714.3 5472.4 5863.2
 2017 5854.4 5171.2 6156.4
 2018 5495.1 4386.1 6103.5
 2019 4945.9 2764.8 6464
 Total 55360 50585 58139
```


## Input Arguments

cl - Chain ladder
chainLadder object
Chain ladder, specified as a previously created chainLadder object.
Data Types: object

## Output Arguments

unpaidClaimsEstimateTable - Different claims estimates using chain ladder technique table

Different claims estimates obtained using the chain ladder technique, returned as a table.

## Version History <br> Introduced in R2020b

See Also<br>ibnr|unpaidClaims

## Topics

"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

## summary

Basic expected shortfall (ES) report on failures and severity

## Syntax

S = summary(ebt)

## Description

S = summary (ebt) returns a basic report on the given esbacktest data, including the number of observations, number of failures, observed confidence level, and so on (see S for details).

## Examples

## Generate an ES Summary Report

Create an esbacktest object.

```
load ESBacktestData
ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel',VaRLevel)
ebt =
 esbacktest with properties:
 PortfolioData: [1966x1 double]
 VaRData: [1966x1 double]
 ESData: [1966x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9750
```

Generate the ES summary report.

```
S = summary(ebt)
```

S=1×11 table
PortfolioID VaRID VaRLevel ObservedLevel ExpectedSeverity ObservedSeverity
"Portfolio"
"VaR"
0.975
0.97101
1.1928
1.4221

## Input Arguments

ebt - esbacktest object
object
esbacktest (ebt) object, contains a copy of the given data (the PortfolioData, VarData, and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating an esbacktest object, see esbacktest.

## Output Arguments

## S - Summary report

table
Summary report, returned as a table. The table rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:

- 'PortfolioID ' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel ' - VaR level for the corresponding VaR data column
- 'ObservedLevel' - Observed confidence level, defined as the number of periods without failures divided by number of observations
- 'ExpectedSeverity' - Expected average severity ratio, that is, the average ratio of ES to VaR over the periods with VaR failures
- 'ObservedSeverity' - Observed average severity ratio, that is, the average ratio of loss to VaR over the periods with VaR failures
- 'Observations ' - Number of observations, where missing values are removed from the data
- 'Failures ' - Number of failures, where a failure occurs whenever the loss (negative of portfolio data) exceeds the VaR
- 'Expected ' - Expected number of failures, defined as the number of observations multiplied by 1 minus the VaR level
- 'Ratio' - Ratio of number of failures to expected number of failures
- 'Missing' - Number of periods with missing values removed from the sample

Note The 'ExpectedSeverity' and 'ObservedSeverity' ratios are undefined ( NaN ) when there are no VaR failures in the data.

## Version History

## Introduced in R2017b

## See Also

esbacktest|runtests|unconditionalNormal|unconditionalT

## Topics

"Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information" on page 2-30
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"Comparison of ES Backtesting Methods" on page 2-26

## summary

Basic expected shortfall (ES) report on failures and severity

## Syntax

S = summary(ebts)

## Description

$\mathrm{S}=$ summary (ebts) returns a basic report on the given esbacktestbysim data, including the number of observations, number of failures, observed confidence level, and so on (see S for details).

## Examples

## Generate an ES Summary Report

Create an esbacktestbysim object.

```
load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
 'DegreesOfFreedom',10,...
 'Location',Mu,...
 'Scale',Sigma,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);
```

Generate the ES summary report.

```
S = summary(ebts)
```

| $\begin{aligned} & \mathrm{S}=3 \times 11 \text { table } \\ & \quad \text { PortfolioID } \end{aligned}$ | VaRID |  | VaRLevel | ObservedLevel | ExpectedSeverity | ObservedSev |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| "S\&P" | "t(10) | 95\%" | 0.95 | 0.94812 | 1.3288 | 1.4515 |
| "S\&P" | "t(10) | 97.5\%" | 0.975 | 0.97202 | 1.2652 | 1.4134 |
| "S\&P" | "t(10) | 99\%" | 0.99 | 0.98627 | 1.2169 | 1.3947 |

## Input Arguments

## ebts - esbacktestbysim object

object
esbacktestbysim (ebts) object, which contains a copy of the given data (the PortfolioData, VarData, ESData, and Distribution properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating an esbacktestbysim object, see esbacktestbysim.

## Output Arguments

## S - Summary report

table
Summary report, returned as a table. The table rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:

- 'PortfolioID' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel ' - VaR level for the corresponding VaR data column
- 'ObservedLevel' - Observed confidence level, defined as the number of periods without failures divided by number of observations
- 'ExpectedSeverity' - Expected average severity ratio, that is, the average ratio of ES to VaR over the periods with VaR failures
- 'ObservedSeverity ' - Observed average severity ratio, that is, the average ratio of loss to VaR over the periods with VaR failures
- 'Observations ' - Number of observations, where missing values are removed from the data
- 'Failures ' - Number of failures, where a failure occurs whenever the loss (negative of portfolio data) exceeds the VaR
- 'Expected ' - Expected number of failures, defined as the number of observations multiplied by 1 minus the VaR level
- 'Ratio' - Ratio of number of failures to expected number of failures
- 'Missing ' - Number of periods with missing values removed from the sample

Note The 'ExpectedSeverity' and 'ObservedSeverity' ratios are undefined (NaN) when there are no VaR failures in the data.

## Version History

## Introduced in R2017b

## See Also

runtests|conditional|unconditional|quantile| simulate|minBiasRelative| minBiasAbsolute|esbacktestbysim|esbacktestbyde

## Topics

"Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"Comparison of ES Backtesting Methods" on page 2-26

## summary

Basic expected shortfall (ES) report on failures and severity

## Syntax

S = summary (ebtde)

## Description

S = summary (ebtde) returns a basic report on the given esbacktestbyde data. The report includes the number of observations, number of failures, observed confidence level, and so on. See S for details.

Unlike other ES backtesting classes, the esbacktestbyde object does not require VaR data or ES data inputs. esbacktestbyde internally computes VaR and ES data based on distribution information to determine the severity information reported by the summary function.

## Examples

## Create an esbacktestbyde Object and Run ES Backtest Summary Report

Create an esbacktestbyde object for a $t$ model with 10 degrees of freedom, and then run a basic ES backtest summary report.

```
load ESBacktestDistributionData.mat
 rng('default'); % For reproducibility
 ebtde = esbacktestbyde(Returns,"t",...
 'DegreesOfFreedom',T10DoF,...
 'Location',T10Location,...
 'Scale',T10Scale,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel', VaRLevel);
 summary(ebtde)
ans=3\times11 table
 PortfolioID VaRID VaRLevel ObservedLevel ExpectedSeverity ObservedSeve
 _
 "S&P"
 "S&P"
 "S&P"
 "t(10) 95%"
 "t(10) 97.5%"
 "t(10) 99%"
 0.95
 0.94812
 1.3288
 1.2652
 1.2169

\section*{Input Arguments}
ebtde - esbacktestbyde object
object
esbacktestbyde object contains a copy of the data (the PortfolioData, VaRData, and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested.

Note Unlike other ES backtesting classes, esbacktestbyde does not require VaR data or ES data inputs. esbacktestbyde internally computes VaR and ES data based on distribution information to determine the severity information reported by summary. For more information on creating an esbacktestbyde object, see esbacktestbyde.

\section*{Output Arguments}

\section*{S - Summary report}
table
Summary report, returned as a table. The table rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following:
- 'PortfolioID ' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR levels
- 'VaRLevel' - VaR level
- 'ObservedLevel' - Observed confidence level, defined as the number of periods without failures divided by number of observations
- 'ExpectedSeverity' - Expected average severity ratio, that is, the average ratio of ES to VaR over the periods with VaR failures
- 'ObservedSeverity' - Observed average severity ratio, that is, the average ratio of loss to VaR over the periods with VaR failures
- 'Observations ' - Number of observations, where missing values are removed from the data
- 'Failures ' - Number of failures, where a failure occurs whenever the loss (negative of portfolio data) exceeds the VaR
- 'Expected ' - Expected number of failures, defined as the number of observations multiplied by 1 minus the VaR level
- 'Ratio' - Ratio of number of failures to expected number of failures
- 'Missing' - Number of periods with missing values removed from the sample

Note The 'ExpectedSeverity' and 'ObservedSeverity' ratios are undefined (NaN) when there are no VaR failures in the data.

\section*{Version History}

Introduced in R2019b

\section*{References}
[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk." Management Science. Vol. 63, Issue 4, April 2017.
[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk". January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

\section*{See Also}
esbacktestbyde | runtests | unconditionalDE | conditionalDE | simulate | esbacktestbysim

\section*{Topics}
"Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-63
"Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-72
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"ES Backtest Using Du-Escanciano Method" on page 2-24
"Comparison of ES Backtesting Methods" on page 2-26

\section*{summary}

Display summary report for different claims estimates

\section*{Syntax}
unpaidClaimsEstimateTable = summary(ec)

\section*{Description}
unpaidClaimsEstimateTable = summary(ec) displays the summary report for the latest diagonal of both reported and paid development triangles, projected ultimate claims, cases outstanding, IBNR claims, and total unpaid claims estimates.

\section*{Examples}

\section*{Generate Summary Report for expectedClaims Object}

Generate the summary report for different claims estimates for an expectedClaims object containing simulated insurance claims data.
\begin{tabular}{|c|c|c|c|}
\hline OriginYear & DevelopmentYear & ReportedClaims & PaidClaims \\
\hline 2010 & 12 & 3995.7 & 1893.9 \\
\hline 2010 & 24 & 4635 & 3371.2 \\
\hline 2010 & 36 & 4866.8 & 4079.1 \\
\hline 2010 & 48 & 4964.1 & 4487 \\
\hline 2010 & 60 & 5013.7 & 4711.4 \\
\hline 2010 & 72 & 5038.8 & 4805.6 \\
\hline 2010 & 84 & 5059 & 4853.7 \\
\hline 2010 & 96 & 5074.1 & 4877.9 \\
\hline
\end{tabular}

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.
```

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl`
dT_reported =
developmentTriangle with properties:
Origin: {10x1 cell}
Development: {10x1 cell}
Claims: [10x10 double]
LatestDiagonal: [10x1 double]
Description: ""
TailFactor: 1
CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001

```
```

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
developmentTriangle with properties:
Origin: {10x1 cell}
Development: {10x1 cell}
Claims: [10\times10 double]
LatestDiagonal: [10x1 double]
Description: ""
TailFactor: 1
CumulativeDevelopmentFactors: [$$
\begin{array}{lllllllllllll}{2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001}\end{array}
$$)
SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001

```

Create an expectedClaims object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.
```

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)
ec =
expectedClaims with properties:
ReportedTriangle: [1x1 developmentTriangle]
PaidTriangle: [1x1 developmentTriangle]
EarnedPremium: [10x1 double]
InitialClaims: [10x1 double]
CaseOutstanding: [10x1 double]
EstimatedClaimsRatios: [10x1 double]
SelectedClaimsRatios: [10x1 double]

```

Use summary to display the report for the latest diagonal of both reported and paid development triangles, projected ultimate claims, cases outstanding, IBNR claims, and total unpaid claims estimates.
\begin{tabular}{|c|c|c|c|c|c|}
\hline unpaidClaim & EstimateTable=11×6 Reported Claims & ```
table
 Paid Claims
``` & Ultimate Claims & Case Outstanding & IBNR \\
\hline 2010 & 5089.4 & 4892.6 & 4991 & 196.79 & -98.395 \\
\hline 2011 & 5179.9 & 5134.4 & 5162.3 & 45.46 & -17.574 \\
\hline 2012 & 5625.4 & 5512.3 & 5585.6 & 113.15 & -39.856 \\
\hline 2013 & 5803.7 & 5728.9 & 5806.7 & 74.83 & 2.9912 \\
\hline 2014 & 5878.7 & 5759.1 & 5899 & 119.58 & 20.351 \\
\hline 2015 & 5772.8 & 5763.6 & 5921.1 & 9.2 & 148.29 \\
\hline 2016 & 5714.3 & 5472.4 & 5889.5 & 241.88 & 175.26 \\
\hline 2017 & 5854.4 & 5171.2 & 6128.9 & 683.23 & 274.42 \\
\hline 2018 & 5495.1 & 4386.1 & 6137.4 & 1109 & 642.25 \\
\hline 2019 & 4945.9 & 2764.8 & 6603.4 & 2181.1 & 1657.5 \\
\hline Total & 55360 & 50585 & 58125 & 4774.2 & 2765.3 \\
\hline
\end{tabular}

\section*{Input Arguments}

\section*{ec - Expected claims}
expectedClaims object
Expected claims, specified as a previously created expectedClaims object.
Data Types: object

\section*{Output Arguments}
unpaidClaimsEstimateTable - Displays different claims estimates using the expected claims technique
table
Displays different claims estimates using the expected claims technique, returned as a table.

\section*{Version History}

Introduced in R2020b

\section*{See Also}
ultimateClaims |ibnr|unpaidClaims

\section*{Topics}
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

\section*{tbf}

Time between failures mixed test for value-at-risk (VaR) backtesting

\section*{Syntax}

TestResults = tbf(vbt)
TestResults = tbf(vbt,Name,Value)

\section*{Description}

TestResults \(=\) tbf(vbt) generates the time between failures mixed test (TBF) for value-at-risk (VaR) backtesting.

TestResults = tbf(vbt,Name, Value) adds an optional name-value pair argument for TestLevel.

\section*{Examples}

\section*{Generate TBF Test Results}

Create a varbacktest object.
```

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)
vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x1 double]
PortfolioID: "Portfolio"
VaRID: "VaR"
VaRLevel: 0.9500

```

Generate the tbf test results.
```

TestResults = tbf(vbt)
TestResults=1\times20 table

```

```

 "Portfolio" "VaR" 0.95
 reject
 88.952
 0.0055565
accept
0.46147

```

Run the TBF Test for VaR Backtests for Multiple VaRs at Different Confidence Levels
Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.
```

load VaRBacktestData
vbt = varbacktest(EquityIndex,...
[Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
'PortfolioID','Equity',...
'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])
vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x6 double]
PortfolioID: "Equity"
VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95"
VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

```

Generate the tbf test results using the TestLevel optional input.
```

TestResults = tbf(vbt,'TestLevel',0.90)
TestResults=6\times20 table
PortfolioID VaRID VaRLevel TBF LRatioTBF PValueTBF P0F
"Equity"
"Normal95"
0.95
"Equity" "Normal99" 0.9
"Equity" "Historical95"
"Equity" "Historical99"
"Equity" "EWMA95
"Equity" "EWMA99" 0.99

```

\section*{Input Arguments}

\section*{vbt - varbacktest object}
object
varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating a varbacktest object, see varbacktest.

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = tbf(vbt,'TestLevel', 0.99)

\section*{TestLevel - Test confidence level}

\subsection*{0.95 (default) | numeric between 0 and 1}

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric between 0 and 1 .

Data Types: double

\section*{Output Arguments}

\section*{TestResults - tbf test results}
table
tbf test results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:
- 'PortfolioID' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel' - VaR level for the corresponding VaR data column
- 'TBF' - Categorical array with categories accept and reject that indicate the result of the tbf test
- 'LRatioTBF ' - Likelihood ratio of the tbf test
- 'PValueTBF' - P-value of the tbf test
- 'POF' - Categorical array with the categories accept and reject that indicate the result of the POF test
- 'LRatioPOF' - Likelihood ratio of the pof test
- 'PValuePOF' - P-value of the pof test
- 'TBFI' - Categorical array with the categories accept and reject that indicate the result of the tbfi test
- 'LRatioTBFI ' - Likelihood ratio of the tbfi test
- 'PValueTBFI' - P-value of the tbfi test
- 'Observations' - Number of observations
- 'Failures ' - Number of failures
- 'TBFMin' - Minimum value of observed times between failures
- 'TBFQ1 ' - First quartile of observed times between failures
- 'TBFQ2 ' - Second quartile of observed times between failures
- 'TBFQ3' - Third quartile of observed times between failures
- 'TBFMax' - Maximum value of observed times between failures
- 'TestLevel' - Test confidence level

Note For tbf test results, the terms accept and reject are used for convenience, technically a tbf test does not accept a model. Rather, the test fails to reject it.

\section*{More About}

\section*{Time Between Failures (TBF) Mixed Test}

The tbf function performs the time between failures mixed test, also known as the Haas mixed Kupiec test.
'Mixed' means that it combines a frequency and an independence test. The frequency test is Kupiec's proportion of failures (POF) test. The independence test is the time between failures independence
(TBFI) test. The TBF test is an extension of Kupiec's time until first failure (TUFF) test, proposed by Haas (2001), to take into account not only the time until the first failure, but also the time between all failures. The tbf function combines the pof test and the tbfi test.

\section*{Algorithms}

The likelihood ratio (test statistic) of the TBF test is the sum of the likelihood ratios of the POF and TBFI tests
\[
\text { LRatioTBF }=\text { LRatioPOF }+ \text { LRatioTBFI }
\]
which is asymptotically distributed as a chi-square distribution with \(x+1\) degrees of freedom, wherex is the number of failures. See the Algorithms sections for pof and tbfi for the definitions of their likelihood ratios.

The \(p\)-value of the tbf test is the probability that a chi-square distribution with \(x+1\) degrees of freedom exceeds the likelihood ratio LRatioTBF
\[
\text { PValueTBF = } 1-F(\text { LRatioTBF })
\]
where \(F\) is the cumulative distribution of a chi-square variable with \(x+1\) degrees of freedom and \(x\) is the number of failures.

The result of the test is to accept if
\[
F(\text { LRatioTBF })<F(\text { TestLevel })
\]
and reject otherwise, where \(F\) is the cumulative distribution of a chi-square variable with \(x+1\) degrees of freedom and \(x\) is the number of failures. If the likelihood ratio (LRatioTBF) is undefined, that is, with no failures yet, the TBF result is to accept only when both POF and TBFI tests accept.

\section*{Version History \\ Introduced in R2016b}

\section*{References}
[1] Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar, Bonn, 2001.

\section*{See Also}
varbacktest|tl|tuff|bin|pof|cc|cci|tbfi|summary|runtests

\section*{Topics}
"VaR Backtesting Workflow" on page 2-6
"Value-at-Risk Estimation and Backtesting" on page 2-10
"Overview of VaR Backtesting" on page 2-2
"Haas's Time Between Failures or Mixed Kupiec's Test" on page 2-4
"Comparison of ES Backtesting Methods" on page 2-26

\section*{tbfi}

Time between failures independence test for value-at-risk (VaR) backtesting

\section*{Syntax}

TestResults = tbfi(vbt)
TestResults = tbfi(vbt,Name,Value)

\section*{Description}

TestResults = tbfi(vbt) generates the time between failures independence (TBFI) test for value-at-risk (VaR) backtesting.

TestResults = tbfi(vbt,Name, Value) adds an optional name-value pair argument for TestLevel.

\section*{Examples}

\section*{Generate TBFI Test Results}

Create a varbacktest object.
```

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)
vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x1 double]
PortfolioID: "Portfolio"
VaRID: "VaR"
VaRLevel: 0.9500

```

Generate the tbfi test results.
```

TestResults = tbfi(vbt)
TestResults=1\times14 table
PortfolioID VaRID VaRLevel TBFI LRatioTBFI PValueTBFI Observations Fa
"Portfolio" "VaR" 0.95 reject 88.491 0.0047475 1043

```

Run the TBFI Test for VaR Backtests for Multiple VaRs at Different Confidence Levels
Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.
```

load VaRBacktestData
vbt = varbacktest(EquityIndex,...
[Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
'PortfolioID','Equity',...
'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])
vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x6 double]
PortfolioID: "Equity"
VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95"
VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

```

Generate the tbfi test results using the TestLevel optional input.
```

TestResults = tbfi(vbt,'TestLevel',0.90)

```
\begin{tabular}{ccccccccc}
\begin{tabular}{c} 
TestResults=6×14 table \\
PortfolioID
\end{tabular} & \multicolumn{2}{c}{ VaRID } & & VaRLevel & & TBFI & & LRatioTBFI
\end{tabular}

\section*{Input Arguments}

\section*{vbt - varbacktest object}
object
varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating a varbacktest object, see varbacktest.

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = tbfi(vbt,'TestLevel', 0.99)

\section*{TestLevel - Test confidence level}

\subsection*{0.95 (default) | numeric between 0 and 1}

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric between 0 and 1 .

Data Types: double

\section*{Output Arguments}

\section*{TestResults - tbfi test results}
table
tbfi test results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:
- 'PortfolioID' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel' - VaR level for the corresponding VaR data column
- 'TBFI' - Categorical array with the categories accept and reject that indicate the result of the tbfi test
- 'LRatioTBFI ' - Likelihood ratio of the tbfi test
- 'PValueTBFI' - P-value of the tbfi test
- 'Observations' - Number of observations
- 'Failures ' - Number of failures
- 'TBFMin' - Minimum value of observed times between failures
- 'TBFQ1' - First quartile of observed times between failures
- 'TBFQ2' - Second quartile of observed times between failures
- 'TBFQ3' - Third quartile of observed times between failures
- 'TBFMax' - Maximum value of observed times between failures
- 'TestLevel' - Test confidence level

Note For tbfi test results, the terms accept and reject are used for convenience, technically a tbfi test does not accept a model. Rather, the test fails to reject it.

\section*{More About}

\section*{Time Between Failures Independence (TBIF) Test}

The tbfi function performs the time between failures independence test. This test is an extension of Kupiec's time until first failure (TUFF) test.

TBFI was proposed by Haas (2001) to test for independence. It takes into account not only the time until the first failure, but also the time between all failures. For the time between failures mixed test, see the tbf function.

\section*{Algorithms}

The likelihood ratio (test statistic) of the TBFI test is the sum of TUFF likelihood ratios for each time between failures. If \(x\) is the number of failures, and \(n_{1}\) is the number of periods until the first failure, \(n_{2}\) the number of periods between the first and the second failure, and, in general, \(n_{i}\) is the number of periods between failure \(i-1\) and failure \(i\), then a likelihood ratio \(L R a t i o T B F I_{i}\) for each \(n_{i}\) is based on the TUFF formula
\[
\begin{aligned}
& \operatorname{LRatioTBFI}_{i}=\operatorname{LRatioTUFF}\left(n_{i}\right)=-2 \sum_{i=1}^{x} \log \left(\frac{p V a R(1-p V a R)^{n_{i}-1}}{\left(\frac{1}{n_{i}}\right)\left(1-\frac{1}{n_{i}}\right)^{n_{i}-1}}\right) \\
& =-2\left(\log (p V a R)+\left(n_{i}-1\right) \log (1-p V a R)+n_{i} \log \left(n_{i}\right)-\left(n_{i}-1\right) \log \left(n_{i}-1\right)\right)
\end{aligned}
\]

As with the tuff test, \(\operatorname{LRatioTBFI}_{i}=-2 \log (p V a R)\) if \(n_{i}=1\).
The TBFI likelihood ratio LRatioTBFI is then the sum of the individual likelihood ratios for all times between failures
\[
\text { LRatioTBFI }=\sum_{i=1}^{\chi} \text { LRatioTBFI }_{i}
\]
which is asymptotically distributed as a chi-square distribution with \(x\) degrees of freedom, where \(x\) is the number of failures.

The \(p\)-value of the tbfi test is the probability that a chi-square distribution with \(x\) degrees of freedom exceeds the likelihood ratio LRatioTBFI
\[
\text { PValueTBFI = } 1-F(\text { LRatioTBFI })
\]
where \(F\) is the cumulative distribution of a chi-square variable with \(x\) degrees of freedom and \(x\) is the number of failures.

The result of the test is to accept if
\[
F(\text { LRatioTBFI })<F(\text { TestLevel })
\]
and reject otherwise, where \(F\) is the cumulative distribution of a chi-square variable with \(x\) degrees of freedom and \(x\) is the number of failures.

If there are no failures in the sample, the test statistic is not defined. This is handled the same as a TUFF test with no failures. For more information, see tuff.

\section*{Version History}

\section*{Introduced in R2016b}

\section*{References}
[1] Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar, Bonn, 2001.

\section*{See Also}
varbacktest|tl|tuff|bin|pof|cc|cci|tbf|summary|runtests
Topics
"VaR Backtesting Workflow" on page 2-6
"Value-at-Risk Estimation and Backtesting" on page 2-10
"Overview of VaR Backtesting" on page 2-2
"Haas's Time Between Failures or Mixed Kupiec's Test" on page 2-4
"Comparison of ES Backtesting Methods" on page 2-26

\section*{tl}

Traffic light test for value-at-risk (VaR) backtesting

\section*{Syntax}

TestResults = tl(vbt)

\section*{Description}

TestResults \(=\mathrm{tl}(\mathrm{vbt})\) generates the traffic light (TL) test for value-at-risk (VaR) backtesting.

\section*{Examples}

\section*{Generate Traffic Light Test Results}

Create a varbacktest object.
```

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)
vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x1 double]
PortfolioID: "Portfolio"
VaRID: "VaR"
VaRLevel: 0.9500

```

Generate the tl test results.
```

TestResults = tl(vbt)

```
```

TestResults=1\times9 table
PortfolioID VaRID VaRLevel TL Probability TypeI Increase Observati`
"Portfolio" "VaR" 0.95 gree
0.77913
0.26396
0

```

\section*{Run the TL Test for VaR Backtests for Multiple VaRs at Different Confidence Levels}

Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.
```

load VaRBacktestData
vbt = varbacktest(EquityIndex,...
[Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
'PortfolioID','Equity',...

```
```

 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])
 vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x6 double]
PortfolioID: "Equity"
VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95"
VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

```

Generate the tl test results.
```

TestResults = tl(vbt)
TestResults=6\times9 table VaRID VaRLevel TL Probability TypeI Increase

PortfolioID	VaRID	VaRLevel	TL	Probability	TypeI	Increase
"Equity"	"Normal95"	0.95	green	0.77913	0.26396	0
"Equity"	"Normal99"	0.99	yellow	0.97991	0.03686	0.26582
"Equity"	"Historical95"	0.95	green	0.85155	0.18232	0
"Equity"	"Historical99"	0.99	green	0.74996	0.35269	0
"Equity"	"EWMA95"	0.95	green	0.85155	0.18232	0
"Equity"	"EWMA99"	0.99	yellow	0.99952	0.0011122	0.43511

```

\section*{Input Arguments}

\section*{vbt - varbacktest object}
object
varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating a varbacktest object, see varbacktest.

\section*{Output Arguments}

\section*{TestResults - tl test results}
table
tl test results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:
- 'PortfolioID ' - Portfolio ID for the given data
- 'VaRID ' - VaR ID for each of the VaR data columns provided
- 'VaRLevel' - VaR level for the corresponding VaR data column
- 'TL' - Categorical (ordinal) array with the categories green, yellow, and red that indicate the result of the traffic light \(t l\) test
- 'Probability ' - Cumulative probability of observing up to the corresponding number of failures
- 'TypeI ' - Probability of observing the corresponding number of failures or more if the model is correct
- 'Increase ' - Increase in the scaling factor
- 'Observations' - Number of observations
- 'Failures ' - Number of failures

\section*{More About}

\section*{Traffic Light Test}

The \(t l\) function performs Basel's traffic light test, also known as three-zone test. Basel's methodology can be applied to any number of time periods and VaR confidence levels, as explained in "Algorithms" on page 6-425.

The Basel Committee reports, as an example, a table of the three zones for 250 time periods and a VaR confidence level of 0.99 . The increase in scaling factor in the table reported by Basel has some ad-hoc adjustments (rounding, and so on) not explicitly described in the Basel document. The following table compares the increase in scaling factor reported in the Basel document for the case of 250 periods and \(0.99 \%\) VaR confidence level, and the increase in the factors reported by the TL test.
\begin{tabular}{|l|l|l|l|}
\hline Failures & Zone & Increase Basel & Increase TL \\
\hline 0 & Green & 0 & 0 \\
\hline 1 & Green & 0 & 0 \\
\hline 2 & Green & 0 & 0 \\
\hline 3 & Green & 0 & 0 \\
\hline 4 & Green & 0 & 0 \\
\hline 5 & Yellow & 0.40 & 0.3982 \\
\hline 6 & Yellow & 0.50 & 0.5295 \\
\hline 7 & Yellow & 0.65 & 0.6520 \\
\hline 8 & Yellow & 0.75 & 0.7680 \\
\hline 9 & Yellow & 0.85 & 0.8791 \\
\hline 10 & Red & 1 & 1 \\
\hline
\end{tabular}

The \(t l\) function computes the scaling factor following the methodology described in the Basel document (see "References" on page 6-426) and is explained in the "Algorithms" on page 6-425 section. The \(t l\) function does not apply any ad-hoc adjustments.

\section*{Algorithms}

The traffic light test is based on a binomial distribution. Suppose \(N\) is the number of observations, \(p=\) 1 - VaRLevel is the probability of observing a failure if the model is correct, and \(x\) is the number of failures.

The test computes the cumulative probability of observing up to \(x\) failures, reported in the 'Probability' column,
\[
\operatorname{Probability}=\operatorname{Probability}(X \leq x \mid N, p)=F(x \mid N, p)
\]
where \(F(x \mid N, p)\) is the cumulative distribution of a binomial variable with parameters \(N\) and \(p\), with \(p\) \(=1-V a R L e v e l\). The three zones are defined based on this cumulative probability:
- Green: \(F(x \mid N, p) \leq 0.95\)
- Yellow: \(0.95<F(x \mid N, p) \leq 0.9999\)
- Red: \(0.9999<F(x \mid N, p)\)

The probability of a Type-I error, reported in the 'TypeI ' column, is
TypeI \(=\operatorname{TypeI}(x \mid N, p)=1-F(X \geq x \mid N, p)\).
This probability corresponds to the probability of mistakenly rejecting the model if the model were correct. Probability and TypeI do not sum up to 1 , they exceed 1 by exactly the probability of having \(x\) failures.

The increase in scaling factor, reported in the ' Increase ' column, is always 0 for the green zone and always 1 for the red zone. For the yellow zone, it is an adjustment based on the relative difference between the assumed VaR confidence level (VaRLevel) and the observed confidence level \((x / N)\), where N is the number of observations and \(x\) is the number of failures. To find the increase under the assumption of a normal distribution, compute the critical values \(z\) Assumed and \(z\) Observed.

The increase to the baseline scaling factor is given by
\[
\text { Increase }=\text { Baseline } \times\left(\frac{z \text { Assumed }}{z \text { Observed }}-1\right)
\]
with the restriction that the increase cannot be negative or greater than 1 . The baseline scaling factor in the Basel rules is 3 .

The \(t l\) function computes the scaling factor following this methodology, which is also described in the Basel document (see "References" on page 6-426). The \(t l\) function does not apply any ad-hoc adjustments.

\section*{Version History}

Introduced in R2016b

\section*{References}
[1] Basel Committee on Banking Supervision, Supervisory Framework for the Use of 'Backtesting' in Conjunction with the Internal Models Approach to Market Risk Capital Requirements. January, 1996, https://www.bis.org/publ/bcbs22.htm.

\section*{See Also}
varbacktest|bin|pof|tuff|cc|cci|tbf|tbfi|summary|runtests
Topics
"VaR Backtesting Workflow" on page 2-6
"Value-at-Risk Estimation and Backtesting" on page 2-10
"Overview of VaR Backtesting" on page 2-2
"Traffic Light Test" on page 2-3
"Comparison of ES Backtesting Methods" on page 2-26

\section*{tuff}

Time until first failure test for value-at-risk (VaR) backtesting

\section*{Syntax}

TestResults = tuff(vbt)
TestResults = tuff(vbt,Name,Value)

\section*{Description}

TestResults = tuff(vbt) generates the time until first failure (TUFF) test for value-at-risk (VaR) backtesting.

TestResults = tuff(vbt,Name,Value) adds an optional name-value pair argument for TestLevel.

\section*{Examples}

\section*{Generate TUFF Test Results}

Create a varbacktest object.
```

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)
vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x1 double]
PortfolioID: "Portfolio"
VaRID: "VaR"
VaRLevel: 0.9500

```

Generate the tuff test results.
```

TestResults = tuff(vbt)
TestResults=1\times9 table
PortfolioID VaRID VaRLevel TUFF LRatioTUFF PValueTUFF FirstFailure Ob
"Portfolio" "VaR" 0.95 accept 1.7354 0.18773 58

```

Run the TUFF Test for VaR Backtests for Multiple VaRs at Different Confidence Levels
Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.
```

load VaRBacktestData
vbt = varbacktest(EquityIndex,...
[Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
'PortfolioID','Equity',...
'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])
vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x6 double]
PortfolioID: "Equity"
VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95"
VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

```

Generate the tuff test results using the TestLevel optional input.
```

TestResults = tuff(vbt,'TestLevel',0.90)

```


\section*{Input Arguments}

\section*{vbt - varbacktest object}
object
varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating a varbacktest object, see varbacktest.

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = tuff(vbt,'TestLevel', 0.99)

\section*{TestLevel - Test confidence level}

\subsection*{0.95 (default) | numeric between 0 and 1}

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric between 0 and 1 .

Data Types: double

\section*{Output Arguments}

\section*{TestResults - tuff test results}
table
tuff test results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:
- 'PortfolioID ' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel' - VaR level for the corresponding VaR data column
- 'TUFF' - Categorical array with the categories accept and reject that indicate the result of the tuff test
- 'LRatioTUFF' - Likelihood ratio of the tuff test
- 'PValueTUFF' - P-value of the tuff test
- 'FirstFailure' - Number of periods until the first failure
- 'Observations' - Number of observations
- 'TestLevel' - Test confidence level

Note For tuff test results, the terms accept and reject are used for convenience, technically a tuff test does not accept a model. Rather, the test fails to reject it.

\section*{More About}

\section*{Time Until First Failure (TUFF) Test}

The tuff function performs Kupiec's time until first failure test.
The TUFF test is a likelihood ratio test proposed by Kupiec (1995) to assess if the number of periods until the first failure is consistent with the VaR confidence level.

\section*{Algorithms}

The likelihood ratio (test statistic) of the tuff test is given by
\[
\begin{aligned}
& \text { LRatioTUFF }=-2 \log \left(\frac{p V a R(1-p V a R)^{n-1}}{\left(\frac{1}{n}\right)\left(1-\frac{1}{n}\right)^{n-1}}\right)=-2(\log (p V a R)+(n-1) \log (1-p V a R)+n \log (n) \\
& -(n-1) \log (n-1))
\end{aligned}
\]
where \(n\) is the number of periods until the first failure and \(p V a R=1-\) VaRLevel. By the properties of the logarithm (if \(n=1\) ),
\[
\text { LRatioTUFF }=-2 \log (p V a R)
\]

This is asymptotically distributed as a chi-square distribution with 1 degree of freedom.
The \(p\)-value of the tuff test is the probability that a chi-square distribution with 1 degree of freedom exceeds the likelihood ratio LRatioTUFF
\[
\text { PValueTUFF = } 1-F(\text { LRatioTUFF })
\]
where \(F\) is the cumulative distribution of a chi-square variable with 1 degree of freedom.
The result of the test is to accept if
\[
F(\text { LRatioTUFF) }<F \text { (TestLevel) }
\]
and reject otherwise, where \(F\) is the cumulative distribution of a chi-square variable with 1 degree of freedom.

If the sample has no failures, the test statistic is not defined. However, there are two cases distinguished here:
- If the number of observations is large enough that no matter when the first failure occurred it would be too late to pass the test, then the model is rejected. Technically, this happens if the number of observations \(N\) is larger than \(1 / p V a R\) (large enough relative to the VaR confidence level) and if the test fails when \(n=N+1\) (the earliest observation for the first VaR failure). In this case, the likelihood ratio is reported for \(n=N+1\), and the corresponding \(p\)-value.
- In all other cases, it is not possible to tell with certainty whether the result of the test would eventually be to accept or reject the model. There are ranges of possible first failure values that would result in accepting or rejecting the model. In these cases, the tuff function accepts the model and reports undefined ( NaN ) values for the likelihood ratio and \(p\)-value.

\section*{Version History}

\section*{Introduced in R2016b}

\section*{References}
[1] Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal of Derivatives. Vol. 3, 1995, pp. 73-84.

\section*{See Also}
varbacktest|tl|pof|bin|cc|cci|tbf|tbfi|summary|runtests

\section*{Topics}
"VaR Backtesting Workflow" on page 2-6
"Value-at-Risk Estimation and Backtesting" on page 2-10
"Overview of VaR Backtesting" on page 2-2
"Kupiec's POF and TUFF Tests" on page 2-3
"Comparison of ES Backtesting Methods" on page 2-26

\section*{ultimateClaims}

Compute projected ultimate claims for expectedClaims object

\section*{Syntax}
projectedUltimateClaims = ultimateClaims(ec)

\section*{Description}
projectedUltimateClaims = ultimateClaims(ec) computes the projected ultimate claims for each origin period, based on the earned premium and the selected claims ratios for an expectedClaims object.

\section*{Examples}

\section*{Compute Ultimate Claims for expectedClaims Object}

Compute the projected ultimate claims for an expectedClaims object containing simulated insurance claims data.
```

load InsuranceClaimsData.mat;
head(data)

OriginYear	DevelopmentYear	ReportedClaims	PaidClaims
2010	12	3995.7	1893.9
2010	24	4635	3371.2
2010	36	4866.8	4079.1
2010	48	4964.1	4487
2010	60	5013.7	4711.4
2010	72	5038.8	4805.6
2010	84	5059	4853.7
2010	96	5074.1	4877.9

```

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.
```

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl`
dT_reported =
developmentTriangle with properties:
Origin: {10x1 cell}
Development: {10x1 cell}
Claims: [10x10 double]
LatestDiagonal: [10x1 double]
Description: ""
TailFactor: 1

```

```

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
developmentTriangle with properties:
Origin: {10x1 cell}
Development: {10x1 cell}
Claims: [10x10 double]
LatestDiagonal: [10x1 double]
Description: ""
TailFactor: 1
CumulativeDevelopmentFactors: [$$
\begin{array}{llllllllllllll}{2.4388}&{1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001}\end{array}
$$)
SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001

```

Create an expectedClaims object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.
```

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)
ec =
expectedClaims with properties:
ReportedTriangle: [1x1 developmentTriangle]
PaidTriangle: [1x1 developmentTriangle]
EarnedPremium: [10x1 double]
InitialClaims: [10x1 double]
CaseOutstanding: [10x1 double]
EstimatedClaimsRatios: [10x1 double]
SelectedClaimsRatios: [10x1 double]

```

Use ultimateClaims to compute the projected ultimate claims using Expected Claims Technique.
```

projectedUltimateClaims = ultimateClaims(ec)
projectedUltimateClaims = 10×1
103 x
4.9910
5.1623
5.5856
5.8067
5.8990
5.9211
5.8895
6.1289
6.1374
6.6034

```

\section*{Input Arguments}
ec - Expected claims
expectedClaims object
Expected claims, specified as a previously created expectedClaims object.
Data Types: object

\section*{Output Arguments}
projectedUltimateClaims - Projected ultimate claims obtained using expected claims technique
vector
Projected ultimate claims obtained using the expected claims technique, returned as a vector.

\section*{Version History}

Introduced in R2020b

\section*{See Also}
ibnr|unpaidClaims | summary
Topics
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

\section*{ultimateClaims}

Compute projected ultimate claims for bornhuetterFerguson object

\section*{Syntax}
projectedUltimateClaims = ultimateClaims(bf)
projectedUltimateClaims = ultimateClaims( \(\qquad\) , referenceClaimsType)

\section*{Description}
projectedUltimateClaims = ultimateClaims (bf) computes the projected ultimate claims for each origin period, based on the earned premium and the selected claims ratios for a bornhuetterFerguson object.
projectedUltimateClaims = ultimateClaims( __ , referenceClaimsType) additionally specifies the type of claims data. Specify this argument after the input argument in the previous syntax.

\section*{Examples}

\section*{Compute Projected Ultimate Claims for bornhuetterFerguson Object}

This example shows how to compute the projected ultimate claims for a bornhuetterFerguson object for simulated insurance claims data.
\begin{tabular}{|c|c|c|c|}
\hline OriginYear & DevelopmentYear & ReportedClaims & PaidClaims \\
\hline 2010 & 12 & 3995.7 & 1893.9 \\
\hline 2010 & 24 & 4635 & 3371.2 \\
\hline 2010 & 36 & 4866.8 & 4079.1 \\
\hline 2010 & 48 & 4964.1 & 4487 \\
\hline 2010 & 60 & 5013.7 & 4711.4 \\
\hline 2010 & 72 & 5038.8 & 4805.6 \\
\hline 2010 & 84 & 5059 & 4853.7 \\
\hline 2010 & 96 & 5074.1 & 4877.9 \\
\hline
\end{tabular}

Use developmentTriangle to convert the data to a development triangle which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.
```

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl
dT_reported =
developmentTriangle with properties:
Origin: {10x1 cell}
Development: {10x1 cell}

```
```

 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
developmentTriangle with properties:
Origin: {10x1 cell}
Development: {10x1 cell}
Claims: [10x10 double]
LatestDiagonal: [10x1 double]
Description: ""
TailFactor: 1
CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001
SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001

```

Create an expectedClaims object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.
```

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)
ec =
expectedClaims with properties:
ReportedTriangle: [1x1 developmentTriangle]
PaidTriangle: [1xl developmentTriangle]
EarnedPremium: [10x1 double]
InitialClaims: [10x1 double]
CaseOutstanding: [10x1 double]
EstimatedClaimsRatios: [10x1 double]
SelectedClaimsRatios: [10x1 double]

```

Create a bornhuetterFerguson object with reported claims, paid claims, and expected claims to calculate ultimate claims, case outstanding, IBNR, and unpaid claims estimates.
```

bf = bornhuetterFerguson(dT_reported, dT_paid, ec.ultimateClaims)
bf =
bornhuetterFerguson with properties:
ReportedTriangle: [1x1 developmentTriangle]
PaidTriangle: [1x1 developmentTriangle]
ExpectedClaims: [10x1 double]
PercentUnreported: [10x1 double]
PercentUnpaid: [10x1 double]
CaseOutstanding: [10x1 double]

```

Use ultimateClaims to compute the projected ultimate claims for each origin period, based on the earned premium and the selected claims ratios.
```

projectedUltimateClaims = ultimateClaims(bf,"reported")
projectedUltimateClaims = 10×1
103 x
5.0894
5.1851
5.6421
5.8384
5.9358
5.8617
5.8639
6.1550
6.1069
6.4968

```

\section*{Input Arguments}

\section*{bf - Bornhuetter-Ferguson}
bornhuetterFerguson object
Bornhuetter-Ferguson object, specified as a previously created bornhuetterFerguson object.
Data Types: object
referenceClaimsType - Type of claims data
'reported ' (default)| character vector with value 'reported ' or 'paid' | string with value
"reported" or "paid"
(Optional) Type of claims data, specified as a character vector or a string.
Data Types: char | string

\section*{Output Arguments}
projectedUltimateClaims - Projected ultimate claims obtained using BornhuetterFerguson technique
vector
Projected ultimate claims obtained using the Bornhuetter-Ferguson technique, returned as a vector.

\section*{More About}

\section*{Ultimate Claims}

Ultimate claims are the total sum the insured, its insurer, and/or its reinsurer pay for a fully developed loss. A fully developed loss is the paid losses plus outstanding reported losses and incurred but not reported (IBNR) losses.

Knowing the exact value of ultimate losses might not be possible for a long time after the end of a policy period. Actuaries assist with these projections for purposes of financial modeling and year-end reserve determinations.

\section*{Version History}

Introduced in R2020b

\section*{See Also}
ibnr|unpaidClaims | summary

\section*{Topics}
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

\section*{ultimateClaims}

Compute projected ultimate claims for capeCod object

\section*{Syntax}
projectedUltimateClaims = ultimateClaims(cc)

\section*{Description}
projectedUltimateClaims = ultimateClaims(cc) computes the projected ultimate claims for each origin period, based on the earned premium and the selected claims ratios for a capeCod object.

\section*{Examples}

\section*{Compute Projected Ultimate Claims for capeCod Object}

This example shows how to compute the projected ultimate claims for a capeCod object for simulated insurance claims data.
\begin{tabular}{l} 
load InsuranceClaimsData.mat; \\
head(data) \\
OriginYear
\end{tabular}

2010

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.
```

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl`
dT_reported =
developmentTriangle with properties:
Origin: {10x1 cell}
Development: {10x1 cell}
Claims: [10\times10 double]
LatestDiagonal: [10x1 double]
Description: ""
TailFactor: 1
CumulativeDevelopmentFactors: [$$
\begin{array}{llllllllllllllllllll}{1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001}\end{array}
$$)

```
```

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT paid =
developmentTriangle with properties:
Origin: {10x1 cell}
Development: {10xl cell}
Claims: [10x10 double]
LatestDiagonal: [10x1 double]
Description: ""
TailFactor: 1
CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001
SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001

```

Create a capeCod object where the first input argument is the reported development triangle, the second input argument is the paid development triangle, and the third input is the earned premium.
```

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
cc = capeCod(dT reported, dT paid,earnedPremium)
CC =
capeCod with properties:
ReportedTriangle: [1x1 developmentTriangle]
PaidTriangle: [1x1 developmentTriangle]
EarnedPremium: [10x1 double]
UsedUpPremium: [10x1 double]
EstimatedClaimRatios: [10x1 double]
ExpectedClaimRatio: 0.4258
EstimatedExpectedClaims: [10x1 double]
PercentUnreported: [10x1 double]
CaseOutstanding: [10x1 double]

```

Use ultimateClaims to compute the projected ultimate claims.
```

projectedUltimateClaims = ultimateClaims(cc)

```
projectedUltimateClaims = \(10 \times 1\)
\(10^{3} \times\)
    5.0894
    5.1876
    5.6382
    5.8520
    5.9447
    5.8367
    5.8332
    6.0632
    6.0893
    5.9459

\section*{Input Arguments}

\author{
cc - Cape Cod object \\ capeCod object
}

Cape Cod object, specified as a previously created capeCod object.
Data Types: object

\section*{Output Arguments}
projectedUltimateClaims - Projected ultimate claims obtained using Cape Cod technique vector

Projected ultimate claims obtained using the Cape Cod technique, returned as a vector.

\section*{More About}

\section*{Ultimate Claims}

Ultimate claims are the total sum the insured, its insurer, and/or its reinsurer pay for a fully developed loss. A fully developed loss is the paid losses plus outstanding reported losses and incurred-but-not-reported (IBNR) losses.

Knowing the exact value of ultimate losses might not be possible for a long time after the end of a policy period. Actuaries assist with these projections for purposes of financial modeling and year-end reserve determinations.

\section*{Version History}

\author{
Introduced in R2021a
}

\section*{See Also}
ibnr|unpaidClaims | summary
Topics
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

\section*{ultimateClaims}

Compute ultimate claims for developmentTriangle object

\section*{Syntax}
projectedUltimateClaims = ultimateClaims(dT)

\section*{Description}
projectedUltimateClaims = ultimateClaims(dT) calculates the projected ultimate claims for each origin period, based on the observed claims and the cumulative development factors.

\section*{Examples}

\section*{Calculate the Projected Ultimate Claims for Development Triangle}

Calculate the projected ultimate claims for a developmentTriangle object containing simulated insurance claims data.
\begin{tabular}{l}
\begin{tabular}{l} 
load InsuranceClaimsData.mat; \\
head(data) \\
OriginYear
\end{tabular} \\
\cline { 1 - 1 } \\
2010
\end{tabular}

Use developmentTriangle to convert the data to a development triangle which, is the standard form for representing claims data.
```

dT = developmentTriangle(data)
dT =
developmentTriangle with properties:
Origin: {10x1 cell}
Development: {10x1 cell}
Claims: [10x10 double]
LatestDiagonal: [10x1 double]
Description: ""
TailFactor: 1
CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001

```

Use the cdfSummary function to calculate CDFs and the percentage of total claims and return a table with the selected link ratios, CDFs, and percentage of total claims.
```

dT.SelectedLinkRatio = [1.1755, 1.0577, 1.0273, 1.0104, 1.0044, 1.0026, 1.0016, 1.0006, 1.0004];
selectedLinkRatiosTable = cdfSummary(dT)
selectedLinkRatiosTable=3\times10 table

12-24	24-36	36-48	48-60	60-72	72-84
1.1755	1.0577	1.0273	1.0104	1.0044	1.0026
1.303	1.1084	1.048	1.0201	1.0096	1.0052
0.76747	0.90216	0.95422	0.98027	0.99046	0.99482

```

Use the ultimateClaims function to calculate the projected ultimate claims for each origin period, based on the observed claims and the cumulative development factors.
```

projectedUltimateClaims = ultimateClaims(dT)
projectedUltimateClaims = 10\times1
103 x
5.0894
5.1820
5.6310
5.8188
5.9093
5.8284
5.8293
6.1353
6.0911
6.4444

```

\section*{Input Arguments}

\section*{dT - Development triangle}
developmentTriangle object
Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

\section*{Output Arguments}
projectedUltimateClaims - Projected ultimate claims obtained using development technique
vector
Projected ultimate claims obtained using the development technique, returned as a vector.

\section*{Version History}

Introduced in R2020b

\section*{See Also}
view | linkRatios | linkRatioAverages | cdfSummary | fullTriangle | linkRatiosPlot | claimsPlot

\section*{Topics}
"Mean Square Error of Prediction for Estimated Ultimate Claims" on page 4-161
"Bootstrap Using Chain Ladder Method" on page 4-168
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

\section*{unconditional}

Unconditional expected shortfall backtest by Acerbi and Szekely

\section*{Syntax}

TestResults = unconditional(ebts)
[TestResults,SimTestStatistic] = unconditional(ebts,Name,Value)

\section*{Description}

TestResults = unconditional(ebts) runs the unconditional expected shortfall (ES) backtest of Acerbi-Szekely (2014).
[TestResults,SimTestStatistic] = unconditional(ebts,Name,Value) adds an optional name-value pair argument for TestLevel.

\section*{Examples}

\section*{Run an ES Unconditional Test}

Create an esbacktestbysim object.
```

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
'Degrees0fFreedom',10,...
'Location',Mu,...
'Scale',Sigma,...
'PortfolioID',"S\&P",...
'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
'VaRLevel',VaRLevel);

```

Generate the ES unconditional test report.
TestResults = unconditional(ebts)
TestResults=3×10 table
PortfolioID VaRID VaRLevel Unconditional PValue TestStatistic Crit
\(\qquad\)
"S\&P"
"S\&P"
"S\&P"
\(" t(10) 95 \% "\)
\(" t(10) 97.5 \% "\)
\(" t(10) 99 \% "\)
0.95
accept
0.093
-0. 13342
0.975 reject \(0.031 \quad-0.25011\)
0.99 reject
0.008
-0. 0.57396

\section*{Input Arguments}
ebts - esbacktestbysim object
object
esbacktestbysim (ebts) object, contains a copy of the given data (the PortfolioData, VarData, ESData, and Distribution properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating an esbacktestbysim object, see esbacktestbysim.

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Namel=Value1, . . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [TestResults,SimTestStatistic] = unconditional(ebts,'TestLevel',0.99)

\section*{TestLevel - Test confidence level}
0.95 (default) | numeric with values between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric value between 0 and 1.

Data Types: double

\section*{Output Arguments}

\section*{TestResults - Results}
table
Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:
- 'PortfolioID' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR data columns provided
- 'VaRLevel' - VaR level for the corresponding VaR data column
- 'Unconditional' - Categorical array with categories 'accept' and 'reject' that indicate the result of the unconditional test
- 'PValue ' - P-value of the unconditional test
- 'TestStatistic' - Unconditional test statistic
- 'CriticalValue ' - Critical value for the unconditional test
- 'Observations' - Number of observations
- 'Scenarios ' - Number of scenarios simulated to get the \(p\)-values
- 'TestLevel' - Test confidence level

\section*{SimTestStatistic - Simulated values of the test statistic}
numeric array
Simulated values of the test statistic, returned as a NumVaRs-by-NumScenarios numeric array.

\section*{More About}

\section*{Unconditional Test by Acerbi and Szekely}

The unconditional test is also known as the second Acerbi-Szekely test.

The unconditional test is based on the unconditional relationship
\[
E S_{t}=-E_{t}\left[\frac{X_{t} I_{t}}{p_{V a R}}\right]
\]
where
\(X_{t}\) is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period \(t\).
\(P_{\text {VaR }}\) is the probability of VaR failure defined as 1-VaR level.
\(E S_{\mathrm{t}}\) is the estimated expected shortfall for period \(t\).
\(\mathrm{I}_{\mathrm{t}}\) is the VaR failure indicator on period \(t\) with a value of 1 if \(X_{t}<-\mathrm{VaR}\), and 0 otherwise.
The unconditional test statistic is defined as:
\[
Z_{\text {uncond }}=\frac{1}{N p_{V a R}} \sum_{t=1}^{N} \frac{X_{t} I_{t}}{E S_{t}}+1
\]

\section*{Significance of the Test}

Under the assumption that the distributional assumptions are correct, the expected value of the test statistic \(Z_{\text {uncond }}\) is 0 .

This is expressed as
\[
E\left[Z_{\text {uncond }}\right]=0
\]

Negative values of the test statistic indicate risk underestimation. The unconditional test is a onesided test that rejects when there is evidence that the model underestimates risk (for technical details on the null and alternative hypotheses, see Acerbi-Szekely, 2014). The unconditional test rejects the model when the \(p\)-value is less than 1 minus the test confidence level.

For more information on the steps to simulate the test statistics and the details for the computation of thep-values and critical values, see simulate.

\section*{Edge Cases}

The unconditional test statistic takes a value of 1 when there are no VaR failures in the data or in a simulated scenario.

1 is also the maximum possible value for the test statistic. When the expected number of failures \(\mathrm{Np}_{\text {VaR }}\) is small, the distribution of the unconditional test statistic has a discrete probability jump at \(\mathrm{Z}_{\text {uncond }}=1\), and the probability that \(\mathrm{Z}_{\text {uncond }} \leq 1\) is 1 . The \(p\)-value is set to 1 in these cases, and the test result is to 'accept', because there is no evidence of risk underestimation. Scenarios with no failures are more likely as the expected number of failures \(\mathrm{Np}_{\mathrm{VaR}}\) gets smaller.

\section*{Version History Introduced in R2017b}

\section*{References}
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

\section*{See Also}
summary | runtests | conditional|quantile |minBiasRelative |minBiasAbsolute | simulate | esbacktestbysim| esbacktestbyde

\section*{Topics}
"Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"Comparison of ES Backtesting Methods" on page 2-26

\section*{unconditionaIDE}

Unconditional Du-Escanciano (DE) expected shortfall (ES) backtest

\section*{Syntax}

TestResults = unconditionalDE(ebtde)
[TestResults,SimTestStatistic] = unconditionalDE( \(\qquad\) ,Name, Value)

\section*{Description}

TestResults = unconditionalDE (ebtde) runs the unconditional Du-Escanciano (DE) expected shortfall (ES) backtest [1]. The unconditional test supports critical values by large-scale approximation and by finite-sample simulation.
[TestResults,SimTestStatistic] = unconditionalDE( \(\qquad\) ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input argument in the previous syntax.

\section*{Examples}

\section*{Create an esbacktestbyde Object and Run an UnconditionalDE Test}

Create an esbacktestbyde object for a \(t\) model with 10 degrees of freedom, and then run an unconditionalDE test.
```

load ESBacktestDistributionData.mat
rng('default'); % For reproducibility
ebtde = esbacktestbyde(Returns,"t",...
'DegreesOfFreedom',T10DoF, ...
'Location',T10Location,...
'Scale',T10Scale,...
'PortfolioID',"S\&P",...
'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
'VaRLevel',VaRLevel);
unconditionalDE(ebtde)

```
ans \(=3 \times 14\) table
    PortfolioID VaRID VaRLevel UnconditionalDE PValue TestStatistic
        "S\&P"
        "S\&P"
        "S\&P"
" \(t(10) 95 \% "\)
\(t(10) 97.5 \%\)
0.95
0.975
0.99
```

accept

```
0.181
0.028821
"S\&P"
"S\&P"
"t(10) 99\%"
0.99
accept 0.086278
0.015998
0.0080997

\section*{Input Arguments}
ebtde - esbacktestbyde object
object
esbacktestbyde (ebtde) object, which contains a copy of the data (the PortfolioData, VarData, and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating an esbacktestbyde object, see esbacktestbyde.

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Namel=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = unconditionalDE(ebtde,'CriticalValueMethod','largesample','TestLevel',0.99)

CriticalValueMethod - Method to compute critical values, confidence intervals, and \(\boldsymbol{p}\) values
'large-sample' (default)|character vector with values of 'large-sample' or 'simulation' | string with values of "large-sample" or "simulation"

Method to compute critical values, confidence intervals, and \(p\)-values, specified as the commaseparated pair consisting of 'CriticalValueMethod' and a character vector or string with a value of 'large-sample' or 'simulation'.
Data Types: char \| string

\section*{TestLevel - Test confidence level}
0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric value between 0 and 1.
Data Types: double

\section*{Output Arguments}

\section*{TestResults - Results}
table
Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following:
- 'PortfolioID' - Portfolio ID for the given data
- 'VaRID' - VaR ID for each of the VaR levels
- 'VaRLevel' - VaR level
- 'UnconditionalDE' - Categorical array with the categories 'accept ' and 'reject', which indicate the result of the unconditional DE test
- 'PValue' \(-P\)-value of the unconditional DE test
- 'TestStatistic' - Unconditional DE test statistic
- 'LowerCI ' - Confidence-interval lower limit for the unconditional DE test statistic
- 'UpperCI ' - Confidence-interval upper limit for the unconditional DE test statistic
- 'Observations ' - Number of observations
- 'CriticalValueMethod ' - Method for computing confidence intervals and \(p\)-values
- 'MeanLS' - Mean of the large-sample normal distribution; if CriticalValueMethod is 'simulation', 'MeanLS' is reported as NaN
- 'StdLS' - Standard deviation of the large-sample normal distribution; if CriticalValueMethod is 'simulation', 'StdLS' is reported as NaN
- 'Scenarios ' - Number of scenarios simulated to get the \(p\)-values; if CriticalValueMethod is ' large-sample', the number of scenarios is reported as NaN
- 'TestLevel' - Test confidence level

Note For the test results, the terms 'accept' and 'reject ' are used for convenience. Technically, a test does not accept a model; rather, a test fails to reject it.

\section*{SimTestStatistic - Simulated values of the test statistics}
numeric array
Simulated values of the test statistics, returned as a NumVaRs-by-NumScenarios numeric array.

\section*{More About}

\section*{Unconditional DE Test}

The unconditional DE test is a two-sided test to check if the test statistic is close to an expected value of \(\alpha / 2\), where \(\alpha=1\) - VaRLevel.

The test statistic for the unconditional \(D E\) test is
\[
U_{E S}=\frac{1}{N} \sum_{t=1}^{N} H_{t}
\]
where
- \(H_{t}\) is the cumulative failures or violations process; \(H_{t}=\left(\alpha-U_{t}\right) I\left(U_{t}<\alpha\right) / \alpha\), where \(I(x)\) is the indicator function.
- \(U_{t}\) are the ranks or mapped returns \(U_{t}=P_{t}\left(X_{t}\right)\), where \(P_{t}\left(X_{t}\right)=P\left(X_{t} \mid \theta_{t}\right)\) is the cumulative distribution of the portfolio outcomes or returns \(X_{t}\) over a given test window \(t=1, \ldots N\) and \(\theta_{t}\) are the parameters of the distribution. For simplicity, the subindex \(t\) is both the return and the parameters, understanding that the parameters are those used on date \(t\), even though those parameters are estimated on the previous date \(t-1\), or even prior to that.

\section*{Significance of the Test}

The test statistic \(U_{E S}\) is a random variable and a function of random return sequences:
\[
U_{E S}=U_{E S}\left(X_{1}, \ldots, X_{N}\right) .
\]

For returns observed in the test window \(1, \ldots, N\), the test statistic attains a fixed value:
\[
U_{E S}^{o b s}=U_{E S}\left(X_{1}^{o b s}, \ldots, X_{N}^{o b s}\right) .
\]

In general, for unknown returns that follow a distribution of \(P_{t}\), the value of \(U_{E S}\) is uncertain and follows a cumulative distribution function:
\[
P_{U}(x)=P\left[U_{E S} \leq x\right] .
\]

This distribution function computes a confidence interval and a \(p\)-value. To determine the distribution \(P_{U}\), the esbacktestbyde class supports the large-sample approximation and simulation methods. You can specify one of these methods by using the optional name-value pair argument CriticalValueMethod.

For the large-sample approximation method, the distribution \(P_{U}\) is derived from an asymptotic analysis. If the number of observations \(N\) is large, the test statistic \(U_{E S}\) is distributed as
\[
U_{E S} \underset{d i s t}{ } N\left(\frac{\alpha}{2}, \frac{\alpha(1 / 3-\alpha / 4)}{N}\right)=P_{U}
\]
where \(N\left(\mu, \sigma^{2}\right)\) is the normal distribution with mean \(\mu\) and variance \(\sigma^{2}\).
Because the test statistic cannot be smaller than 0 or greater than 1, the analytical confidence interval limits are clipped to the interval \([0,1]\). Therefore, if the analytical value is negative, the test statistic is reset to 0 , and if the analytical value is greater than 1 , it is reset to 1 .

The \(p\)-value is
\[
p_{\text {value }}=2 * \min \left\{P_{U}\left(U_{E S}^{o b s}\right), 1-P_{U}\left(U_{E S}^{o b s}\right)\right\} .
\]

The test rejects if \(p_{\text {value }}<\alpha_{\text {test }}\).
For the simulation method, the distribution \(P_{U}\) is estimated as follows
1 Simulate \(M\) scenarios of returns as
\[
X^{S}=\left(X_{1}^{S}, \ldots, X_{N}^{S}\right), s=1, \ldots, M
\]

2 Compute the corresponding test statistic as
\[
U_{E S}^{S}=U_{E S}^{S}\left(X_{1}^{S}, \ldots, X_{N}^{S}\right), s=1, \ldots, M
\]

3 Define \(P_{U}\) as the empirical distribution of the simulated test statistic values as
\[
P_{U}=P\left[U_{E S} \leq x\right]=\frac{1}{M} I\left(U_{E S}^{S} \leq x\right)
\]
where \(I(\).\() is the indicator function.\)
In practice, simulating ranks is more efficient than simulating returns and then transforming the returns into ranks. For more information, see simulate.

For the empirical distribution, the value of 1- \(P_{U}(x)\) can differ from the value of \(P\left[U_{E S} \geq x\right]\) because the distribution may have nontrivial jumps (simulated tied values). Use the latter probability for the estimation of confidence levels and \(p\)-values.

If \(\mathrm{a}_{\text {test }}=1\) - test confidence level, then the confidence intervals levels \(C I_{\text {lower }}\) and \(C I_{\text {upper }}\) are the values that satisfy equations:
\[
\begin{aligned}
& P_{U}\left(C I_{\text {lower }}\right)=P\left[C I_{\text {lower }} \leq U_{E S}\right]=\frac{\alpha_{\text {test }}}{2}, \\
& P\left[U_{E S} \geq C I_{\text {upper }}\right]=\frac{\alpha_{\text {test }}}{2} .
\end{aligned}
\]

The reported confidence interval limits \(C I_{\text {lower }}\) and \(C I_{\text {upper }}\) are simulated test statistic values \(U^{\mathrm{s}}\) ES that approximately solve the preceding equations.

The \(p\)-value is determined as
\[
p_{\text {value }}=2 * \min \left\{P\left[U_{E S} \leq U_{E S}^{o b s}\right], P\left[U_{E S} \geq U_{E S}^{o b s}\right]\right\} .
\]

The test rejects if \(p_{\text {value }}<\mathrm{a}_{\text {test }}\).

\section*{Version History}

Introduced in R2019b

\section*{References}
[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk." Management Science. Vol. 63, Issue 4, April 2017.
[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk". January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

\section*{See Also}
esbacktestbyde | summary|runtests|conditionalDE|simulate|esbacktestbysim

\section*{Topics}
"Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-63
"Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and
Escanciano" on page 2-72
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"ES Backtest Using Du-Escanciano Method" on page 2-24
"Comparison of ES Backtesting Methods" on page 2-26

\section*{unconditionalNormal}

Unconditional expected shortfall (ES) backtest by Acerbi-Szekely with critical values for normal distributions

\section*{Syntax}

TestResults = unconditionalNormal(ebt)
TestResults = unconditionalNormal(ebt,Name,Value)

\section*{Description}

TestResults = unconditionalNormal(ebt) runs the unconditional expected shortfall (ES) backtest by Acerbi-Szekely (2014) using precomputed critical values and assuming that the returns distribution is standard normal.

TestResults = unconditionalNormal(ebt,Name,Value) adds an optional name-value pair argument for TestLevel.

\section*{Examples}

\section*{Run an Unconditional ES Backtest}

Create an esbacktest object.
```

load ESBacktestData
ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel',VaRLevel)
ebt =
esbacktest with properties:
PortfolioData: [1966x1 double]
VaRData: [1966x1 double]
ESData: [1966x1 double]
PortfolioID: "Portfolio"
VaRID: "VaR"
VaRLevel: 0.9750

```

Generate the TestResults report for the unconditional ES backtest that assumes the returns distribution is standard normal.
```

TestResults = unconditionalNormal(ebt,'TestLevel',0.99)
TestResults=1\times9 table
PortfolioID VaRID VaRLevel UnconditionalNormal PValue TestStatistic
"Portfolio" "VaR" 0.975
reject
0.0054099
-0.38265

```

\section*{Input Arguments}

\section*{ebt - esbacktest object}
object
esbacktest (ebt) object, which contains a copy of the given data (the PortfolioData, VarData, and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating an esbacktest object, see esbacktest.

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = unconditionalNormal(ebt,'TestLevel',0.99)

\section*{TestLevel - Test confidence level}
0.95 (default) | numeric value between 0.5 and 0.9999

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric value between 0.5 and 0.9999 .

Data Types: double

\section*{Output Arguments}

\section*{TestResults - Results}
table
Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:
- 'PortfolioID' - Portfolio ID for the given data.
- 'VaRID' - VaR ID for each of the VaR data columns provided.
- 'VaRLevel' - VaR level for the corresponding VaR data column.
- 'UnconditionalNormal ' - Categorical array with categories 'accept' and 'reject' that indicate the result of the unconditional normal test.
- 'PValue ' - P-value of the unconditional normal test, interpolated from the precomputed critical values under the assumption that the returns follow a standard normal distribution.

Note \(p\)-values \(<0.0001\) are truncated to the minimum (0.0001) and \(p\)-values \(>0.5\) are displayed as a maximum (0.5).
- 'TestStatistic' - Unconditional normal test statistic.
- 'CriticalValue' - Precomputed critical value for the corresponding test level and number of observations. Critical values are obtained under the assumption that the returns follow a standard normal distribution.
- 'Observations ' - Number of observations.
- 'TestLevel' - Test confidence level.

Note For the test results, the terms 'accept ' and 'reject' are used for convenience. Technically, a test does not accept a model; rather, a test fails to reject it.

\section*{More About}

\section*{Unconditional Test by Acerbi and Szekely}

The unconditional test (also known as the second Acerbi-Szekely test) scales the losses by the corresponding ES value.

The unconditional test statistic is based on the unconditional relationship
\[
E S_{t}=-E_{t}\left[\frac{X_{t} I_{t}}{p_{V a R}}\right]
\]
where
\(X_{t}\) is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period \(t\).
\(P_{V a R}\) is the probability of VaR failure defined as 1-VaR level.
\(E S_{t}\) is the estimated expected shortfall for period \(t\).
\(I_{t}\) is the VaR failure indicator on period \(t\) with a value of 1 if \(X_{t}<-\operatorname{VaR}\), and 0 otherwise.
The unconditional test statistic is defined as
\[
Z_{\text {uncond }}=\frac{1}{N p_{V a R}} \sum_{t=1}^{N} \frac{X_{t} I_{t}}{E S_{t}}+1
\]

The critical values for the unconditional test statistic, which form the basis for table-based tests, are stable across a range of distributions. The esbacktest class runs the unconditional test against precomputed critical values under two distributional assumptions: normal distribution (thin tails) using unconditionalNormal and \(t\) distribution with 3 degrees of freedom (heavy tails) using unconditionalT).

\section*{Version History}

\section*{Introduced in R2017b}

\section*{References}
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

\section*{See Also}
esbacktest|summary|runtests|unconditionalT

\section*{Topics}
"Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information" on page 2-30
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"Comparison of ES Backtesting Methods" on page 2-26

\section*{unconditionalT}

Unconditional expected shortfall (ES) backtest by Acerbi-Szekely with critical values for \(t\) distributions

\section*{Syntax}

TestResults = unconditionalT(ebt)
TestResults = unconditionalT(ebt,Name, Value)

\section*{Description}

TestResults = unconditionalT(ebt) runs the unconditional expected shortfall (ES) backtest by Acerbi-Szekely (2014) using precomputed critical values and assuming that the returns distribution is \(t\) with 3 degrees of freedom.

TestResults = unconditionalT(ebt,Name,Value) adds an optional name-value pair argument for TestLevel.

\section*{Examples}

\section*{Run an Unconditional t ES Backtest}

Create an esbacktest object.
```

load ESBacktestData
ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel',VaRLevel)
ebt =
esbacktest with properties:
PortfolioData: [1966x1 double]
VaRData: [1966x1 double]
ESData: [1966x1 double]
PortfolioID: "Portfolio"
VaRID: "VaR"
VaRLevel: 0.9750

```

Generate the TestResults report for the unconditional t ES backtest that assumes the returns distribution is \(t\) with 3 degrees of freedom.
```

TestResults = unconditionalT(ebt,'TestLevel',0.99)
TestResults=1\times9 table
PortfolioID
- _
"Portfolio"
"VaR"
0.975
accept

UnconditionalT PValue
0.018566
-0.38265
TestStatistic
reststatic
accept

Input Arguments

ebt - esbacktest object

object
esbacktest (ebt) object, which contains a copy of the given data (the PortfolioData, VarData, and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more information on creating an esbacktest object, see esbacktest.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = unconditionalT(ebt,'TestLevel',0.99)

TestLevel - Test confidence level

0.95 (default) | numeric value between 0.5 and 0.9999

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a numeric value between 0.5 and 0.9999 .

Data Types: double

Output Arguments

TestResults - Results

table
Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID, and VaR levels to be tested. The columns correspond to the following information:

- 'PortfolioID' - Portfolio ID for the given data.
- 'VaRID' - VaR ID for each of the VaR data columns provided.
- 'VaRLevel' - VaR level for the corresponding VaR data column.
- 'UnconditionalT ' - Categorical array with categories 'accept' and 'reject' indicating the result of the unconditional t test.
- 'PValue ' - P-value of the unconditional t test, interpolated from the precomputed critical values under the assumption that the returns follow a standard normal distribution.

Note p-values < 0.0001 are truncated to the minimum (0.0001) and p-values >0.5 are displayed as a maximum (0.5).

- 'TestStatistic' - Unconditional t test statistic.
- 'CriticalValue ' - Precomputed critical value for the corresponding test level and number of observations. Critical values are obtained under the assumption that the returns follow a t distribution with 3 degrees of freedom.
- 'Observations ' - Number of observations.
- 'TestLevel' - Test confidence level.

Note For the test results, the terms 'accept ' and 'reject' are used for convenience. Technically, a test does not accept a model; rather, a test fails to reject it.

More About

Unconditional Test by Acerbi and Szekely

The unconditional test (also known as the second Acerbi-Szekely test) scales the losses by the corresponding ES value.

The unconditional test statistic is based on the unconditional relationship

$$
E S_{t}=-E_{t}\left[\frac{X_{t} I_{t}}{p_{V a R}}\right]
$$

where
X_{t} is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period t.
$P_{V a R}$ is the probability of VaR failure defined as 1-VaR level.
$E S_{t}$ is the estimated expected shortfall for period t.
I_{t} is the VaR failure indicator on period t with a value of 1 if $X_{t}<-\operatorname{VaR}$, and 0 otherwise.
The unconditional test statistic is defined as:

$$
Z_{\text {uncond }}=\frac{1}{N p_{V a R}} \sum_{t=1}^{N} \frac{X_{t} I_{t}}{E S_{t}}+1
$$

The critical values for the unconditional test statistic, which form the basis for table-based tests, are stable across a range of distributions. The esbacktest class runs the unconditional test against precomputed critical values under two distributional assumptions: normal distribution (thin tails) using unconditionalNormal and t distribution with 3 degrees of freedom (heavy tails) using unconditionalT.

Version History

Introduced in R2017b

References

[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

See Also

esbacktest|summary|runtests|unconditionalNormal

Topics

"Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information" on page 2-30
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"Comparison of ES Backtesting Methods" on page 2-26

unpaidClaims

Compute unpaid claims estimates for bornhuetterFerguson object

Syntax

unpaidClaimsEstimate = unpaidClaims(bf)
unpaidClaimsEstimate $=$ unpaidClaims(\qquad , referenceClaimsType)

Description

unpaidClaimsEstimate $=$ unpaidClaims(bf) computes unpaid claims estimates for a bornhuetterFerguson object.
unpaidClaimsEstimate = unpaidClaims(\qquad , referenceClaimsType) additionally specifies the type of claims data. Specify this argument after the input argument in the previous syntax.

Examples

Compute Unpaid Claims Estimates for bornhuetterFerguson Object

Compute unpaid claims estimates for a bornhuetterFerguson object for simulated insurance claims data.

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl`
dT_reported =
    developmentTriangle with properties:
                            Origin: {10x1 cell}
                            Development: {10x1 cell}
                    Claims: [10x10 double]
LatestDiagonal: [10x1 double]
```

```
            Description: ""
            TailFactor: 1
        CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
        SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
    developmentTriangle with properties:
                    Origin: {10x1 cell}
            Development: {10x1 cell}
                    Claims: [10x10 double]
            LatestDiagonal: [10x1 double]
            Description: ""
                TailFactor: 1
    CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001
    SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001
```

Create an expectedClaims object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.

```
earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)
ec =
    expectedClaims with properties:
            ReportedTriangle: [1xl developmentTriangle]
                        PaidTriangle: [1x1 developmentTriangle]
                EarnedPremium: [10x1 double]
                InitialClaims: [10x1 double]
            CaseOutstanding: [10x1 double]
        EstimatedClaimsRatios: [10x1 double]
            SelectedClaimsRatios: [10x1 double]
```

Create a bornhuetterFerguson object with reported claims, paid claims, and expected claims to calculate the ultimate claims, cases outstanding, IBNR claims, and unpaid claims estimates.

```
bf = bornhuetterFerguson(dT_reported, dT_paid, ec.ultimateClaims)
bf =
    bornhuetterFerguson with properties:
        ReportedTriangle: [1x1 developmentTriangle]
            PaidTriangle: [1x1 developmentTriangle]
            ExpectedClaims: [10x1 double]
        PercentUnreported: [10x1 double]
            PercentUnpaid: [10x1 double]
        CaseOutstanding: [10x1 double]
```

Use unpaidClaims to to compute the unpaid claims estimates for the bornhuetterFerguson object.

```
unpaidClaimsEstimate = unpaidClaims(bf,"reported")
```

```
unpaidClaimsEstimate = 10×1
```

$10^{3} \times$
0.1968
0.0506
0.1299
0.1095
0.1767
0.0981
0.3915
0.9838
1.7208
3.7320

Input Arguments

bf - Bornhuetter-Ferguson
bornhuetterFerguson object
Bornhuetter-Ferguson object, specified as a previously created bornhuetterFerguson object.
Data Types: object
referenceClaimsType - Type of claims data
'reported ' (default)| character vector with value 'reported ' or 'paid' | string with value
"reported" or "paid"
Type of claims data, specified as a character vector or a string.
Data Types: char|string

Output Arguments

unpaidClaimsEstimate - Unpaid claims estimates
array
Unpaid claims estimates, returned as an array.

More About

Unpaid Claims

Unpaid claims are claims reserves for events that have occurred, including both reported and incurred-but-not-reported (IBNR) reserves, as well as the expenses of settling such claims.

Version History

Introduced in R2020b

See Also

ultimateClaims |ibnr|summary

Topics

"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

unpaidClaims

Compute unpaid claims estimates for capeCod object

Syntax

unpaidClaimsEstimate = unpaidClaims(cc)

Description

unpaidClaimsEstimate = unpaidClaims(cc) computes unpaid claims estimates for a capeCod object.

Examples

Compute Unpaid Claims Estimate for capeCod Object

This example shows how to compute the unpaid claims estimates for a capeCod object for simulated insurance claims data.

OriginYear	DevelopmentYear	ReportedClaims	PaidClaims
2010	12	3995.7	1893.9
2010	24	4635	3371.2
2010	36	4866.8	4079.1
2010	48	4964.1	4487
2010	60	5013.7	4711.4
2010	72	5038.8	4805.6
2010	84	5059	4853.7
2010	96	5074.1	4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl
dT_reported =
    developmentTriangle with properties:
                    Origin: {10x1 cell}
                        Development: {10x1 cell}
                            Claims: [10x10 double]
            LatestDiagonal: [10x1 double]
            Description: ""
                        TailFactor: 1
        CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
            SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
```

```
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
    developmentTriangle with properties:
                    Origin: {10x1 cell}
                    Development: {10x1 cell}
                    Claims: [10x10 double]
            LatestDiagonal: [10x1 double]
                    Description: ""
                            TailFactor: 1
        CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001
                        SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001
```

Create a capeCod object where the first input argument is the reported development triangle, the second input argument is the paid development triangle, and the third input is the earned premium.
earnedPremium $=$ [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000]; $\mathrm{cc}=$ capeCod(dT_reported, dT_paid,earnedPremium)

```
cc =
```

 capeCod with properties:
    ```
            ReportedTriangle: [1x1 developmentTriangle]
                        PaidTriangle: [1x1 developmentTriangle]
            EarnedPremium: [10x1 double]
            UsedUpPremium: [10x1 double]
        EstimatedClaimRatios: [10x1 double]
            ExpectedClaimRatio: 0.4258
    EstimatedExpectedClaims: [10x1 double]
        PercentUnreported: [10x1 double]
            CaseOutstanding: [10x1 double]
```

Use unpaidClaims to compute the unpaid claims estimates.

```
unpaidClaimsEstimate = unpaidClaims(cc)
unpaidClaimsEstimate = 10\times1
103 x
    0.1968
    0.0531
    0.1259
    0.1232
    0.1856
    0.0731
    0.3609
    0.8920
    1.7032
    3.1811
```


Input Arguments

cc - Cape Cod object
capeCod object

Cape Cod object, specified as a previously created capeCod object.
Data Types: object

Output Arguments
 unpaidClaimsEstimate - Unpaid claims estimates
 array

Unpaid claims estimates, returned as an array.

More About

Unpaid Claims

Unpaid claims are claims reserves for events that have occurred, including both reported and incurred-but-not-reported (IBNR) reserves, as well as the expenses of settling such claims.

Version History

Introduced in R2021a

See Also

ibnr|ultimateClaims | summary

Topics

"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

unpaidClaims

Compute unpaid claims for chainLadder object

Syntax

unpaidClaimsEstimate = unpaidClaims(cl) unpaidClaimsEstimate = unpaidClaims(\qquad ,referenceClaimsType)

Description

unpaidClaimsEstimate $=$ unpaidClaims(cl) computes unpaid claims for the chainLadder object.
unpaidClaimsEstimate = unpaidClaims(\qquad , referenceClaimsType) specifies options using one or more optional arguments in addition to the input argument in the previous syntax.

Examples

Calculate the Unpaid Claims for chainLadder

Calculate the unpaid claims for a chainLadder object containing simulated insurance claims data.

| load InsuranceClaimsData.mat;
 head (data)
 OriginYear |
| :--- |
| |
| 2010 |

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cla
dT_reported =
    developmentTriangle with properties:
                            Origin: {10x1 cell}
                            Development: {10xl cell}
                            Claims: [10x10 double]
    LatestDiagonal: [10x1 double]
    Description: ""
```

TailFactor: 1
CumulativeDevelopmentFactors: $\left[\begin{array}{llllllllll}1.3069 & 1.1107 & 1.0516 & 1.0261 & 1.0152 & 1.0098 & 1.00601 .00301 .001\end{array}\right.$ SelectedLinkRatio: $[1.17671 .05631 .02491 .01071 .00541 .00381 .00301 .00201 .001$

```
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
    developmentTriangle with properties:
                    Origin: {10x1 cell}
                    Development: {10x1 cell}
                    Claims: [10x10 double]
                    LatestDiagonal: [10x1 double]
                            Description: ""
                        TailFactor: 1
        CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001
            SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001
```

Create a chainLadder object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.

```
cl = chainLadder(dT_reported, dT_paid)
cl =
    chainLadder with properties:
        ReportedTriangle: [1x1 developmentTriangle]
            PaidTriangle: [1x1 developmentTriangle]
        CaseOutstanding: [10x1 double]
```

Use ibnr to compute the incurred-but-not-reported (IBNR).

```
ibnrClaims = ibnr(cl,'reported')
ibnrClaims = 10x1
103 x
0
    0.0052
    0.0169
    0.0349
    0.0575
    0.0880
    0.1489
    0.3019
    0.6084
    1.5181
```

Use unpaidClaims to compute the unpaid claims.
unpaidClaimsEstimate = unpaidClaims(cl,'reported')
unpaidClaimsEstimate = 10×1
$10^{3} \times$
0.1968
0.0506
0.1300
0.1097
0.1771
0.0972
0.3908
0.9851
1.7175
3.6992

Input Arguments

cl - Chain ladder

chainLadder object
Chain ladder, specified as a previously created chainLadder object.
Data Types: object
referenceClaimsType - Type of claims data
'reported ' (default)| character vector with value 'reported ' or 'paid' | string with value
"reported" or "paid"
(Optional) Type of claims data, specified as a character vector or string.
Data Types: char| string

Output Arguments

unpaidClaimsEstimate - Unpaid claims estimates
array
Unpaid claims estimates, returned as an array.

More About

Unpaid Claims

Unpaid claims are claims reserves for events that have occurred, including both reported and incurred-but-not-reported (IBNR) reserves, as well as the expenses of settling such claims.

Version History

Introduced in R2020b

See Also

ibnr|summary

Topics

"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

unpaidClaims

Compute unpaid claims estimates for expectedClaims object

Syntax

unpaidClaimsEstimate = unpaidClaims(ec)

Description

unpaidClaimsEstimate $=$ unpaidClaims(ec) computes unpaid claims estimates for an expectedClaims object.

Examples

Compute Unpaid Claims Estimates for expectedClaims Object

Compute unpaid claims estimates for an expectedClaims object containing simulated insurance claims data.

| load InsuranceClaimsData.mat;
 head(data)
 OriginYear | DevelopmentYear | | |
| :---: | :---: | :---: | :---: |
| | | ReportedClaims | PaidClaims |
| 2010 | 12 | | |
| 2010 | 24 | 3995.7 | 1893.9 |
| 2010 | 36 | 4635 | 3371.2 |
| 2010 | 48 | 4866.8 | 4079.1 |
| 2010 | 60 | 4964.1 | 4487 |
| 2010 | 72 | 5013.7 | 4711.4 |
| 2010 | 84 | 5038.8 | 4805.6 |
| 2010 | 96 | 5059 | 4853.7 |
| | | 5074.1 | 4877.9 |

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl
dT_reported =
    developmentTriangle with properties:
                    Origin: {10x1 cell}
                        Development: {10x1 cell}
                            Claims: [10x10 double]
            LatestDiagonal: [10x1 double]
            Description: ""
                        TailFactor: 1
        CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
            SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
```

```
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
    developmentTriangle with properties:
                    Origin: {10x1 cell}
                    Development: {10x1 cell}
                        Claims: [10x10 double]
            LatestDiagonal: [10x1 double]
                        Description: ""
                        TailFactor: 1
        CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001
            SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001
```

Create an expectedClaims object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.

```
earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)
ec =
    expectedClaims with properties:
        ReportedTriangle: [1x1 developmentTriangle]
            PaidTriangle: [1x1 developmentTriangle]
            EarnedPremium: [10x1 double]
            InitialClaims: [10x1 double]
            CaseOutstanding: [10x1 double]
        EstimatedClaimsRatios: [10x1 double]
        SelectedClaimsRatios: [10x1 double]
```

Use unpaidClaims to compute the unpaid claims estimates.

```
unpaidClaimsEstimate = unpaidClaims(ec)
unpaidClaimsEstimate = 10×1
103 x
    0.0984
    0.0279
    0.0733
    0.0778
    0.1399
    0.1575
    0.4171
    0.9577
    1.7513
    3.8386
```


Input Arguments

ec - Expected claims

expectedClaims object

Expected claims, specified as a previously created expectedClaims object.
Data Types: object

Output Arguments

```
unpaidClaimsEstimate - Unpaid claims estimates
array
```

Unpaid claims estimates, returned as an array.

More About

Unpaid Claims

Unpaid claims are claims reserves for events that have occurred, including both reported and incurred-but-not-reported (IBNR) reserves, as well as the expenses of settling such claims.

Version History

Introduced in R2020b

See Also

ultimateClaims |ibnr|summary
Topics
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

validatemodel

Validate quality of compact credit scorecard model

Syntax

Stats = validatemodel(csc,data)
[Stats,T] = validatemodel(__, Name,Value)
[Stats,T,hf] = validatemodel(\qquad ,Name,Value)

Description

Stats = validatemodel(csc,data) validates the quality of the compactCreditScorecard model for the data set specified using the argument data.
[Stats,T] = validatemodel(\qquad ,Name, Value) specifies options using one or more namevalue pair arguments in addition to the input arguments in the previous syntax and returns the outputs Stats and T.
[Stats,T,hf] = validatemodel(\qquad ,Name, Value) specifies options using one or more namevalue pair arguments in addition to the input arguments in the previous syntax and returns the outputs Stats and T and the figure handle hf to the CAP, ROC, and KS plots.

Examples

Validate a Compact Credit Scorecard Model

Compute model validation statistics for a compact credit scorecard model.
To create a compactCreditScorecard object, you must first develop a credit scorecard model using a creditscorecard object.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).

```
load CreditCardData.mat
sc = creditscorecard(data, 'IDVar','CustID')
sc =
    creditscorecard with properties:
            GoodLabel: 0
            ResponseVar: 'status'
            WeightsVar:
                            VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustI
        NumericPredictors: {'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'Uti
        CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
            BinMissingData: 0
                IDVar: 'CustID'
            PredictorVars: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'Tr
                Data: [1200x11 table]
```

Perform automatic binning using the default options. By default, autobinning uses the Monotone algorithm.

```
sc = autobinning(sc);
```

Fit the model.

```
sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769
Generalized linear regression model:
    logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBal
    Distribution = Binomial
Estimated Coefficients:
```

```
        \square
            SE
        tStat pValue
\begin{tabular}{lrrrr} 
(Intercept) & 0.70239 & 0.064001 & 10.975 & \(5.0538 \mathrm{e}-28\) \\
CustAge & 0.60833 & 0.24932 & 2.44 & 0.014687 \\
ResStatus & 1.377 & 0.65272 & 2.1097 & 0.034888 \\
EmpStatus & 0.88565 & 0.293 & 3.0227 & 0.0025055 \\
CustIncome & 0.70164 & 0.21844 & 3.2121 & 0.0013179 \\
TmWBank & 1.1074 & 0.23271 & 4.7589 & \(1.9464 \mathrm{e}-06\) \\
OtherCC & 1.0883 & 0.52912 & 2.0569 & 0.039696 \\
AMBalance & 1.045 & 0.32214 & 3.2439 & 0.0011792
\end{tabular}
```

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16
Format the unscaled points.

```
sc = formatpoints(sc, 'Points0ddsAndPDO',[500,2,50]);
```

Convert the creditscorecard object into a compactCreditScorecard object. A compactCreditScorecard object is a lightweight version of a creditscorecard object that is used for deployment purposes.

```
csc = compactCreditScorecard(sc);
```

Validate the compact credit scorecard model by generating the CAP, ROC, and KS plots. This example uses the training data. However, you can use any validation data, as long as:

- The data has the same predictor names and predictor types as the data used to create the initial creditscorecard object.
- The data has a response column with the same name as the 'ResponseVar' property in the initial creditscorecard object.
- The data has a weights column (if weights were used to train the model) with the same name as 'WeightsVar' property in the initial creditscorecard object.

```
[Stats,T] = validatemodel(csc,data,'Plot',{'CAP','ROC','KS'});
```


disp(Stats)

| 405.53 | 0.64941 | 11 | 4 | 799 | 386 | 0.027708 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 405.7 | 0.64887 | 11 | 5 | 798 | 386 | 0.027708 |

Validate a Compact Credit Scorecard Model with Weights

Compute model validation statistics for a compact credit scorecard model with weights.
To create a compactCreditScorecard object, you must first develop a credit scorecard model using a creditscorecard object.

Use the CreditCardData.mat file to load the data (dataWeights) that contains a column (RowWeights) for the weights (using a dataset from Refaat 2011).
load CreditCardData.mat
Create a creditscorecard object using the optional name-value pair argument 'WeightsVar'.

```
sc = creditscorecard(dataWeights,'IDVar','CustID','WeightsVar','RowWeights')
sc =
    creditscorecard with properties:
                        GoodLabel: 0
            ResponseVar: 'status'
                            WeightsVar: 'RowWeights'
                            VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustI,
            NumericPredictors: {'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'Uti
        CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
            BinMissingData: 0
                        IDVar: 'CustID'
                        PredictorVars: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'T
                        Data: [1200x12 table]
```

Perform automatic binning. By default, autobinning uses the Monotone algorithm.

```
sc = autobinning(sc)
SC =
    creditscorecard with properties:
                        GoodLabel: 0
            ResponseVar: 'status'
                            WeightsVar: 'RowWeights'
                            VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustI
            NumericPredictors: {'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'Uti
        CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
            BinMissingData: 0
                IDVar: 'CustID'
            PredictorVars: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'T
                    Data: [1200x12 table]
```

Fit the model.

```
sc = fitmodel(sc);
```

```
1. Adding CustIncome, Deviance = 764.3187, Chi2Stat = 15.81927, PValue = 6.968927e-05
2. Adding TmWBank, Deviance = 751.0215, Chi2Stat = 13.29726, PValue = 0.0002657942
3. Adding AMBalance, Deviance = 743.7581, Chi2Stat = 7.263384, PValue = 0.007037455
Generalized linear regression model:
    logit(status) ~ 1 + CustIncome + TmWBank + AMBalance
    Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{ccccc} 
Estimate & \multicolumn{1}{c}{ SE } & \multicolumn{2}{c}{ tStat } &
\end{tabular} pValue
```

1200 observations, 1196 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 36.4, p-value $=6.22 \mathrm{e}-08$
Format the unscaled points.
sc = formatpoints(sc,'Points0ddsAndPDO',[500,2,50]);
Convert the creditscorecard object into a compactCreditScorecard object. A compactCreditScorecard object is a lightweight version of a creditscorecard object that is used for deployment purposes.

```
csc = compactCreditScorecard(sc);
```

Validate the compact credit scorecard model by generating the CAP, ROC, and KS plots. When you use the optional name-value pair argument 'WeightsVar' to specify observation (sample) weights in the original creditscorecard object, the T table for validatemodel uses statistics, sums, and cumulative sums that are weighted counts.

This example uses the training data (dataWeights). However, you can use any validation data, as long as:

- The data has the same predictor names and predictor types as the data used to create the initial creditscorecard object.
- The data has a response column with the same name as the 'ResponseVar' property in the initial creditscorecard object.
- The data has a weights column (if weights were used to train the model) with the same name as the 'WeightsVar' property in the initial creditscorecard object.
[Stats, T] = validatemodel(csc,dataWeights,'Plot', \{'CAP','ROC','KS'\});

Stats

Stats=4×2 table

| Measure | | |
| :--- | ---: | ---: |
| | Value | |
| \{'Accuracy Ratio' | | |
| \{'Area under ROC curve' \} | 0.28972 | |
| \{'KS statistic' | 0.64486 | |
| \{'KS score' | 0.23215 | |
| | \} | 505.41 |

$\mathrm{T}(1: 10,:)$

| Scores | ProbDefault | TrueBads | FalseBads | TrueGoods | FalseGoods | Sensitivity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 401.34 | 0.66253 | 1.0788 | 0 | 411.95 | 201.95 | 0.0053135 |
| 407.59 | 0.64289 | 4.8363 | 1.2768 | 410.67 | 198.19 | 0.023821 |
| 413.79 | 0.62292 | 6.9469 | 4.6942 | 407.25 | 196.08 | 0.034216 |
| 420.04 | 0.60236 | 18.459 | 9.3899 | 402.56 | 184.57 | 0.090918 |
| 437.27 | 0.544 | 18.459 | 10.514 | 401.43 | 184.57 | 0.090918 |
| 442.83 | 0.52481 | 18.973 | 12.794 | 399.15 | 184.06 | 0.093448 |
| 446.19 | 0.51319 | 22.396 | 14.15 | 397.8 | 180.64 | 0.11031 |
| 449.08 | 0.50317 | 24.325 | 14.405 | 397.54 | 178.71 | 0.11981 |
| 449.73 | 0.50095 | 28.246 | 18.049 | 393.9 | 174.78 | 0.13912 |

Validate a Compact Credit Score Card Model When Using the 'BinMissingData' Option

Compute model validation statistics and assign points for missing data when using the 'BinMissingData' option.

- Predictors in a creditscorecard object that have missing data in the training set have an explicit bin for <missing> with corresponding points in the final scorecard. These points are computed from the Weight-of-Evidence (WOE) value for the <missing> bin and the logistic model coefficients. For scoring purposes, these points are assigned to missing values and to out-of-range values, and after you convert the creditscorecard object to a compactCreditScorecard object, you can use the final score to compute model validation statistics with validatemodel.
- Predictors in a creditscorecard object with no missing data in the training set have no <missing> bin, so no WOE can be estimated from the training data. By default, the points for missing and out-of-range values are set to NaN resulting in a score of NaN when running score. For predictors in a creditscorecard object that have no explicit <missing> bin, use the namevalue argument 'Missing' in formatpoints to specify how the function treats missing data for scoring purposes. After converting the creditscorecard object to a compactCreditScorecard object, you can use the final score to compute model validation statistics with validatemodel.

To create a compactCreditScorecard object, you must first develop a credit scorecard model using a creditscorecard object.

Create a creditscorecard object using the CreditCardData.mat file to load dataMissing, a table that contains missing values.

| load CreditCardData.mat |
| :--- |
| head (dataMissing,5) |

CustID
CustAge

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the missing numeric or categorical data in a separate bin. Apply automatic binning.

```
sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);
disp(sc)
    creditscorecard with properties:
            GoodLabel: 0
            ResponseVar: 'status'
            WeightsVar:
```

```
            VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustI
    NumericPredictors: {'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'Uti
CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
        BinMissingData: 1
            IDVar: 'CustID'
        PredictorVars: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'T
            Data: [1200x11 table]
```

To make any negative age or income information invalid or "out of range," set a minimum value of zero for 'CustAge' and 'CustIncome'. For scoring and probability-of-default computations, out-ofrange values are given the same points as missing values.

```
sc = modifybins(sc,'CustAge','MinValue',0);
sc = modifybins(sc,'CustIncome','MinValue',0);
```

Display bin information for numeric data for 'CustAge' that includes missing data in a separate bin labelled <missing>.

```
bi = bininfo(sc,'CustAge');
disp(bi)
```

| Bin | Good | Bad | Odds | | | WOE |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

Display bin information for categorical data for 'ResStatus' that includes missing data in a separate bin labelled <missing>.

```
bi = bininfo(sc,'ResStatus');
```

disp(bi)

| Bin | Good | Bad | 0dds | WOE | InfoValue |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \{'Tenant' \} | 296 | 161 | 1.8385 | -0.095463 | 0.0035249 |
| \{'Home Owner'\} | 352 | 171 | 2.0585 | 0.017549 | 0.00013382 |
| \{'Other' \} | 128 | 52 | 2.4615 | 0.19637 | 0.0055808 |
| \{'<missing>' \} | 27 | 13 | 2.0769 | 0.026469 | 2.3248e-05 |
| \{'Totals' \} | 803 | 397 | 2.0227 | NaN | 0.0092627 |

For the 'CustAge' and 'ResStatus ' predictors, the training data contains missing data (NaNs and <undefined> values. For missing data in these predictors, the binning process estimates WOE values of -0.15787 and 0.026469 , respectively.

Because the training data contains no missing values for the 'EmpStatus' and 'CustIncome' predictors, neither predictor has an explicit bin for missing values.

```
bi = bininfo(sc,'EmpStatus');
disp(bi)
```

| Bin | Good | Bad | 0dds | WOE | InfoValue |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \{'Unknown' \} | 396 | 239 | 1.6569 | -0.19947 | 0.021715 |
| \{'Employed'\} | 407 | 158 | 2.5759 | 0.2418 | 0.026323 |
| \{'Totals' \} | 803 | 397 | 2.0227 | NaN | 0.048038 |

| Bin | Good | Bad | Odds | WOE | InfoValue |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \{' $\left.[0,29000)^{\prime}\right\}$ | 53 | 58 | 0.91379 | -0.79457 | 0.06364 |
| \{'[29000, 33000)' $\}$ | 74 | 49 | 1.5102 | -0.29217 | 0.0091366 |
| \{'[33000, 35000)'\} | 68 | 36 | 1.8889 | -0.06843 | 0.00041042 |
| \{'[35000, 40000)'\} | 193 | 98 | 1.9694 | -0.026696 | 0.00017359 |
| \{'[40000, 42000)' $\}$ | 68 | 34 | 2 | -0.011271 | 1.0819e-05 |
| \{'[42000, 47000)' $\}$ | 164 | 66 | 2.4848 | 0.20579 | 0.0078175 |
| \{'[47000,Inf]' \} | 183 | 56 | 3.2679 | 0.47972 | 0.041657 |
| \{'Totals' \} | 803 | 397 | 2.0227 | NaN | 0.12285 |

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data. fitmodel internally transforms all the predictor variables into WOE values by using the bins found in the automatic binning process. fitmodel then fits a logistic regression model using a stepwise method (by default). For predictors that have missing data, there is an explicit <missing> bin, with a corresponding WOE value computed from the data. When you use fitmodel, the function applies the corresponding WOE value for the <missing> bin when performing the WOE transformation.
[sc,mdl] = fitmodel(sc);

1. Adding CustIncome, Deviance $=1490.8527$, Chi2Stat $=32.588614$, $\operatorname{PValue}=1.1387992 \mathrm{e}-08$
2. Adding TmWBank, Deviance $=1467.1415$, Chi2Stat $=23.711203$, PValue $=1.1192909 \mathrm{e}-06$
3. Adding AMBalance, Deviance $=1455.5715$, Chi2Stat $=11.569967$, PValue $=0.00067025601$
4. Adding EmpStatus, Deviance $=1447.3451$, Chi2Stat $=8.2264038$, PValue $=0.0041285257$
5. Adding CustAge, Deviance $=1442.8477$, Chi2Stat $=4.4974731$, PValue $=0.033944979$
6. Adding ResStatus, Deviance $=1438.9783$, Chi2Stat $=3.86941$, PValue $=0.049173805$
7. Adding OtherCC, Deviance $=1434.9751$, Chi2Stat $=4.0031966$, PValue $=0.045414057$

Generalized linear regression model:
logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBal Distribution = Binomial

Estimated Coefficients:

| Estimate | SE | tStat | pValue |
| :---: | :---: | :---: | :---: |
| 0.70229 | 0.063959 | 10.98 | 4.7498e-28 |
| 0.57421 | 0.25708 | 2.2335 | 0.025513 |
| 1.3629 | 0.66952 | 2.0356 | 0.04179 |
| 0.88373 | 0.2929 | 3.0172 | 0.002551 |
| 0.73535 | 0.2159 | 3.406 | 0.00065929 |
| 1.1065 | 0.23267 | 4.7556 | 1.9783e-06 |
| 1.0648 | 0.52826 | 2.0156 | 0.043841 |
| 1.0446 | 0.32197 | 3.2443 | 0.0011775 |

1200 observations, 1192 error degrees of freedom

Dispersion: 1
Chi^2-statistic vs. constant model: 88.5, p-value $=2.55 \mathrm{e}-16$
Scale the scorecard points by the "points, odds, and points to double the odds (PDO)" method using the 'Points0ddsAndPDO' argument of formatpoints. Suppose that you want a score of 500 points to have odds of 2 (twice as likely to be good than to be bad) and that the odds double every 50 points (so that 550 points would have odds of 4).

Display the scorecard showing the scaled points for predictors retained in the fitting model.

```
sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
PointsInfo = displaypoints(sc)
PointsInfo=38\times3 table
    Predictors Bin Points
```



```
    {'CustAge' } {'[33,37)' } 56.282
    {'CustAge' } {'[37,40)' } 60.012
    {'CustAge' } {'[40,46)' }}69.63
    {'CustAge' } {'[46,48)' } 77.912
    {'CustAge' } {'[48,51)' } 78.86
    {'CustAge' } {'[51,58)' } 80.83
    {'CustAge' } {'[58,Inf]' } 96.76
    {'CustAge' } {'<missing>' } 64.984
    {'ResStatus'} {'Tenant' } 62.138
    {'ResStatus'} {'Home Owner'} 73.248
    {'ResStatus'} {'Other' } 90.828
    {'ResStatus'} {'<missing>' } 74.125
    {'EmpStatus'} {'Unknown' } 58.807
    {'EmpStatus'} {'Employed' } 86.937
    {'EmpStatus'} {'<missing>' } NaN
```

Notice that points for the <missing> bin for 'CustAge' and 'ResStatus' are explicitly shown (as 64.9836 and 74.1250 , respectively). The function computes these points from the WOE value for the <missing> bin and the logistic model coefficients.

For predictors that have no missing data in the training set, there is no explicit <missing> bin during the training of the model. By default, displaypoints reports the points as NaN for missing data resulting in a score of NaN when you use score. For these predictors, use the name-value pair argument 'Missing' in formatpoints to indicate how missing data should be treated for scoring purposes.

Use compactCreditScorecard to convert the creditscorecard object into a compactCreditScorecard object. A compactCreditScorecard object is a lightweight version of a creditscorecard object that is used for deployment purposes.
csc = compactCreditScorecard(sc);
For the purpose of illustration, take a few rows from the original data as test data and introduce some missing data. Also introduce some invalid, or out-of-range, values. For numeric data, values below the minimum (or above the maximum) are considered invalid, such as a negative value for age (recall that in a previous step, you set 'MinValue' to 0 for 'CustAge' and 'CustIncome'). For categorical data, invalid values are categories not explicitly included in the scorecard, for example, a residential
status not previously mapped to scorecard categories, such as "House", or a meaningless string such as "abc123."

This example uses a very small validation data set only to illustrate the scoring of rows with missing and out-of-range values and the relationship between scoring and model validation.

```
tdata = dataMissing(11:200,mdl.PredictorNames); % Keep only the predictors retained in the model
tdata.status = dataMissing.status(11:200); % Copy the response variable value, needed for valida
% Set some missing values
tdata.CustAge(1) = NaN;
tdata.ResStatus(2) = '<undefined>';
tdata.EmpStatus(3) = '<undefined>';
tdata.CustIncome(4) = NaN;
% Set some invalid values
tdata.CustAge(5) = -100;
tdata.ResStatus(6) = 'House';
tdata.EmpStatus(7) = 'Freelancer';
tdata.CustIncome(8) = -1;
disp(tdata(1:10,:))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CustAge & ResStatus & EmpStatus & CustIncome & TmWBank & OtherCC & AMBalance \\
\hline NaN & Tenant & Unknown & 34000 & 44 & Yes & 119.8 \\
\hline 48 & <undefined> & Unknown & 44000 & 14 & Yes & 403.62 \\
\hline 65 & Home Owner & <undefined> & 48000 & 6 & No & 111.88 \\
\hline 44 & Other & Unknown & NaN & 35 & No & 436.41 \\
\hline - 100 & Other & Employed & 46000 & 16 & Yes & 162.21 \\
\hline 33 & House & Employed & 36000 & 36 & Yes & 845.02 \\
\hline 39 & Tenant & Freelancer & 34000 & 40 & Yes & 756.26 \\
\hline 24 & Home Owner & Employed & - 1 & 19 & Yes & 449.61 \\
\hline NaN & Home Owner & Employed & 51000 & 11 & Yes & 519.46 \\
\hline 52 & Other & Unknown & 42000 & 12 & Yes & 1269.2 \\
\hline
\end{tabular}
```

Use validatemodel for a compactCreditScorecard object with the validation data set (tdata).
[ValStats,ValTable] = validatemodel(csc,tdata,'Plot',\{'CAP','ROC','KS'\});

disp(ValStats)

| Measure | | Value | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \{'Accur
 \{'Area
 \{'KS sta
 \{'KS sco | Ratio' der ROC curve istic' | $\begin{gathered} 0.353 \\ 0.676 \\ 0.324 \\ 493 . \end{gathered}$ | | | | |
| disp(ValTable(1:10,:)) | | | | | | |
| Scores | ProbDefault | TrueBads | FalseBads | TrueGoods | FalseGoods | Sensitivity |
| 597.33 | NaN | 0 | 1 | 135 | 54 | 0 |
| 598.54 | NaN | 0 | 2 | 134 | 54 | 0 |
| 601.18 | NaN | 1 | 2 | 134 | 53 | 0.018519 |
| 637.3 | NaN | 1 | 3 | 133 | 53 | 0.018519 |
| NaN | 0.69421 | 2 | 3 | 133 | 52 | 0.037037 |
| NaN | 0.65394 | 2 | 4 | 132 | 52 | 0.037037 |
| NaN | 0.64441 | 2 | 5 | 131 | 52 | 0.037037 |
| NaN | 0.62799 | 3 | 5 | 131 | 51 | 0.055556 |
| 390.86 | 0.58964 | 4 | 5 | 131 | 50 | 0.074074 |
| 404.09 | 0.57902 | 6 | 5 | 131 | 48 | 0.11111 |

Input Arguments

csc - Compact credit scorecard model

compactCreditScorecard object
Compact credit scorecard model, specified as a compactCreditScorecard object.
To create a compactCreditScorecard object, use compactCreditScorecard or compact from Financial Toolbox.

data - Validation data

table
Validation data, specified as a MATLAB table, where each table row corresponds to individual observations. The data must contain columns for each of the predictors in the credit scorecard model. The columns of data can be any one of the following data types:

- Numeric
- Logical
- Cell array of character vectors
- Character array
- Categorical
- String
- String array

In addition, the table must contain a binary response variable and the name of this column must match the name of the ResponseVar property in the compactCreditScorecard object. (The ResponseVar property in the compactCreditScorecard is copied from the ResponseVar property of the original creditscorecard object.)

Note If a different validation data set is provided using the optional data input, observation weights for the validation data must be included in a column whose name matches WeightsVar from the original creditscorecard object, otherwise unit weights are used for the validation data. For more information, see "Using validatemodel with Weights".

Data Types: table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: csc = validatemodel(csc,data,'Plot','CAP')

Plot - Type of plot

'None' (default) | character vector with values 'None', 'CAP', 'ROC', 'KS' | cell array of character vectors with values 'None', 'CAP', 'ROC','KS'

Type of plot, specified as the comma-separated pair consisting of 'Plot ' and a character vector with one of the following values:

- 'None' - No plot is displayed.
- 'CAP' - Cumulative Accuracy Profile. Plots the fraction of borrowers up to score "s" against the fraction of defaulters up to score "s" ('Pct0bs ' against 'Sensitivity' columns of T optional output argument). For details, see "Cumulative Accuracy Profile (CAP)".
- 'ROC' - Receiver Operating Characteristic. Plots the fraction of non-defaulters up to score "s" against the fraction of defaulters up to score "s" ('FalseAlarm' against 'Sensitivity' columns of T optional output argument). For details, see "Receiver Operating Characteristic (ROC)".
- 'KS' - Kolmogorov-Smirnov. Plots each score "s" against the fraction of defaulters up to score "s," and also against the fraction of nondefaulters up to score "s" ('Scores ' against both 'Sensitivity' and 'FalseAlarm' columns of the optional output argument T). For details, see "Kolmogorov-Smirnov statistic (KS)".

Tip For the Kolmogorov-Smirnov statistic option, you can enter either 'KS' or 'K-S'.

Data Types: char | cell

Output Arguments

Stats - Validation measures

table
Validation measures, returned as a 4-by-2 table. The first column, 'Measure' , contains the names of the following measures:

- Accuracy ratio (AR)
- Area under the ROC curve (AUROC)
- The KS statistic
- KS score

The second column, 'Value', contains the values corresponding to these measures.

T - Validation statistics data
 array

Validation statistics data, returned as an N-by-9 table of validation statistics data, sorted by score from riskiest to safest. N is equal to the total number of unique scores, that is, scores without duplicates.

The table T contains the following nine columns, in this order:

- 'Scores ' - Scores sorted from riskiest to safest. The data in this row corresponds to all observations up to and including the score in this row.
- 'ProbDefault ' - Probability of default for observations in this row. For deciles, the average probability of default for all observations in the given decile is reported.
- 'TrueBads ' - Cumulative number of "bads" up to and including the corresponding score.
- 'FalseBads ' - Cumulative number of "goods" up to and including the corresponding score.
- 'TrueGoods ' - Cumulative number of "goods" above the corresponding score.
- 'FalseGoods ' - Cumulative number of "bads" above the corresponding score.
- 'Sensitivity ' - Fraction of defaulters (or the cumulative number of "bads" divided by total number of "bads"). This is the distribution of "bads" up to and including the corresponding score.
- 'FalseAlarm' - Fraction of nondefaulters (or the cumulative number of "goods" divided by total number of "goods"). This is the distribution of "goods" up to and including the corresponding score.
- 'Pct0bs' - Fraction of borrowers, or the cumulative number of observations, divided by total number of observations up to and including the corresponding score.

Note When creating the creditscorecard object with creditscorecard, if the optional namevalue pair argument WeightsVar was used to specify observation (sample) weights, then the T table uses statistics, sums, and cumulative sums that are weighted counts.

hf - Handle to the plotted measures

figure handle
Figure handle to plotted measures, returned as a figure handle or array of handles. When Plot is set to 'None', hf is an empty array.

More About

Cumulative Accuracy Profile (CAP)

CAP is generally a concave curve and is also known as the Gini curve, Power curve, or Lorenz curve.
The scores of given observations are sorted from riskiest to safest. For a given fraction M (0% to 100%) of the total borrowers, the height of the CAP curve is the fraction of defaulters whose scores are less than or equal to the maximum score of the fraction M. This fraction of defaulters is also known as the "Sensitivity.".

The area under the CAP curve, known as the AUCAP, is then compared to that of the perfect or "ideal" model, leading to the definition of a summary index known as the accuracy ratio (AR) or the Gini coefficient:

$$
A R=\frac{A_{R}}{A_{P}}
$$

where A_{R} is the area between the CAP curve and the diagonal, and A_{P} is the area between the perfect model and the diagonal. This represents a "random" model, where scores are assigned randomly and therefore the proportion of defaulters and nondefaulters is independent of the score. The perfect model is the model for which all defaulters are assigned the lowest scores, and therefore perfectly discriminates between defaulters and nondefaulters. Thus, the closer to unity $A R$ is, the better the scoring model.

Receiver Operating Characteristic (ROC)

To find the receiver operating characteristic (ROC) curve, the proportion of defaulters up to a given score "s," or "Sensitivity," is computed.

This proportion is known as the true positive rate (TPR). Also, the proportion of nondefaulters up to score "s," or "False Alarm Rate," is also computed. This proportion is also known as the false positive rate (FPR). The ROC curve is the plot of the "Sensitivity" vs. the "False Alarm Rate." Computing the ROC curve is similar to computing the equivalent of a confusion matrix at each score level.

Similar to the CAP, the ROC has a summary statistic known as the area under the ROC curve (AUROC). The closer to unity, the better the scoring model. The accuracy ratio $(A R)$ is related to the area under the curve by the following formula:

$$
A R=2(A U R O C)-1
$$

Kolmogorov-Smirnov Statistic (KS)

The Kolmogorov-Smirnov (KS) plot, also known as the fish-eye graph, is a common statistic for measuring the predictive power of scorecards.

The KS plot shows the distribution of defaulters and the distribution of nondefaulters on the same plot. For the distribution of defaulters, each score " s " is plotted against the proportion of defaulters up to "s," or "Sensitivity." For the distribution of non-defaulters, each score "s" is plotted against the proportion of nondefaulters up to "s," or "False Alarm." The statistic of interest is called the KS statistic and is the maximum difference between these two distributions ("Sensitivity" minus "False Alarm"). The score at which this maximum is attained is also of interest.

Use validatemodel with Weights

If you provide observation weights, the validatemodel function incorporates the observation weights when calculating model validation statistics.

If you do not provide weights, the validation statistics are based on how many good and bad observations fall below a particular score. If you do provide weights, the weight (not the count) is accumulated for the good and the bad observations that fall below a particular score.

When you define observation weights using the optional WeightsVar name-value pair argument when creating a creditscorecard object, the weights stored in the WeightsVar column are used when validating the model on the training data. When a different validation data set is provided using the optional data input, observation weights for the validation data must be included in a column whose name matches WeightsVar. Otherwise, the unit weights are used for the validation data set.

The observation weights of the training data affect not only the validation statistics but also the credit scorecard scores themselves. For more information, see "Using fitmodel with Weights" and "Credit Scorecard Modeling Using Observation Weights".

Version History

Introduced in R2019b

References

[1] "Basel Committee on Banking Supervision: Studies on the Validation of Internal Rating Systems." Working Paper No. 14, February 2005.
[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.
[3] Loeffler, G. and P. N. Posch. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.

See Also

compactCreditScorecard|probdefault|displaypoints|score

Topics

"compactCreditScorecard Object Workflow" on page 3-57
"Case Study for Credit Scorecard Analysis"
"Credit Scorecard Modeling with Missing Values"
"Credit Scorecard Modeling Workflow"
"About Credit Scorecards"

portfolioECL

Compute the lifetime ECL at individual or portfolio level

Syntax

[totalECL,ECLByID,ECLByPeriod] = portfolioECL(MarginalPD,LGD,EAD)
[totalECL,ECLByID,ECLByPeriod] = portfolioECL(\qquad ,Name=Value)

Description

[totalECL, ECLByID,ECLByPeriod] = portfolioECL(MarginalPD,LGD, EAD), given the MarginalPD, LGD, and EAD values for a portfolio of loans, computes the lifetime expected credit loss (ECL) at the individual or portfolio level.
[totalECL,ECLByID,ECLByPeriod] = portfolioECL(__ ,Name=Value) adds optional namevalue pair arguments for ScenarioProbabilities, InterestRate, Periodicity, IDVar, and ScenarioNames.

Examples

Calculate ECL Based on Marginal PD, LGD, and EAD Predictions

This example shows how to calculate the expected credit loss (ECL) based on marginal probability of default (PD), loss given default (LGD), and exposure at default (EAD).

- Marginal PD - Expectation of a credit default event over a given time frame.
- LGD - Portion of a nonrecovered credit in the case of default.
- EAD - Balance at the time of default.

IFRS 9 requires multiple economic scenarios to be modeled while computing ECL. This example considers five macroeconomic scenarios: severe, adverse, baseline, favorable, and excellent.

Load Data

Load the credit data for company IDs 1304 and 2067 and the associated macroeconomic scenarios.

| load DataPredictLifetime.mat
 disp(LoanData) | | | |
| :--- | :--- | :--- | :--- | :--- |
| ID | ScoreGroup | Y0B | Year |
| | - | | |
| 1304 | "Medium Risk" | 4 | 2020 |
| 1304 | "Medium Risk" | 5 | 2021 |
| 1304 | "Medium Risk" | 6 | 2022 |
| 1304 | "Medium Risk" | 7 | 2023 |
| 1304 | "Medium Risk" | 8 | 2024 |
| 1304 | "Medium Risk" | 9 | 2025 |
| 1304 | "Medium Risk" | 10 | 2026 |
| 2067 | "Low Risk" | 7 | 2020 |

| 2067 "Low | Risk" | 8 | 2021 |
| :---: | :---: | :---: | :---: |
| 2067 "Low | Risk" | 9 | 2022 |
| 2067 "Low | Risk" | 10 | 2023 |
| disp(head(MultipleScenarios,10)) | | | |
| ScenarioID | Year | GDP | Market |
| "Severe" | 2020 | -0.9 | -5.5 |
| "Severe" | 2021 | -0.5 | -6.5 |
| "Severe" | 2022 | 0.2 | -1 |
| "Severe" | 2023 | 0.8 | 1.5 |
| "Severe" | 2024 | 1.4 | 4 |
| "Severe" | 2025 | 1.8 | 6.5 |
| "Severe" | 2026 | 1.8 | 6.5 |
| "Severe" | 2027 | 1.8 | 6.5 |
| "Adverse" | 2020 | 0.1 | -0.5 |
| "Adverse" | 2021 | 0.2 | -2.5 |
| disp(ScenarioProbabilities) | | | |
| Probability | | | |
| Severe | | | |
| Adverse | | | |
| Baseline | | | |
| Favorable | | | |
| Excellent | | | |

Load the pdModel that was created using fitLifetimePDModel with a Probit model.

```
load LifetimeChampionModel.mat
```

disp(pdModel)

```
Probit with properties:
            ModelID: "Champion"
        Description: "A sample model used as champion model for illustration purposes."
        UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
            IDVar: "ID"
            AgeVar: "YOB"
            LoanVars: "ScoreGroup"
            MacroVars: ["GDP" "Market"]
            ResponseVar: "Default"
```

Define the interest rate to discount future losses back to present.

```
EffRate = 0.045;
```


Create Scenarios

Compute marginal lifetime PDs for the two companies.

```
CompanyID = 1304;
IndCompany = LoanData.ID == CompanyID;
Years = LoanData.Year(IndCompany);
NumYears = length(Years);
```

```
ScenarioID = unique(MultipleScenarios.ScenarioID,'stable');
NumScenarios = length(ScenarioID);
PD1 = zeros(NumYears,NumScenarios);
for ii=1:NumScenarios
    IndScenario = MultipleScenarios.ScenarioID==ScenarioID(ii);
    data = join(LoanData(IndCompany,:),MultipleScenarios(IndScenario,:));
    PD1(:,ii) = predictLifetime(pdModel,data,ProbabilityType="marginal");
end
DiscTimes = Years-Years(1)+1;
DiscFactors = 1./(1+EffRate).^DiscTimes;
ProbScenario = ScenarioProbabilities.Probability;
CompanyID = 2067;
IndCompany = LoanData.ID == CompanyID;
Years = LoanData.Year(IndCompany);
NumYears = length(Years);
PD4 = zeros(NumYears,NumScenarios);
for ii=1:NumScenarios
    IndScenario = MultipleScenarios.ScenarioID==ScenarioID(ii);
    data = join(LoanData(IndCompany,:),MultipleScenarios(IndScenario,:));
    PD4(:,ii) = predictLifetime(pdModel,data,ProbabilityType="marginal");
end
```


Calculate Marginal PD for Multiple IDs

Create a table for the portfolio PD that contains the PD for the two companies.

```
PD = array2table([PD1; PD4]);
PD.Properties.VariableNames = {'Severe','Adverse','Baseline','Favorable','Excellent'};
PD.ID = [repmat(1304,7,1);repmat(2067,4,1)];
PD = movevars(PD, 'ID', 'Before', 'Severe');
disp(PD)
\begin{tabular}{|c|c|c|c|c|c|}
\hline ID & Severe & Adverse & Baseline & Favorable & Excellent \\
\hline 1304 & 0.011316 & 0.0096361 & 0.0081783 & 0.006918 & 0.0058324 \\
\hline 1304 & 0.0078277 & 0.0069482 & 0.0061554 & 0.0054425 & 0.0048028 \\
\hline 1304 & 0.0048869 & 0.0044693 & 0.0040823 & 0.0037243 & 0.0033938 \\
\hline 1304 & 0.0031017 & 0.0029321 & 0.0027698 & 0.0026147 & 0.0024668 \\
\hline 1304 & 0.0019309 & 0.0018923 & 0.0018538 & 0.0018153 & 0.001777 \\
\hline 1304 & 0.0012157 & 0.0012197 & 0.0012233 & 0.0012264 & 0.0012293 \\
\hline 1304 & 0.00082053 & 0.00082322 & 0.00082562 & 0.00082775 & 0.00082964 \\
\hline 2067 & 0.0022199 & 0.001832 & 0.0015067 & 0.001235 & 0.0010088 \\
\hline 2067 & 0.0014464 & 0.0012534 & 0.0010841 & 0.00093599 & 0.00080662 \\
\hline 2067 & 0.0008343 & 0.00074897 & 0.00067168 & 0.00060175 & 0.00053857 \\
\hline 2067 & 0.00049107 & 0.00045839 & 0.00042769 & 0.00039887 & 0.00037183 \\
\hline
\end{tabular}
```


Calculate LGD for Multiple IDs

Create a table for the portfolio LGD that contains the LGD for the two companies.

```
LGD = array2table([0.25, 0.23, 0.21, 0.19, 0.17; 0.24, 0.22, 0.2, 0.18, 0.16]);
LGD.Properties.VariableNames = {'S1','S2','S3','S4','S5'};
LGD.ID = [1304;2067];
LGD = movevars(LGD, 'ID', 'Before', 'S1');
disp(LGD)
\begin{tabular}{|c|c|c|c|c|c|}
\hline ID & S1 & S2 & S3 & S4 & S5 \\
\hline 1304 & 0.25 & 0.23 & 0.21 & 0.19 & 0.17 \\
\hline 2067 & 0.24 & 0.22 & 0.2 & 0.18 & 0.16 \\
\hline
\end{tabular}
```


Calculate EAD for Multiple IDs

Create a table for the portfolio EAD that contains the EAD for the two companies 1304 and 2067.

```
EAD = array2table(horzcat([repmat(1304,7,1);repmat(2067,4,1)],vertcat((100000:-10000:40000)',(12
EAD.Properties.VariableNames = {'ID','EAD'};
disp(EAD)
\begin{tabular}{ccc} 
ID & & \multicolumn{1}{c}{ EAD } \\
& & \\
\hline 1304 & & \(1 e+05\) \\
1304 & & 90000 \\
1304 & & 80000 \\
1304 & & 70000 \\
1304 & & 60000 \\
1304 & & 50000 \\
1304 & & 40000 \\
2067 & & \(1.2 e+05\) \\
2067 & & \(1.1 e+05\) \\
2067 & & \(1 e+05\) \\
2067 & & 90000
\end{tabular}
```


Use portfolioECL with PD, LGD, and EAD Tables

Compute the lifetime ECL using portfolioECL.
[totalECL, ECLByID, ECLByPeriod] = portfolioECL(PD, LGD, EAD,ScenarioProbabilities=[0.1 0.2 0.3 InterestRate = EffRate, Periodicity="monthly",ScenarioNames=\{'Severe','Adverse','Baseline','Favo

Display the total portfolio ECL.

```
disp(totalECL);
```

510.5860

Display the scenario weighted ECLs for each individual loan.
disp(ECLByID);

| ID | | ECL |
| :--- | :--- | :--- |
| | | |
| 1304 | | 430.68 |
| 2067 | | 79.905 |

Display the ECL for each individual loan per time period and per scenario.

| ID | TimePeriod | Severe | Adverse | Baseline | Favorable | Excellent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1304 | 1 | 281.84 | 220.8 | 171.1 | 130.95 | 98.781 |
| 1304 | 2 | 174.81 | 142.76 | 115.47 | 92.372 | 72.935 |
| 1304 | 3 | 96.647 | 81.317 | 67.817 | 55.978 | 45.64 |
| 1304 | 4 | 53.474 | 46.505 | 40.111 | 34.259 | 28.918 |
| 1304 | 5 | 28.426 | 25.63 | 22.924 | 20.311 | 17.79 |
| 1304 | 6 | 14.859 | 13.715 | 12.559 | 11.393 | 10.217 |
| 1304 | 7 | 7.9931 | 7.3777 | 6.7558 | 6.1282 | 5.4957 |
| 2067 | 1 | 63.693 | 48.183 | 36.026 | 26.576 | 19.296 |
| 2067 | 2 | 37.901 | 30.106 | 23.673 | 18.394 | 14.091 |
| 2067 | 3 | 19.8 | 16.293 | 13.284 | 10.711 | 8.5209 |
| 2067 | 4 | 10.449 | 8.9412 | 7.5839 | 6.3656 | 5.2748 |

Input Arguments

MarginalPD - Marginal PD values

table
Marginal PD values, specified as a table with a column for IDs that is defined by IDVar.

Note The MarginalPD table column name for IDs and the order of IDs must be the same as the ID columns of the LGD and EAD tables.

You can use fitLifetimePDModel to create a PD model and predict to create a vector that can be converted to a table using array2table.
Data Types: table
LGD - LGD values
table
LGD value, specified as a table with a column for IDs that is defined by IDVar.

Note The LGD table column name for lDs and the order of IDs must be the same as the ID columns of the MarginalPD and EAD tables.

You can use fitLGDModel to create a LGD model and predict to create a vector that can be converted to a table using array2table.
Data Types: table

EAD - EAD values

table
EAD value, specified as a table with a column for IDs that is defined by IDVar.
$\overline{\text { Note The EAD table column name for IDs and the order of IDs must be the same as the ID columns of }}$ the MarginalPD and LGD tables.

You can use fitEADModel to create a EAD model and predict to create a vector that can be converted to a table using array2table.
Data Types: table

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Example: [totalECL,ECLByID,ECLByPeriod] = portfolioECL(MarginalPD,LGD,EAD,InterestRate=0.045,Periodicity="annual")

ScenarioProbabilities - Probabilities assigning weights to corresponding scenarios equal weighted (default) | numeric vector

Probabilities assigning weights to corresponding scenarios, specified as ScenarioProbabilities and a numeric vector. The ScenarioProbabilities values must be greater than or equal to 0 and sum to 1 .

Data Types: double

InterestRate - Interest rate to discount future losses back to present

0 (default) | scalar positive or negative decimal | table
Interest rate to discount future losses back to present, specified as InterestRate and a scalar positive or negative decimal or a table.

- If you specify a scalar, the interest-rate value applies to the entire portfolio.
- If you specify a table, there must be exactly two columns in the interest-rate table, one for IDs and the other for the interest-rate value for each loan. Each row must have an ID that cannot be repeated on another row in the table. The IDs must match and be in the same order as the IDs used by MarginalPD, LGD, and EAD tables.

Data Types: double | table

Periodicity - Time period of input data

"quarterly" (default)| character vector with value of 'quarterly', 'monthly', 'semiannual', or 'annual' | string with value of "quarterly", "monthly", "semiannual", or "annual"

Time period of input data, specified as Periodicity and a character vector or string.
Data Types: char | string

IDVar - Column name for ID in MarginalPD, LGD, EAD tables

1st column in MarginalPD, LGD, EAD tables (default) | character vector | string
Column name for ID in MarginalPD, LGD, and EAD tables, specified as IDVar and a character vector or string.
Data Types: char | string

ScenarioNames - User-defined scenario names

Scenario(n) (where $n=1$:numScenarios) (default) | cell array of character vectors | string array

User-defined scenario names with one name per scenario, specified as ScenarioNames and a cell array of character vectors or string array. The ScenarioNames must all be unique and nonempty.

Data Types: cell | string

Output Arguments

totalECL - Total portfolio ECL
 scalar

Total portfolio ECL, returned as a scalar. The total portfolio ECL is computed as a sum of the ECLs of each loan weighted by the scenario probabilities and discounted to the present.

ECLByID - Scenario weighted ECLs for each individual loan table

Scenario weighted ECLs for each individual loan, returned as a table.

ECLByPeriod - ECL for each individual loan per time period and per scenario table

ECL for each individual loan per time period and per scenario, returned as a table.

More About

Expected Credit Losses

The expected credit losses (ECLs) model adopts a forward-looking approach to estimation of impairment losses.

- The discounted ECL at time t for scenario s is defined as

$$
E C L_{i}(t ; s)=P D_{\text {marginal }, i}(t ; s) L G D_{i}(t ; s) E A D_{i}(t ; s) \operatorname{Disc}_{i}(t)
$$

where
t denotes a time period.
s denotes a scenario.
i denotes a loan.
$P D_{\text {marginal } i,}(t ; s)$ is the marginal probability of default (PD) (see predictLifetime) for loan i at time period t, given scenario s.
$L G D_{i}(t ; s)$ is the loss given default (LGD) for loan i at time period t, given scenario s.
$E A D_{i}(t ; s)$ is the exposure at default (EAD) for loan i at time period t, given scenario s.
$\operatorname{Disc}_{i}(t)$ is the discount factor for loan i at time period t, based on the loan's effective interest rate.
The $E C L_{i}(t ; s)$ quantities are computed for each time period in the remaining life of a loan and for each scenario. These quantities are reported in the ECLByPeriod output of portfolioECL for all loans in the portfolio.

- The lifetime ECL for loan i is computed as

$$
E C L_{i}=\sum_{s=1}^{M} \sum_{t=1}^{N_{i}} E C L_{i}(t ; s) * P(s)
$$

where
N_{i} is the number of periods in the remaining life of loan i.
M is the number of scenarios.
$P(s)$ denotes the scenario probabilities.
The $E C L_{i}$ quantity is reported in the ECLByID output of portfolioECL for all loans in the portfolio.

- The total portfolio lifetime ECL is

$$
E C L=\sum_{i=1}^{L} E C L_{i}
$$

where
L is the number of loans in the portfolio.
The total ECL value for the portfolio is reported in the totalECL output of the portfolioECL function.

To compute an ECL spanning only 1-year ahead (as opposed to a lifetime ECL), the inputs to portfolioECL must only include time periods within the 1-year period of interest. For more information, see "Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations" on page 4-195.

Version History

Introduced in R2022a

See Also

fitLifetimePDModel|fitLGDModel|fitEADModel

Topics

"Expected Credit Loss Computation" on page 4-124
"Modeling Probabilities of Default with Cox Proportional Hazards" on page 4-28
"Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations" on page 4-195

view

Display developmentTriangle object

Syntax

developmentTriangleTable = view(developmentTriangle)

Description

developmentTriangleTable = view(developmentTriangle) displays a developmentTriangle object in table form. Each row represents an origin period and each column represents a development period.

Examples

Display developmentTriangle Object in Table Form

Display a developmentTriangle object using simulated insurance claims data in table form.

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data.

```
dT = developmentTriangle(data)
dT =
    developmentTriangle with properties:
                    Origin: {10x1 cell}
                        Development: {10x1 cell}
                            Claims: [10x10 double]
            LatestDiagonal: [10x1 double]
                            Description: ""
                        TailFactor: 1
        CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
            SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
```

Use the view function to display the developmentTriangle contents in table form. In the table, each row represents an origin period and each column represents a development period.

| developmentTriangleTable=10×10 table | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| development | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 |
| 2010 | 3995.7 | 4635 | 4866.8 | 4964.1 | 5013.7 | 5038.8 | 5059 | 5074.1 | 5084 |
| 2011 | 3968 | 4682.3 | 4963.2 | 5062.5 | 5113.1 | 5138.7 | 5154.1 | 5169.6 | 5179 |
| 2012 | 4217 | 5060.4 | 5364 | 5508.9 | 5558.4 | 5586.2 | 5608.6 | 5625.4 | N |
| 2013 | 4374.2 | 5205.3 | 5517.7 | 5661.1 | 5740.4 | 5780.6 | 5803.7 | NaN | N |
| 2014 | 4499.7 | 5309.6 | 5628.2 | 5785.8 | 5849.4 | 5878.7 | NaN | NaN | N |
| 2015 | 4530.2 | 5300.4 | 5565.4 | 5715.7 | 5772.8 | NaN | NaN | NaN | N |
| 2016 | 4572.6 | 5304.2 | 5569.5 | 5714.3 | NaN | NaN | NaN | NaN | N |
| 2017 | 4680.6 | 5523.1 | 5854.4 | NaN | NaN | NaN | NaN | NaN | N |
| 2018 | 4696.7 | 5495.1 | NaN | NaN | NaN | NaN | NaN | NaN | N |
| 2019 | 4945.9 | NaN | N |

Input Arguments

developmentTriangle - Development triangle object

Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

Output Arguments

developmentTriangleTable - Development triangle in table form table

Development triangle in table form, returned as a table. In the table, each row represents an origin period and each column represents a development period.

Version History
 Introduced in R2020b

See Also

linkRatios|linkRatioAverages |cdfSummary|ultimateClaims | fullTriangle|
linkRatiosPlot|claimsPlot

Topics

"Mean Square Error of Prediction for Estimated Ultimate Claims" on page 4-161
"Bootstrap Using Chain Ladder Method" on page 4-168
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

Threshold Predictors

Select thresholds for predictor risk metrics in the Live Editor

Description

The Threshold Predictors task lets you interactively set credit scorecard predictor thresholds for one or more risk metrics computed for a set of predictors, or features. Risk metric thresholds are part of the feature selection process before building a credit scorecard. The task automatically generates MATLAB code for your live script.

Using this task, you can:

- Select risk metrics from the columns of a table of risk metric data.
- Specify thresholds for the risk metrics, separating the rows of predictors into color-coded Pass, Fail, or Undecided regions.
- Visualize the labeled and color-coded risk metric values for each thresholded metric.

For general information about Live Editor tasks, see "Add Interactive Tasks to a Live Script".

Threshold Predictors

predictorThresholds, labelTable $=$ Thresholds and labels for metric_table
Select data
Predictor metrics metric_table \mathbf{V}
Select thresholded metrics

Display results
\checkmark Display label table

Open the Task

To add the Threshold Predictors task to a live script in the MATLAB Editor:

- On the Live Editor tab, select Task > Threshold Predictors.

- In a code block in the script, type a relevant keyword, such as screenpredictors. Select Threshold Predictors from the suggested command completions.

| screenpredictors | |
| :--- | :--- |
| $f x$ screenpredictors | Screen credit scorecard predictors for predic... |
| Threshold Predicto... | Select thresholds for predictor risk metrics |

Parameters

Predictor metrics - Table of risk metrics
table of risk metrics calculated for a set of predictors
The Predictor metrics table must be a numeric MATLAB table. The columns of the Predictor metrics table contain the values for a particular risk metric (for example, information value or accuracy ratio) for a set of model predictors. The rows of the table contain the values of each risk metric for a particular predictor. The Predictor metrics table must have defined row names.

Typically, you create the Predictor metrics table using the screenpredictors function. screenpredictors takes a creditscorecard input data set and calculates the risk metrics table.

Example: metric_table =
screenpredictors(data,'IDVar',idvar,'ResponseVar', responsevar)
Select thresholded metrics - List of metrics with defined thresholds
list box containing metrics with thresholds
The Select thresholded metrics list shows which metrics have thresholds specified. The Select thresholded metrics drop-down box contains the risk metrics defined in the columns of the Predictor metrics table.

To specify a threshold:
1 Select a risk metric from the Select thresholded metrics drop-down box and click the plus ${ }^{+}$ button. The metric is added to the Select thresholded metrics list box and the Predictors plot displays with a default threshold and region labels.

2 To adjust a threshold, drag the associated threshold line or use the Thresholds and Labels spinner controls.
3 Set additional thresholds by clicking the Predictors plot at the desired value.
4 Select a different metric from the Select thresholded metrics list box. The Predictors plot updates to show the associated metric bar chart with its overlayed threshold lines.

To remove a threshold:

- Select the threshold line or the associated Thresholds and Labels spinner and click the line delete X button on the Predictors plot. You can remove all thresholds for the selected risk metric by clicking the minus - button next to the Select thresholded metrics list box.

When using a Predictor metrics table that is created using the screenpredictors function, you can set thresholds for any of the following metrics:

- InfoValue
- Entropy
- Accuracy Ratio
- AUROC
- Gini
- Chi2PValue
- PercentMissing

For more information on the metrics for screenpredictors, see "metric_table" on page 6-0
Thresholds and Labels - Thresholds and region labels
drop-down box and spinners specifying labeled regions
The Thresholds and Labels controls are composed of spinners for each specified threshold of the currently selected risk metric and drop-down boxes that set the labels for the surrounding regions to Pass, Fail, or Undecided.

The Thresholds and Labels spinners are sorted in descending order from top to bottom. The region labels can be set to Pass, Fail, or Undecided where the region label defines the label for all metric values that lie on a particular side of a threshold.

Display results - Display table of labeled metrics
check box to toggle display of label table
Check the Display label table check box to display the current set of labeled metric values. The label table contains the columns from the Predictor metrics table for which there are specified thresholds. The entries in the label table are categorical labels (Pass, Fail, or Undecided) based on which region each metric value is found.

Tips

- To sort the predictors in the Predictors plot, click Sort.To revert to the original sort order, click Revert.
- Each time you add a new threshold by clicking the Predictors plot, a new set of controls is added to the Thresholds and Labels section. Use the spinner to fine tune the threshold value. Use the
label drop-down box to set the appropriate label (Pass, Fail, or Undecided) for the newly defined region of metric values.

Version History

Introduced in R2021b

R2022b: Support for non-standard column names in Predictor metrics table
Behavior changed in R2022b
The Predictor metrics table supports non-standard MATLAB variable names containing spaces or Unicode characters.

See Also

Functions

screenpredictors

Topics

"Feature Screening with screenpredictors" on page 3-64

bornhuetterFerguson

Create bornhuetterFerguson object

Description

Use this workflow to generate unpaid claims for a bornhuetterFerguson:
1 Load or generate the data for the Bornhuetter-Ferguson technique.
2 Create a developmentTriangle object.
3 Create an expectedClaims object.
4 Create a bornhuetterFerguson object.
5 Use the ultimateClaims function to calculate the ultimate claims.
6 Use the ibnr function to calculate the incurred-but-not-reported (IBNR) claims.
7 Use the unpaidClaims function to calculate the unpaid claims.
8 Use the summary function to generate a summary report for the Bornhuetter-Ferguson technique.

Creation

Syntax

bf = bornhuetterFerguson(dT_reported,dT_paid,expectedClaims)

Description

bf = bornhuetterFerguson(dT_reported,dT_paid,expectedClaims) creates a bornhuetterFerguson object using the developmentTriangle objects for reported claims (dT_reported) and paid claims (dT_paid) and the expectedClaims.

Input Arguments

dT_reported - Development triangle for reported claims

developmentTriangle object
Development triangle for reported claims, specified as a previously created developmentTriangle object.

Data Types: object

dT_paid - Development triangle for paid claims
 developmentTriangle object

Development triangle for paid claims, specified as a previously created developmentTriangle object.
Data Types: object

expectedClaims - Expected claims estimates for each Origin period array

Expected claims estimates for each Origin period, specified as an array.
Data Types: double

Properties

ReportedTriangle - Development triangle for reported claims
developmentTriangle object
Development triangle for reported claims, returned as a developmentTriangle object containing the origin years, development years, and claims.

Data Types: object
PaidTriangle - Development triangle for paid claims
developmentTriangle object
Development triangle for paid claims, returned as a developmentTriangle object containing the origin years, development years, and claims.

Data Types: object
expectedClaims - Expected claims estimates for each Origin period array

Expected claims estimates for each Origin period, returned as an array.
Data Types: double

Object Functions

ultimateClaims Compute projected ultimate claims for bornhuetterFerguson object ibnr Compute IBNR claims for bornhuetterFerguson object unpaidClaims Compute unpaid claims estimates for bornhuetterFerguson object summary Display summary report for Bornhuetter-Ferguson analysis

Examples

Create bornhuetterFerguson Object

Create a bornhuetterFerguson object containing simulated insurance claims data.

```
load InsuranceClaimsData.mat;
head(data)
\begin{tabular}{|c|c|c|c|}
\hline OriginYear & DevelopmentYear & ReportedClaims & PaidClaims \\
\hline 2010 & 12 & 3995.7 & 1893.9 \\
\hline 2010 & 24 & 4635 & 3371.2 \\
\hline 2010 & 36 & 4866.8 & 4079.1 \\
\hline 2010 & 48 & 4964.1 & 4487 \\
\hline
\end{tabular}
```

| 2010 | 60 | 5013.7 | 4711.4 |
| ---: | ---: | ---: | ---: |
| 2010 | 72 | 5038.8 | 4805.6 |
| 2010 | 84 | 5059 | 4853.7 |
| 2010 | 96 | 5074.1 | 4877.9 |

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl
dT_reported =
    developmentTriangle with properties:
                    Origin: {10x1 cell}
                            Development: {10x1 cell}
                    Claims: [10x10 double]
                    LatestDiagonal: [10x1 double]
                            Description: ""
                TailFactor: 1
        CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
                            SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
    developmentTriangle with properties:
                    Origin: {10x1 cell}
            Development: {10x1 cell}
                    Claims: [10\times10 double]
            LatestDiagonal: [10x1 double]
                            Description: ""
                            TailFactor: 1
        CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001
            SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001
```

Create an expectedClaims object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.

```
earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)
ec =
    expectedClaims with properties:
        ReportedTriangle: [1x1 developmentTriangle]
            PaidTriangle: [1xl developmentTriangle]
            EarnedPremium: [10x1 double]
            InitialClaims: [10x1 double]
            CaseOutstanding: [10x1 double]
        EstimatedClaimsRatios: [10x1 double]
        SelectedClaimsRatios: [10x1 double]
```

Create a bornhuetterFerguson object with reported claims, paid claims, and expected claims to calculate ultimate claims, case outstanding, IBNR claims, and unpaid claims estimates.

```
bf = bornhuetterFerguson(dT_reported, dT_paid, ec.InitialClaims)
bf =
    bornhuetterFerguson with properties:
        ReportedTriangle: [1x1 developmentTriangle]
            PaidTriangle: [1x1 developmentTriangle]
            ExpectedClaims: [10x1 double]
        PercentUnreported: [10x1 double]
            PercentUnpaid: [10x1 double]
            CaseOutstanding: [10x1 double]
```


Version History

Introduced in R2020b

See Also

developmentTriangle | chainLadder | expectedClaims

Topics

"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

capeCod

Create capeCod object

Description

Use this workflow to generate unpaid claims for a capeCod object:
1 Load or generate the data for the development triangle.
2 Create two developmentTriangle objects - one for the reported development triangle and one for the paid development triangle.
3 Create a capeCod object.
4 Use the ibnr function to calculate the incurred-but-not-reported (IBNR) claims.
5 Use the ultimateClaims function to calculate the ultimate claims.
6 Use the unpaidClaims function to calculate the unpaid claims.
7 Use the summary function to display the chain ladder summary report.

Creation

Syntax

cc = capeCod(dT_reported,dT_paid,earnedPremium)

Description

$\mathrm{cc}=$ capeCod(dT_reported, dT_paid,earnedPremium) creates a capeCod object using the developmentTriangle objects for reported claims (dT_reported) and paid claims (dT_paid) and the earnedPremium.

Input Arguments

dT_reported - Development triangle for reported claims

developmentTriangle object
Development triangle for reported claims, specified as a previously created developmentTriangle object.

Data Types: object

dT_paid - Development triangle for paid claims
 developmentTriangle object

Development triangle for paid claims, specified as a previously created developmentTriangle object.
Data Types: object

earnedPremium - Earned premium

vector
Earned premium, specified as a vector.
Data Types: double

Properties

ReportedTriangle - Development triangle for reported claims

developmentTriangle object
Development triangle for reported claims, returned as a developmentTriangle object containing the origin years, development years, and claims.

```
Data Types: object
```

PaidTriangle - Development triangle for paid claims
developmentTriangle object
Development triangle for paid claims, returned as a developmentTriangle object containing the origin years, development years, and claims.
Data Types: object

EarnedPremium - Earned premium

vector
Earned premium, returned as a vector.
Data Types: double
UsedUpPremium - Used up premium
vector
This property is read-only.
Used up premium, calculated by multiplying the initial claims with the percent of ultimate claims that are reported, returned as a vector.

Data Types: double

EstimatedClaimsRatio - Estimated claims ratio
 vector

This property is read-only.
Estimated claims ratio, calculated by dividing the initial claims by the used up premium, returned as a vector.

Data Types: double

ExpectedClaimRatio - Expected claim ration
 vector

This property is read-only.
Expected claim ratio, weighted average claim ratio from all the time periods, returned as a vector.

Data Types: double

EstimatedExpectedClaims - Estimated expected claims

vector
This property is read-only.
Estimated expected claims, that is, the earned premium multiplied by the expected claim ratio, returned as a vector.

Data Types: double

PercentUnreported - Percentage of unreported claims

vector
This property is read-only.
Percentage of unreported claims, returned as a vector.
Data Types: double
CaseOutstanding - Difference of the latest diagonals of the reported and paid
development triangles vector

This property is read-only.
Difference of the latest diagonals of the reported and paid development triangles, returned as a vector.
Data Types: double

Object Functions

ibnr
Compute IBNR claims for capeCod object
unpaidClaims Compute unpaid claims estimates for capeCod object ultimateClaims Compute projected ultimate claims for capeCod object summary

Display summary report for Cape Cod analysis

Examples

Create capeCod Object

Create a capeCod object containing simulated insurance claims data.

| load InsuranceClaimsData.mat; |
| :--- |
| head(data) |
| OriginYear |

2010

| 2010 | 72 | 5038.8 | 4805.6 |
| ---: | ---: | ---: | ---: |
| 2010 | 84 | 5059 | 4853.7 |
| 2010 | 96 | 5074.1 | 4877.9 |

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl`
dT_reported =
    \overline{developmentTriangle with properties:}
                            Origin: {10x1 cell}
                    Development: {10x1 cell}
                            Claims: [10\times10 double]
            LatestDiagonal: [10x1 double]
                            Description: ""
                            TailFactor: 1
        CumulativeDevelopmentFactors: [\begin{array}{llll}{1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001}\end{array})
                        SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
    developmentTriangle with properties:
                    Origin: {10x1 cell}
                    Development: {10x1 cell}
                            Claims: [10x10 double]
            LatestDiagonal: [10x1 double]
                        Description: ""
                            TailFactor: 1
        CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.001
                        SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001
```

earnedPremium $=$ [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];

Create a capeCod object where the first input argument is the reported development triangle, the second input argument is the paid development triangle, and the third argument is the earned premium.

```
cc = capeCod(dT_reported, dT_paid, earnedPremium)
CC =
    capeCod with properties:
```

```
            ReportedTriangle: [1x1 developmentTriangle]
```

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 EarnedPremium: [10x1 double]
 UsedUpPremium: [10x1 double]
 UsedUpPremium: [10x1 double]
 EstimatedClaimRatios: [10x1 double]
 EstimatedClaimRatios: [10x1 double]
 ExpectedClaimRatio: 0.4258
 ExpectedClaimRatio: 0.4258
 EstimatedExpectedClaims: [10x1 double]
 EstimatedExpectedClaims: [10x1 double]
 PercentUnreported: [10x1 double]
 PercentUnreported: [10x1 double]
 CaseOutstanding: [10x1 double]
    ```
            CaseOutstanding: [10x1 double]
```


Version History

Introduced in R2021a

See Also

developmentTriangle | expectedClaims | bornhuetterFerguson

Topics

"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

chainLadder

Create chainLadder object

Description

Use this workflow to generate unpaid claims for a chainLadder:
1 Load or generate the data for the development triangle.
2 Create two developmentTriangle objects - one for the reported development triangle and one for the paid development triangle.
3 Create a chainLadder object.
4 Use the ibnr function to calculate the incurred-but-not-reported (IBNR) claims.
5 Use the unpaidClaims function to calculate the unpaid claims.
6 Use the summary function to display the chain ladder summary report.

Creation

Syntax

$\mathrm{cl}=$ chainladder(dT_reported, dT_{C} paid)

Description

$\mathrm{cl}=$ chainladder(dT_reported, dT_paid) creates a chainLadder object using the developmentTriangle objects for reported claims (dT_reported) and paid claims (dT_paid).

Input Arguments

dT_reported - Development triangle for reported claims

developmentTriangle object
Development triangle for reported claims, specified as a previously created developmentTriangle object.
Data Types: object

dT_paid - Development triangle for paid claims

developmentTriangle object
Development triangle for paid claims, specified as a previously created developmentTriangle object.
Data Types: object

Properties

ReportedTriangle - Development triangle for reported claims
developmentTriangle object
Development triangle for reported claims, returned as a developmentTriangle object containing the origin years, development years, and claims.

Data Types: object
PaidTriangle - Development triangle for paid claims
developmentTriangle object
Development triangle for paid claims, returned as a developmentTriangle object containing the origin years, development years, and claims.

Data Types: object

CaseOutstanding - Difference of the latest diagonals of the reported and paid development triangles

vector
Difference of the latest diagonals of the reported and paid development triangles, returned as a vector.

Data Types: double

Object Functions

ibnr	Compute IBNR claims for chainLadder object
unpaidClaims	Compute unpaid claims for chainLadder object
summary	Display summary report for different claims estimates

Examples

Create chainLadder Object

Create a chainLadder object containing simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)
OriginYear

2010

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cl
dT_reported =
    \overline{developmentTriangle with properties:}
```

 Origin: \(\{10 \times 1\) cell\}
 Development: \{10x1 cell\}
 Claims: [10×10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1

SelectedLinkRatio: $[1.17671 .05631 .02491 .01071 .00541 .00381 .00301 .00201 .001$
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
dT_paid =
developmentTriangle with properties:
Origin: \{10x1 cell\}
Development: \{10x1 cell\}
Claims: [10×10 double]
LatestDiagonal: [10x1 double]
Description: ""
TailFactor: 1
CumulativeDevelopmentFactors: $\left[\begin{array}{lllllllllllllllll}2.4388 & 1.4070 & 1.1799 & 1.0810 & 1.0378 & 1.0178 & 1.0080 & 1.0030 & 1.001\end{array}\right.$
SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.001

Create a chainLadder object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.

```
cl = chainLadder(dT_reported, dT_paid)
cl =
    chainLadder with properties:
        ReportedTriangle: [1x1 developmentTriangle]
            PaidTriangle: [1x1 developmentTriangle]
        CaseOutstanding: [10x1 double]
```


Version History

Introduced in R2020b

See Also

developmentTriangle | expectedClaims | bornhuetterFerguson

Topics

"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

compactCreditScorecard

Create compactCreditScorecard object for a credit scorecard model

Description

Build a compact credit scorecard model by creating a compactCreditScorecard object from an existing creditscorecard object.

After creating a compactCreditScorecard object, you can use the associated object functions to display points (displaypoints), calculate the probability of default (probdefault), or compute scores (score).

Note You cannot directly modify a compactCreditScorecard object. To change a compactCreditScorecard object, you must modify the existing creditscorecard object that you used to create the compactCreditScorecard object. You must then use compactCreditScorecard to create a new compactCreditScorecard object.

Creation

Syntax

csc $=$ compactCreditScorecard(sc)

Description

csc = compactCreditScorecard(sc) creates a compactCreditScorecard object from an existing creditscorecard. You can then use the compactCreditScorecard object with the displaypoints, score, and probdefault functions.

Note You cannot use a compactCreditScorecard object with the Binning Explorer app.

Input Arguments

sc - creditscorecard object
object
creditscorecard object, specified using an existing creditscorecard object.

Note To use a creditscorecard object for input, you must first process the object using the autobinning and fitmodel functions. Optionally, you can also use formatpoints for processing.

Data Types: object

Properties

PredictorVars - Names of predictor variables

cell array of character vectors

Names of the predictor variables used in the input creditscorecard object, returned as a cell array of character vectors. The PredictorVars property includes only the predictor variable names in the fitted creditscorecard object.
Data Types: cell

NumericPredictors - Numeric predictors

cell array of character vectors
Numeric predictors in the input creditscorecard object, returned as a cell array of character vectors. The NumericPredictors property includes only the numeric predictors in the fitted creditscorecard object.

Data Types: cell

CategoricalPredictors - Names of categorical predictors

cell array of character vectors
Names of categorical predictors used in the input creditscorecard object, returned as a cell array of character vectors. The CategoricalPredictors property includes only the categorical predictors in the fitted creditscorecard object.
Data Types: cell

Description - User-defined description

character vector | string
User-defined description, returned as a character vector or string.
Data Types: char \| string

Object Functions

displaypoints Return points per predictor per bin for a compactCreditScorecard object score Compute credit scores for given dataset for a compactCreditScorecard object probdefault Likelihood of default for given dataset for a compactCreditScorecard object validatemodel Validate quality of compact credit scorecard model

Examples

Create compactCreditScorecard Object

To create a compactCreditScorecard object, first create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).

```
load CreditCardData.mat
sc = creditscorecard(data)
SC =
    creditscorecard with properties:
```

```
            GoodLabel: 0
            ResponseVar: 'status'
            WeightsVar: ''
                VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustI
        NumericPredictors: {'CustID' 'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBala
CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
        BinMissingData: 0
            IDVar: ''
        PredictorVars: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustI
                Data: [1200x11 table]
```

Before creating a compactCreditScorecard object, you must use autobinning and fitmodel with the creditscorecard object.

```
sc = autobinning(sc);
sc = fitmodel(sc);
```

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat $=32.588614$, PValue $=1.1387992 \mathrm{e}-08$
2. Adding TmWBank, Deviance $=1467.1415$, Chi2Stat $=23.711203$, PValue $=1.1192909 \mathrm{e}-06$
3. Adding AMBalance, Deviance $=1455.5715$, Chi2Stat $=11.569967$, PValue $=0.00067025601$
4. Adding EmpStatus, Deviance $=1447.3451$, Chi2Stat $=8.2264038$, PValue $=0.0041285257$
5. Adding CustAge, Deviance $=1441.994$, Chi2Stat $=5.3511754$, PValue $=0.020708306$
6. Adding ResStatus, Deviance $=1437.8756$, Chi2Stat $=4.118404$, $\operatorname{PValue}=0.042419078$
7. Adding OtherCC, Deviance $=1433.707$, Chi2Stat $=4.1686018$, $\mathrm{PValue}=0.041179769$

Generalized linear regression model:
logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBal
Distribution = Binomial
Estimated Coefficients:
Estimate \quad SE \quad tStat

(Intercept)	0.70239	0.064001	10.975	$5.0538 \mathrm{e}-28$
CustAge	0.60833	0.24932	2.44	0.014687
ResStatus	1.377	0.65272	2.1097	0.034888
EmpStatus	0.88565	0.293	3.0227	0.0025055
CustIncome	0.70164	0.21844	3.2121	0.0013179
TmWBank	1.1074	0.23271	4.7589	$1.9464 \mathrm{e}-06$
OtherCC	1.0883	0.52912	2.0569	0.039696
AMBalance	1.045	0.32214	3.2439	0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p -value $=1.4 \mathrm{e}-16$
Use the creditscorecard object with compactCreditScorecard to create a compactCreditScorecard object.

```
csc = compactCreditScorecard(sc)
CSC =
    compactCreditScorecard with properties:
Description: ''
```

GoodLabel: 0
ResponseVar: 'status'
WeightsVar:
NumericPredictors: \{'CustAge' 'CustIncome' 'TmWBank' 'AMBalance'\}
CategoricalPredictors: \{'ResStatus' 'EmpStatus' 'OtherCC'\}
PredictorVars: \{'CustAge' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'Other

You can then use displaypoints, score, and probdefault with the compactCreditScorecard object.

Version History
 Introduced in R2019a

References

[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.
[2] Refaat, M. Data Preparation for Data Mining Using SAS. Morgan Kaufmann, 2006.
[3] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also

Functions

displaypoints|score|probdefault|validatemodel

Apps

Binning Explorer

Topics

"compactCreditScorecard Object Workflow" on page 3-57
"Case Study for Credit Scorecard Analysis"
"Credit Scorecard Modeling Workflow"
"About Credit Scorecards"

External Websites

Credit Risk Modeling with MATLAB (53 min 10 sec)

creditDefaultCopula

Create creditDefaultCopula object to simulate and analyze multifactor credit default model

Description

The creditDefaultCopula class simulates portfolio losses due to counterparty defaults using a multifactor model. creditDefaultCopula associates each counterparty with a random variable, called a latent variable, which is mapped to default/non-default outcomes for each scenario such that defaults occur with probability PD. In the event of default, a loss for that scenario is recorded equal to EAD * LGD for the counterparty. These latent variables are simulated using a multi-factor model, where systemic credit fluctuations are modeled with a series of risk factors. These factors can be based on industry sectors (such as financial, aerospace), geographical regions (such as USA, Eurozone), or any other underlying driver of credit risk. Each counterparty is assigned a series of weights which determine their sensitivity to each underlying credit factors.

The inputs to the model describe the credit-sensitive portfolio of exposures:

- EAD - Exposure at default
- PD - Probability of default
- LGD - Loss given default (1 â^' Recovery)
- Weights - Factor and idiosyncratic model weights

After the creditDefaultCopula object is created (see "Create creditDefaultCopula" on page 6528 and "Properties" on page 6-531), use the simulate function to simulate credit defaults using the multifactor model. The results are stored in the form of a distribution of losses at the portfolio and counterparty level. Several risk measures at the portfolio level are calculated, and the risk contributions from individual obligors. The model calculates:

- Full simulated distribution of portfolio losses across scenarios
- Losses on each counterparty across scenarios
- Several risk measures (VaR, CVaR, EL, Std) with confidence intervals
- Risk contributions per counterparty (for EL and CVaR)

Creation

Syntax

```
cdc = creditDefaultCopula(EAD,PD,LGD,Weights)
cdc = creditDefaultCopula(
```

\qquad

``` ,Name, Value)
```


Description

cdc = creditDefaultCopula(EAD,PD,LGD,Weights) creates a creditDefaultCopula object. The creditDefaultCopula object has the following properties:

- Portfolio on page 6-0 :

A table with the following variables (each row of the table represents one counterparty):

- ID - ID to identify each counterparty
- EAD - Exposure at default
- PD - Probability of default
- LGD - Loss given default
- Weights - Factor and idiosyncratic weights for counterparties
- FactorCorrelation on page 6-0 :

Factor correlation matrix, a NumFactors-by-NumFactors matrix that defines the correlation between the risk factors.

- VaRLevel on page 6-0 :

The value-at-risk level, used when reporting VaR and CVaR.

- PortfolioLosses on page 6-0

Portfolio losses, a NumScenarios-by-1 vector of portfolio losses. This property is empty until the simulate function is used.
cdc $=$ creditDefaultCopula(\qquad , Name, Value) sets Properties on page 6-531 using namevalue pairs and any of the arguments in the previous syntax. For example, $\mathrm{cdc}=$ creditDefaultCopula (EAD, PD, LGD, Weights, 'VaRLevel', 0.99). You can specify multiple name-value pairs as optional name-value pair arguments.

Input Arguments

EAD - Exposure at default

numeric vector
Exposure at default, specified as a NumCounterparties-by-1 vector of credit exposures. The EAD input sets the Portfolio on page 6-0 property.

Note The creditDefaultCopula model simulates defaults and losses over some fixed time period (for example, one year). The counterparty exposures (EAD) and default probabilities (PD) must both be specific to a particular time.

Data Types: double

PD - Probability of default

numeric vector with elements from 0 through 1
Probability of default, specified as a NumCounterparties-by-1 numeric vector with elements from 0 through 1, representing the default probabilities for the counterparties. The PD input sets the Portfolio on page 6-0 property.

Note The creditDefaultCopula model simulates defaults and losses over a fixed time period (for example, one year). The counterparty exposures (EAD) and default probabilities (PD) must both be specific to a particular time.

Data Types: double

LGD - Loss given default
numeric vector with elements from 0 through 1
Loss given default, specified as a NumCounterparties-by-1 numeric vector with elements from 0 through 1 , representing the fraction of exposure that is lost when a counterparty defaults. LGD is defined as (1 â^' Recovery). For example, an LGD of 0.6 implies a 40% recovery rate in the event of a default. The LGD input sets the Portfolio on page 6-0 property.

LGD can alternatively be specified as a NumCounterparties-by-2 matrix, where the first column holds the LGD mean values and the 2nd column holds the LGD standard deviations. Valid open intervals for LGD mean and standard deviation are:

- For the first column, the mean values are between 0 and 1.
- For the second column, the LGD standard deviations are between 0 and sqrt (m * $(1-m)$).

Then, in the case of default, LGD values are drawn randomly from a beta distribution with provided parameters for the defaulting counterparty.
Data Types: double

Weights - Factor and idiosyncratic weights

array of factor and idiosyncratic weights
Factor and idiosyncratic weights, specified as a NumCounterparties-by-(NumFactors + 1) array. Each row contains the factor weights for a particular counterparty. Each column contains the weights for an underlying risk factor. The last column in Weights contains the idiosyncratic risk weight for each counterparty. The idiosyncratic weight represents the company-specific credit risk. The total of the weights for each counterparty (that is, each row) must sum to 1 . The Weights input sets the Portfolio on page 6-0 property.

For example, if a counterparty's creditworthiness is composed of 60\% US, 20\% European, and 20\% idiosyncratic, then the Weights vector would be [0.6 0.2 0.2].
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: cdc = creditDefaultCopula(EAD, PD,LGD,Weights,' VaRLevel', 0.99)

ID - User-defined IDs for counterparties

1:NumCounterparties (default) | vector
User-defined IDs for counterparties, specified as the comma-separated pair consisting of 'ID ' and a NumCounterparties-by-1 vector of IDs for each counterparty. ID is used to identify exposures in the Portfolio table and the risk contribution table. ID must be a numeric, a string array, or a cell array of character vectors. The ID name-value pair argument sets the Portfolio on page 6-0 property.

If unspecified, ID defaults to a numeric vector 1:NumCounterparties.
Data Types: double \| string | cell

VaRLevel - Value at risk level

0.95 (default) | numeric between 0 and 1

Value at risk level (used for reporting VaR and CVaR), specified as the comma-separated pair consisting of 'VaRLevel' and a numeric between 0 and 1. The VaRLevel name-value pair argument sets the VaRLevel on page 6-0 property.
Data Types: double

FactorCorrelation - Factor correlation matrix

identity matrix (default) | correlation matrix
Factor correlation matrix, specified as the comma-separated pair consisting of
'FactorCorrelation' and a NumFactors-by-NumFactors matrix that defines the correlation between the risk factors. The FactorCorrelation name-value pair argument sets the FactorCorrelation on page 6-0 property.

If not specified, the factor correlation matrix defaults to an identity matrix, meaning that factors are not correlated.

Data Types: double

UseParallel - Flag to use parallel processing for simulations

false (default) | logical with value of true or false
Flag to use parallel processing for simulations, specified as the comma-separated pair consisting of 'UseParallel' and a scalar value of true or false. The UseParallel name-value pair argument sets the UseParallel on page 6-0 property.

Note The 'UseParallel' property can only be set when creating a creditDefaultCopula object if you have Parallel Computing Toolbox. Once the 'UseParallel' property is set, parallel processing is used with riskContribution or simulate.

Data Types: logical

Properties

Portfolio - Details of credit portfolio

table
Details of credit portfolio, specified as a MATLAB table that contains all the portfolio data that was passed as input into creditDefaultCopula.

The Portfolio table has a column for each of the constructor inputs (EAD, PD, LGD, Weights, and ID). Each row of the table represents one counterparty.

For example:

| ID | EAD \quad LGD | Weights |
| :--- | :--- | :--- | :--- |

1	122.43	0.064853	0.68024	0.3	0.7
2	70.386	0.073957	0.59256	0.3	0.7
3	79.281	0.066235	0.52383	0.3	0.7
4	113.42	0.01466	0.43977	0.3	0.7
5	100.46	0.0042036	0.41838	0.3	0.7

Data Types: table

FactorCorrelation - Correlation matrix for credit factors

matrix
Correlation matrix for credit factors, specified as a NumFactors-by-NumFactors matrix. Specify the correlation matrix using the optional name-value pair argument 'FactorCorrelation' when you create a creditDefaultCopula object.

Data Types: double

VaRLevel - Value at Risk Level

numeric between 0 and 1
Value at risk level used when reporting VaR and CVaR, specified using an optional name-value pair argument 'VaRLevel' when you create a creditDefaultCopula object.

Data Types: double
PortfolioLosses - Total portfolio losses
vector
Total portfolio losses, specified as a 1-by-NumScenarios vector. The PortfolioLosses property is empty after you create a creditDefaultCopula object. After the simulate function is invoked, the PortfolioLosses property is populated with the vector of portfolio losses.

Data Types: double

UseParallel - Flag to use parallel processing for simulations

false (default) | logical with value of true or false
Flag to use parallel processing for simulations, specified using an optional name-value pair argument 'UseParallel' when you create a creditDefaultCopula object. The UseParallel name-value pair argument sets the UseParallel property.

Note The 'UseParallel' property can only be set when creating a creditDefaultCopula object if you have Parallel Computing Toolbox. Once the 'UseParallel' property is set, parallel processing is used with riskContribution or simulate.

Data Types: logical

Object Functions

simulate portfolioRisk riskContribution confidenceBands getScenarios

Simulate credit defaults using a creditDefaultCopula object
Generate portfolio-level risk measurements
Generate risk contributions for each counterparty in portfolio
Confidence interval bands
Counterparty scenarios

Examples

Create a creditDefaultCopula Object and Simulate Credit Portfolio Losses

Load saved portfolio data.
load CreditPortfolioData.mat;
Create a creditDefaultCopula object with a two-factor model.

```
cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)
cdc =
    creditDefaultCopula with properties:
            Portfolio: [100x5 table]
        FactorCorrelation: [2\times2 double]
            VaRLevel: 0.9500
            UseParallel: 0
        PortfolioLosses: []
```

Set the VaRLevel to 99\%.
cdc.VaRLevel = 0.99;
Simulate 100,000 scenarios, and view the portfolio risk measures.

```
cdc = simulate(cdc,le5)
cdc =
    creditDefaultCopula with properties:
            Portfolio: [100x5 table]
        FactorCorrelation: [2x2 double]
                    VaRLevel: 0.9900
            UseParallel: 0
portRisk = portfolioRisk(cdc)
portRisk=1\times4 table
        EL Std VaR CVaR
        24.876 23.778 102.4 121.28
```


View a histogram of the portfolio losses.

```
histogram(cdc.PortfolioLosses);
```

title('Distribution of Portfolio Losses');

For further analysis, use the simulate, portfolioRisk, riskContribution, and getScenarios functions with the creditDefaultCopula object.

Version History

Introduced in R2017a

References

[1] Crouhy, M., Galai, D., and Mark, R. "A Comparative Analysis of Current Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 59-117.
[2] Gordy, M. "A Comparative Anatomy of Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 119-149.
[3] Gupton, G., Finger, C., and Bhatia, M. "CreditMetrics - Technical Document." J. P. Morgan, New York, 1997.
[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.
[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.
[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, 2005.

See Also

table | simulate | portfolioRisk| riskContribution | confidenceBands | getScenarios |
creditMigrationCopula|nearcorr

Topics

"Modeling Correlated Defaults with Copulas" on page 4-18
"creditDefaultCopula Simulation Workflow" on page 4-5
"Modeling Correlated Defaults with Copulas" on page 4-18
"One-Factor Model Calibration" on page 4-64
"Corporate Credit Risk" on page 1-3
"Credit Simulation Using Copulas" on page 4-2

External Websites

Parallel Computing with MATLAB (53 min 27 sec)

Cox

Create Cox model object for lifetime probability of default

Description

Create and analyze a Cox model object to calculate lifetime probability of default (PD) using this workflow:

1 Use fitLifetimePDModel to create a Cox model object.
2 Optionally, use discardResiduals to remove residual information from the Cox model object.
3 Use predict to predict the conditional PD and predictLifetime to predict the lifetime PD.
4 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using modelDiscriminationPlot.

5 Use modelCalibration to return the root mean square error (RMSE) of observed and predicted PD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax

CoxPDModel = fitLifetimePDModel(data,ModelType,AgeVar=agevar_value)
CoxPDModel = fitLifetimePDModel(\qquad ,Name=Value)

Description

CoxPDModel = fitLifetimePDModel(data,ModelType,AgeVar=agevar_value) creates a Cox PD model object.

If you do not specify variable information for IDVar, LoanVars, MacroVars, and ResponseVar, then:

- IDVar is set to the first column in the data input.
- LoanVars is set to include all columns from the second to the second-to-last columns of the data input.
- ResponseVar is set to the last column in the data input.

CoxPDModel = fitLifetimePDModel(__ , Name=Value) sets optional properties on page 6539 using additional name-value arguments in addition to the required arguments in the previous syntax. For example, CoxPDModel =
fitLifetimePDModel(data(TrainDataInd,:), "Cox", ModelID="Cox_A", Descripion="Cox model", AgeVar="YOB", IDVar="ID", LoanVars="ScoreGroup",MacroVars=\{'GDP', 'Marke $\overline{\mathrm{t}}$ '\},ResponseVar="Default",TimeInterval=1,TieBreakMethod='Efron') creates a CoxPDModel using a Cox model type. You can specify multiple name-value arguments.

Input Arguments

data - Data
table
Data, specified as a table, in panel data form. The data must contain an ID column and an Age column. The response variable must be a binary variable with the value 0 or 1 , with 1 indicating default.

Data Types: table

ModelType - Model type

string with value "Cox" | character vector with value ' Cox'
Model type, specified as a string with the value "Cox" or a character vector with the value 'Cox'.
Data Types: char | string

Cox Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1, . . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

```
Example: CoxPDModel =
fitLifetimePDModel(data(TrainDataInd,:),"Cox",ModelID="Cox_A",Descripion="Cox
_model",AgeVar="YOB",IDVar="ID",LoanVars="ScoreGroup",MacroVars={'GDP','Marke
t'},ResponseVar="Default",TimeInterval=1)
```


Required Cox Name-Value Argument

AgeVar - Age variable indicating which column in data contains loan age information

 string | character vectorAge variable indicating which column in data contains the loan age information, specified as AgeVar and a string or character vector.

Note The required name-value argument AgeVar is not treated as a predictor in the Cox lifetime PD model. When using a Cox model, you must specify predictor variables using LoanVars or MacroVars. The AgeVar values are the event times for the underlying Cox proportional hazards model.

AgeVar values for each ID should be increasing. If there are nonpositive age increments, fitLifetimePDModel warns when you create a Cox model and removes the IDs with nonpositive age increments. By default, the TimeInterval value is set to the most common age increment in the training data.

Data Types: string | char

Optional Cox Name-Value Arguments

ModelID - User-defined model ID

Cox (default) | string | character vector
User-defined model ID, specified as ModelID and a string or character vector. The software uses the ModelID to format outputs and is expected to be short.

Data Types: string | char
Description - User-defined description for model
" " (default) | string | character vector
User-defined description for model, specified as Description and a string or character vector.
Data Types: string | char

IDVar - ID variable indicating which column in data contains loan or borrower ID 1st column of data (default) | string | character vector

ID variable indicating which column in data contains the loan or borrower ID, specified as IDVar and a string or character vector.

Data Types: string | char
LoanVars - Loan variables indicating which column in data contains loan-specific information
all columns of data that are not the first or last column (default) | string array | cell array of character vectors

Loan variables indicating which column in data contains the loan-specific information, such as origination score or loan-to-value ratio, specified as LoanVars and a string array or cell array of character vectors.

Data Types: string | cell

MacroVars - Macro variables indicating which column in data contains macroeconomic information
 " " (default) | string array | cell array of character vectors

Macro variables indicating which column in data contains the macroeconomic information, such as gross domestic product (GDP) growth or unemployment rate, specified as MacroVars and a string array or cell array of character vectors.
Data Types: string | cell

ResponseVar - Variable indicating which column in data contains response variable

 string | character vectorVariable indicating which column in data contains the response variable, specified as ResponseVar and a logical value.

Note The response variable values in the data must be a binary variable with 0 or 1 values, with 1 indicating default.

In Cox lifetime PD models, the ResponseVar values define the censoring information for the underlying Cox proportional hazards model.

Data Types: string | char

TimeInterval - Distance between age values in panel data input set to most common AgeVar increment in the training data (default) | positive numeric

Distance between age values in training data in the panel data input, specified as TimeInterval and a positive numeric scalar.

Use the TimeInterval name-value argument to fit time-dependent models and also as the time interval for the PD computation when you use the predict function. For example, if the age data (AgeVar) is $1,2,3, \ldots$, then the TimeInterval is 1 ; if the age data is $0.25,0.5,0.75, \ldots$, then the TimeInterval is 0.25 . For more information, see "Time Interval for Cox Models" on page 6-551 and "Lifetime Prediction and Time Interval" on page 6-342.

Note Unlike Logistic and Probit models, a Cox model requires an AgeVar variable. By default, if you do not specify a TimeInterval when creating a Cox model, the TimeInterval is inferred from the increments in the AgeVar values in the training data.

Data Types: double

TieBreakMethod - Method to handle tied default times

"breslow" (default)| string with value "breslow" or "efron" | character vector with value 'breslow' or 'efron'

Method to handle tied default times, specified as a string or character vector with one of the following tie-break methods:

- breslow - Breslow's approximation to the partial likelihood
- efron - Efron's approximation to the partial likelihood

For credit applications, the time to default comes discretized and there are many "ties." This means that are multiple borrowers that may default at the same (discretized) time (such as, in the second year of their loan). TieBreakMethod supports the breslow or efron methods to handle this scenario.

Data Types: string | char

Properties

ModelID - User-defined model ID

Probit (default) | string
User-defined model ID, returned as a string.
Data Types: string

Description - User-defined description

" " (default) | string
User-defined description, returned as a string.
Data Types: string

UnderlyingModel - Underlying statistical model

Cox model

Underlying statistical model, returned as a returned as a Cox proportional hazards model object. For more information, see fitcox and CoxModel.

Data Types: CoxModel

IDVar - ID variable indicating which column in data contains loan or borrower ID
 1st column of data (default) | string

ID variable indicating which column in data contains the loan or borrower ID, returned as a string.
Data Types: string
AgeVar - Age variable indicating which column in data contains loan age information string

Age variable indicating which column in data contains the loan age information, returned as a string.
Data Types: string

LoanVars - Loan variables indicating which column in data contains loan-specific information
 all columns of data that are not the first or last column (default) | string array

Loan variables indicating which column in data contains the loan-specific information, returned as a string array.
Data Types: string
MacroVars - Macro variables indicating which column in data contains macroeconomic information
" " (default) | string array
Macro variables indicating which column in data contains the macroeconomic information, returned as a string array.

Data Types: string

ResponseVar - Variable indicating which column in data contains response variable string

Variable indicating which column in data contains the response variable, returned as a string.
Data Types: string
TimeInterval - Distance between age values in panel data input set to most common AgeVar increment in the training data (default) | positive numeric

This property is read-only.
Distance between age values in panel data input, returned as a scalar positive numeric.
Data Types: double
ExtrapolationFactor - Extrapolation factor
1 (default) | positive numeric between 0 and 1
Extrapolation factor, returned as a positive numeric scalar between 0 and 1.
By default, the ExtrapolationFactor is set to 1. For age values (AgeVar) greater than the maximum age observed in the training data, the conditional PD, computed with predict, uses the maximum age observed in the training data. In particular, the predicted PD value is constant if the
predictor values do not change and only the age values change when the ExtrapolationFactor is 1. For more information, see "Extrapolation for Cox Models" on page 6-335, "Extrapolation Factor for Cox Models" on page 6-335, and "Use Cox Lifetime PD Model to Predict Conditional PD" on page 6329.

Data Types: double

TieBreakMethod - Method to handle tied default times

"breslow" (default)| string with value "breslow" or "efron"
Method to handle tied default times, returned as a string.
Data Types: string

Object Functions

predict predictLifetime modelDiscrimination modelCalibration modelDiscriminationPlot modelCalibrationPlot discardResiduals

Compute conditional PD
Compute cumulative lifetime PD, marginal PD, and survival probability Compute AUROC and ROC data
Compute RMSE of predicted and observed PDs on grouped data Plot ROC curve
Plot observed default rates compared to predicted PDs on grouped data Discard residual information of underlying Cox model

Examples

Create Cox Lifetime PD Model

This example shows how to use fitLifetimePDModel to create a Cox model using credit and macroeconomic data.

Load Data

Load the credit portfolio data.

ID	ScoreGroup	YOB	Default	Year
1	Low Risk	1	0	1997
1	Low Risk	2	0	1998
1	Low Risk	3	0	1999
1	Low Risk	4	0	2000
1	Low Risk	5	0	2001
1	Low Risk	6	0	2002
1	Low Risk	7	0	2003
1	Low Risk	8	0	2004
disp(head(dataMacro))				
Year	GDP	Market		
1997	2.72	7.61		

1998	3.57	26.24
1999	2.86	18.1
2000	2.43	3.19
2001	1.26	-10.51
2002	-0.59	-22.95
2003	0.63	2.78
2004	1.85	9.48

Join the two data components into a single data set.

ID	ScoreGroup	YOB	Default	Year	GDP	Market
1	Low Risk	1	0	1997	2.72	7.61
1	Low Risk	2	0	1998	3.57	26.24
1	Low Risk	3	0	1999	2.86	18.1
1	Low Risk	4	0	2000	2.43	3.19
1	Low Risk	5	0	2001	1.26	-10.51
1	Low Risk	6	0	2002	-0.59	-22.95
1	Low Risk	7	0	2003	0.63	2.78
1	Low Risk	8	0	2004	1.85	9.48

Partition Data

Separate the data into training and test partitions.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % For reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```


Create a Cox Lifetime PD Model

Use fitLifetimePDModel to create a Cox model using the training data.

```
pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Cox",...
    AgeVar="YOB", ...
    IDVar="ID", ...
    LoanVars="ScoreGroup", ...
    MacroVars={'GDP','Market'}, ...
    ResponseVar="Default");
disp(pdModel)
```

 Cox with properties:
 TimeInterval: 1
 ExtrapolationFactor: 1
 ModelID: "Cox"
 Description: ""
    ```
UnderlyingModel: [1x1 CoxModel]
            IDVar: "ID"
            AgeVar: "YOB"
        LoanVars: "ScoreGroup"
    MacroVars: ["GDP" "Market"]
ResponseVar: "Default"
```

Display the underlying model.

```
disp(pdModel.UnderlyingModel)
```

Cox Proportional Hazards regression model

| | Beta | SE | zStat | pValue |
| :---: | :---: | :---: | :---: | :---: |
| ScoreGroup_Medium Risk | -0.6794 | 0.037029 | -18.348 | 3.4442e-75 |
| ScoreGroup_Low Risk | -1.2442 | 0.045244 | -27.501 | 1.7116e-166 |
| GDP | -0.084533 | 0.043687 | -1.935 | 0.052995 |
| Market | -0.0084411 | 0.0032221 | -2.6198 | 0.0087991 |

Log-likelihood: -41742.871

Validate Model

Use modelDiscrimination to measure the ranking of customers by PD.

```
DataSetChoice = Testing * ;
if DataSetChoice=="Training"
    Ind = TrainDataInd;
else
    Ind = TestDataInd;
end
DiscMeasure = modelDiscrimination(pdModel,data(Ind,:),SegmentBy="ScoreGroup")
DiscMeasure=3\times1 table
                                    AUROC
    Cox, ScoreGroup=High Risk 0.64112
    Cox, ScoreGroup=Medium Risk 0.61989
    Cox, ScoreGroup=Low Risk 0.6314
disp(DiscMeasure)
```

 AUROC
 \(\begin{array}{lll}\text { Cox, ScoreGroup=High Risk } & 0.64112 \\ \text { Cox, ScoreGroup=Medium Risk } & 0.61989\end{array}\)
 Cox, ScoreGroup=Low Risk 0.6314
 Use modelDiscriminationPlot to visualize the ROC curve.
modelDiscriminationPlot(pdModel, data(Ind,:), SegmentBy="ScoreGroup")

ROC
Segmented by ScoreGroup

Use modelCalibration to measure the calibration of the predicted PD values. The modelCalibration function requires a grouping variable and compares the accuracy of the observed default rate in the group with the average predicted PD for the group.

```
CalMeasure = modelCalibration(pdModel,data(Ind,:),{'YOB','ScoreGroup'})
CalMeasure=table
    RMSE
    Cox, grouped by YOB, ScoreGroup
    0.0012471
disp(CalMeasure)
```

 RMSE
 Cox, grouped by YOB, ScoreGroup 0.0012471
 Use modelCalibrationPlot to visualize the observed default rates compared to the predicted PD. modelCalibrationPlot(pdModel,data(Ind,:),\{'YOB','ScoreGroup'\})

Predict Conditional and Lifetime PD

Use the predict function to predict conditional PD values. The prediction is a row-by-row prediction.

```
%dataCustomerl = data(1:8,:);
CondPD = predict(pdModel,data(Ind,:));
```

Use predictLifetime to predict the lifetime cumulative PD values (computing marginal and survival PD values is also supported).

LifetimePD = predictLifetime(pdModel,data(Ind,:));

Select Tie-Break Method for Cox Lifetime PD Models

This example shows how to create a Cox model and select the tie-break method while fitting a Cox lifetime PD model.

Load Data

Load the credit portfolio data.
load RetailCreditPanelData.mat
disp(head(data))
ID ScoreGroup YOB Default Year

| 1 | Low Risk | 1 | 0 | 1997 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Low Risk | 2 | 0 | 1998 |
| 1 | Low Risk | 3 | 0 | 1999 |
| 1 | Low Risk | 4 | 0 | 2000 |
| 1 | Low Risk | 5 | 0 | 2001 |
| 1 | Low Risk | 6 | 0 | 2002 |
| 1 | Low Risk | 7 | 0 | 2003 |
| 1 | Low Risk | 8 | 0 | 2004 |
| disp(head(dataMacro)) | | | | |
| Year | GDP | Market | | |
| 1997 | 2.72 | 7.61 | | |
| 1998 | 3.57 | 26.24 | | |
| 1999 | 2.86 | 18.1 | | |
| 2000 | 2.43 | 3.19 | | |
| 2001 | 1.26 | -10.51 | | |
| 2002 | -0.59 | -22.95 | | |
| 2003 | 0.63 | 2.78 | | |
| 2004 | 1.85 | 9.48 | | |

Join the two data components into a single data set.

```
data = join(data,dataMacro);
disp(head(data))
```

| ID | ScoreGroup | YOB | | | Default | Year | | GDP |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | ---: |

Join the Data

Join the two data components into a single data set.

```
data = join(data,dataMacro);
disp(head(data))
```

| ID | ScoreGroup | YOB | Default | Year | GDP | Market |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Low Risk | 1 | 0 | 1997 | 2.72 | 7.61 |
| 1 | Low Risk | 2 | 0 | 1998 | 3.57 | 26.24 |
| 1 | Low Risk | 3 | 0 | 1999 | 2.86 | 18.1 |
| 1 | Low Risk | 4 | 0 | 2000 | 2.43 | 3.19 |
| 1 | Low Risk | 5 | 0 | 2001 | 1.26 | -10.51 |
| 1 | Low Risk | 6 | 0 | 2002 | -0.59 | -22.95 |
| 1 | Low Risk | 7 | 0 | 2003 | 0.63 | 2.78 |
| 1 | Low Risk | 8 | 0 | 2004 | 1.85 | 9.48 |

Partition the Data

Separate the data into training and test partitions.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```


Create a Cox Lifetime PD Model with Breslow's Method

Use fitLifetimePDModel to create a Cox model using the training data. Use the name-value argument TieBreakMethod to set tie-break method to 'breslow'. This is the default choice for this argument.

```
pdModel1 = fitLifetimePDModel(data(TrainDataInd,:),"Cox",...
ModelID="Cox-Breslow", IDVar="ID", AgeVar="YOB", ...
LoanVars="ScoreGroup", MacroVars={'GDP','Market'}, ...
ResponseVar="Default",TieBreakMethod='breslow');
```

Display the underlying model.

```
disp(pdModel1.Model)
```

Cox Proportional Hazards regression model

| | Beta | SE | zStat | pValue |
| :---: | :---: | :---: | :---: | :---: |
| ScoreGroup_Medium Risk | -0.6794 | 0.037029 | -18.348 | 3.4442e-75 |
| ScoreGroup_Low Risk | -1.2442 | 0.045244 | -27.501 | 1.7116e-166 |
| GDP | -0.084533 | 0.043687 | -1.935 | 0.052995 |
| Market | -0.0084411 | 0.0032221 | -2.6198 | 0.0087991 |

Log-likelihood: -41742.871
Use predict to predict the conditional PD.

```
pd1 = predict(pdModel1,data(TestDataInd,:));
```


Create a Cox Lifetime PD Model with Efron's Method

Use fitLifetimePDModel to create a Cox model using the training data. Use the name-value argument TieBreakMethod to set tie-break method to 'Efron'. This is the default choice for this argument.

```
pdModel2 = fitLifetimePDModel(data(TrainDataInd,:),"Cox",...
ModelID="Cox-Efron", IDVar="ID", AgeVar="YOB", ...
LoanVars="ScoreGroup", MacroVars={'GDP','Market'}, ...
ResponseVar="Default",TieBreakMethod='efron');
```

Display the underlying model. The coefficients are only slightly different for this data set.

```
disp(pdModel2.Model)
Cox Proportional Hazards regression model
\begin{tabular}{|c|c|c|c|c|}
\hline & Beta & SE & zStat & pValue \\
\hline ScoreGroup_Medium Risk & -0.6844 & 0.037029 & -18.483 & 2.8461e-76 \\
\hline ScoreGroup_Low Risk & -1.2515 & 0.045243 & -27.662 & 2.006e-168 \\
\hline GDP & -0.084985 & 0.043691 & -1.9452 & 0.051756 \\
\hline Market & -0.0085126 & 0.0032223 & -2.6418 & 0.0082469 \\
\hline
\end{tabular}
```

Log-likelihood: -41713.445
Use predict to predict the conditional PD for the second Cox model.
pd2 = predict(pdModel2,data(TestDataInd,:));

Compare Cox Models

The predictions for the two Cox models are almost the same for this data set.
[pd1(1:10) pd2(1:10)]

| ans $=10 \times 2$ | |
| :---: | :---: |
| | |
| 0.0162 | 0.0161 |
| 0.0091 | 0.0090 |
| 0.0081 | 0.0081 |
| 0.0073 | 0.0072 |
| 0.0064 | 0.0064 |
| 0.0072 | 0.0072 |
| 0.0030 | 0.030 |
| 0.0016 | 0.0016 |
| 0.0162 | 0.0161 |
| 0.0091 | 0.0090 |

For this data set, the model discrimination (modelDiscrimination) does not seem to change with the TieBreakMethod method and the model accuracy (modelCalibration) shows only a negligible difference in RMSE.
modelDiscriminationPlot(pdModel1,data(TestDataInd, :) ,ReferencePD=pd2,ReferenceID=pdModel2.ModelI

modelCalibrationPlot(pdModel1,data(TestDataInd, :), 'Year' , ReferencePD=pd2,ReferenceID=pdModel2.Mo

More About

Cox Proportional Hazards Models

The Cox proportional hazards (PH) model is a survival model and it models the time until an event of interest occurs.

For probability of default (PD) models, the event of interest is the default on a credit obligation. Cox models need information on whether there was a default and when it happened. For other commonly used PD models, a binary variable indicating whether there was a default is enough. Cox PD models need that information, plus the age of the loan at the time of default.

The Cox proportional hazards (PH) model, also known as a Cox regression model, assumes the hazard rate is of the form

$$
h(t ; X)=h_{0}(t) \exp (X \beta)
$$

where

- $h_{0}(t)$ is the baseline hazard rate.
- X is the predictor data.
- $\quad \beta$ is a vector of coefficients of the predictors.
- $\exp \left(X \hat{\mathrm{I}}^{2}\right)$ is the hazard ratio.

The baseline hazard rate is a reference hazard level, common to all observations, and it does not depend on the predictor values. The hazard ratio is the factor that scales the baseline hazard value up or down, depending on the predictor values. For lower risk observations, the hazard ratio is less than 1 and this reduces the hazard rate. For higher risk observations, the hazard ratio increases the hazard rate.

In the hazard rate formula, the predictor values in X are fixed, or independent of time. This is the basic version of the Cox PH model. For PD models, the basic version of the Cox PH model includes predictors that have constant values, such as the origination score, or whether a property is for residential or commercial purposes.

The time-dependent Cox PH model allows predictor values to change over time. For example, the loan-to-value (LTV) ratio changes over the life of a loan, and the macroeconomic variables change from period to period. Therefore, the following hazard rate formula for time-dependent models includes predictor values that can be a function of time:

$$
h(t ; X)=h_{0}(t) \exp (X(t) \beta)
$$

The data input for fitLifetimePDModel must be in panel data form. For each ID (IDVar), there are multiple rows of data. The panel data input is required for both time-dependent and time independent models.

For time-independent predictors, the predictor value is constant for each ID. For example, the score at origination for each customer is constant throughout the life of the loan, and this value is repeated for each row corresponding to the same ID in the panel data format.

For time-dependent predictors, the values may change from one row to the next for the same ID. The assumption is that the predictor values in each row are valid in the time interval defined by the age value (AgeVar) in the previous row and the age value in the current row.

Time Interval for Cox Models

Time is discretized into intervals, and predictor values in the training data (data input) are constant for each interval: X_{1} from t_{0} to $t_{1} ; X_{2}$ from t_{1} to t_{2}; and so forth.

The data input must be in panel data form, with multiple observations for each ID, with corresponding age information (the t_{k} values, the AgeVar column) and the corresponding default indicator values (the ResponseVar column).

Assume that $t_{k}-t_{k-1}=\Delta t$ for all k and this is the time interval. This time interval is the age increment for consecutive observations in the age data (AgeVar). The assumption is that these increments are regular and that the default indicator (ResponseVar) is defined consistently with this time interval, in the sense that a 1 means there was a default in a time interval of length Δt. The time interval Δt is also used for the computation of the probability of default. For more information, see "Lifetime Prediction and Time Interval" on page 6-342.

Survival and Probability of Default for Cox Models

The survival function $S(t)$ is a function of time, and gives the probability of surviving longer than a given time t.

$$
S(t)=P(T>t)
$$

where

- T is the failure time, the random variable of interest, and in the Cox model case, the time to default.
- t is the specific time of interest, for example, 1 year.

The main relationship between the survival function and the hazard rate is

$$
S(t)=\exp \left(-\int_{0}^{t} h(u) d u\right)
$$

Higher values of the hazard rate cause the survival probability to drop faster. Conversely, lower values of the hazard rate cause the survival probability to rise faster.

The probability of default (PD) is the conditional probability of defaulting in a time interval, given that there has been no default prior to that interval. For example, the probability of default between time s and t, with $s<t$, is represented as:

$$
\begin{aligned}
P D(s, t) & =P(s<T \leq t \mid T>s) \\
& =\frac{S(s)-S(t)}{S(s)} \\
& =1-\frac{S(t)}{S(s)}
\end{aligned}
$$

In credit applications, the time interval of interest, Δt, is consistent with the training data and the definition of default in the response variable. The PD is a function of a single time variable t and the implicit time interval Δt :

$$
P D(t)=1-\frac{S(t)}{S(t-\Delta t)}
$$

Version History

Introduced in R2021b

R2023a: modelAccuracy object function is renamed to modelCalibration function Not recommended starting in R2023a

The modelAccuracy object function is renamed to modelCalibration function. The use of modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot function

Not recommended starting in $R 2023 a$
The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

R2023a: Added TieBreakMethod name-value argument

Behavior changed in R2023a
The TieBreakMethod name-value argument enables you to specify the method to handle tied default times.

R2023a: Added discardResiduals method for Cox model

Behavior changed in R2023a

Use the discardResiduals method to discard residual information of the underlying Cox model.

R2023a: Model property renamed to UnderlyingModel

Behavior changed in R2023a
The Model property is renamed to UnderlyingModel.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.

See Also

Functions

fitLifetimePDModel|Logistic|Probit|customLifetimePDModel
Topics
"Basic Lifetime PD Model Validation" on page 4-129
"Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
"Compare Lifetime PD Models Using Cross-Validation" on page 4-121
"Expected Credit Loss Computation" on page 4-124
"Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
"Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 4-75
"Modeling Probabilities of Default with Cox Proportional Hazards" on page 4-28
"Overview of Lifetime Probability of Default Models" on page 1-25

discardResiduals

Discard residual information of underlying Cox model

Syntax

pdModel = discardResiduals(pdModel)

Description

pdModel = discardResiduals(pdModel) discards residual information of underlying Cox model to reduce memory footprint of the Cox lifetime PD model.

Examples

Discard Residuals for Cox Lifetime PD Model

This example shows how to create a Cox model and then use discardResiduals to remove residual information to reduce the model's memory usage.

Load Data

Load the credit portfolio data.

| ID | ScoreGroup | YOB | Default | Year |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Low Risk | 1 | 0 | 1997 |
| 1 | Low Risk | 2 | 0 | 1998 |
| 1 | Low Risk | 3 | 0 | 1999 |
| 1 | Low Risk | 4 | 0 | 2000 |
| 1 | Low Risk | 5 | 0 | 2001 |
| 1 | Low Risk | 6 | 0 | 2002 |
| 1 | Low Risk | 7 | 0 | 2003 |
| 1 | Low Risk | 8 | 0 | 2004 |

| Year | GDP | Market |
| :---: | :---: | :---: |
| 1997 | 2.72 | 7.61 |
| 1998 | 3.57 | 26.24 |
| 1999 | 2.86 | 18.1 |
| 2000 | 2.43 | 3.19 |
| 2001 | 1.26 | -10.51 |
| 2002 | -0.59 | -22.95 |
| 2003 | 0.63 | 2.78 |
| 2004 | 1.85 | 9.48 |

Join the Data

Join the two data components into a single data set.

```
data = join(data,dataMacro);
disp(head(data))
\begin{tabular}{lrllllllr} 
ID & ScoreGroup & YOB & & Default & & Year & & GDP
\end{tabular}
```


Partition the Data

Separate the data into training and test partitions.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```


Create a Cox Lifetime PD Model

Use fitLifetimePDModel to create a Cox model.

```
pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Cox",...
    IDVar="ID", AgeVar="YOB", LoanVars="ScoreGroup", ...
    MacroVars={'GDP','Market'}, ResponseVar="Default");
disp(pdModel)
```

 Cox with properties:
 TimeInterval: 1
 ExtrapolationFactor: 1
 ModelID: "Cox"
 Description: ""
 UnderlyingModel: [1x1 CoxModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"
 The Cox pdModel object uses a noticeable amount of memory.
whos pdModel

| Name | Size | Bytes | Class |
| :--- | :--- | ---: | :--- | Attributes

This is because the underlying Cox model stores residual information, and multiple residual types are supported.

| CoxSnell | Deviance | Martingale | Schoenfeld | | | | ScaledSchoenfeld | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0092625 | 0 | 0 | NaN |
| 0.012537 | 0 | 0 | NaN |
| 0.018878 | 0 | 0 | NaN |
| 0.026346 | 0 | 0 | NaN |
| 0.036303 | 0 | 0 | NaN |
| 0.051269 | 0 | 0 | NaN |
| 0.038922 | 0 | 0 | NaN |
| 0.034104 | 0 | 0 | NaN |

For additional information on the residuals, see CoxModel.

Remove Residual Information

For prediction purposes, the residual information can be discarded using discardResiduals without affecting the prediction or validation functionality of the Cox lifetime PD model.

```
pdModel = discardResiduals(pdModel)
pdModel =
    Cox with properties:
            TimeInterval: 1
        ExtrapolationFactor: 1
            ModelID: "Cox"
            Description: ""
                UnderlyingModel: [1x1 CoxModel]
                    IDVar: "ID"
                        AgeVar: "YOB"
                            LoanVars: "ScoreGroup"
                MacroVars: ["GDP" "Market"]
            ResponseVar: "Default"
```

The model storage is minimal once the residuals have been discarded and the Residuals property of the underlying model have been emptied.
whos pdModel

| Name | Size | Bytes | Class |
| :--- | :--- | ---: | :--- | Attributes

pdModel.UnderlyingModel.Residuals

```
ans =
    0x1 empty table
```

The prediction and validation functions are not affected after the residuals have been discarded.

```
pdLifetime = predictLifetime(pdModel,data(1:8,:))
pdLifetime = 8×1
    0.0092
    0.0143
    0.0189
    0.0229
    0.0265
    0.0305
    0.0321
    0.0330
```

modelCalibrationPlot(pdModel,data(TrainDataInd,:),'Year')

Copyright 2022 The MathWorks, Inc.

Input Arguments

pdModel - Probability of default model

Cox object

Probability of default model, specified as a previously created Cox object using fitLifetimePDModel.

Data Types: object

Output Arguments

pdModel - Updated Cox PD model

object
Updated Cox PD model, returned as a Cox model.

Version History

Introduced in R2023a

See Also

modelCalibration | modelDiscrimination |modelDiscriminationPlot | modelCalibrationPlot|predictLifetime|fitLifetimePDModel|Cox| customLifetimePDModel

Topics

"Basic Lifetime PD Model Validation" on page 4-129
"Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
"Compare Lifetime PD Models Using Cross-Validation" on page 4-121
"Expected Credit Loss Computation" on page 4-124
"Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
"Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 4-75
"Overview of Lifetime Probability of Default Models" on page 1-25

creditMigrationCopula

Simulate and analyze multifactor credit migration rating model

Description

The creditMigrationCopula takes as input a portfolio of credit-sensitive positions with a set of counterparties and performs a copula-based, multifactor simulation of credit rating migrations. Counterparty credit rating migrations and subsequent changes in portfolio value are calculated for each scenario and several risk measurements are reported.
creditMigrationCopula associates each counterparty with a random variable, called a latent variable, which is mapped to credit ratings based on a rating transition matrix. For each scenario, the value of the position with each counterparty is recomputed based on the realized credit rating of the counterparty. These latent variables are simulated by using a multifactor model, where systemic credit fluctuations are modeled with a series of risk factors. These factors can be based on industry sectors (such as financial or aerospace), geographical regions (such as USA or Eurozone), or any other underlying driver of credit risk. Each counterparty is assigned a series of weights which determine their sensitivity to each underlying credit factors.

The inputs to the model are:

- migrationValues - Values of the counterparty positions for each credit rating.
- ratings - Current credit rating for each counterparty.
- transitionMatrix - Matrix of credit rating transition probabilities.
- LGD - Loss given default (1 â^' Recovery).
- Weights - Factor and idiosyncratic model weights

After you create creditMigrationCopula object (see "Create creditMigrationCopula" on page 6559 and "Properties" on page 6-563), use the simulate function to simulate credit migration by using the multifactor model. Then, for detailed reports, use the following functions: portfolioRisk, riskContribution, confidenceBands, and getScenarios.

Creation

Syntax

```
cmc = creditMigrationCopula(migrationValues,ratings,transitionMatrix,LGD,
Weights)
cmc = creditMigrationCopula( ___ ,Name,Value)
Description
```

cmc $=$ creditMigrationCopula(migrationValues,ratings,transitionMatrix, LGD, Weights) creates a creditMigrationCopula object. The creditMigrationCopula object has the following properties:

- Portfolio on page 6-0 :

A table with the following variables:

- ID - ID to identify each counterparty
- migrationValues - Values of counterparty positions for each credit rating
- ratings - Current credit rating for each counterparty
- LGD - Loss given default
- Weights - Factor and idiosyncratic weights for counterparties
- FactorCorrelation on page 6-0 :

Factor correlation matrix, a NumFactors-by-NumFactors matrix that defines the correlation between the risk factors.

- RatingLabels on page 6-0 :

The set of all possible credit ratings.

- TransitionMatrix on page 6-0 :

The matrix of probabilities that a counterparty transitions from a starting credit rating to a final credit rating. The rows represent the starting credit ratings and the columns represent the final ratings. The top row holds the probabilities for a counterparty that starts at the highest rating (for example AAA) and the bottom row holds those for a counterparty starting in the default state. The bottom row may be omitted, indicating that a counterparty in default remains in default. Each row must sum to 1 . The order of rows and columns must match the order of credit ratings defined in the RatingLabels parameter. The last column holds the probability of default for each of the ratings. If unspecified, the default rating labels are:
"AAA", "AA", "A", "BBB", "BB", "B", "CCC", "D".

- VaRLevel on page 6-0

The value-at-risk level, used when reporting VaR and CVaR.

- PortfolioValues on page 6-0 :

A NumScenarios-by-1 vector of portfolio values. This property is empty until you use the simulate function.
cmc = creditMigrationCopula(\qquad , Name, Value) sets Properties on page 6-563 using namevalue pairs and any of the arguments in the previous syntax. For example, cmc = creditMigrationCopula(migrationValues, ratings, transitionMatrix, LGD,Weights, 'V aRLevel', 0.99). You can specify multiple name-value pairs as optional name-value pair arguments.

Input Arguments

migrationValues - Values of counterparty positions for each credit rating

matrix
Values of the counterparty positions for each credit rating, specified as a NumCounterparties-byNumRatings matrix. Each row holds the possible values of the counterparty position for each credit rating. The last rating must be the default rating. The migrationValues input sets the Portfolio on page 6-0 property.

The migration value for the default rating (the last column of migrationValues input) is prerecovery. This is a reference value (for example, face value, forward value at current rating, or other)
that is multiplied by the recovery rate during the simulation to get the value of the asset in the event of default. The recovery rate is defined as 1-LGD, where LGD is specified using the LGD input argument. The LGD is either a constant or a random number drawn from a beta distribution (see the description of the LGD input).

Note The creditMigrationCopula model simulates the changes in portfolio value over a fixed time period (for example, one year). The migrationValues and transitionMatrix must be specific to a particular time period.

Data Types: double

ratings - Current credit rating for each counterparty

cell array of character vectors | numeric value \| string
Current credit rating for each counterparty, specified as a NumCounterparties-by-1 vector that represents the initial credit states. The set of all valid credit ratings and their order is defined by using the optional RatingLabels parameter. The ratings input sets the Portfolio on page 6-0 property.

If RatingLabels are unspecified, the default rating labels are:
"AAA", "AA", "A", "BBB", "BB", "B", "CCC", "D".
Data Types: double|string|cell

transitionMatrix - Credit rating transition probabilities

numeric value
Credit rating transition probabilities, specified as a NumRatings-by-NumRatings matrix. The matrix contains the probabilities that a counterparty starting at a particular credit rating transitions to every other rating over some fixed time period. Each row holds all the transition probabilities for a particular starting credit rating. The transitionMatrix input sets the TransitionMatrix on page 60 property.

The top row holds the probabilities for a counterparty that starts at the highest rating (such as AAA). The bottom row holds the probabilities for a counterparty starting in the default state. The bottom row may be omitted, indicating that a counterparty in default remains in default. Each row must sum to 1 .

The order of rows and columns must match the order of credit ratings defined in the RatingLabels parameter. The last column holds the probability of default for each of the ratings. If RatingLabels are unspecified, the default rating labels are: "AAA", "AA", "A", "BBB", "BB", "B", "CCC", "D".

Note The creditMigrationCopula model simulates the changes in portfolio value over a fixed time period (for example, one year). The migrationValues and transitionMatrix must be specific to a particular time period.

Data Types: double

LGD - Loss given default

numeric vector with elements from 0 through 1

Loss given default, specified as a NumCounterparties-by-1 numeric vector with elements from 0 through 1, representing the fraction of exposure that is lost when a counterparty defaults. LGD is defined as (1 â^' Recovery). For example, an LGD of 0.6 implies a 40% recovery rate in the event of a default. The LGD input sets the Portfolio on page 6-0 property.

LGD can alternatively be specified as a NumCounterparties-by-2 matrix, where the first column holds the LGD mean values and the 2nd column holds the LGD standard deviations. Then, in the case of default, LGD values are drawn randomly from a beta distribution with provided parameters for the defaulting counterparty.

Valid open intervals for LGD mean and standard deviation are:

- For the first column, the mean values are between 0 and 1.
- For the second column, the LGD standard deviations are between 0 and sqrt ($m *(1-m)$).

Data Types: double

Weights - Weights variable name

array of factor and idiosyncratic weights
Factor and idiosyncratic weights, specified as a NumCounterparties-by-(NumFactors + 1) array. Each row contains the factor weights for a particular counterparty. Each column contains the weights for an underlying risk factor. The last column in Weights contains the idiosyncratic risk weight for each counterparty. The idiosyncratic weight represents the company-specific credit risk. The total of the weights for each counterparty (that is, each row) must sum to 1 . The Weights input sets the Portfolio on page 6-0 property.

For example, if a counterparty's creditworthiness was composed of 60\% US, 20\% European, and 20\% idiosyncratic, then the Weights vector is [0.6 0.2 0.2].
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: cmc =
creditMigrationCopula(migrationValues,ratings,transitionMatrix,LGD,Weights,'V
aRLevel',0.99)
```


ID - User-defined IDs for counterparties

1 : NumCounterparties (default) | vector
User-defined IDs for counterparties, specified as the comma-separated pair consisting of 'ID ' and a NumCounterparties-by-1 vector of IDs for each counterparty. ID is used to identify exposures in the Portfolio table and the risk contribution table. ID must be a numeric, a string array, or a cell array of character vectors. The ID name-value pair argument sets the Portfolio on page 6-0 property.

If unspecified, ID defaults to a numeric vector (1:NumCounterparties).
Data Types: double | string | cell

VaRLevel - Value at risk level

0.95 (default) | numeric between 0 and 1

Value at risk level (used for reporting VaR and CVaR), specified as the comma-separated pair consisting of 'VaRLevel' and a numeric between 0 and 1 . The VaRLevel name-value pair argument sets the VaRLevel on page 6-0 property.
Data Types: double

FactorCorrelation - Factor correlation matrix

identity matrix (default) | correlation matrix
Factor correlation matrix, specified as the comma-separated pair consisting of 'FactorCorrelation' and a NumFactors-by-NumFactors matrix that defines the correlation between the risk factors. The FactorCorrelation name-value pair argument sets the FactorCorrelation on page 6-0 property.

If not specified, the factor correlation matrix defaults to an identity matrix, meaning that the factors are not correlated.
Data Types: double

RatingLabels - Set of all possible credit ratings

["AAA", "AA", "A", "BBB", "BB", "B", "CCC", "D"] (default)| cell array of character vectors | numeric | string

Set of all possible credit ratings, specified as the comma-separated pair consisting of
'RatingLabels ' and a NumRatings-by-1 vector, where the first element is the highest credit rating and the last element is the default state. The RatingLabels name-value pair argument sets the RatingLabels on page 6-0 property.

Data Types: cell | double | string

UseParallel - Flag to use parallel processing for simulations
 false (default) | logical with value of true or false

Flag to use parallel processing for simulations, specified as the comma-separated pair consisting of 'UseParallel' and a scalar value of true or false. The UseParallel name-value pair argument sets the UseParallel on page 6-0 property.

Note The 'UseParallel' property can only be set when creating a creditMigrationCopula object if you have Parallel Computing Toolbox. Once the 'UseParallel' property is set, parallel processing is used with riskContribution or simulate.

Data Types: logical

Properties

Portfolio - Details of credit portfolio

table
Details of credit portfolio, specified as a MATLAB table that contains all the portfolio data that was passed as input into the creditMigrationCopula object.

The Portfolio table has a column for each of the constructor inputs (MigrationValues, Rating, LGD, Weights, and ID). Each row of the table represents one counterparty.

For example:

| ID | MigrationValues | Rating | LGD | Weights | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | [1x8 double] | "A" | 0.6509 | 0.5 | 0.5 |
| 2 | [1x8 double] | "BBB" | 0.8283 | 0.55 | 0.45 |
| 3 | [1x8 double] | "AA" | 0.6041 | 0.7 | 0.3 |
| 4 | [1x8 double] | "BB" | 0.6509 | 0.55 | 0.45 |
| 5 | [1x8 double] | "BBB" | 0.4966 | 0.75 | 0.25 |

Data Types: table

FactorCorrelation - Correlation matrix for credit factors

matrix
Correlation matrix for credit factors, specified as a NumFactors-by-NumFactors matrix. Specify the correlation matrix by using the optional name-value pair argument 'FactorCorrelation' when you create the creditMigrationCopula object.

Data Types: double

RatingLabels - Set of all possible credit ratings

cell array of character vectors, string, or numeric vector representing set of credit ratings
Set of all possible credit ratings, specified using an optional name-value input argument for 'RatingLabels' when you create the creditMigrationCopula object.

Data Types: double \| cell| string
TransitionMatrix - Probabilities counterparty transitions from starting credit rating to final credit rating
matrix
Probabilities that a counterparty transitions from a starting credit rating to a final credit rating, specified using the input argument 'transitionMatrix' when you create the creditMigrationCopula object. The rows represent the starting credit ratings and the columns represent the final ratings. The top row corresponds to the highest rating.

The top row holds the probabilities for a counterparty that starts at the highest rating (such as AAA) and the bottom row holds those for a counterparty starting in the default state. The bottom row may be omitted, indicating that a counterparty in default remains in default. Each row must sum to 1.

The order of rows and columns must match the order of credit ratings defined in the RatingLabels parameter. The last column holds the probability of default for each of the ratings. If RatingLabels are unspecified, the default rating labels are: "AAA", "AA", "A", "BBB", "BB", "B", "CCC", "D".
Data Types: double

VaRLevel - Value at Risk Level

numeric value between 0 and 1
Value at risk level used when reporting VaR and CVaR, specified using an optional name-value pair argument 'VaRLevel' when you create the creditMigrationCopula object.

Data Types: double

PortfolioValues - Portfolio values

vector

Portfolio values, specified as a 1-by-NumScenarios vector. After creating the creditMigrationCopula object, the PortfolioValues property is empty. After you invoke the simulate function, PortfolioValues is populated with the portfolio values over each scenario.
Data Types: double

UseParallel - Flag to use parallel processing for simulations

false (default) | logical with value of true or false
Flag to use parallel processing for simulations, specified using an optional name-value pair argument 'UseParallel' when you create a creditMigrationCopula object. The UseParallel namevalue pair argument sets the UseParallel property.

Note The 'UseParallel' property can only be set when creating a creditMigrationCopula object if you have Parallel Computing Toolbox. Once the 'UseParallel' property is set, parallel processing is used with riskContribution or simulate.

Data Types: logical

Object Functions

simulate portfolioRisk riskContribution confidenceBands getScenarios

Simulate credit migrations using creditMigrationCopula object
Generate portfolio-level risk measurements
Generate risk contributions for each counterparty in portfolio
Confidence interval bands
Counterparty scenarios

Examples

Create a creditMigrationCopula Object Using a Four-Factor Model

Load the saved portfolio data.
load CreditMigrationData.mat;
Scale the bond prices for portfolio positions for each bond.

```
migrationValues = migrationPrices .* numBonds;
```

Create a creditMigrationCopula object with a four-factor model using creditMigrationCopula.

```
cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)
cmc =
    creditMigrationCopula with properties:
```

Set the VaRLevel to 99\%.

```
cmc.VaRLevel = 0.99;
```

The Portfolio property contains information about migration values, ratings, LGDs and weights.

| ID | MigrationValues | Rating | LGD | Weights | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1×8 double | "A" | 0.6509 | 0 | 0 | 0 | 0.5 | 0.5 |
| 2 | 1×8 double | "BBB" | 0.8283 | 0 | 0.55 | 0 | 0 | 0.45 |
| 3 | 1x8 double | "AA" | 0.6041 | 0 | 0.7 | 0 | 0 | 0.3 |
| 4 | 1x8 double | "BB" | 0.6509 | 0 | 0.55 | 0 | 0 | 0.45 |
| 5 | 1×8 double | "BBB" | 0.4966 | 0 | 0 | 0.75 | 0 | 0.25 |
| 6 | 1×8 double | "BB" | 0.8283 | 0 | 0 | 0 | 0.65 | 0.35 |
| 7 | 1×8 double | "BB" | 0.6041 | 0 | 0 | 0 | 0.65 | 0.35 |
| 8 | 1x8 double | "BB" | 0.4873 | 0.5 | 0 | 0 | 0 | 0.5 |

The columns in the migration values are in the same order of the ratings, with the default rating in the last column.

For example, these are the migration values for the first counterparty. Note that the value for default is higher than some of the non-default ratings. This is because the migration value for the default rating is a reference value (for example, face value, forward value at current rating, or other) that is multiplied by the recovery rate during the simulation to get the value of the asset in the event of default. The recovery rate is $1-$ LGD when the LGD input to creditMigrationCopula is a constant LGD value (the LGD input has one column). The recovery rate is a random quantity when the LGD input to creditMigrationCopula is specified as a mean and standard deviation for a beta distribution (the LGD input has two columns).

```
bar(cmc.Portfolio.MigrationValues(1,:))
xticklabels(cmc.RatingLabels)
title('Migration Values for First Company')
```


Use the simulate function to simulate 100,000 scenarios, and then view portfolio risk measures using the portfolioRisk function.

```
cmc = simulate(cmc,1e5)
cmc =
    creditMigrationCopula with properties:
            Portfolio: [250x5 table]
        FactorCorrelation: [4x4 double]
            RatingLabels: [8x1 string]
        TransitionMatrix: [8x8 double]
            VaRLevel: 0.9900
            UseParallel: 0
        PortfolioValues: [2.0082e+06 1.9950e+06 1.9933e+06 2.0009e+06 1.9819e+06 1.9955e+06 1.9962
```

 portRisk = portfolioRisk(cmc)
 | $\begin{array}{c}\text { portRisk=1×4 } \\ \text { EL }\end{array}$ | $\begin{array}{c}\text { table } \\ \text { Std }\end{array}$ | VaR | CVaR |
| ---: | :---: | :---: | :---: |
| 4515.9 | -12963 | 57176 | 83975 |

View a histogram of the portfolio values.
h = histogram(cmc.PortfolioValues, 125);
title('Distribution of Portfolio Values');

Create a creditMigrationCopula Object and Analyze Results

Load the saved portfolio data.
load CreditMigrationData.mat;
Scale the bond prices for portfolio positions for each bond.
migrationValues $=$ migrationPrices .* numBonds;
Create a creditMigrationCopula object with a four-factor model using creditMigrationCopula.
cmc = creditMigrationCopula(migrationValues, ratings,transMat,...
lgd,weights, 'FactorCorrelation', factorCorr)
$\mathrm{cmC}=$
creditMigrationCopula with properties:
Portfolio: [250x5 table]
FactorCorrelation: [4x4 double]
RatingLabels: [8x1 string]

```
TransitionMatrix: [8x8 double]
            VaRLevel: 0.9500
    UseParallel: 0
PortfolioValues: []
```

Set the VaRLevel to 99\%.

```
cmc.VaRLevel = 0.99;
```

Use the simulate function to simulate 100,000 scenarios, and then view portfolio risk measures by using the portfolioRisk function.

```
cmc = simulate(cmc,1e5)
cmc =
    creditMigrationCopula with properties:
            Portfolio: [250x5 table]
        FactorCorrelation: [4x4 double]
            RatingLabels: [8x1 string]
        TransitionMatrix: [8x8 double]
            VaRLevel: 0.9900
            UseParallel: 0
                PortfolioValues: [2.0082e+06 1.9950e+06 1.9933e+06 2.0009e+06 1.9819e+06 1.9955e+06 1.9962
    portRisk = portfolioRisk(cmc)
portRisk=1\times4 table
        EL Std VaR CVaR
        4515.9 12963 57176 83975
```

View a histogram of the portfolio values.
h = histogram(cmc.PortfolioValues,125);
title('Distribution of Portfolio Values');

Overlay the value that the portfolio takes if all counterparties maintained their current credit ratings.

```
CurrentRatingValue = portRisk.EL + mean(cmc.PortfolioValues);
    hold on
    plot([CurrentRatingValue CurrentRatingValue],[0 max(h.Values)],...
        'LineWidth',2);
    grid on
```


Version History

Introduced in R2017a

References

[1] Crouhy, M., Galai, D., and Mark, R. "A Comparative Analysis of Current Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 59-117.
[2] Gordy, M. "A Comparative Anatomy of Credit Risk Models." Journal of Banking and Finance. Vol. 24, 2000, pp. 119-149.
[3] Gupton, G., Finger, C., and Bhatia, M. "CreditMetrics - Technical Document." J. P. Morgan, New York, 1997.
[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.
[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.
[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, 2005.

See Also

table | simulate | portfolioRisk|riskContribution|confidenceBands | getScenarios |
creditDefaultCopula|nearcorr

Topics

"creditMigrationCopula Simulation Workflow" on page 4-10
"One-Factor Model Calibration" on page 4-64
"Credit Rating Migration Risk" on page 1-10

External Websites

Parallel Computing with MATLAB (53 min 27 sec)

developmentTriangle

Create developmentTriangle object

Description

Use this workflow to generate projected ultimate claims for a developmentTriangle:
1 Load or generate the claims data for the development triangle.
2 Create a developmentTriangle object.
3 Use view to display the developmentTriangle data and use claimsPlot to plot the reported claims.

4 Use linkRatios to compute the link ratio factors (development factors or age-to-age factors) and use linkRatioAverages to calculate averages from those factors. Also, you can plot link ratios using linkRatiosPlot.
5 Use cdfSummary to calculate the cumulative development factors (CDFs) and the percentage of total claims.
6 Use ultimateClaims to calculate the projected ultimate claims.
7 Use fullTriangle to display the development triangle that includes ultimate claims.

Creation

Syntax

dT = developmentTriangle(data)
dT = developmentTriangle(\qquad ,Name,Value)

Description

dT = developmentTriangle(data) creates a developmentTriangle object using data. You can plot dT using claimsPlot.
dT = developmentTriangle(\qquad ,Name, Value) sets properties on page 6-574 using namevalue pair arguments. Specify one or more name-value pair arguments after the input argument in the previous syntax. For example, dT_reported = developmentTriangle(data,'Origin','AccidentYear', 'Development', 'DevelopmentYe ar','Claims','ReportedClaims').

Input Arguments

data - Claims data

table
Claims data, specified as a table with at least three columns. If you specify data as a three-column table and do not specify name-value pair arguments for 'Origin', 'Development' and 'Claims', the software obtains origin years from the first column, development years from the second column, and claims from the third column by default.

Data Types: table

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: dT_reported =
developmentTriangle(data, 'Origin', 'AccidentYear', 'Development', 'DevelopmentYe ar','Claims','ReportedClaims')

Origin - Name of the column containing the origin years

first column of data table (default) | character vector \| string
Name of the column containing the origin years, specified as the comma-separated pair consisting of 'Origin' and a character vector or string.
Data Types: char|string
Development - Name of column containing development years
second column of data table (default) | character vector | string
Name of column containing development years, specified as the comma-separated pair consisting of 'Development ' and a character vector or string.
Data Types: char \| string

Claims - Name of column containing claims periods

third column of data table (default) | character vector | string
Name of column containing claims periods, specified as the comma-separated pair consisting of 'Claims ' and a character vector or string.

Data Types: double
Cumulative - Flag to indicate if data is cumulative or incremental
true (cumulative) (default) | logical with a value of true or false
Flag to indicate if data is cumulative or incremental, specified as the comma-separated pair consisting of 'Cumulative' and a scalar logical value.

Data Types: logical

Properties

Origin - Name of column containing origin years

first column of data table (default) | cell array
Name of column containing origin years, returned as a cell array.
Data Types: cell

Development - Name of column containing development years

second column of data table (default) | cell array

Name of column containing development years, returned as a cell array.
Data Types: cell

Claims - Name of column containing claims period

third column of data table (default) | vector
Name of column containing claims period, returned as a vector.
Data Types: double
LatestDiagonal - Latest claim values for each Origin period
vector
Latest claim values for each Origin period, returned as a vector.
Data Types: double
Description - User-defined description
" " (default) | string
User-defined description, returned as a string.
Data Types: string
SelectedLinkRatio - Selected link ratios for CDF calculations
simple average (default) | vector
Selected link ratios for the CDF calculations, returned as a vector.
Data Types: double
TailFactor - Tail factor constant
1 (default) | numeric
Tail factor constant, returned as a numeric.
Data Types: double

Object Functions

| view | D |
| :--- | :--- |
| linkRatios | C |
| linkRatioAverages | C |
| cdfSummary | C |
| ultimateClaims | C |
| fullTriangle | D |
| linkRatiosPlot | P |
| claimsPlot | P |

Examples

Create developmentTriangle Object

Create a developmentTriangle object using simulated claims data.
load InsuranceClaimsData.mat;
disp(data)

| OriginYear | DevelopmentYear | ReportedClaims | PaidClaims |
| :---: | :---: | :---: | :---: |
| 2010 | 12 | 3995.7 | 1893.9 |
| 2010 | 24 | 4635 | 3371.2 |
| 2010 | 36 | 4866.8 | 4079.1 |
| 2010 | 48 | 4964.1 | 4487 |
| 2010 | 60 | 5013.7 | 4711.4 |
| 2010 | 72 | 5038.8 | 4805.6 |
| 2010 | 84 | 5059 | 4853.7 |
| 2010 | 96 | 5074.1 | 4877.9 |
| 2010 | 108 | 5084.3 | 4887.7 |
| 2010 | 120 | 5089.4 | 4892.6 |
| 2011 | 12 | 3968 | 2055.5 |
| 2011 | 24 | 4682.3 | 3638.3 |
| 2011 | 36 | 4963.2 | 4365.9 |
| 2011 | 48 | 5062.5 | 4758.9 |
| 2011 | 60 | 5113.1 | 4949.2 |
| 2011 | 72 | 5138.7 | 5048.2 |
| 2011 | 84 | 5154.1 | 5098.7 |
| 2011 | 96 | 5169.6 | 5124.2 |
| 2011 | 108 | 5179.9 | 5134.4 |
| 2012 | 12 | 4217 | 2242.4 |
| 2012 | 24 | 5060.4 | 3946.7 |
| 2012 | 36 | 5364 | 4696.6 |
| 2012 | 48 | 5508.9 | 5119.3 |
| 2012 | 60 | 5558.4 | 5324.1 |
| 2012 | 72 | 5586.2 | 5430.5 |
| 2012 | 84 | 5608.6 | 5484.8 |
| 2012 | 96 | 5625.4 | 5512.3 |
| 2013 | 12 | 4374.2 | 2373.8 |
| 2013 | 24 | 5205.3 | 4130.4 |
| 2013 | 36 | 5517.7 | 4915.2 |
| 2013 | 48 | 5661.1 | 5357.6 |
| 2013 | 60 | 5740.4 | 5571.9 |
| 2013 | 72 | 5780.6 | 5677.8 |
| 2013 | 84 | 5803.7 | 5728.9 |
| 2014 | 12 | 4499.7 | 2421.8 |
| 2014 | 24 | 5309.6 | 4189.6 |
| 2014 | 36 | 5628.2 | 4985.6 |
| 2014 | 48 | 5785.8 | 5434.3 |
| 2014 | 60 | 5849.4 | 5651.7 |
| 2014 | 72 | 5878.7 | 5759.1 |
| 2015 | 12 | 4530.2 | 2484.1 |
| 2015 | 24 | 5300.4 | 4272.6 |
| 2015 | 36 | 5565.4 | 5084.4 |
| 2015 | 48 | 5715.7 | 5541.9 |
| 2015 | 60 | 5772.8 | 5763.6 |
| 2016 | 12 | 4572.6 | 2481.7 |
| 2016 | 24 | 5304.2 | 4218.9 |
| 2016 | 36 | 5569.5 | 5020.5 |
| 2016 | 48 | 5714.3 | 5472.4 |
| 2017 | 12 | 4680.6 | 2577.9 |
| 2017 | 24 | 5523.1 | 4382.4 |
| 2017 | 36 | 5854.4 | 5171.2 |

| 2018 | 12 | 4696.7 | 2580 |
| ---: | ---: | ---: | ---: |
| 2018 | 24 | 5495.1 | 4386.1 |
| 2019 | 12 | 4945.9 | 2764.8 |

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data.

```
dT = developmentTriangle(data)
dT =
    developmentTriangle with properties:
                    Origin: {10x1 cell}
                    Development: {10x1 cell}
                    Claims: [10x10 double]
        LatestDiagonal: [10x1 double]
    Description: ""
        TailFactor: 1
        CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
        SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
```

Use the view function to display the developmentTriangle contents in table form. Each row represents an origin period and each column represents a development period.

| developmentTriangleTable=10×10 table | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 |
| 2010 | 3995.7 | 4635 | 4866.8 | 4964.1 | 5013.7 | 5038.8 | 5059 | 5074.1 | 5084 |
| 2011 | 3968 | 4682.3 | 4963.2 | 5062.5 | 5113.1 | 5138.7 | 5154.1 | 5169.6 | 5179 |
| 2012 | 4217 | 5060.4 | 5364 | 5508.9 | 5558.4 | 5586.2 | 5608.6 | 5625.4 | |
| 2013 | 4374.2 | 5205.3 | 5517.7 | 5661.1 | 5740.4 | 5780.6 | 5803.7 | NaN | N |
| 2014 | 4499.7 | 5309.6 | 5628.2 | 5785.8 | 5849.4 | 5878.7 | NaN | NaN | N |
| 2015 | 4530.2 | 5300.4 | 5565.4 | 5715.7 | 5772.8 | NaN | NaN | NaN | |
| 2016 | 4572.6 | 5304.2 | 5569.5 | 5714.3 | NaN | NaN | NaN | NaN | |
| 2017 | 4680.6 | 5523.1 | 5854.4 | NaN | NaN | NaN | NaN | NaN | N |
| 2018 | 4696.7 | 5495.1 | NaN | NaN | NaN | NaN | NaN | NaN | N |
| 2019 | 4945.9 | NaN | N |

To visualize the development triangles, use plot.

```
plot(table2array(developmentTriangleTable)');
xticklabels(developmentTriangleTable.Properties.VariableNames)
xlabel('Development Year')
ylabel('Reported Claims')
title('Development Reported Claims')
legend(developmentTriangleTable.Properties.RowNames)
grid on
```


Version History

Introduced in R2020b

See Also

chainLadder | expectedClaims | bornhuetterFerguson
Topics
"Mean Square Error of Prediction for Estimated Ultimate Claims" on page 4-161
"Bootstrap Using Chain Ladder Method" on page 4-168
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

esbacktest

Create esbacktest object to run suite of table-based expected shortfall (ES) backtests by Acerbi and Szekely

Description

The general workflow is:
1 Load or generate the data for the ES backtesting analysis.
2 Create an esbacktest object. For more information, see "Create esbacktest" on page 6-579 and "Properties" on page 6-582.
3 Use the summary function to generate a summary report for the number of observations, expected, and observed average severity ratio.
4 Use the runtests function to run all tests at once.
5 For additional test details, run the following individual tests:

- unconditionalNormal - Unconditional ES backtest assuming returns distribution is normal
- unconditionalT - Unconditional ES backtest assuming returns distribution is t

For more information, see "Overview of Expected Shortfall Backtesting" on page 2-20.

Creation

Syntax

```
ebt = esbacktest(PortfolioData,VaRData,ESData)
ebt = esbacktest(
``` \(\qquad\)
``` ,Name, Value)
```


Description

ebt = esbacktest(PortfolioData,VaRData,ESData) creates an esbacktest (ebt) object using portfolio outcomes data and corresponding value-at-risk (VaR) and ES data. The ebt object has the following properties:

- PortfolioData on page 6-0 - NumRows-by-1 numeric array containing a copy of the PortfolioData
- VaRData on page 6-0 - NumRows-by-NumVaRs numeric array containing a copy of the VaRData
- ESData on page 6-0 - NumRows-by-NumVaRs numeric array containing a copy of the ESData
- PortfolioID on page 6-0 - String containing the PortfolioID
- VaRID on page 6-0 - 1-by-NumVaRs string vector containing the VaRIDs for the corresponding columns in VaRData
- VaRLevel on page 6-0 - 1-by-NumVaRs numeric array containing the VaRLevels for the corresponding columns in VaRData

Note

- Test results from esbacktest are only approximate since no distribution information is passed as input. When distribution information is available, use esbacktestbysim; in particular, the minimally biased test is recommended (see minBiasAbsolute and minBiasRelative).
- The simulation of critical values assumes a mean of 0 for the underlying distribution. The critical values are sensitive to the mean of the underlying distribution. If the ES prediction is based on distributions with means significantly away from 0 , the critical values in esbacktest will be unreliable.
- The required input arguments for PortfolioData, VaRData, and ESData must all be in the same units. These arguments can be expressed as returns or as profits and losses. There are no validations in the esbacktest object regarding the units of these arguments.
- If there are missing values (NaNs) in PortfolioData, VaRData, and ESData, the row of data is discarded before applying the tests. Therefore, a different number of observations are reported for models with a different number of missing values. The reported number of observations equals the original number of rows minus the number of missing values. To determine if there are discarded rows, use the 'Missing' column of the summary report.
- Because the critical values are precomputed, only certain numbers of observations, VaR levels, and test levels are supported.
- The number of observations (number of rows in the data minus the number of missing values) must be from 200 through 5000 .
- The VaRLevel input argument must be between 0.90 and 0.999 ; the default is 0.95 .
- The TestLevel (test confidence level) input argument for the runtests, unconditionalNormal, and unconditionalT functions must be between 0.5 and 0.9999 ; the default is 0.95 .
ebt = esbacktest(\qquad ,Name, Value) sets Properties on page 6-582 using name-value pairs and any of the arguments in the previous syntax. For example, ebt $=$ esbacktest(PortfolioData,VaRData, ESData, 'VaRID','TotalVaR', 'VaRLevel', .999). You can specify multiple name-value pairs as optional name-value pair arguments.

Input Arguments

PortfolioData - Portfolio outcomes data

NumRows-by-1 numeric array | NumRows-by-1 numeric columns table | NumRows-by-1 numeric columns timetable

Portfolio outcomes data, specified as a NumRows-by-1 numeric array, NumRows-by-1 numeric columns table, or a NumRows-by-1 timetable with a numeric column containing portfolio outcomes data. The PortfolioData input argument sets the PortfolioData on page 6-0 property.

Note PortfolioData must be in the same units as VaRData and ESData. PortfolioData, VaRData, and ESData can be expressed as returns or as profits and losses. There are no validations in the esbacktest object regarding the units of portfolio, VaR, and ES data.

Data Types: double | table | timetable

VaRData - Value-at-risk (VaR) data

NumRows-by-NumVaRs numeric array | NumRows-by-NumVaRs table with numeric columns | NumRows-by-NumVaRs timetable with numeric columns

Value-at-risk (VaR) data, specified as a NumRows-by-NumVaRs numeric array, NumRows-by-NumVaRs numeric columns table, or NumRows-by-NumVaRs timetable with numeric columns. The VaRData input argument sets the VaRData on page 6-0 property.

Negative VaRData values are allowed. However, negative VaR values indicate a highly profitable portfolio that cannot lose money at the given VaR confidence level. The worst-case scenario at the given confidence level is still a profit.

Note VaRData must be in the same units as PortfolioData and ESData. VaRData, PortfolioData, and ESData can be expressed as returns or as profits and losses. There are no validations in the esbacktest object regarding the units of portfolio, VaR, and ES data.

Data Types: double | table | timetable

ESData - Expected shortfall data

NumRows-by-NumVaRs positive numeric array | NumRows-by-NumVaRs table with positive numeric columns | NumRows-by-NumVaRs timetable with positive numeric columns

Expected shortfall data, specified as a NumRows-by-NumVaRs positive numeric array, NumRows-byNumVaRs table with positive numeric columns, or NumRows-by-NumVaRs timetable with positive numeric columns containing ES data. The ESData input argument sets the ESData on page 6-0 property.

Note ESData must be in the same units as PortfolioData and VaRData. ESData, PortfolioData, and VaRData can be expressed as returns or as profits and losses. There are no validations in the esbacktest object regarding the units of portfolio, VaR, and ES data.

Data Types: double | table| timetable

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ebt =
esbacktest(PortfolioData,VaRData,ESData,'VaRID','TotalVaR','VaRLevel',.999)

PortfolioID - User-defined ID

character vector | string
User-defined ID for PortfolioData input, specified as the comma-separated pair consisting of 'PortfolioID' and a character vector or string. The PortfolioID name-value pair argument sets the PortfolioID on page 6-0 property.

If PortfolioData is a numeric array, the default value for PortfolioID is 'Portfolio'. If PortfolioData is a table, PortfolioID is set to the corresponding variable name in the table, by default.

Data Types: char | string

VaRID - VaR identifier

character vector | cell array of character vectors | string | string array
VaR identifier for VaRData columns, specified as the comma-separated pair consisting of 'VaRID' and a character vector, cell array of character vectors, string, or string array.

Multiple VaRID values are specified using a 1-by-NumVaRs (or NumVaRs-by-1) cell array of character vectors or a string vector with user-defined IDs for the VaRData columns. A single VaRID identifies a VaRData column and the corresponding ESData column. The VaRID name-value pair argument sets the VaRID on page 6-0 property.

If NumVaRs = 1 , the default value for VaRID is 'VaR'. If NumVaRs >1, the default value is 'VaR1', 'VaR2' , and so on. If VaRData is a table, 'VaRID' is set by default to the corresponding variable names in the table.

Data Types: char|cell|string

VaRLevel - VaR confidence level

0.95 (default) | numeric between 0.90 and 0.999

VaR confidence level, specified as the comma-separated pair consisting of 'VaRLevel' and a numeric value between 0.90 and 0.999 or a 1-by-NumVaRs (or NumVaRs-by-1) numeric array. The VaRLevel name-value pair argument sets the VaRLevel on page 6-0 property.

Note When specifying a VarLevel > 99\%, ensure that the number of observations is sufficient to generate an appropriate critical value. In addition, when running a test, use a TestLevel >95\%. For very high VaR levels (for example, VarLevel > 99\%) and a relatively small number of observations, the probability of VaR failures is very small and the distribution of the test statistic has a discrete nature, leading to unexpected non-monotonicity around some critical values. Larger number of observations and higher test confidence levels preserve the expected behavior of critical values when the VarLevel is very high.

Data Types: double

Properties

PortfolioData - Portfolio data for ES backtesting analysis

numeric array
Portfolio data for ES backtesting analysis, specified as a NumRows-by-1 numeric array containing a copy of the portfolio data.

Data Types: double

VaRData - VaR data for ES backtesting analysis

numeric array

VaR data for ES backtesting analysis, specified as a NumRows-by-NumVaRs numeric array containing a copy of the VaR data.

Data Types: double

ESData - Expected shortfall data for ES backtesting analysis

numeric array
Expected shortfall data for ES backtesting analysis, specified as a NumRows-by-NumVaRs numeric array containing a copy of the ESData.
Data Types: double
PortfolioID - Portfolio identifier
string
Portfolio identifier, specified as a string.
Data Types: string

VaRID - VaR identifier

string | string array
VaR identifier, specified as a 1-by-NumVaRs string array containing the VaR IDs for the corresponding columns in VaRData.

Data Types: string

VaRLevel - VaR level

numeric array with values between 0.90 and 0.999
VaR level, specified as a 1-by-NumVaRs numeric array with values from 0.90 through 0.999 , containing the VaR levels for the corresponding columns in VaRData.

Data Types: double

esbacktest Property	Set or Modify Property from Command Line Using esbacktest	Modify Property Using Dot Notation
PortfolioData	Yes	No
VaRData	Yes	No
ESData	Yes	No
PortfolioID	Yes	Yes
VaRID	Yes	Yes
VaRLevel	Yes	Yes

Object Functions

summary runtests unconditionalNormal unconditionalT Unconditional expected shortfall (ES) backtest by Acerbi-Szekely with critical values for t distributions

Examples

Create esbacktest Object and Run ES Backtests for Single VaRLevel at 99.9\%

esbacktest takes in portfolio outcomes data, the corresponding value-at-risk (VaR) data, and the expected shortfall (ES) data and returns an esbacktest object.

Create an esbacktest object.

```
load ESBacktestData
ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel',VaRLevel)
ebt =
    esbacktest with properties:
        PortfolioData: [1966x1 double]
            VaRData: [1966x1 double]
            ESData: [1966x1 double]
        PortfolioID: "Portfolio"
            VaRID: "VaR"
            VaRLevel: 0.9750
```

ebt, the esbacktest object, contains a copy of the given portfolio data (PortfolioData property), the given VaR data (VaRData property), and the given ES data (ESData) property. The object also contains all combinations of portfolio ID, VaR ID, and VaR level to be tested (PortfolioID, VaRID, and VaRLevel properties).

Run the tests using the ebt object.

```
runtests(ebt)
ans=1\times5 table
    PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT
    "Portfolio" "VaR" 0.975 reject reject
```

Change the PortfolioID and VaRID properties using dot notation. For more information on creating an esbacktest object, see esbacktest.

```
ebt.PortfolioID = 'S&P';
ebt.VaRID = 'Normal at 97.5%';
disp(ebt)
    esbacktest with properties:
    PortfolioData: [1966x1 double]
            VaRData: [1966x1 double]
            ESData: [1966x1 double]
        PortfolioID: "S&P"
            VaRID: "Normal at 97.5%"
            VaRLevel: 0.9750
```

Run all tests using the updated esbacktest object.

```
runtests(ebt)
```

```
ans=1\times5 table
    PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT
        "S&P" "Normal at 97.5%" 0.975 reject reject
```


Version History

Introduced in R2017b

References

[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.
[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk". January, 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also

summary| runtests | unconditionalNormal | unconditionalT|esbacktestbysim|table | timetable| varbacktest

Topics

"Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information" on page 2-30
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"Comparison of ES Backtesting Methods" on page 2-26

esbacktestbyde

Create esbacktestbyde object to run suite of Du and Escanciano expected shortfall (ES) backtests

Description

The general workflow is:
1 Load or generate the data for the ES backtesting analysis.
2 Create an esbacktestbyde object. For more information, see Create esbacktestbyde on page 6586 and Properties on page 6-589.
3 Use the summary function to generate a summary report on the failures and severities.
4 Use the runtests function to run all tests at once.
5 For additional test details, run the following individual tests:

- unconditionalDE - Unconditional ES backtest by Du-Escanciano
- conditionalDE - Conditional ES backtest by Du-Escanciano

6 simulate - Simulate critical values for test statistics
For more information, see "Overview of Expected Shortfall Backtesting" on page 2-20 and "Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-63.

Creation

Syntax

ebtde = esbacktestbyde(PortfolioData,DistributionName)
ebtde = esbacktestbyde(\qquad ,Name, Value)

Description

ebtde = esbacktestbyde(PortfolioData,DistributionName) creates an esbacktestbyde (ebtde) object using portfolio outcomes data and model distribution information. The esbacktestbyde object has the following properties:

- PortfolioData on page 6-0 - NumRows-by-1 numeric array or NumRows-by-1 table or timetable with a numeric column containing portfolio outcomes data.
- VaRData on page 6-0 - Computed VaR data using distribution information from PortfolioData, returned as a NumRows-by-NumVaRs numeric array.
- ESData on page 6-0 - Computed ES data using distribution information from PortfolioData, returned as a NumRows-by-NumVaRs numeric array.
- Distribution on page 6-0 - Model distribution information, returned as a structure.
- PortfolioID on page 6-0 - User-defined portfolio ID.
- VaRID on page 6-0 - VaRIDs for the corresponding column in PortfolioData.
- VaRLevel on page 6-0 - VaRLevel for the corresponding columns in PortfolioData.
ebtde = esbacktestbyde(__ , Name, Value) sets Properties on page 6-582 using name-value pairs and any of the arguments in the previous syntax. For example, ebtde $=$ esbacktestbyde(PortfolioData, DistributionName, 'VaRID','TotalVaR', 'VaRLevel', . 99). You can specify multiple name-value pairs as optional name-value pair arguments.

Input Arguments

PortfolioData - Portfolio outcome data

NumRows-by-1 numeric array | NumRows-by-1 table of numeric columns | NumRows-by-1 timetable with one numeric column

Portfolio outcome data, specified as a NumRows-by-1 numeric array, NumRows-by-1 table of numeric columns, or a NumRows-by-1 timetable with a numeric column containing portfolio outcomes data. The PortfolioData input argument sets the PortfolioData on page 6-0 property.

Unlike other ES backtesting classes, the esbacktestbyde does not require VaR data or ES data inputs. The distribution information from PortfolioData is sufficient to run the tests. esbacktestbyde uses the distribution information to apply the cumulative distribution function to the portfolio data and map it into the $(0,1)$ interval. The ES backtests are applied to the mapped data.

Note Before applying the tests, the function discards rows with missing values (NaN) in the PortfolioData or Distribution parameters. Therefore, the reported number of observations equals the original number of rows minus the number of missing values.

Data Types: double |table|timetable

DistributionName - Model distribution name

character vector with a value of 'normal' or 't' \mid string with a value of "normal" of "t"
Model distribution name for ES backtesting analysis, specified as a character vector with a value of 'normal' or ' t ' or string with a value of "normal" or " t ".
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: ebtde =
esbacktestbyde(PortfolioData,"t",'DegreesOfFreedom',10,'Location',Mu,'Scale',
Sigma,'PortfolioID',"S&P",'VaRID',["t(10) 95%","t(10) 97.5%","t(10)
99%"], 'VaRLevel',VaRLevel)
```


Name-Value Pairs for 'normal' or 't' Distributions

PortfolioID - User-defined ID
character vector | string

User-defined ID for PortfolioData input, specified as the comma-separated pair consisting of 'PortfolioID' and a character vector or string. The 'PortfolioID' name-value pair argument sets the PortfolioID on page 6-0 property.

If PortfolioData is a numeric array, the default value for PortfolioID is 'Portfolio'. If PortfolioData is a table or timetable, PortfolioID is set to the corresponding variable name in the table, by default.

Data Types: char|string

VaRID - VaR identifier

character vector | cell array of character vectors | string | string array
VaR identifier for the VaR model, specified as the comma-separated pair consisting of 'VaRID' and a character vector, cell array of character vectors, string, or string array.

You can specify multiple VaRID values by using a 1-by-NumVaRs (or NumVaRs-by-1) cell array of character vectors or a string vector with user-defined IDs for the different VaR levels The 'VaRID ' name-value pair argument sets the VaRID on page 6-0 property.

If NumVaRs = 1 , the default value for VaRID is 'VaR'. If NumVaRs >1, the default value is 'VaR1', 'VaR2 ${ }^{\prime}$, and so on.

Data Types: char | cell| string
VaRLevel - VaR confidence level
0.95 (default) | numeric between 0 and 1

VaR confidence level, specified as the comma-separated pair consisting of 'VaRLevel' and a scalar numeric value between 0 and 1 or a 1 -by-NumVaRs (or NumVaRs-by-1) numeric array. The 'VaRLevel' ' name-value pair argument sets the VaRLevel on page 6-0 property.
Data Types: double

Simulate - Indicates if simulation for statistical significance of tests runs

true (default) | scalar logical with a value of true or false
Indicates if simulation for statistical significance of tests runs when an esbacktestbyde object is created, specified as the comma-separated pair consisting of 'Simulate' and a scalar logical value.

Data Types: logical

Name-Value Pairs for 'normal' Distributions

Mean - Means for the normal distribution

0 (default) | vector
Means for the normal distribution, specified as the comma-separated pair consisting of 'Mean ' and a NumRows-by-1 vector. This parameter is used only when DistributionName is 'normal'.

Data Types: double

StandardDeviation - Standard deviations

1 (default) | positive vector
Standard deviations, specified as the comma-separated pair consisting of 'StandardDeviation ' and a NumRows-by-1 positive vector. This parameter is only used when DistributionName is "normal".

Data Types: double

Name-Value Pairs for 't' Distributions
DegreesOfFreedom - Degrees of freedom for ' t ' distribution
scalar integer ≥ 3
Degrees of freedom for ' t ' distribution, specified as the comma-separated pair consisting of 'DegreesOfFreedom' and a scalar integer ≥ 3.

Note You must set this name-value parameter when DistributionName is ' t '.

Data Types: double

Location - Location parameters for ' t ' distribution

0 (default) | vector
Location parameters for ' t ' distribution, specified as the comma-separated pair consisting of
'Location' and a NumRows-by-1 vector. This parameter is used only when DistributionName is 't'.

Data Types: double

Scale - Scale parameters for ' t ' distribution

1 (default) | positive vector
Scale parameters for ' t ' distribution, specified as the comma-separated pair consisting of 'Scale' and a NumRows-by-1 positive vector. This parameter is used only when DistributionName is ' t '.
Data Types: double

Properties

PortfolioData - Portfolio data for ES backtesting analysis

numeric array

Portfolio data for ES backtesting analysis, returned as a NumRows-by-1 numeric array containing a copy of the portfolio data.

Data Types: double

VaRData - VaR data computed using distribution information
 numeric array

VaR data computed using distribution information, returned as a NumRows-by-NumVaRs numeric array.
Data Types: double

ESData - ES data computed using distribution information

numeric array
ES data computed using distribution information, returned as a NumRows-by-NumVaRs numeric array.
Data Types: double

Distribution - Model distribution information

struct
Model distribution information, returned as a struct.
For a normal distribution, the Distribution structure has the fields 'Name ' (set to normal), 'Mean', and 'StandardDeviation', with values set to the corresponding inputs.

For a t distribution, the Distribution structure has the fields 'Name ' (set to t),
'DegreesOfFreedom', 'Location', and 'Scale', with values set to the corresponding inputs.
Data Types: struct

PortfolioID - Portfolio identifier

string
Portfolio identifier, returned as a string.
Data Types: string

VaRID - VaR identifier

string | string array
VaR identifier, returned as a 1-by-NumVaRs string array containing the VaR ES model, where NumVaRs is the number of VaR levels.

Data Types: string

VaRLevel - VaR level

numeric array with values between 0.90 and 0.99
VaR level, returned as a 1-by-NumVaRs numeric array.
Data Types: double

esbacktestbyde Property	Set or Modify Property from Command Line Using esbacktestbyde	Modify Property Using Dot Notation
PortfolioData	Yes	No
VaRData	No	No
ESData	No	No
Distribution	Yes	No
PortfolioID	Yes	Yes
VaRID	Yes	Yes
VaRLevel	Yes	Yes

Object Functions

summary runtests unconditionalDE conditionalDE simulate

Basic expected shortfall (ES) report on failures and severity Run all expected shortfall (ES) backtests for esbacktestbyde object Unconditional Du-Escanciano (DE) expected shortfall (ES) backtest Conditional Du-Escanciano (DE) expected shortfall (ES) backtest Simulate Du-Escanciano (DE) expected shortfall (ES) test statistics

Examples

Create an esbacktestbyde Object and Run ES Backtests

Create an esbacktestbyde object for a t model with 10 degrees of freedom at three different VaR levels, and then run Du and Escanciano ES backtests.

```
load ESBacktestDistributionData.mat
    rng('default'); % For reproducibility
    ebtde = esbacktestbyde(Returns,"t",...
        'Degrees0fFreedom',T10DoF, ...
        'Location',T10Location,...
        'Scale',T10Scale,...
        'PortfolioID',"S&P",...
        'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
        'VaRLevel',VaRLevel);
    runtests(ebtde)
```

PortfolioID	VaRID		VaRLevel	ConditionalDE	UnconditionalDE
"S\&P"	"t(10)	95\%"	0.95	reject	accept
"S\&P"	"t(10)	97.5\%"	0.975	reject	accept
"S\&P"	"t(10)	99\%"	0.99	reject	reject

Create Two esbacktestbyde Objects and Run ES Backtests

Create two esbacktestbyde objects, one with a normal distribution and another with a t distribution with 5 degrees of freedom, at three different VaR levels. Then run Du and Escanciano ES backtests using runtests.

```
load ESBacktestDistributionData.mat
    rng('default'); % For reproducibility
    ebtdel = esbacktestbyde(Returns,"normal",...
        'Mean ',NormalMean, ...
        'StandardDeviation',NormalStd,...
        'PortfolioID',"S&P",...
        'VaRID',["Normal 95%","Normal 97.5%","Normal 99%"],...
        'VaRLevel',VaRLevel);
    ebtde2 = esbacktestbyde(Returns,"t",...
        'Degrees0fFreedom',T5DoF, ...
        'Location',T5Location,...
        'Scale',T5Scale,...
        'PortfolioID',"S&P", ...
        'VaRID',["t(5) 95%","t(5) 97.5%","t(5) 99%"],...
        'VaRLevel',VaRLevel);
```

Concatenate results in a single table.

```
t = [runtests(ebtde1);runtests(ebtde2)];
disp(t)
```

PortfolioID	VaRID			VaRLevel		ConditionalDE

Version History

Introduced in R2019b

References

[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk." Management Science. Vol. 63, Issue 4, April 2017.
[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk". January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also

summary | runtests | unconditionalDE | conditionalDE | simulate | esbacktestbysim

Topics

"Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-63
"Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and Escanciano" on page 2-72
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"ES Backtest Using Du-Escanciano Method" on page 2-24
"Comparison of ES Backtesting Methods" on page 2-26

esbacktestbysim

Create esbacktestbysim object to run simulation-based suite of expected shortfall (ES) backtests by Acerbi and Szekely

Description

The general workflow is:
1 Load or generate the data for the ES backtesting analysis.
2 Create an esbacktestbysim object. For more information, see "Create esbacktestbysim" on page 6-593.
3 Use the summary function to generate a summary report for the given data on the number of observations and the number of failures.

4 Use the runtests function to run all tests at once.
5 For additional test details, run the following individual tests:

- conditional - Conditional test of Acerbi-Szekely (2014)
- unconditional - Unconditional test of Acerbi-Szekely (2014)
- quantile - Quantile test of Acerbi-Szekely (2014)
- minBiasAbsolute - Minimally biased absolute test of Acerbi-Szekely (2017)
- minBiasRelative - Minimally biased relative test of Acerbi-Szekely (2017)

For more information, see "Overview of Expected Shortfall Backtesting" on page 2-20.

Creation

Syntax

```
ebts = esbacktestbysim(PortfolioData,VaRData,ESData,DistributionName)
ebts = esbacktestbysim(
```

\qquad

``` ,Name, Value)
```


Description

ebts = esbacktestbysim(PortfolioData,VaRData,ESData,DistributionName) creates an esbacktestbysim (ebts) object and simulates portfolio outcome scenarios to compute critical values for these tests:

- conditional
- unconditional
- quantile
- minBiasAbsolute
- minBiasRelative

The ebts object has the following properties:

- PortfolioData on page 6-0 - NumRows-by-1 numeric array containing a copy of the PortfolioData
- VaRData on page 6-0 - NumRows-by-NumVaRs numeric array containing a copy of the VaRData
- ESData on page 6-0 - NumRows-by-NumVaRs numeric array containing a copy of the ESData
- Distribution on page 6-0 - Structure containing the model information, including model distribution name and distribution parameters. For example, for a normal distribution, Distribution has fields 'Name', 'Mean', and 'StandardDeviation', with values set to the corresponding inputs.
- PortfolioID on page 6-0 - String containing the PortfolioID
- VaRID on page 6-0 - 1-by-NumVaRs string vector containing the VaRIDs for the corresponding columns in VaRData
- VaRLevel on page 6-0 - 1-by-NumVaRs numeric array containing the VaRLevels for the corresponding columns in VaRData.

Note

- The required input arguments for PortfolioData, VaRData, and ESData must all be in the same units. These arguments can be expressed as returns or as profits and losses. There are no validations in the esbacktestbysim object regarding the units of these arguments.
- If there are missing values (NaNs) in PortfolioData, VaRData, ESData, or Distribution parameters data, the row of data is discarded before applying the tests. Therefore, a different number of observations are reported for models with a different number of missing values. The reported number of observations equals the original number of rows minus the number of missing values. To determine if there are discarded rows, use the 'Missing' column of the summary report.
ebts = esbacktestbysim(\qquad ,Name, Value) sets Properties on page 6-598 using name-value pairs and any of the arguments in the previous syntax. For example, ebts = esbacktestbysim(PortfolioData,VaRData, ESData,DistributionName, 'VaRID', 'TotalV aR', 'VaRLevel', ,99). You can specify multiple name-value pairs.

Input Arguments

PortfolioData - Portfolio outcomes data

NumRows-by-1 numeric array | NumRows-by-1 numeric columns table | NumRows-by-1 numeric columns timetable

Portfolio outcomes data, specified as a NumRows-by-1 numeric array, NumRows-by-1 table, or a NumRows-by-1 timetable with a numeric column containing portfolio outcomes data. The PortfolioData input argument sets the PortfolioData on page 6-0 property.

Note PortfolioData data must be in the same units as VaRData and ESData. There are no validations in the esbacktestbysim object regarding the units of portfolio, VaR, and ES data. PortfolioData, VaRData, and ESData can be expressed as returns or as profits and losses.

Data Types: double | table | timetable

VaRData - Value-at-risk (VaR) data

NumRows-by-NumVaRs numeric array | NumRows-by-NumVaRs table with numeric columns | NumRows-by-NumVaRs timetable with numeric columns

Value-at-risk (VaR) data, specified as a NumRows-by-NumVaRs numeric array, NumRows-by-NumVaRs table, or a NumRows-by-NumVaRs timetable with numeric columns. The VaRData input argument sets the VaRData on page 6-0 property.

Negative VaRData values are allowed. However negative VaR values indicate a highly profitable portfolio that cannot lose money at the given VaR confidence level. The worst-case scenario at the given confidence level is still a profit.

Note VaRData must be in the same units as PortfolioData and ESData. There are no validations in the esbacktestbysim object regarding the units of portfolio, VaR, and ES data. VaRData, PortfolioData, and ESData can be expressed as returns or as profits and losses.

Data Types: double | table| timetable

ESData - Expected shortfall data

NumRows-by-NumVaRs positive numeric array | NumRows-by-NumVaRs table with positive numeric columns | NumRows-by-NumVaRs timetable with positive numeric columns

Expected shortfall data, specified as a NumRows-by-NumVaRs positive numeric array, NumRows-byNumVaRs table, or NumRows-by-NumVaRs timetable with positive numeric columns containing ES data. The ESData input argument sets the ESData on page 6-0 property.

Note ESData data must be in the same units as PortfolioData and VaRData. There are no validations in the esbacktestbysim object regarding the units of portfolio, VaR, and ES data. ESData, PortfolioData, and VaRData can be expressed as returns or as profits and losses.

Data Types: double|table|timetable

DistributionName - Distribution name

string with values normal and t
Distribution name, specified as a string with a value of normal or t. The DistributionName input argument sets the 'Name' field of the Distribution on page 6-0 property.

Data Types: string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: ebts =
esbacktestbysim(PortfolioData,VaRData,ESData,DistributionName, 'VaRID','TotalV
aR','VaRLevel',.99)
```


PortfolioID - User-defined ID

character vector | string
User-defined ID for PortfolioData input, specified as the comma-separated pair consisting of 'PortfolioID ' and a character vector or string. The PortfolioID name-value pair argument sets the PortfolioID on page 6-0 property.

If PortfolioData is a numeric array, the default value for PortfolioID is 'Portfolio'. If PortfolioData is a table, PortfolioID is set to the corresponding variable name in the table, by default.

Data Types: char | string

VaRID - VaR identifier

character vector | cell array of character vectors | string | string array
VaR identifier for VaRData columns, specified as the comma-separated pair consisting of 'VaRID' and a character vector, cell array of character vectors, string, or string array. Multiple VaRIDs are specified using a 1-by-NumVaRs (or NumVaRs-by-1) cell array of character vectors, or a string array with user-defined IDs for the VaRData columns. A single VaRID identifies a VaRData column and the corresponding ESData column. The VaRID name-value pair argument sets the VaRID on page 6-0 property.

If NumVaRs = 1, the default value for VaRID is 'VaR'. If NumVaRs > 1, the default value is 'VaR1', 'VaR2', and so on. If VaRData is a table, 'VaRID' is set by default to the corresponding variable names in the table.

Data Types: char|cell|string

VaRLevel - VaR confidence level

0.95 (default) | numeric or numeric array with values between 0 and 1

VaR confidence level, specified as a scalar with the comma-separated pair consisting of 'VaRLevel' and a numeric value between 0 and 1 or a 1-by-NumVaRs (or NumVaRs-by-1) numeric array with a numeric value between 0 and 1. The VaRLevel name-value pair argument sets the VaRLevel on page 6-0 property.
Data Types: double

Mean - Means for normal distribution

0 (default) | numeric | numeric array
Means for the normal distribution, specified as a comma-separated pair consisting of 'Mean ' and a numeric value or a NumRows-by-1 numeric array. The Mean name-value pair argument sets the 'Mean' field of the Distribution on page 6-0 property.

Note You set the Mean name-value pair argument only when the DistributionName input argument is specified as normal.

Data Types: double

StandardDeviation - Standard deviation for normal distribution
 1 (default) | positive numeric | positive numeric array

Standard deviation for the normal distribution, specified as a comma-separated pair consisting of 'StandardDeviation' and a positive numeric value or a NumRows-by-1 array. The
StandardDeviation name-value pair argument sets the 'StandardDeviation' field of the Distribution on page 6-0 property.

Note You set the StandardDeviation name-value pair argument only when the DistributionName input argument is specified as normal.

Data Types: double

DegreesOfFreedom - Degrees of freedom for t distribution
integer ≥ 3
Degrees of freedom for the t distribution, specified as a comma-separated pair consisting of 'DegreesOfFreedom' and an integer value ≥ 3. The DegreesOfFreedom name-value pair argument sets the 'DegreesOfFreedom' field of the Distribution on page 6-0 property.

Note The DegreesOfFreedom name-value pair argument is only set when the DistributionName input argument is specified as t. A value for DegreesOfFreedom is required when the value of DistributionName is t.

Data Types: double

Location - Location parameters for t distribution

0 (default) | numeric | numeric array
Location parameters for the t distribution, specified as a comma-separated pair consisting of 'Location' and a numeric value or a NumRows-by-1 array. The Location name-value pair argument sets the 'Location' field of the Distribution on page 6-0 property.

Note The Location name-value pair argument is only set when the DistributionName input argument is specified as t.

Data Types: double

Scale - Scale parameters for t distribution

1 (default) | positive numeric
Scale parameters for the t distribution, specified as a comma-separated pair consisting of 'Scale' and a positive numeric value or a NumRows-by-1 array. The Scale name-value pair argument sets the 'Scale' field of the Distribution on page 6-0 property.

Note The Scale name-value pair argument is only set when the DistributionName input argument is specified as t.

Simulate - Indicates if simulation for statistical significance is run
 true (default) | values are true or false

Indicates if a simulation for statistical significance is run when you create an esbacktestbysim object, specified as a logical scalar with the comma-separated pair consisting of 'Simulate' and a value of true or false.
Data Types: logical

Properties

PortfolioData - Portfolio data for ES backtesting analysis

numeric array

Portfolio data for the ES backtesting analysis, specified as a NumRows-by-1 numeric array containing a copy of the portfolio data.
Data Types: double

VaRData - VaR data for ES backtesting analysis

numeric array
VaR data for the ES backtesting analysis, specified as a NumRows-by-NumVaRs numeric array containing a copy of the VaR data.

Data Types: double

ESData - Expected shortfall data

numeric array
Expected shortfall data for ES backtesting analysis, specified as a NumRows-by-NumVaRs numeric array containing a copy of the ESData.
Data Types: double

Distribution - Distribution information

structure
Distribution information, including distribution name and the associated distribution parameters, specified as a structure.

For a normal distribution, the Distribution structure has fields 'Name' (set to normal), 'Mean', and 'StandardDeviation', with values set to the corresponding inputs.

For a t distribution, the Distribution structure has fields 'Name' (set to t),
'DegreesOfFreedom', 'Location', and 'Scale', with values set to the corresponding inputs.
Data Types: struct

PortfolioID - Portfolio identifier

string
Portfolio identifier, specified as a string.
Data Types: string

VaRID - VaR identifier

string | string array
VaR identifier, specified as a 1-by-NumVaRs string array containing the VaR IDs for the corresponding columns in VaRData.

Data Types: string

VaRLevel - VaR level

numeric array with values between 0 and 1
VaR level, specified as a 1-by-NumVaRs numeric array with values between 0 and 1 containing the VaR levels for the corresponding columns in VaRData.

Data Types: double

esbacktestbysim Property	Set or Modify Property from Command Line Using esbacktestbysim	Modify Property Using Dot Notation
PortfolioData	Yes	No
VaRData	Yes	No
ESData	Yes	No
Distribution	Yes	No
PortfolioID	Yes	Yes
VaRID	Yes	Yes
VaRLevel	Yes	Yes

Object Functions

summary	Basic expected shortfall (ES) report on failures and severity
runtests	Run all expected shortfall backtests (ES) for esbacktestbysim object
conditional	Conditional expected shortfall (ES) backtest by Acerbi and Szekely
unconditional	Unconditional expected shortfall backtest by Acerbi and Szekely
quantile	Quantile expected shortfall (ES) backtest by Acerbi and Szekely
minBiasRelative	Minimally biased relative test for Expected Shortfall (ES) backtest by Acerbi- minBiasAbsolute
Szekely	
Minimally biased absolute test for Expected Shortfall (ES) backtest by Acerbi-	
simulate	Szekely
Simulate expected shortfall (ES) test statistics	

Examples

Create esbacktestbysim Object and Run ES Backtests

esbacktestbysim takes in portfolio outcomes data, the corresponding value-at-risk (VaR) data, the expected shortfall (ES) data, and the Distribution information and returns an esbacktestbysim object.

Create an esbacktestbysim object and display the Distribution property.
load ESBacktestBySimData
rng('default'); \% for reproducibility

```
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
    'Degrees0fFreedom',10,...
    'Location',Mu,...
    'Scale',Sigma,...
    'PortfolioID',"S&P",...
    'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
    'VaRLevel',VaRLevel)
ebts =
    esbacktestbysim with properties:
        PortfolioData: [1966x1 double]
            VaRData: [1966x3 double]
            ESData: [1966x3 double]
        Distribution: [1x1 struct]
            PortfolioID: "S&P"
                        VaRID: ["t(10) 95%" "t(10) 97.5%" "t(10) 99%"]
                VaRLevel: [0.9500 0.9750 0.9900]
ebts.Distribution
ans = struct with fields:
                            Name: "t"
    DegreesOfFreedom: 10
        Location: 0
            Scale: [1966x1 double]
```

ebts, the esbacktestbysim object, contains a copy of the given portfolio data (PortfolioData property), the given VaR data (VaRData property), the given ES data (ESData) property, and the given Distribution information. The object also contains all combinations of portfolio ID, VaR ID, and VaR level to be tested (PortfolioID, VaRID, and VaRLevel properties).

Run the tests using the ebts object.
TestResults $=$ runtests(ebts)

$\begin{array}{r} \text { TestResults=3×8 } \\ \text { PortfolioID } \end{array}$	VaRID		VaRLevel	Conditional	Unconditional	Quantile
"S\&P"	"t(10)	95\%"	0.95	reject	accept	reject
"S\&P"	"t(10)	97.5\%"	0.975	reject	reject	reject
"S\&P"	"t(10)	99\%"	0.99	reject	reject	reject

Change the PortfolioID property using dot notation. For more information on creating an esbacktestbysim object, see esbacktestbysim.

```
ebts.PortfolioID = 'S&P, 1996-2003'
ebts =
    esbacktestbysim with properties:
        PortfolioData: [1966x1 double]
            VaRData: [1966x3 double]
            ESData: [1966x3 double]
            Distribution: [1x1 struct]
```

```
PortfolioID: "S&P, 1996-2003"
    VaRID: ["t(10) 95%" "t(10) 97.5%" "t(10) 99%"]
    VaRLevel: [0.9500 0.9750 0.9900]
```

Run all tests using the updated esbacktestbysim object.

```
runtests(ebts)
```

PortfolioID	VaRID		VaRLevel	Conditional	Unconditional	Quantile
"S\&P, 1996-2003"	"t(10)	95\%"	0.95	reject	accept	reject
"S\&P, 1996-2003"	"t(10)	97.5\%"	0.975	reject	reject	reject
"S\&P, 1996-2003"	"t(10)	99\%"	0.99	reject	reject	reject

Version History

Introduced in R2017b

References

[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.
[2] Basel Committee on Banking Supervision. Minimum Capital Requirements for Market Risk. January, 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also

summary | runtests | conditional | unconditional | quantile | simulate| minBiasRelative|minBiasAbsolute|esbacktest|table|timetable|varbacktest| esbacktestbyde

Topics

"Expected Shortfall (ES) Backtesting Workflow Using Simulation" on page 2-34
"Expected Shortfall Estimation and Backtesting" on page 2-44
"Overview of Expected Shortfall Backtesting" on page 2-20
"Comparison of ES Backtesting Methods" on page 2-26

expectedClaims

Create expectedClaims object

Description

Use this workflow to generate unpaid claims for an expectedClaims:
1 Load or generate the data for the development triangle.
2 Create a developmentTriangle object.
3 Create an expectedClaims object.
4 Use the ultimateClaims function to calculate the projected ultimate claims.
5 Use the ibnr function to calculate the incurred-but-not-reported (IBNR) claims.
6 Use the unpaidClaims function to calculate the unpaid claims.
7 Use the summary function to generate a summary report for the expected claims analysis.

Creation

Syntax

```
ec = expectedClaims(dT_reported,dT_paid,earnedPremium)
ec = expectedClaims(
```

\qquad

``` , Name, Valué)
```


Description

ec = expectedClaims(dT_reported,dT_paid,earnedPremium) creates an expectedClaims object using the developmentTriangle objects for reported claims (dT_reported) and paid claims (dT_paid), as well as the earnedPremium.
ec = expectedClaims(\qquad ,Name, Value) sets properties on page 6-603 using name-value pairs and any of the arguments in the previous syntax. For example, ec $=$ expectedClaims(dT_reported,dT_paid,earnedPremium, 'InitialClaims',initialSelec tedUltimateClaims). You can specify multiple name-value arguments.

Input Arguments

dT_reported - Development triangle for reported claims
 developmentTriangle object

Development triangle for reported claims, specified as a previously created developmentTriangle object.
Data Types: object

dT_paid - Development triangle for paid claims

developmentTriangle object

Development triangle for paid claims, specified as a previously created developmentTriangle object.

Data Types: object

earnedPremium - Earned premium for each Origin period
 array

Earned premium for each Origin period, specified as an array.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: ec = expectedClaims(dT_reported,dT_paid,
earnedPremium,'InitialClaims',initialSelectedUltimateClaims)
```


InitialClaims - Initial selected ultimate claims

average of the projected reported ultimate claims and the projected paid Ultimate Claims (default) | array

Initial selected ultimate claims, specified as the comma-separated pair consisting of 'InitialClaims' and an array.
Data Types: double

Properties

ReportedTriangle - Development triangle for reported claims

developmentTriangle object
Development triangle for reported claims, returned as a developmentTriangle object containing the origin years, development years, and claims.

Data Types: object
PaidTriangle - Development triangle for paid claims
developmentTriangle object
Development triangle for paid claims, returned as a developmentTriangle object containing the origin years, development years, and claims.

```
Data Types: object
earnedPremium - Earned premium for each Origin period
array
```

Earned premium for each Origin period, returned as an array.
Data Types: double

InitialClaims - Initial selected ultimate claims

average of the projected reported ultimate claims and the projected paid Ultimate Claims (default) | array

Initial selected ultimate claims, returned as an array.
Data Types: double

Object Functions

ultimateClaims Compute projected ultimate claims for expectedClaims object ibnr Compute IBNR claims for expectedClaims object unpaidClaims Compute unpaid claims estimates for expectedClaims object summary Display summary report for different claims estimates

Examples

Create expectedClaims Object

Create an expectedClaims object for simulated insurance claims data.

OriginYear	DevelopmentYear	ReportedClaims	PaidClaims
2010	12	3995.7	1893.9
2010	24	4635	3371.2
2010	36	4866.8	4079.1
2010	48	4964.1	4487
2010	60	5013.7	4711.4
2010	72	5038.8	4805.6
2010	84	5059	4853.7
2010	96	5074.1	4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard form for representing claims data. Create two developmentTriangle objects, one for reported claims and one for paid claims.

```
dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Cla
dT_reported =
    developmentTriangle with properties:
                        Origin: {10x1 cell}
                            Development: {10x1 cell}
                        Claims: [10x10 double]
            LatestDiagonal: [10x1 double]
                        Description: ""
                        TailFactor: 1
        CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.001
                        SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.001
dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims
```

```
dT_paid =
    developmentTriangle with properties:
```

 Origin: \{10x1 cell\}
 Development: \{10x1 cell\}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: $\left[\begin{array}{lllllllllllllllllll}2.4388 & 1.4070 & 1.1799 & 1.0810 & 1.0378 & 1.0178 & 1.0080 & 1.0030 & 1.001\end{array}\right.$
SelectedLinkRatio: $[1.73331 .19251 .09141 .04171 .01961 .00971 .00501 .00201 .001$

Create an expectedClaims object where the first input argument is the reported development triangle and the second input argument is the paid development triangle.

```
earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)
ec =
    expectedClaims with properties:
        ReportedTriangle: [1x1 developmentTriangle]
            PaidTriangle: [1x1 developmentTriangle]
            EarnedPremium: [10x1 double]
            InitialClaims: [10x1 double]
            CaseOutstanding: [10x1 double]
        EstimatedClaimsRatios: [10x1 double]
            SelectedClaimsRatios: [10x1 double]
```


Version History

Introduced in R2020b

See Also

developmentTriangle | chainLadder | bornhuetterFerguson
Topics
"Overview of Claims Estimation Methods for Non-Life Insurance" on page 1-16

customLifetimePDModel

Create customLifetimePDModel object for lifetime probability of default

Description

Create and analyze a customLifetimePDModel object to calculate the lifetime probability of default (PD) using this workflow:

1 Fit a PD model that can predict PD for a loan or a portfolio of loans.
2 Define a function handle for a function that predicts the PD in your designated PD model.
3 Use customLifetimePDModel and pass the specified function handle to create a customLifetimePDModel object. The designated model is now wrapped as a lifetime PD model.
4 Use predict to predict the conditional PD and predictLifetime to predict the lifetime PD.
5 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using modelDiscriminationPlot.
6 Use modelCalibration to return the RMSE of the observed and predicted PD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax

```
CustomLifetimePDModel = customLifetimePDModel(pdFcnHandle,IDVar=idvar_value,
ResponseVar=responsevar_value)
CustomLifetimePDModel = customLifetimePDModel( __ ,Name=Value)
```


Description

CustomLifetimePDModel = customLifetimePDModel(pdFcnHandle,IDVar=idvar value, ResponseVar=responsevar_value) creates a customLifetimePDModel object for a PD model using required name-value arguments and sets model object properties on page 6-609.

CustomLifetimePDModel = customLifetimePDModel(__ ,Name=Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax. The optional name-value arguments set model object properties on page 6-609. For example, CustomLifetimePDModel = customLifetimePDModel(pdFcnHandle,IDVar='ID',AgeVar='YOB', Description='Scorec ard as lifetime PD
model',LoanVars='ScoreGroup',MacroVars=\{'GDP''Market'\},ModelID='ScorecardLife time',ResponseVar='Default') creates a CustomLifetimePDModel object.

Input Arguments

pdFcnHandle - Function handle for custom model probability of default prediction function function handle

Function handle for custom model probability of default prediction function, specified as a function handle.

The function takes in a data table which includes variables that you specify in AgeVar, LoanVars, and MacroVars, and returns a predicted conditional PD value for each row of the table.

Note Because the pdFcnHandle function passes the data input in its entirety to the prediction and validation methods, it allows extra columns in the data table for other variables, such as IDVar, ResponseVar, and grouping variables.

Data Types: function_handle
customLifetimePDModel Name-Value Pair Arguments
Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

```
Example: CustompdModel =
customLifetimePDModel(pdFcnHandle,IDVar='ID',AgeVar='YOB',Description='Scorec
ard as lifetime PD
model',LoanVars='ScoreGroup',MacroVars={'GDP''Market'},ModelID='ScorecardLife
time',ResponseVar='Default')
```


Required customLifetimePDModel Name-Value Arguments

IDVar - ID variable indicating which column in data input contains loan or borrower ID

 string | character vectorID variable indicating which column in the data accepted as input by pdFcnHandle contains the loan or borrower ID, specified as IDVar and a string or character vector.

Note IDVar is required for lifetime PD prediction using predictLifetime.

Data Types: string | char
ResponseVar - Variable indicating which column in the data input contains response variable
string | character vector
Variable indicating which column in the data accepted as input by pdFcnHandle contains the response variable, specified as ResponseVar and a string or character vector.

Note ResponseVar is required for model validation when you use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Data Types: string|char

Optional customLifetimePDModel Name-Value Arguments

ModelID - User-defined model ID

customLifetimePDModel (default) | string | character vector
User-defined model ID, specified as ModelID and a string or character vector. The software uses the ModelID to format outputs and is expected to be short.
Data Types: string | char

Description - User-defined description for model

" " (default) | string | character vector
User-defined description for the model, specified as Description and a string or character vector.
Data Types: string | char
AgeVar - Age variable indicating which column in data input contains loan age information
" " (default) | string | character vector
Age variable indicating which column in the data accepted as input by pdFcnHandle contains the loan age information, specified as AgeVar and a string or character vector.

Note AgeVar, LoanVars, and MacroVars work together as data input for the predictor variables of the model. You must specify at least one of these inputs. The predict function validates that the data input contains all the predictor variables.

If the distinction between AgeVar, LoanVars, and MacroVars is not important for the custom model's PD prediction, use LoanVars to store all the predictor variables in the model.

An age variable is common for lifetime PD modeling. When you specify AgeVar the predictLifetime function uses it to validate the periodicity of the rows in the data.

Data Types: string|char

LoanVars - Loan variables indicating which column in data input contains loan-specific information

" " (default) | string array | cell array of character vectors
Loan variables indicating which column in the data accepted as input by pdFcnHandle contains the loan-specific information, such as origination score or loan-to-value ratio, specified as LoanVars and a string array or cell array of character vectors.

Note AgeVar, LoanVars, and MacroVars work together as data input for the predictor variables of the model. You must specify at least one of these inputs. The predict function validates that the data input contains all the predictor variables.

If the distinction between AgeVar, LoanVars, and MacroVars is not important for the custom model's PD prediction, use LoanVars to store all the predictor variables in the model.

Data Types: string|cell

MacroVars - Macro variables indicating which column in data input contains macroeconomic information

" " (default) | string array | cell array of character vectors
Macro variables indicating which column in the data accepted as input by pdFcnHandle contains the macroeconomic information, such as gross domestic product (GDP) growth or unemployment rate, specified as MacroVars and a string array or cell array of character vectors.

Note AgeVar, LoanVars, and MacroVars work together as data input for the predictor variables of the model. You must specify at least one of these inputs. The predict function validates that the data input contains all the predictor variables.

If the distinction between AgeVar, LoanVars, and MacroVars is not important for the custom $\underline{\text { model's PD prediction, use LoanVars to store all the predictor variables in the model. }}$

Data Types: string|cell

Properties

ModelID - User-defined model ID
customLifetimePDModel (default) | string
User-defined model ID, returned as a string.
Data Types: string

Description - User-defined description
 " " (default) | string

User-defined description, returned as a string.
Data Types: string

Model - Custom model defined using function handle

custom model
Custom model defined using the function handle (pdFcnHandle), returned as the PD prediction function handle (pdFcnHandle).
Data Types: function_handle
IDVar - ID variable indicating which column in data input contains loan or borrower ID string

ID variable indicating which column in the data input defined by pdFcnHandle contains loan or borrower ID, returned as a string.
Data Types: string
AgeVar - Age variable indicating which column in data input contains loan age information " " (default) | string

Age variable indicating which column in the data input defined by pdFcnHandlecontains loan age information, returned as a string.

Data Types: string
LoanVars - Loan variables indicating which column in data input contains loan-specific information
" " (default) | string array
Loan variables indicating which column in the data input defined by pdFcnHandle contains loanspecific information, returned as a string array.
Data Types: string

MacroVars - Macro variables indicating which column in data input contains macroeconomic information
 " " (default) | string array

Macro variables indicating which column in the data input defined by pdFcnHandle contains macroeconomic information, returned as a string array.
Data Types: string

ResponseVar - Variable indicating which column in data input contains response variable string

Variable indicating which column in the data input defined by pdFcnHandle contains the response variable, returned as a string.
Data Types: string

Object Functions

predict
predictLifetime modelDiscrimination modelCalibration modelDiscriminationPlot modelCalibrationPlot

Compute conditional PD
Compute cumulative lifetime PD, marginal PD, and survival probability Compute AUROC and ROC data
Compute RMSE of predicted and observed PDs on grouped data Plot ROC curve
Plot observed default rates compared to predicted PDs on grouped data

Examples

Create Custom Lifetime PD Model

This example shows how to use the customLifetimePDModel object with a function handle to wrap a credit scorecard model as a customLifetimePDModel model.

Load Data

Load the credit portfolio data. The data set is in panel data format, with multiple rows per loan.

```
load RetailCreditPanelData.mat
disp(head(data))
\begin{tabular}{ccccc} 
ID & ScoreGroup & YOB & Default & Year \\
- & - & & \\
1 & Low Risk & 1 & 0 & 1997
\end{tabular}
```

1	Low Risk	2	0	1998
1	Low Risk	3	0	1999
1	Low Risk	4	0	2000
1	Low Risk	5	0	2001
1	Low Risk	6	0	2002
1	Low Risk	7	0	2003
1	Low Risk	8	0	2004
disp(head(dataMacro))				
Year	GDP	Market		
1997	2.72	7.61		
1998	3.57	26.24		
1999	2.86	18.1		
2000	2.43	3.19		
2001	1.26	-10.51		
2002	-0.59	-22.95		
2003	0.63	2.78		
2004	1.85	9.48		

Join the two data components into a single data set.
data $=$ join(data,dataMacro);
disp(head(data))

ID	ScoreGroup	YOB	Default	Year	GDP	Market
1	Low Risk	1	0	1997	2.72	7.61
1	Low Risk	2	0	1998	3.57	26.24
1	Low Risk	3	0	1999	2.86	18.1
1	Low Risk	4	0	2000	2.43	3.19
1	Low Risk	5	0	2001	1.26	-10.51
1	Low Risk	6	0	2002	-0.59	-22.95
1	Low Risk	7	0	2003	0.63	2.78
1	Low Risk	8	0	2004	1.85	9.48

Fit Credit Scorecard Model

Use creditscorecard to create a creditscorecard object, use autobinning to perform automatic binning of specified predictors, and then use fitmodel to fit a logistic regression model to weight of evidence (WOE) data. In this example, the entire data set is used to train the model.

```
sc = creditscorecard(data,'IDVar','ID','PredictorVars',{'ScoreGroup' 'YOB' 'GDP' 'Market'},'Resp
sc = autobinning(sc);
sc = autobinning(sc,'YOB','Algorithm','Split');
sc = fitmodel(sc,'Display','off');
displaypoints(sc)
ans=16\times3 table
    Predictors
    {'ScoreGroup'}
    {'ScoreGroup'}
    {'ScoreGroup'} {'Low Risk' } 1.9113
    {'ScoreGroup'} {'<missing>' } NaN
        {'High Risk' }
        0.61102
        {'Medium Risk'}
        1.3043
```

\{'YOB'	\}	\{'[-Inf,2)'	0.56226
\{'YOB'	\}	\{'[2,5)' $\}$	1.0024
\{'YOB'	\}	\{'[5,7)' \}	1.4549
\{'YOB'	\}	\{'[7,Inf]'	2.509
\{'YOB'	\}	\{'<missing>' \}	NaN
\{'GDP'	\}	\{'[-Inf,0.63)'\}	1.042
\{'GDP'	\}	\{'[0.63,Inf]' \}	1.1657
\{'GDP'	,	\{'<missing>' \}	NaN
\{'Market'	\}	\{'[-Inf,2.78)'\}	1.0731
\{'Market'	\}	\{'[2.78, 9.48)' $\}$	1.1219
\{'Market'	\}	\{'[9.48,Inf]' \}	1.2294
\{'Market'	\}	\{'<missing>'	NaN

Create customLifetimePDModel Object Using Function Handle

Use customLifetimePDModel with a function handle for the probdefault function.

```
pdFcnHandle = @(data) probdefault(sc,data);
pdModel = customLifetimePDModel(pdFcnHandle,IDVar='ID',AgeVar='YOB', ...
disp(pdModel)
    CustomLifetimePD with properties:
            ModelID: "ScorecardLifetime"
        Description: "Scorecard as lifetime PD model"
    UnderlyingModel: @(data)probdefault(sc,data)
            IDVar: "ID"
            AgeVar: "YOB"
            LoanVars: "ScoreGroup"
            MacroVars: ["GDP" "Market"]
            ResponseVar: "Default"
pdModel.UnderlyingModel
ans = function handle with value:
    @(data)probdefault(sc,data)
```

 Description='Scorecard as lifetime PD model',LoanVars='ScoreGroup', ...
 MacroVars=\{'GDP' 'Market'\},ModelID='ScorecardLifetime',ResponseVar='Default');

Predict Lifetime PD

Use the predictLifetime function to predict lifetime cumulative PD values for the first ID associated with the first eight rows of the data. The data input to predictLifetime must be in panel data form, with multiple rows per loan, and the function computes the cumulative probability of default for each period. For more information, see "Time Interval and Data Input for Lifetime Prediction" on page 6-348.

```
predictLifetime(pdModel,data(1:8,:))
ans = 8\times1
    0.0085
    0.0134
    0.0182
    0.0236
    0.0272
    0.0312
```

0.0324
0.0335

Validate Model

By wrapping the scorecard model as a lifetime PD model, all the validation functionality of the lifetime PD models is available. For example, use modelCalibrationPlot to visualize the observed default rates compared to the predicted probabilities of default.
modelCalibrationPlot(pdModel,data, 'YOB')

Version History

Introduced in R2022b

R2023a: modelAccuracy object function is renamed to modelCalibration function Not recommended starting in R2023a

The modelAccuracy object function is renamed to modelCalibration function. The use of modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot function
Not recommended starting in R2023a

The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.

See Also

Functions

fitLifetimePDModel| Probit|Cox|Logistic
Topics
"Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle" on page 3-131
"Create Custom Lifetime PD Model for Decision Tree Model with Function Handle" on page 4-224
"Expected Credit Loss Computation" on page 4-124
"Overview of Lifetime Probability of Default Models" on page 1-25

Logistic

Create Logistic model object for lifetime probability of default

Description

Create and analyze a Logistic model object to calculate the lifetime probability (PD) of default using this workflow:

1 Use fitLifetimePDModel to create a Logistic model object.
2 Use predict to predict the conditional PD and predictLifetime to predict the lifetime PD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using modelDiscriminationPlot.

4 Use modelCalibration to return the RMSE of the observed and predicted PD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax

LogisticPDModel = fitLifetimePDModel (data, ModelType)
LogisticPDModel = fitLifetimePDModel(\qquad ,Name, Value)

Description

LogisticPDModel = fitLifetimePDModel(data,ModelType) creates a Logistic PD model object.

If you do not specify variable information for IDVar, AgeVar, LoanVars, MacroVars, and ResponseVar, then:

- IDVar is set to the first column in the data input.
- LoanVars is set to include all columns from the second to the second-to-last columns of the data input.
- ResponseVar is set to the last column in the data input.

LogisticPDModel = fitLifetimePDModel(\qquad ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax. The optional name-value pair arguments set model object properties on page 6-617. For example, LogisticPDModel = fitLifetimePDModel(data(TrainDataInd,:),"Logistic", 'ModelID', "Logistic_A", 'De scription',"Logisitic_model",'AgeVar',"YOB",'IDVar',"ID", 'LoanVars',"ScoreGro up",'MacroVars',\{'GDP','Market'\}'ResponseVar',"Default") creates a LogisticPDModel object using a Logistic model type.

Input Arguments

data - Data

table
Data, specified as a table, in panel data form. The data must contain an ID column. The response variable must be a binary variable with the value 0 or 1 , with 1 indicating default.

Data Types: table
ModelType - Model type
string with value "Logistic" | character vector with value 'Logistic'
Model type, specified as a string with the value of "Logistic" or a character vector with the value of 'Logistic'.

Data Types: char|string

Logistic Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: LogisticPDModel =
fitLifetimePDModel(data(TrainDataInd,:),"Logistic",'ModelID',"Logistic_A",'De
scription',"Logisitic_model",'AgeVar',"YOB",'IDVar',"ID",'LoanVars',"ScoreGro
up",'MacroVars',{'GDP','Market'}'ResponseVar',"Default")
```


ModelID - User-defined model ID

Logistic (default) | string | character vector
User-defined model ID, specified as the comma-separated pair consisting of 'ModelID ' and a string or character vector. The software uses the ModelID to format outputs and is expected to be short.

Data Types: string | char

Description - User-defined description for model

" " (default) | string | character vector
User-defined description for model, specified as the comma-separated pair consisting of 'Description' and a string or character vector.

Data Types: string | char

IDVar - ID variable indicating which column in data contains loan or borrower ID
 1st column of data (default) | string | character vector

ID variable indicating which column in data contains the loan or borrower ID, specified as the comma-separated pair consisting of ' IDVar' and a string or character vector.
Data Types: string | char

AgeVar - Age variable indicating which column in data contains loan age information

if not specified, then LoanVars (default) | string | character vector

Age variable indicating which column in data contains the loan age information, specified as the comma-separated pair consisting of 'AgeVar' and a string or character vector.

Data Types: string | char

LoanVars - Loan variables indicating which column in data contains loan-specific information

all columns of data that are not the first or last column (default) | string array | cell array of character vectors

Loan variables indicating which column in data contains the loan-specific information, such as origination score or loan-to-value ratio, specified as the comma-separated pair consisting of ' LoanVars ' and a string array or cell array of character vectors.

Data Types: string | cell
MacroVars - Macro variables indicating which column in data contains macroeconomic information
if not specified, then LoanVars (default) | string array | cell array of character vectors
Macro variables indicating which column in data contains the macroeconomic information, such as gross domestic product (GDP) growth or unemployment rate, specified as the comma-separated pair consisting of 'MacroVars' and a string array or cell array of character vectors.
Data Types: string|cell
ResponseVar - Variable indicating which column in data contains response variable string | character vector

Variable indicating which column in data contains the response variable, specified as the commaseparated pair consisting of 'ResponseVar' and a string or character vector.

Note The response variable values in the data must be a binary variable with 0 or 1 values, with 1 indicating default.

Data Types: string|char

Properties

ModelID - User-defined model ID
 Logistic (default) | string

User-defined model ID, returned as a string.
Data Types: string

Description - User-defined description

" " (default) | string
User-defined description, returned as a string.
Data Types: string

UnderlyingModel - Underlying statistical model

compact linear model

Underlying statistical model, returned as a compact generalized linear model object. For more information, see fitglm and CompactGeneralizedLinearModel.
Data Types: CompactGneralizedLinearModel
IDVar - ID variable indicating which column in data contains loan or borrower ID
1st column of data (default) | string
ID variable indicating which column in data contains loan or borrower ID, returned as a string.
Data Types: string
AgeVar - Age variable indicating which column in data contains loan age information if not specified, then LoanVars (default) | string

Age variable indicating which column in data contains loan age information, returned as a string.
Data Types: string
LoanVars - Loan variables indicating which column in data contains loan-specific information
all columns of data that are not the first or last column (default) | string array
Loan variables indicating which column in data contains loan-specific information, returned as a string array.
Data Types: string
MacroVars - Macro variables indicating which column in data contains macroeconomic information
if not specified, then LoanVars (default) | string array
Macro variables indicating which column in data contains macroeconomic information, returned as a string array.
Data Types: string
ResponseVar - Variable indicating which column in data contains response variable string

Variable indicating which column in data contains the response variable, returned as a string.
Data Types: string

Object Functions

predict
predictLifetime modelDiscrimination modelCalibration modelDiscriminationPlot modelCalibrationPlot

Compute conditional PD
Compute cumulative lifetime PD, marginal PD, and survival probability Compute AUROC and ROC data
Compute RMSE of predicted and observed PDs on grouped data
Plot ROC curve
Plot observed default rates compared to predicted PDs on grouped data

Examples

Create Logistic Lifetime PD Model

This example shows how to use fitLifetimePDModel to create a Logistic model using credit and macroeconomic data.

Load Data

Load the credit portfolio data.
load RetailCreditPanelData.mat
disp(head(data))

ID	ScoreGroup	YOB	Default	Year
1	Low Risk	1	0	1997
1	Low Risk	2	0	1998
1	Low Risk	3	0	1999
1	Low Risk	4	0	2000
1	Low Risk	5	0	2001
1	Low Risk	6	0	2002
1	Low Risk	7	0	2003
1	Low Risk	8	0	2004
disp(head	(dataMacro))			
Year	GDP	Market		
1997	2.72	7.61		
1998	3.57	26.24		
1999	2.86	18.1		
2000	2.43	3.19		
2001	1.26	-10.51		
2002	-0.59	-22.95		
2003	0.63	2.78		
2004	1.85	9.48		

Join the two data components into a single data set.

```
data = join(data,dataMacro);
disp(head(data))
\begin{tabular}{lrllllllr} 
ID & ScoreGroup & YOB & & Default & & Year & & GDP
\end{tabular}
```


Partition Data

Separate the data into training and test partitions.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```


Create Logistic Lifetime PD Model

Use fitLifetimePDModel to create a Logistic model using the training data.

```
pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Logistic",...
    'AgeVar','YOB',...
    'IDVar','ID',...
    'LoanVars','ScoreGroup',...
    'MacroVars',{'GDP','Market'},...
    'ResponseVar','Default');
disp(pdModel)
    Logistic with properties:
            ModelID: "Logistic"
            Description: ""
        UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
                    IDVar: "ID"
                    AgeVar: "YOB"
                    LoanVars: "ScoreGroup"
            MacroVars: ["GDP" "Market"]
            ResponseVar: "Default"
```

Display the underlying model.

```
pdModel.UnderlyingModel
```

ans $=$
Compact generalized linear regression model:
logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
Distribution = Binomial
Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	-2.7422	0.10136	-27.054	3.408e-161
ScoreGroup_Medium Risk	-0.68968	0.037286	-18.497	2.1894e-76
ScoreGroup_Low Risk	-1.2587	0.045451	-27.693	8.4736e-169
YOB	-0.30894	0.013587	-22.738	1.8738e-114
GDP	-0.11111	0.039673	-2.8006	0.0051008
Market	-0.0083659	0.0028358	-2.9502	0.0031761

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p -value $=0$

Predict Conditional and Lifetime PD

Use the predict function to predict conditional PD values. The prediction is a row-by-row prediction.

```
dataCustomer1 = data(1:8,:);
CondPD = predict(pdModel,dataCustomer1)
CondPD = 8×1
    0.0092
    0.0053
    0.0045
    0.0039
    0.0037
    0.0037
    0.0019
    0.0012
```

Use predictLifetime to predict the lifetime cumulative PD values (computing marginal and survival PD values is also supported). The predictLifetime function uses the ID variable (see the ' IDVar' property for the Logistic object) to transform conditional PDs to cumulative PDs for each ID.

```
LifetimePD = predictLifetime(pdModel,dataCustomer1)
LifetimePD = 8×1
    0.0092
    0.0145
    0.0189
    0.0228
    0.0264
    0.0300
    0.0319
    0.0330
```


Validate Model

Use modelDiscrimination to measure the ranking of customers by PD.

```
DiscMeasure = modelDiscrimination(pdModel,data(TestDataInd,:),DataID='test data');
disp(DiscMeasure)
```

	AUROC
Logistic, test data	0.70009

Use modelDiscriminationPlot to visualize the ROC curve.
modelDiscriminationPlot(pdModel,data(TestDataInd,:),DataID='test data');

ROC test data

Use modelCalibration to measure the calibration of the predicted PD values. The modelCalibration function requires a grouping variable and compares the accuracy of the observed default rate in the group with the average predicted PD for the group. For example, you can group by calendar year using the 'Year' variable.

CalMeasure = modelCalibration(pdModel,data(TestDataInd,:),'Year',DataID='test data'); disp(CalMeasure)

Logistic, grouped by Year, test data \quad| RMSE |
| :---: |
| |
| 0.000453 |

Use modelCalibrationPlot to visualize the observed default rates compared to the predicted probabilities of default (PD).

```
modelCalibrationPlot(pdModel,data(TestDataInd,:),'Year',DataID='test data');
```


More About

Time Interval for Logistic Models

For Logistic and Probit models, there is a time interval implicit in the data, specifically, in the definition of the default variable.

For example, if the default indicator is defined so that it takes the value 1 if there is a default over a 3 -month period, the time interval is 3 -months. In this case, the predicted PD values are 3-month PD predictions. Then the PD for month 18 would be the conditional probability that there is a default between months 15 and 18, given that there has been no default in the first 15 months.

Because the data input for fitLifetimePDModel is in panel data form, there is an implicit or explicit time stamp for each row, and the time interval used in the default definition should be the same as the time increments between consecutive rows. If there is an optional age variable (AgeVar) in the training data, the time interval should be the same as the age increments (for the same ID) from one row to the next.

Logistic and Probit models do not explicitly infer or store the time interval information. However, the predicted PD values returned by predict are consistent with the time interval implicit in the panel training data, which in turn should be the same as the time interval used to define the default variable.

Unlike Logistic and Probit models, Cox models require an AgeVar variable, and the time interval is inferred from the increments in the age values in the training data. Cox models store the time
interval value as the TimeInterval property. For more information, see "Lifetime Prediction and Time Interval" on page 6-342.

Version History

Introduced in R2020b
R2023a: modelAccuracy object function is renamed to modelCalibration function Not recommended starting in R2023a

The modelAccuracy object function is renamed to modelCalibration function. The use of modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot function

Not recommended starting in R2023a
The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

R2023a: Model property renamed to UnderlyingModel

Behavior changed in R2023a
The Model property is renamed to UnderlyingModel.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.

See Also

Functions

fitLifetimePDModel|Probit|Cox|customLifetimePDModel

Topics

"Basic Lifetime PD Model Validation" on page 4-129
"Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
"Compare Lifetime PD Models Using Cross-Validation" on page 4-121
"Expected Credit Loss Computation" on page 4-124
"Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
"Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 4-75
"Overview of Lifetime Probability of Default Models" on page 1-25

Probit

Create Probit model object for lifetime probability of default

Description

Create and analyze a Probit model object to calculate lifetime probability of default (PD) using this workflow:

1 Use fitLifetimePDModel to create a Probit model object.
2 Use predict to predict the conditional PD and predictLifetime to predict the lifetime PD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using modelDiscriminationPlot.
4 Use modelCalibration to return the RMSE of observed and predicted PD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax

ProbitPDModel = fitLifetimePDModel(data,ModelType)
ProbitPDModel = fitLifetimePDModel(\qquad , Name, Value)

Description

ProbitPDModel = fitLifetimePDModel(data,ModelType) creates a Probit PD model object.
If you do not specify variable information for IDVar, AgeVar, LoanVars, MacroVars, and ResponseVar, then:

- IDVar is set to the first column in the data input.
- LoanVars is set to include all columns from the second to the second-to-last columns of the data input.
- ResponseVar is set to the last column in the data input.

ProbitPDModel = fitLifetimePDModel(\qquad ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax. The optional name-value pair arguments set the model object properties on page 6-628. For example, ProbitPDModel =
fitLifetimePDModel(data(TrainDataInd,:),"Probit",'ModelID',"Probit_A",'Descri pion',"Probit_model",'AgeVar',"YOB",'IDVar',"ID",'LoanVars',"ScoreḠroup", 'Mac roVars',\{'GDP','Market'\},'ResponseVar',"Default") creates a ProbitPDModel object using a Probit model type.

Input Arguments

data - Data
table

Data, specified as a table, in panel data form. The data must contain an ID column. The response variable must be a binary variable with the value 0 or 1 , with 1 indicating default.

Data, specified as a table where the first column is IDVar, the last column is the ResponseVar, and all other columns are LoanVars.

Data Types: table
ModelType - Model type
string with value "Probit" | character vector with value 'Probit'
Model type, specified as a string with the value "Probit" or a character vector with the value 'Probit'.

Data Types: char|string

Probit Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ProbitPDModel =
fitLifetimePDModel(data(TrainDataInd,:),"Probit", 'ModelID',"Probit_A", 'Descri pion', "Probit_model", 'AgeVar', "YOB", 'IDVar', "ID", 'LoanVars', "ScoreGroup", 'Mac roVars',\{'GDP','Market'\},'ResponseVar',"Default")

ModelID - User-defined model ID
Probit (default) | string | character vector
User-defined model ID, specified as the comma-separated pair consisting of 'ModelID' and a string or character vector. The software uses the Model ID to format outputs and is expected to be short.

Data Types: string | char

Description - User-defined description for model

" " (default) | string | character vector
User-defined description for model, specified as the comma-separated pair consisting of 'Description' and a string or character vector.

Data Types: string | char

IDVar - ID variable indicating which column in data contains loan or borrower ID
 1st column of data (default) | string | character vector

ID variable indicating which column in data contains the loan or borrower ID, specified as the comma-separated pair consisting of 'IDVar' and a string or character vector.
Data Types: string | char

AgeVar - Age variable indicating which column in data contains loan age information if not specified, then LoanVars (default) | string | character vector

Age variable indicating which column in data contains the loan age information, specified as the comma-separated pair consisting of 'AgeVar' and a string or character vector.

Data Types: string | char

LoanVars - Loan variables indicating which column in data contains loan-specific information
 all columns of data that are not the first or last column (default) | string array | cell array of character vectors

Loan variables indicating which column in data contains the loan-specific information, such as origination score or loan-to-value ratio, specified as the comma-separated pair consisting of ' LoanVars ' and a string array or cell array of character vectors.

Data Types: string | cell
MacroVars - Macro variables indicating which column in data contains macroeconomic information
if not specified, then LoanVars (default) | string array | cell array of character vectors
Macro variables indicating which column in data contains the macroeconomic information, such as gross domestic product (GDP) growth or unemployment rate, specified as the comma-separated pair consisting of 'MacroVars ' and a string array or cell array of character vectors.
Data Types: string | cell

ResponseVar - Variable indicating which column in data contains response variable string | character vector

Variable indicating which column in data contains the response variable, specified as the commaseparated pair consisting of 'ResponseVar' and a string or character vector.

Note The response variable values in the data must be a binary variable with 0 or 1 values, with 1 indicating default.

Data Types: string | char

Properties

ModelID - User-defined Model ID

Probit (default) | string
User-defined model ID, returned as a string.
Data Types: string
Description - User-defined description
" " (default) | string
User-defined description, returned as a string.
Data Types: string

UnderlyingModel - Underlying statistical model
 compact linear model

Underlying statistical model, returned as a compact generalized linear model object. For more information, see fitglm and CompactGeneralizedLinearModel.

Data Types: CompactGneralizedLinearModel

IDVar - ID variable indicating which column in data contains loan or borrower ID
 1st column of data (default) | string

ID variable indicating which column in data contains the loan or borrower ID, returned as a string.

Data Types: string

AgeVar - Age variable indicating which column in data contains loan age information if not specified, then LoanVars (default) | string

Age variable indicating which column in data contains the loan age information, returned as a string.
Data Types: string
LoanVars - Loan variables indicating which column in data contains loan-specific information
all columns of data that are not the first or last column (default) | string array
Loan variables indicating which column in data contains the loan-specific information, returned as a string array.
Data Types: string
MacroVars - Macro variables indicating which column in data contains macroeconomic information
if not specified, then LoanVars (default) | string array
Macro variables indicating which column in data contains the macroeconomic information, returned as a string array.

Data Types: string
ResponseVar - Variable indicating which column in data contains response variable string

Variable indicating which column in data contains the response variable, returned as a string.
Data Types: logical

Object Functions

predict predictLifetime modelDiscrimination modelCalibration modelDiscriminationPlot modelCalibrationPlot

Compute conditional PD
Compute cumulative lifetime PD, marginal PD, and survival probability Compute AUROC and ROC data
Compute RMSE of predicted and observed PDs on grouped data Plot ROC curve Plot observed default rates compared to predicted PDs on grouped data

Examples

Create Probit Lifetime PD Model

This example shows how to use fitLifetimePDModel to create a Probit model using credit and macroeconomic data.

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat disp(head(data))					
ID	ScoreGroup	YOB	Default	Year	
-	Low Risk				
1	Low				
1	Low Risk	2	0	1997	
1	Low Risk	3	0	1998	
1	Low Risk	4	0	1999	
1	Low Risk	5	0	2000	
1	Low Risk	6	0	2001	
1	Low Risk	7	0	2002	
1	Low Risk	8	0	2003	

disp(head(dataMacro))

Year	GDP	Market
1997	2.72	7.61
1998	3.57	26.24
1999	2.86	18.1
2000	2.43	3.19
2001	1.26	-10.51
2002	-0.59	-22.95
2003	0.63	2.78
2004	1.85	9.48

Join the two data components into a single data set.

```
data = join(data,dataMacro);
disp(head(data))
\begin{tabular}{lrllllllr} 
ID & ScoreGroup & YOB & & Default & & Year & & GDP
\end{tabular}
```


Partition Data

Separate the data into training and test partitions.

```
nIDs = max(data.ID);
uniqueIDs = unique(data.ID);
rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);
```

```
TrainIDInd = training(c);
TestIDInd = test(c);
TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));
```


Create a Probit Lifetime PD Model

Use fitLifetimePDModel to create a Probit model using the training data.

```
pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Probit",...
    'AgeVar','YOB',...
    'IDVar','ID',...
    'LoanVars','ScoreGroup',...
    'MacroVars',{'GDP','Market'},...
    'ResponseVar','Default');
disp(pdModel)
Probit with properties:
            ModelID: "Probit"
        Description: ""
    UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
            IDVar: "ID"
                    AgeVar: "YOB"
            LoanVars: "ScoreGroup"
            MacroVars: ["GDP" "Market"]
            ResponseVar: "Default"
```

Display the underlying model.

```
disp(pdModel.UnderlyingModel)
Compact generalized linear regression model:
    probit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
    Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -1.6267 & 0.03811 & -42.685 & 0 \\
\hline -0.26542 & 0.01419 & -18.704 & 4.5503e-78 \\
\hline -0.46794 & 0.016364 & -28.595 & 7.775e-180 \\
\hline -0.11421 & 0.0049724 & -22.969 & 9.6208e-117 \\
\hline -0.041537 & 0.014807 & -2.8052 & 0.0050291 \\
\hline -0.0029609 & 0.0010618 & -2.7885 & 0.0052954 \\
\hline
\end{tabular}
```

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value $=0$

Predict Conditional and Lifetime PD

Use the predict function to predict conditional PD values. The prediction is a row-by-row prediction.

```
dataCustomer1 = data(1:8,:);
CondPD = predict(pdModel,dataCustomer1)
CondPD = 8×1
    0.0095
    0.0054
    0.0045
    0.0039
    0.0036
    0.0036
    0.0017
    0.0009
```

Use predictLifetime to predict the lifetime cumulative PD values (computing marginal and survival PD values is also supported). The predictLifetime function uses the ID variable (see the ' IDVar' property for the Logistic object) to transform conditional PDs to cumulative PDs for each ID.

LifetimePD = predictLifetime(pdModel, dataCustomer1)
LifetimePD = 8×1
0.0095
0.0149
0.0193
0.0232
0.0267
0.0302
0.0318
0.0327

Validate Model

Use modelDiscrimination to measure the ranking of customers by PD.

```
DiscMeasure = modelDiscrimination(pdModel,data(TestDataInd,:),DataID='test data');
disp(DiscMeasure)
```

 AUROC
 Probit, test data 0.69984
 Use modelDiscriminationPlot to visualize the ROC curve.
modelDiscriminationPlot(pdModel,data(TestDataInd,:),DataID='test data');

Use modelCalibration to measure the calibration of the predicted PD values. The modelCalibration function requires a grouping variable and compares the accuracy of the observed default rate in the group with the average predicted PD for the group. For example, you can group by calendar year using the 'Year' variable.

CalMeasure = modelCalibration(pdModel,data(TestDataInd,:),'Year',DataID='test data'); disp(CalMeasure)

RMSE

Probit, grouped by Year, test data 0.00039494
Use modelCalibrationPlot to visualize the observed default rates compared to the predicted probabilities of default (PD).

```
modelCalibrationPlot(pdModel,data(TestDataInd,:),'Year',DataID='test data');
```


More About

Time Interval for Probit Models

For Logistic and Probit models, there is a time interval implicit in the data, specifically, in the definition of the default variable.

For example, if the default indicator is defined so that it takes the value 1 if there is a default over a 3 -month period, the time interval is 3 -months. In this case, the predicted PD values are 3-month PD predictions. Then the PD for month 18 would be the conditional probability that there is a default between months 15 and 18, given that there has been no default in the first 15 months.

Because the data input for fitLifetimePDModel is in panel data form, there is an implicit or explicit time stamp for each row, and the time interval for the default definition should be the same as the time increments between consecutive rows. If there is an optional age variable (AgeVar) in the training data, the time interval is the same as the age increments (for the same ID) from one row to the next.

Logistic and Probit models do not explicitly infer or store the time interval information. However, the predicted PD values returned by predict are consistent with the time interval implicit in the panel training data, which in turn should be the same as the time interval used to define the default variable.

Unlike Logistic and Probit models, Cox models require an AgeVar variable, and the time interval is inferred from the increments in the age values in the training data. Cox models store the time
interval value as the TimeInterval property. For more information, see "Lifetime Prediction and Time Interval" on page 6-342.

Version History

Introduced in R2020b

R2023a: modelAccuracy object function is renamed to modelCalibration function Not recommended starting in R2023a

The modelAccuracy object function is renamed to modelCalibration function. The use of modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot function

Not recommended starting in R2023a
The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

R2023a: Model property renamed to UnderlyingModel

Behavior changed in R2023a
The Model property is renamed to UnderlyingModel.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models LLC, 2018.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python. Independently published, 2020.

See Also

Functions

fitLifetimePDModel|Logistic|Cox|customLifetimePDModel

Topics

"Basic Lifetime PD Model Validation" on page 4-129
"Compare Logistic Model for Lifetime PD to Champion Model" on page 4-113
"Compare Lifetime PD Models Using Cross-Validation" on page 4-121
"Expected Credit Loss Computation" on page 4-124
"Compare Model Discrimination and Model Calibration to Validate of Probability of Default" on page 4-144
"Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models" on page 4-75
"Overview of Lifetime Probability of Default Models" on page 1-25

Regression

Create Regression model object for exposure at default

Description

Create and analyze a Regression model object to calculate the exposure at default (EAD) using this workflow:

1 Use fitEADModel to create a Regression model object.
2 Use predict to predict the EAD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using modelDiscriminationPlot.
4 Use modelCalibration to return the R-square, RMSE, correlation, and sample mean error of the predicted and observed EAD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax

RegressionEADModel = fitEADModel(data,ModelType)
RegressionEADModel = fitEADModel(\qquad , Name=Value)

Description

RegressionEADModel = fitEADModel(data,ModelType) creates a Regression EAD model object.

RegressionEADModel = fitEADModel(\qquad , Name=Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax. The optional name-value pair arguments set model object properties on page 6-639. For example, eadModel = fitEADModel(EADData,ModelType,PredictorVars=\{'UtilizationRate','Age','Marriag e'\}, ConversionMeasure="ccf", DrawnVar='Drawn',LimitVar='Limit', ResponseVar='EA D') creates an eadModel object using a Regression model type.

Input Arguments

data - Data for loss given default

table
Data for loss given default, specified as a table.
Data Types: table
ModelType - Model type
string with value "Regression" | character vector with value 'Regression'
Model type, specified as a string with the value of "Regression" or a character vector with the value of 'Regression'.

Data Types: char | string

Regression Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1, . . . ,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Example: eadModel =
fitEADModel(EADData,ModelType,PredictorVars=\{'UtilizationRate','Age','Marriag e'\}, ConversionMeasure="ccf", DrawnVar='Drawn',LimitVar='Limit', ResponseVar='EA D')

ModelID - User-defined model ID
"Regression" (default) | string | character vector
User-defined model ID, specified as ModelID and a string or character vector. The software uses the ModelID text to format outputs and is expected to be short.

Data Types: string | char

Description - User-defined description for model

" " (default) | string | character vector
User-defined description for model, specified as Description and a string or character vector.
Data Types: string | char

PredictorVars - Predictor variables

all columns of data except for the ResponseVar (default) | string array | cell array of character vectors

Predictor variables, specified as PredictorVars and a string array or cell array of character vectors. PredictorVars indicates which columns in the data input contain the predictor information. By default, PredictorVars is set to all the columns in the data input except for the ResponseVar.

Data Types: string | cell

ResponseVar - Response variable

last column of data (default) | string | character vector
Response variable, specified as ResponseVar and a string or character vector. The response variable contains the EAD data and must be a numeric variable. By default, the ResponseVar is set to the last column of data.

Data Types: string | char

BoundaryTolerance - Boundary tolerance

1e-7 (default) | positive numeric
Boundary tolerance, specified as BoundaryTolerance and a positive scalar numeric. The BoundaryTolerance value perturbs the EAD response values away from 0 and 1, before applying a response transformation.
Data Types: double

LimitVar - Limit variable

string | character vector

Limit variable, specified as LimitVar and a string or character vector. LimitVar indicates which column in data contains the limit amount. The limit amount value in the data must be a positive numeric value. The limit depends on the loan. If its a credit card, the limit is the credit limit, and if this is a mortgage limit it is the initial loan amount. In general, LimitVar is the maximum amount that can be borrowed.

Note LimitVar is required when ConversionMeasure is 'ccf' or 'lcf'. For more information on CCF and LCF, see "Exposure at Default Regression Models" on page 6-645.

Data Types: string | char

DrawnVar - Drawn variable

string | character vector
Drawn variable, specified as DrawnVar and a string or character vector. DrawnVar is the balance on the account at the time of observation, prior to default and EAD is the balance at the time of default. DrawnVar indicates which column in the data contains the drawn amount. The drawn variable value in the data can be a positive or negative numeric value.

Note DrawnVar is required when ConversionMeasure is 'ccf'.
If the ConversionMeasure is 'lcf', DrawnVar is not required. In this case, DrawnVar is set to " ".
For more information on CCF, see "Exposure at Default Regression Models" on page 6-645.

Data Types: string | char

ConversionMeasure - Conversion measure for EAD response values

"ccf" (default) | character vector with value of 'ccf' or 'lcf' | string with value of "ccf" or "lcf"

Response transform, specified as ConversionMeasure and a character vector or string.

- "ccf" - Credit conversion factor (CCF) is the portion of the undrawn amount that will be converted into credit. The undrawn amount is the limit minus the drawn amount. The EAD thus becomes the drawn amount plus the CCF times the limit minus the drawn amount (EAD = Drawn + CCF*(Limit - Drawn)).
- "lcf" - Limit conversion factor (LCF) is a fraction of the limit representing the total exposure. The EAD is then defined as the LCF times the limit (EAD = LCF*Limit).

For more information on CCF and LCF, see "Exposure at Default Regression Models" on page 6-645.
Data Types: string |char

Properties

ModelID - User-defined model ID

"Regression" (default) | string

User-defined model ID, returned as a string.
Data Types: string
Description - User-defined description
" " (default) | string
User-defined description, returned as a string.
Data Types: string
UnderlyingModel - Underlying statistical model
compact linear model
Underlying statistical model, returned as a compact linear model object. The compact version of the underlying regression model is an instance of the classreg. regr. CompactLinearModel class. For more information, see fitlm and CompactLinearModel.
Data Types: CompactLinearModel

PredictorVars - Predictor variables

all columns of data except for ResponseVar (default) | string array
Predictor variables, returned as a string array.
Data Types: string
ResponseVar - Response variable
last column of data (default) | string
Response variable, returned as a scalar string.
Data Types: string

LimitVar - Limit variable

string
Limit variable, returned as a string.
Data Types: string
DrawnVar - Drawn variable
string
Drawn variable, returned as a string.
Data Types: string
BoundaryTolerance - Boundary tolerance
1e-7 (default) | positive numeric
This property is read-only.
Boundary tolerance, returned as a scalar positive numeric.
Data Types: double

ConversionMeasure - Conversion measure for EAD response values
 "ccf" (default) | string with value of "ccf" or "lcf"

Conversion measure, returned as a string.
Data Types: string

ConversionTransform - Conversion transform

"complog" (default)| string with value "complog" or "logit"
This property is read-only.
Conversion transform, returned as a string that is "complog" if ConversionMeasure is "ccf" and "logit" when ConversionMeasure is "lcf".

Data Types: string

Object Functions

predict
modelDiscrimination modelDiscriminationPlot modelCalibration
modelCalibrationPlot

Predict exposure at default Compute AUROC and ROC data
Plot ROC curve
Compute R-square, RMSE, correlation, and sample mean error of predicted and observed EADs Scatter plot of predicted and observed EADs

Examples

Create Regression EAD Model

This example shows how to use fitEADModel to create a Regression model for exposure at default (EAD).

Load EAD Data

Load the EAD data.


```
rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


Select Model Type

Select a model type for Regression or Tobit.
ModelType $=$ Regression \quad;

Select Conversion Measure

Select a conversion measure for the EAD response values.
ConversionMeasure $=$ LCF ;

Create Regression EAD Model

Use fitEADModel to create a Regression model using EADData.

```
eadModel = fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriage'},
    ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);
```

 Regression with properties:
 ConversionTransform: "logit"
 BoundaryTolerance: 1.0000e-07
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"
 Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'BoundaryTolerance', 'LimitVar', and 'DrawnVar' name-value arguments to modify the transformation.

```
eadModel.UnderlyingModel
ans =
Compact linear regression model:
    EAD_lcf_logit ~ 1 + UtilizationRate + Age + Marriage
Estimated Coefficients:
\begin{tabular}{|c|c|c|c|}
\hline Estimate & SE & tStat & pValue \\
\hline -2.4745 & 0.29892 & -8.2781 & 1.6448e-16 \\
\hline 6.0045 & 0.19901 & 30.172 & 7.703e-182 \\
\hline -0.020095 & 0.0073019 & -2.752 & 0.0059471 \\
\hline -0.03509 & 0.13935 & -0.2518 & 0.8012 \\
\hline
\end{tabular}
```

Number of observations: 4378, Error degrees of freedom: 4374
Root Mean Squared Error: 4.48
R-squared: 0.173, Adjusted R-Squared: 0.173
F-statistic vs. constant model: 305, p-value = 5.7e-180

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-vale argument.

```
predictedEAD = predict(eadModel, EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel, EADData(TestInd,:),ModelLevel="ConversionMeasure");
```


Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.
ModelLevel $=$ ConversionMeasure \quad;
[DiscMeasure1, DiscData1] = modelDiscrimination(eadModel, EADData(TestInd,:),ModelLevel=ModelLeve modelDiscriminationPlot(eadModel, EADData(TestInd, :), ModelLevel=ModelLevel,SegmentBy="Marriage

Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the predictions.

YData $=$ Observed \quad;
[CalMeasure1, CalDatal] = modelCalibration(eadModel, EADData(TestInd,:), ModelLevel=ModelLevel); modelCalibrationPlot(eadModel, EADData(TestInd,:), ModelLevel=ModelLevel, YData=YData);

Scatter
Regression, R-Squared: 0.16148

Plot a histogram of observed with respect to the predicted EAD.
figure;
histogram(CalDatal.Observed);
hold on;
histogram(CalDatal.(('Predicted_' + ModelType)));
xlabel(ConversionMeasure);
legend('Observed', 'Predicted');

More About

Exposure at Default Regression Models

You can transform EAD data using linear regression models.
You can relate the EAD to a scaling variable and derive conversion measures like credit conversion factor (CCF) and limit conversion factor (LCF) using the 'ccf' or 'lcf' options for the ConversionMeasure name-value argument. In general, Regression models that use a ConversionMeasure for conversion factors are more robust, as all observations scale to a common denomination.

The following table summarizes the supported transformations using the 'ccf' or 'lcf' options for the ConversionMeasure name-value argument:

Measure	EAD Formula	Lower Bound	Upper Bound	Inverse Transformation
CCF	$\begin{aligned} & \text { EAD = Drawn + } \\ & \text { CCF Ã- (Limit } \\ & \text { - Drawn) } \end{aligned}$	-Inf	1	$\begin{aligned} & \operatorname{CCF}=1-\mathrm{e}^{(-} . \\ & \left.\mathrm{CCF}_{\mathrm{t}}\right) \end{aligned}$
LCF	$\begin{aligned} & \text { EAD = LCF } \\ & \text { Limit } \end{aligned}$	0	1	$\begin{aligned} & \mathrm{LCF}=\mathrm{e}^{\mathrm{LCF}} \hat{\mathrm{LF}}_{\mathrm{t}} \hat{\mathrm{a}}^{\bullet} \\ & \left(1+\mathrm{e}^{\mathrm{LCCF}}\right) \end{aligned}$

Version History

Introduced in R2021b
R2023a: modelAccuracy object function is renamed to modelCalibration function
Not recommended starting in R2023a
The modelAccuracy object function is renamed to modelCalibration function. The use of modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot function
 Not recommended starting in R2023a

The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications. SAS Institute, 2014.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also

Functions

fitEADModel|Tobit|Beta

Topics

"Compare Results for Regression and Tobit EAD Models" on page 4-151
"Overview of Exposure at Default Models" on page 1-34

Tobit

Create Tobit model object for exposure at default

Description

Create and analyze a Tobit model object to calculate the exposure at default (EAD) using this workflow:

1 Use fitEADModel to create a Tobit model object.
2 Use predict to predict the EAD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using modelDiscriminationPlot.
4 Use modelCalibration to return the R-squared, RMSE, correlation, and sample mean error of predicted and observed EAD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax

TobitEADModel = fitEADModel(data,ModelType)
TobitEADModel = fitEADModel(__ , Name=Value)

Description

TobitEADModel = fitEADModel(data,ModelType) creates a Tobit EAD model object.
TobitEADModel = fitEADModel(\qquad , Name=Value) specifies options using one or more namevalue arguments in addition to the input arguments in the previous syntax. The optional name-value arguments set the model object properties on page 6-650. For example, eadModel = fitEADModel(EADData,ModelType,PredictorVars=\{'UtilizationRate','Age','Marriag e'\},ConversionMeasure="ccf", DrawnVar='Drawn',LimitVar='Limit', ResponseVar='EA D') creates an eadModel object using a Tobit model type.

Input Arguments

data - Data for exposure at default

table
Data for exposure at default, specified as a table.
Data Types: table

ModelType - Model type

string with value "Tobit" | character vector with value 'Tobit'
Model type, specified as a string with the value of "Tobit" or a character vector with the value of 'Tobit'.

Data Types: char | string

Tobit Name-Value Arguments
Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Example: eadModel =
fitEADModel(EADData, ModelType, PredictorVars=\{'UtilizationRate', 'Age','Marriag e'\}, ConversionMeasure="ccf", DrawnVar='Drawn', LimitVar='Limit' ,ResponseVar='EA D')

ModelID - User-defined model ID

"Tobit" (default) | string | character vector
User-defined model ID, specified as ModelID and a string or character vector. The software uses the ModelID text to format outputs and is expected to be short.

Data Types: string | char

Description - User-defined description for model

"" (default) | string | character vector
User-defined description for model, specified as Description and a string or character vector.
Data Types: string | char

PredictorVars - Predictor variables

all columns of data except for ResponseVar (default) | string array | cell array of character vectors
Predictor variables, specified as PredictorVars and a string array or cell array of character vectors. PredictorVars indicates which columns in the data input contain the predictor information. By default, PredictorVars is set to all the columns in the data input except for ResponseVar.
Data Types: string | cell

ResponseVar - Response variable

last column of data (default) | string | character vector
Response variable, specified as ResponseVar and a string or character vector. The response variable contains the EAD data and must be a numeric variable. By default, ResponseVar is set to the last column.

Data Types: string | char

LimitVar - Limit variable

string | character vector
Limit variable, specified as LimitVar and a string or character vector. LimitVar indicates which column in data contains the limit amount. The limit amount value in the data must be a positive numeric value. The limit depends on the loan. If its a credit card, the limit is the credit limit, and if this is a mortgage limit it is the initial loan amount. In general, LimitVar is the maximum amount that can be borrowed.

Note LimitVar is required when ConversionMeasure is 'ccf' or 'lcf'. For more information on CCF and LCF, see "Conversion Measure Options" on page 6-658.

Data Types: string | char

DrawnVar - Drawn variable

string | character vector
Drawn variable, specified as DrawnVar and a string or character vector. DrawnVar is the balance on the account at the time of observation, prior to default and EAD is the balance at the time of default. DrawnVar indicates which column in data contains the drawn amount. The drawn variable value in the data can be a positive or negative numeric value.

Note DrawnVar is required when ConversionMeasure is 'ccf'.
If the ConversionMeasure is 'lcf', DrawnVar is not required. In this case, DrawnVar is set to " ".
For more information on CCF, see "Conversion Measure Options" on page 6-658.

Data Types: string | char

ConversionMeasure - Conversion measure for EAD response values

"ccf" (default) | character vector with value of 'ccf' or 'lcf' | string with value of "ccf" or "lcf"

Response transform, specified as ConversionMeasure and a character vector or string.

- "ccf" - Credit conversion factor (CCF) is the portion of the undrawn amount that will be converted into credit. The undrawn amount is the limit minus the drawn amount. The EAD thus becomes the drawn amount plus the CCF times the limit minus the drawn amount (EAD = Drawn + CCF*(Limit - Drawn)).

Note A Tobit model with "ccf" can be unstable.

- "lcf" - Limit conversion factor (LCF) is a fraction of the limit representing the total exposure. The EAD is then defined as the LCF times the limit (EAD = LCF*Limit).

For more information on CCF and LCF, see "Conversion Measure Options" on page 6-658.

Data Types: string | char

CensoringSide - Censoring side

"both" (default) | character vector with value of 'left', 'right', or 'both' | string with value of
"left", "right", or "both"
Censoring side, specified as CensoringSide and a character vector or string. CensoringSide indicates whether the desired Tobit model is left-censored, right-censored, or censored on both sides.
Data Types: string|char

LeftLimit - Left-censoring limit

0 (default) | numeric between 0 and 1

Left-censoring limit, specified as LeftLimit and a scalar numeric between 0 and 1 .
Data Types: double

RightLimit - Right-censoring limit

1 (default) | numeric between 0 and 1
Right-censoring limit, specified as RightLimit and a scalar numeric between 0 and 1 .
Data Types: double

SolverOptions - optimoptions object

object
Options for fitting, specified as SolverOptions and an optimoptions object that is created using optimoptions from Optimization Toolbox ${ }^{\mathrm{TM}}$. The defaults for the optimoptions object are:

- "Display" - "none"
- "Algorithm" - "sqp"
- "MaxFunctionEvaluations" - 500 (Number of model coefficients
- "MaxIterations" - The number of Tobit model coefficients is determined at run time; it depends on the number of predictors and the number of categories in the categorical predictors.

Note When using optimoptions with a Tobit model, specify the SolverName as fmincon.

Data Types: object

Properties

ModelID - User-defined model ID

Tobit (default) | string
User-defined model ID, returned as a string.

Data Types: string

Description - User-defined description

" " (default) | string
User-defined description, returned as a string.

Data Types: string

UnderlyingModel - Underlying statistical model

compact linear model
This property is read-only.
Underlying statistical model, returned as a compact linear model object. The compact version of the underlying regression model is an instance of the classreg. regr. CompactLinearModel class. For more information, see fitlm and CompactLinearModel.
Data Types: CompactLinearModel

PredictorVars - Predictor variables

all columns of data except for the ResponseVar (default) | string array
Predictor variables, returned as a string array.
Data Types: string
ResponseVar - Response variable
last column of data (default) | string
Response variable, returned as a string.
Data Types: string

LimitVar - Limit variable
 string

Limit variable, returned as a string.
Data Types: string
DrawnVar - Drawn variable string

Drawn variable, returned as a string.
Data Types: string
ConversionMeasure - Conversion measure for EAD response values
"ccf" (default)| string with value of "ccf" or "lcf"
Response transform, returned as a string.
Data Types: string
CensoringSide - Censoring side
"both" (default)| string with value of "left", "right", or "both"
This property is read-only.
Censoring side, returned as a string.
Data Types: string
LeftLimit - Left-censoring limit
0 (default) | numeric between 0 and 1
This property is read-only.
Left-censoring limit, returned as a scalar numeric between 0 and 1 .
Data Types: double

RightLimit - Right-censoring limit

1 (default) | numeric between 0 and 1
This property is read-only.
Right-censoring limit, returned as a scalar numeric between 0 and 1.

```
Object Functions
predict
modelDiscrimination
modelDiscriminationPlot
modelCalibration
modelCalibrationPlot
```

Predict exposure at default
Compute AUROC and ROC data
Plot ROC curve
Compute R-square, RMSE, correlation, and sample mean error of predicted and observed EADs
Scatter plot of predicted and observed EADs

Examples

Create Tobit EAD Model

This example shows how to use fitEADModel to create a Tobit model for exposure at default (EAD).

Load EAD Data

Load the EAD data.


```
rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


Select Model Type

Select a model type for Tobit or Regression.
ModelType $=$ Tobit \quad;

Select Conversion Measure

Select a conversion measure for the EAD response values.

Create Tobit EAD Model

Use fitEADModel to create a Tobit model using the EADData.

```
eadModel = fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriage'},
    ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);
    Tobit with properties:
        CensoringSide: "both"
            LeftLimit: 0
            RightLimit: 1
                ModelID: "Tobit"
            Description: ""
        UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
            PredictorVars: ["UtilizationRate" "Age" "Marriage"]
                ResponseVar: "EAD"
            LimitVar: "Limit"
            DrawnVar: "Drawn"
    ConversionMeasure: "lcf"
```

Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the transformation.

```
disp(eadModel.UnderlyingModel);
```

Tobit regression model:
EAD lcf $=\max \left(0, \min \left(Y^{*}, 1\right)\right)$
Y* ~ 1 + UtilizationRate + Age + Marriage
Estimated coefficients:

Estimate	SE	tStat	pValue
0.22735	0.025254	9.0025	0
0.47364	0.016435	28.818	0
-0.0013929	0.00061973	-2.2477	0.024646
-0.006888	0.01213	-0.56784	0.57017
0.36419	0.0038798	93.868	0

Number of observations: 4378
Number of left-censored observations: 0
Number of uncensored observations: 4377
Number of right-censored observations: 1
Log-likelihood: -1791.06

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-vale argument.

```
predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");
```


Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.
ModelLevel $=$ ConversionMeasure \quad;
[DiscMeasure1,DiscDatal] = modelDiscrimination(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel modelDiscriminationPlot(eadModel,EADData(TestInd, :),ModelLevel=ModelLevel, SegmentBy="Marriage")

Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the predictions.

YData $=$ Observed - $;$
[CalMeasure1,CalData1] = modelCalibration(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel); modelCalibrationPlot(eadModel,EADData(TestInd, :),ModelLevel=ModelLevel,YData=YData);

Scatter

Tobit, R-Squared: 0.16231

Plot a histogram of observed with respect to the predicted EAD.
figure;
histogram(CalDatal.Observed);
hold on;
histogram(CalDatal.(('Predicted_' + ModelType)));
legend('Observed','Predicted');

More About

Exposure at Default Tobit Models

The exposure at default (EAD) Tobit models fit a Tobit model to EAD data.
Tobit models are "censored" regression models. Tobit models assume that the response variable can be observed only within certain limits, and no value outside the limits can be observed. Using ModelLevel, you can set the Tobit model level to EAD, CCF, or LCF conversion measures. The EAD model level does not have any range, the CCF conversion measure has a range of - Inf to 1 , and the LCF conversion measure is 0 to 1 . A distribution of response values where there is a high frequency of observations at the limits is consistent with the model assumptions.

The Tobit model combines the following two formulas:

$$
\begin{aligned}
& Y=\min \left\{\max \left\{L, Y^{*}\right\}, R\right\} \\
& Y^{*}=\beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}+\sigma \varepsilon=X \beta+\sigma \varepsilon
\end{aligned}
$$

where

- Y is the observed response variable, the observed EAD data for an EAD model.
- L is the left limit, the lower bound for the response values, typically 0 for EAD models.
- R is the right limit, the upper bound for the response values, typically 1 for EAD models.
- Y^{*} is a latent, unobserved variable.
- β_{j} is the coefficient of the j th predictor (or the intercept for $j=0$).
- σ is the standard deviation of the error term.
- ϵ is the error term, assumed to follow a standard normal distribution.

The first formula above is written using min and max operators and is equivalent to

$$
Y=\left\{\begin{array}{l}
L \quad \text { if } Y^{*} \leq L \\
Y^{*} \text { if } L<Y^{*}<R \\
R \quad \text { if } Y^{*} \geq R
\end{array}\right\}
$$

The standard deviation of the error is explicitly indicated in the formulas. Unlike traditional regression least-squares estimation, where the standard deviation of the error can be inferred from the residuals, for Tobit models the estimation is via maximum likelihood and the standard deviation needs to be handled explicitly during the estimation. If there are p predictor variables, the Tobit model estimates $p+2$ coefficients, namely, one coefficient for each predictor, plus an intercept, plus a standard deviation.

Three censoring side options are supported in the Tobit EAD models with the CensoringSide namevalue argument:

- 'both ' - This option is the default option, with censoring on both sides. The estimation uses left and right limits.
- 'left' - The left-censored version of the model has no right limit (or $R=\infty$). The relationship between Y and Y^{*} is $Y=\operatorname{maxâ} ;\left\{L, Y^{*}\right\}$.
- 'right' - The right-censored version of the model has no left limit (or $L=-\infty$). The relationship between Y and Y^{*} is $Y=\min \left\{Y^{*}, R\right\}$.

The parameters of the Tobit model are estimated using maximum likelihood. For observation $i=$ $1, \ldots, n$, the likelihood function is

$$
L F\left(\beta, \sigma \mid X_{i}, Y_{i}\right)=\left\{\begin{array}{l}
\Phi\left(L ; X_{i} \beta, \sigma\right) \quad \text { if } Y_{i} \leq L \\
\phi\left(Y_{i} ; \mathrm{X}_{i} \beta, \sigma\right) \quad \text { if } L<Y_{i}<R \\
1-\Phi\left(R ; X_{i} \beta, \sigma\right) \quad \text { if } Y_{i} \geq R
\end{array}\right\}
$$

where

- $\Phi(x ; m, s)$ is the cumulative normal distribution with mean m and standard deviation s.
- $\varphi(x ; m, s)$ is the normal density function with mean m and standard deviation s.

This likelihood function is for models censored on both sides. For left-censored models, the right limit has no effect, and the likelihood function has two cases only ($R=\infty$); likewise for right-censored models $(L=-\infty)$.

The log-likelihood function is the sum of the logarithm of the likelihood functions for individual observations

$$
L L F(\beta, \sigma \mid X, Y)=\sum_{i=1}^{n} \log \left(L F\left(\beta, \sigma \mid X_{i}, Y_{i}\right)\right)
$$

The parameters are estimated by maximizing the log-likelihood function. The only constraint is that the Ïf parameter must be positive.

To predict an EAD value, Tobit EAD models return the unconditional expected value of the response, given the predictor values

$$
E A D_{i}^{\text {pred }}=E\left[Y_{i} \mid X_{i}\right]
$$

The expression for the expected value can be separated into the cases

$$
\begin{aligned}
& E[Y]=E[Y \mid Y=L] P(Y=L) \\
& +E[Y \mid L<Y<R] P(L<Y<R) \\
& +E[Y \mid Y=R] P(Y=R)
\end{aligned}
$$

Using the previous expression and the properties of the (truncated) normal distribution, it follows that

$$
E\left[Y_{i} \mid X_{i}\right]=\Phi\left(a_{i}\right) L+\left(\Phi\left(b_{i}\right)-\Phi\left(a_{i}\right)\right)\left(X_{i} \beta+\sigma \lambda_{i}\right)+\left(1-\Phi\left(b_{i}\right)\right) R
$$

where

$$
a_{i}=\frac{L-X_{i} \beta}{\sigma}, b_{i}=\frac{R-X_{i} \beta}{\sigma}, \text { and } \lambda_{i}=\frac{\phi\left(a_{i}\right)-\phi\left(b_{i}\right)}{\Phi\left(b_{i}\right)-\Phi\left(a_{i}\right)}
$$

This expression applies to the models censored on both sides. For models censored on one side only, the corresponding expressions can be derived from here. For example, for left-censored models, let the R limit in the expression above go to infinity, and the resulting expression is

$$
E\left[Y_{i} \mid X_{i}\right]=\Phi\left(a_{i}\right) L+\left(1-\Phi\left(a_{i}\right)\right)\left(X_{i} \beta+\sigma \frac{\phi\left(a_{i}\right)}{1-\Phi\left(a_{i}\right)}\right)
$$

Similarly, for right-censored models, the L limit is decreased to minus infinity to get

$$
E\left[Y_{i} \mid X_{i}\right]=\Phi\left(b_{i}\right)\left(X_{i} \beta-\sigma \frac{\phi\left(b_{i}\right)}{\Phi\left(b_{i}\right)}\right)+\left(1-\Phi\left(b_{i}\right)\right) R
$$

Conversion Measure Options

You can relate the EAD to a scaling variable and derive conversion measures like credit conversion factor (CCF) and limit conversion factor (LCF) using the 'ccf' or 'lcf' options for the ConversionMeasure name-value argument.

The following table summarizes the supported transformations using the 'ccf' or 'lcf' options for the ConversionMeasure name-value argument:

Measure	EAD Formula	Lower Bound	Upper Bound	Inverse Transformation
CCF	EAD $=$ Drawn + CCF Ã- (Limit $-\quad$ Drawn $)$	-Inf	CCF $=1-e^{(-}$ CCF $\left._{t}\right)$	
LCF	EAD $=$ LCF Limit	0	1	LCF $=e^{L C F_{t}} \hat{a}^{\wedge} \bullet$ $\left(1+e^{L C F_{t}}\right)$

Version History

Introduced in R2021b

R2023a: modelAccuracy object function is renamed to modelCalibration function

Not recommended starting in R2023a
The modelAccuracy object function is renamed to modelCalibration function. The use of modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot function
 Not recommended starting in R2023a

The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications. SAS Institute, 2014.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also

Functions

fitEADModel|Regression | Beta

Topics

"Compare Results for Regression and Tobit EAD Models" on page 4-151
"Overview of Loss Given Default Models" on page 1-31

Beta

Create Beta model object for exposure at default

Description

Create and analyze a Beta model object to calculate the exposure at default (EAD) using this workflow:

1 Use fitEADModel to create a Beta model object.
2 Use predict to predict the EAD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using modelDiscriminationPlot.
4 Use modelCalibration to return the R-squared, RMSE, correlation, and sample mean error of predicted and observed EAD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax

BetaEADModel = fitEADModel(data,ModelType)
BetaEADModel = fitEADModel(___ ,Name=Value)

Description

BetaEADModel = fitEADModel(data,ModelType) creates a Beta EAD model object.
BetaEADModel = fitEADModel(_ , Name=Value) specifies options using one or more namevalue arguments in addition to the input arguments in the previous syntax. The optional name-value arguments set the model object properties on page 6-663. For example, BetaEADModel = fitEADModel(EADData,ModelType,PredictorVars=\{'UtilizationRate','Age','Marriag e'\},ConversionMeasure="lcf",DrawnVar='Drawn',LimitVar='Limit', ResponseVar='EA D^{\prime}) creates an BetaEADModel object using a Beta model type.

Input Arguments

data - Data for exposure at default

table
Data for exposure at default, specified as a table.
Data Types: table

ModelType - Model type

string with value "Beta" | character vector with value 'Beta'
Model type, specified as a string with the value of "Beta" or a character vector with the value of 'Beta'.

Data Types: char|string

Beta Name-Value Arguments

Specify optional pairs of arguments as Namel=Value1, . . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.
Example: BetaEADModel =
fitEADModel(EADData, ModelType, PredictorVars=\{'UtilizationRate', 'Age', 'Marriag e'\}, ConversionMeasure="lcf", LimitVar='Limit', ResponseVar='EAD', BoundaryTolera nce=1e5)

ModelID - User-defined model ID

"Beta" (default) | string | character vector
User-defined model ID, specified as ModelID and a string or character vector. The software uses the ModelID text to format outputs and is expected to be short.
Data Types: string | char

Description - User-defined description for model

"" (default) | string | character vector
User-defined description for model, specified as Description and a string or character vector.
Data Types: string | char

PredictorVars - Predictor variables

all columns of data except for ResponseVar (default) | string array | cell array of character vectors
Predictor variables, specified as PredictorVars and a string array or cell array of character vectors. PredictorVars indicates which columns in the data input contain the predictor information. By default, PredictorVars is set to all the columns in the data input except for ResponseVar.

Data Types: string | cell

ResponseVar - Response variable

last column of data (default) | string | character vector
Response variable, specified as ResponseVar and a string or character vector. The response variable contains the EAD data and must be a numeric variable. By default, ResponseVar is set to the last column.

Data Types: string | char

BoundaryTolerance - Value to perturb EAD responses

1e-7 (default) | positive numeric
Value to perturb EAD response values away from 0 to 1, specified as BoundaryTolerance and a positive scalar numeric.

Data Types: double

LimitVar - Limit variable

string | character vector

Limit variable, specified as LimitVar and a string or character vector. LimitVar indicates which column in data contains the limit amount. The limit amount value in the data must be a positive numeric value. The limit depends on the loan. If the loan is a credit card, the limit is the credit limit. If the loan is a mortgage, the limit is the initial loan amount. In general, LimitVar is the maximum amount that can be borrowed.

Note LimitVar is required when ConversionMeasure is 'lcf'. For more information on LCF, see "Conversion Measure Options" on page 6-658.

Data Types: string | char

DrawnVar - Drawn variable
string | character vector
Drawn variable, specified as DrawnVar and a string or character vector. DrawnVar is the balance on the account at the time of observation, before default, and EAD is the balance at the time of default. DrawnVar indicates which column in data contains the drawn amount. The drawn variable value in the data can be a positive or negative numeric value.

Note When the ConversionMeasure is 'lcf', DrawnVar is not required. In this case, DrawnVar is set to " ".

Data Types: string | char

ConversionMeasure - Conversion measure for EAD response values
"lcf" (default) | character vector with value 'lcf' | string with value "lcf"
Response transform, specified as ConversionMeasure and a character vector or string. Limit conversion factor (LCF) is a fraction of the limit representing the total exposure. The EAD is then defined as the LCF times the limit (EAD $=$ LCF*Limit).

For more information on LCF, see "Conversion Measure Options" on page 6-658.
Data Types: string | char

SolverOptions - optimoptions object

object
Options for fitting, specified as SolverOptions and an optimoptions object that is created using optimoptions from Optimization Toolbox. The defaults for the optimoptions object are:

- "Display" - "none"
- "Algorithm" - "quasi-newton"
- "MaxFunctionEvaluations" $-500 \times$ Number of model coefficients
- "MaxIterations" - 1000

Note When using optimoptions with a Beta model, specify the SolverName as fminunc.

The number of Beta model coefficients is determined at run time, depending on the number of predictors and the number of categories in the categorical predictors.

Data Types: object

Properties

ModelID - User-defined model ID

Beta (default) | string
User-defined model ID, returned as a string.
Data Types: string
Description - User-defined description
" " (default) | string
User-defined description, returned as a string.

Data Types: string

UnderlyingModel - Underlying statistical model
compact linear model
This property is read-only.
Underlying statistical model, returned as a compact linear model object. The compact version of the underlying regression model is an instance of the risk.internal.credit.BetaModel class.

Data Types: object

PredictorVars - Predictor variables

all columns of data except for the ResponseVar (default) | string array
Predictor variables, returned as a string array.
Data Types: string
ResponseVar - Response variable
last column of data (default) | string
Response variable, returned as a string.
Data Types: string

LimitVar - Limit variable

string
Limit variable, returned as a string.
Data Types: string
DrawnVar - Drawn variable
string
Drawn variable, returned as a string.
Data Types: string

ConversionMeasure - Conversion measure for EAD response values
 "lcf" (default)| string with value "lcf"

Response transform, returned as a string.
Data Types: string

BoundaryTolerance - Value to perturb LGD responses

1e-7 (default) | positive numeric
Value to perturb LGD response values away from 0 to 1 , returned as a positive scalar numeric.
Data Types: double

Object Functions

predict modelDiscrimination modelDiscriminationPlot modelCalibration
modelCalibrationPlot

Predict exposure at default Compute AUROC and ROC data
Plot ROC curve
Compute R-square, RMSE, correlation, and sample mean error of predicted and observed EADs Scatter plot of predicted and observed EADs

Examples

Create Beta EAD Model

This example shows how to use fitEADModel to create a Beta model object for exposure at default (EAD).

Load EAD Data

Load the EAD data.

```
load EADData.mat
head(EADData)
```

UtilizationRate	Age		Marriage		Limit		Drawn

```
rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);
```


Select Model Type

Select a model type for Beta.

Select Conversion Measure

Select a conversion measure for the EAD response values.
ConversionMeasure $=$ LCF ;

Create Beta EAD Model

Use fitEADModel to create a Beta model object using the TrainingInd data.

```
BetaEADModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Ag
    ConversionMeasure=ConversionMeasure,LimitVar="Limit",ResponseVar="EAD",BoundaryTolerance=2e-
disp(BetaEADModel);
```

Beta with properties:
BoundaryTolerance: 2.0000e-05
ModelID: "Beta"
Description: ""
UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
PredictorVars: ["UtilizationRate" "Age" "Marriage"]
ResponseVar: "EAD"
LimitVar: "Limit"
DrawnVar: ""
ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the transformation.
disp(BetaEADModel.UnderlyingModel);
Beta regression model:
logit(EAD lcf) ~ 1 mu + UtilizationRate mu + Age mu + Marriage mu
log(EAD_lčf) ~ 1_phi + UtilizationRate_phi + Age_phi + Marriage_phi
Estimated coefficients:

Estimate	SE	tStat	pValue
-0.68477	0.1145	-5.9807	2.5234e-09
1.7029	0.077717	21.912	0
-0.0056329	0.0027489	-2.0492	0.040543
-0.025614	0.051927	-0.49328	0.62186
-0.46429	0.095342	-4.8697	1.1838e-06
0.41621	0.06701	6.2112	6.0942e-10
-0.001282	0.0023261	-0.55114	0.58159
0.00014873	0.042884	0.0034682	0.99723

Number of observations: 2627
Log-likelihood: -2931. 19

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-vale argument.

```
predictedEAD = predict(BetaEADModel,EADData(TestInd,:))
predictedEAD = 1751×1
105 x
    0.1758
    0.1029
    0.1528
    0.0832
    0.3261
    0.5148
    0.0648
    0.0531
    0.0712
    0.3215
```


Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.
ModelLevel $=$ ConversionMeasure \quad;
[DiscMeasure1,DiscDatal] = modelDiscrimination(BetaEADModel,EADData(TestInd,:), ModelLevel=ModelL modelDiscriminationPlot(BetaEADModel, EADData(TestInd, :),ModelLevel=ModelLevel, SegmentBy="Marria

Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the predictions.

YData $=$ Observed \quad;
[CalMeasure1,CalDatal] = modelCalibration(BetaEADModel, EADData(TestInd,:),ModelLevel=ModelLevel) modelCalibrationPlot(BetaEADModel, EADData(TestInd,:),ModelLevel=ModelLevel, YData=YData);

Scatter

Beta, R-Squared: 0.16224

Plot a histogram of observed EAD with respect to the predicted EAD.
figure;
histogram(CalDatal.Observed);
hold on;
histogram(CalDatal.(('Predicted_' + ModelType)));
legend('Observed','Predicted');

More About

Beta Regression Models

Beta regression models model continuous variables that assume values in the open standard unit interval (0,1).

The beta regression model is based on the assumption that the dependent variable is beta-distributed and that its mean is related to a set of regressors through a linear predictor with unknown coefficients and a link function. The beta regression model also includes a precision parameter that may be constant or depend on a potentially different set of regressors through a link function as well.

If the variable takes on values in (a, b) with $a<b$, you can model $(y-a) /(b-a)$. Also, if y also assumes the extremes 0 and 1 , a useful transformation in practice is $y(n-1)+0.5) / n$, where n is the sample size.

The beta regression model is based on an alternative parameterization of the beta density in terms of the mean and a precision parameter: $\mu=a /(a+b)$ and $\varphi=a+b, 0<\mu<1, \varphi>0$.

$$
\begin{aligned}
& f(y ; \mu, \phi)=\frac{\Gamma(\phi)}{\Gamma(\mu \phi) \Gamma((1-\mu) \phi)} y^{\mu \phi-1}\left(^{1}, \quad 0<y<1,\right. \\
& y \sim \mathrm{~B}(\mu, \varphi) \text { with } \mathrm{E}(y)=\mu, \operatorname{VAR}(\varphi)=\mu(1-\mu) /(1+\varphi)
\end{aligned}
$$

The beta regression model is defined as

$$
\begin{aligned}
& g_{1}\left(\mu_{i}\right)=\eta_{1 i}=x_{i}^{T} \beta, \\
& g_{2}\left(\phi_{i}\right)=\eta_{2 i}=z_{i}^{T},
\end{aligned}
$$

where $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)^{\mathrm{T}}, \nu=\left({ }_{0},{ }_{0}{ }_{1}, \ldots,,_{k}\right)^{\mathrm{T}}$ are the regression coefficients, $\eta_{1 i}, \eta_{2 i}$ are the linear predictors, and x_{i}, z_{i} are the independent variables. g_{1} and g_{2} are the link functions where g_{1} is logit and g_{2} is \log.

Parameter estimation is performed by maximum likelihood (ML).

Version History

Introduced in R2022b

R2023a: modelAccuracy object function is renamed to modelCalibration function

Not recommended starting in R2023a
The modelAccuracy object function is renamed to modelCalibration function. The use of modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot function
Not recommended starting in R2023a
The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications. SAS Institute, 2014.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also

Functions

fitEADModel|Regression|Tobit

Topics

"Compare Results for Regression and Tobit EAD Models" on page 4-151
"Overview of Loss Given Default Models" on page 1-31

Regression

Create Regression model object for loss given default

Description

Create and analyze a Regression model object to calculate the loss given default (LGD) using this workflow:

1 Use fitLGDModel to create a Regression model object.
2 Use predict to predict the LGD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using modelDiscriminationPlot.

4 Use modelCalibration to return the R-square, RMSE, correlation, and sample mean error of the predicted and observed LGD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax

RegressionLGDModel = fitLGDModel(data,ModelType)
RegressionLGDModel = fitLGDModel(\qquad ,Name, Value)

Description

RegressionLGDModel = fitLGDModel(data,ModelType) creates a Regression LGD model object.

RegressionLGDModel = fitLGDModel(\qquad ,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the previous syntax. The optional name-value pair arguments set model object properties on page 6-673. For example, lgdModel $=$ fitLGDModel(data,'regression','PredictorVars',\{'LTV' 'Age'
'Type'\},'ResponseVar','LGD','ResponseTransform','probit','BoundaryTolerance', 1e-6) creates a lgdModel object using a Regression model type.

Input Arguments

data - Data for loss given default

table
Data for loss given default, specified as a table where the first column and all other columns except the last column are PredictorVars, the last column is ResponseVar.
Data Types: table

ModelType - Model type

string with value "Regression" | character vector with value 'Regression'

Model type, specified as a string with the value of "Regression" or a character vector with the value of 'Regression'.

Data Types: char|string

Regression Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: lgdModel = fitLGDModel(data,'regression','PredictorVars',{'LTV' 'Age'
'Type'},'ResponseVar','LGD','ResponseTransform','probit','BoundaryTolerance',
1e-6)
```


ModelID - User-defined model ID

```
"Regression" (default) | string | character vector
```

User-defined model ID, specified as the comma-separated pair consisting of 'ModelID' and a string or character vector. The software uses the ModelID text to format outputs and is expected to be short.

Data Types: string | char

Description - User-defined description for model

" " (default) | string | character vector
User-defined description for model, specified as the comma-separated pair consisting of 'Description' and a string or character vector.
Data Types: string | char

PredictorVars - Predictor variables

all columns of data except for the ResponseVar (default) | string array | cell array of character vectors

Predictor variables, specified as the comma-separated pair consisting of 'PredictorVars' and a string array or cell array of character vectors. PredictorVars indicates which columns in the data input contain the predictor information. By default, PredictorVars is set to all the columns in the data input except for the ResponseVar.

Data Types: string | cell

ResponseVar - Response variable

last column of data (default) | string | character vector
Response variable, specified as the comma-separated pair consisting of 'ResponseVar' and a string or character vector. The response variable contains the LGD data and must be a numeric variable. An LGD value of 0 indicates no loss (full recovery), 1 indicates total loss (no recovery), and values between 0 and 1 indicate a partial loss. By default, the ResponseVar is set to the last column of data.

Data Types: string | char

BoundaryTolerance - Boundary tolerance

1e-5 (default) | positive numeric

Boundary tolerance, specified as the comma-separated pair consisting of 'BoundaryTolerance' and a positive scalar numeric. The BoundaryTolerance value perturbs the LGD response values away from 0 and 1, before applying a ResponseTransform.
Data Types: double
ResponseTransform - Response transform
"logit" (default)| character vector with value of 'logit', ' probit', or 'log' | string with value of "logit", "probit", or "log"

Response transform, specified as the comma-separated pair consisting of 'ResponseTransform' and a character vector or string.
Data Types: string|char

Properties

ModelID - User-defined model ID

"Regression" (default) | string
User-defined model ID, returned as a string.
Data Types: string
Description - User-defined description
"" (default) | string
User-defined description, returned as a string.

Data Types: string

UnderlyingModel - Underlying statistical model
compact linear model
Underlying statistical model, returned as a compact linear model object. The compact version of the underlying regression model is an instance of the classreg. regr. CompactLinearModel class. For more information, see fitlm and CompactLinearModel.

Data Types: CompactLinearModel

PredictorVars - Predictor variables

all columns of data except for ResponseVar (default) | string array
Predictor variables, returned as a string array.
Data Types: string
ResponseVar - Response variable
last column of data (default) | string
Response variable, returned as a scalar string.
Data Types: string

BoundaryTolerance - Boundary tolerance

le-5 (default)| numeric
This property is read-only.

Boundary tolerance, returned as a scalar numeric.
Data Types: double
ResponseTransform - Response transform
"logit" (default)| string
This property is read-only.
Response transform, returned as a string.
Data Types: string

Object Functions

predict Predict loss given default
modelDiscrimination Compute AUROC and ROC data
modelDiscriminationPlot
modelCalibration
modelCalibrationPlot

Plot ROC curve
Compute R-square, RMSE, correlation, and sample mean error of predicted and observed LGDs
Scatter plot of predicted and observed LGDs

Examples

Create Regression LGD Model

This example shows how to use fitLGDModel to create a Regression model for loss given default (LGD).

Load LGD Data

Load the LGD data.

Create Regression LGD Model

Use fitLGDModel to create a Regression model using the TrainingInd data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'regression',...
    'ModelID','Example Probit',...
    'Description','Example LGD probit regression model.',...
    'PredictorVars',{'LTV' 'Age' 'Type'},...
    'ResponseVar','LGD','ResponseTransform','probit','BoundaryTolerance',1e-6);
disp(lgdModel)
```

Regression with properties:
ResponseTransform: "probit"
BoundaryTolerance: 1.0000e-06
ModelID: "Example Probit"
Description: "Example LGD probit regression model."
UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
PredictorVars: ["LTV" "Age" "Type"]
ResponseVar: "LGD"

Display the underlying model. The underlying model's response variable is the probit transformation of the LGD response data. Use the 'ResponseTransform' and 'BoundaryTolerance' arguments to modify the transformation.
lgdModel.UnderlyingModel

```
ans =
Compact linear regression model:
    LGD_probit ~ 1 + LTV + Age + Type
Estimated Coefficients:
                Estimate SE tStat pValue
\begin{tabular}{lrrrr} 
(Intercept) & -2.2212 & 0.14824 & -14.984 & \(2.7409 \mathrm{e}-48\) \\
LTV & 1.192 & 0.17183 & 6.9372 & \(5.3152 \mathrm{e}-12\) \\
Age & -0.60356 & 0.035256 & -17.119 & \(1.3828 \mathrm{e}-61\) \\
Type investment & 0.61814 & 0.1018 & 6.0723 & \(1.4933 \mathrm{e}-09\)
\end{tabular}
Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 1.74
R-squared: 0.197, Adjusted R-Squared: 0.196
F-statistic vs. constant model: 171, p-value = 4.39e-99
```


Predict LGD

For LGD prediction, use predict. The LGD model applies the inverse transformation so the predictions are in the LGD scale, not in the transformed scale used to fit the underlying model.

```
predictedLGD = predict(lgdModel,data(TestInd,:))
predictedLGD = 1394×1
    0.0011
    0.0058
    0.2091
    0.0015
    0.0192
    0.0620
    0.0757
```

$$
\begin{aligned}
& 0.0000 \\
& 0.0156 \\
& 0.0388
\end{aligned}
$$

Validate LGD Model

Use modelDiscriminationPlot to plot the ROC curve.
modelDiscriminationPlot(lgdModel,data(TestInd,:))

Use modelCalibrationPlot to show a scatter plot of the predictions.
modelCalibrationPlot(lgdModel,data(TestInd,:))

Scatter

More About

Loss Given Default Regression Models

You can transform LGD data using linear regression models.
The loss given default (LGD) regression models transform the LGD response variable

$$
\text { TransformedLGD }=f(L G D)
$$

and fit a linear regression model

$$
\begin{aligned}
\text { TransformedLGD } & =\beta_{0}+\beta_{1} X_{1}+\ldots \beta_{p} X_{p}+\varepsilon \\
& =X \beta+\varepsilon
\end{aligned}
$$

For prediction, the models first predict on the transformed space using the underlying linear regression model and the estimated coefficients $\hat{\beta}$

$$
\text { TransformedLGD }{ }_{\text {pred }}=X \hat{\beta}
$$

You can then apply the inverse transformation to return predictions on the LGD scale

$$
L G D_{\text {pred }}=f^{-1}(\text { TransformedLGD } \text { pred })
$$

The following table summarizes the supported transformations using the ResponseTransform name-value argument and their corresponding inverses, where $\Phi(x)$ is the cumulative normal distribution:

'ResponseTransform'	$\boldsymbol{f}($ LGD $)$	$\boldsymbol{f}^{\mathbf{- 1}}$ (TransformedLGD)
''logit'	TransformedLGD $=\log \left(\frac{L G D}{1-L G D}\right)$	$L G D=\frac{1}{1+\exp (- \text { TransformedLGD })}$
'probit'	TransformedLGD $=\Phi^{-1}(L G D)$	$L G D=\Phi($ TransformedLGD $)$
'log'	TransformedLGD $=\log (L G D)$	$L G D=\exp ($ TransformedLGD $)$

Version History

Introduced in R2021a
R2023a: modelAccuracy object function is renamed to modelCalibration function
Not recommended starting in R2023a
The modelAccuracy object function is renamed to modelCalibration function. The use of modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot function

Not recommended starting in R2023a
The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

See Also

Functions

fitLGDModel|Tobit|Beta

Topics

"Model Loss Given Default" on page 4-90
"Basic Loss Given Default Model Validation" on page 4-131
"Compare Tobit LGD Model to Benchmark Model" on page 4-133
"Compare Loss Given Default Models Using Cross-Validation" on page 4-140
"Overview of Loss Given Default Models" on page 1-31

Beta

Create Beta model object for loss given default

Description

Create and analyze a Beta model object to calculate loss given default (LGD) using this workflow:
1 Use fitLGDModel to create a Beta model object.
2 Use predict to predict the LGD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using modelDiscriminationPlot.
4 Use modelCalibration to return the R-squared, RMSE, correlation, and sample mean error of predicted and observed LGD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax

BetaLGDModel = fitLGDModel(data,ModelType)
BetaLGDModel = fitLGDModel(\qquad , Name=Value)

Description

BetaLGDModel = fitLGDModel(data,ModelType) creates a Beta LGD model object.
BetaLGDModel = fitLGDModel (__, Name=Value) specifies options using one or more namevalue pair arguments in addition to the input arguments in the previous syntax. The optional namevalue pair arguments set the model object properties on page 6-681. For example, BetaLGDModel = fitLGDModel(data,'Beta',PredictorVars=\{'LTV' 'Age'
'Type'\},ResponseVar='LGD', BoundaryTolerance=1e-4) creates a BetaLGDModel object using a Beta model type.

Input Arguments

data - Data for loss given default

table
Data for loss given default, specified as a table.
Data Types: table

ModelType - Model type

string with value "Beta" | character vector with value 'Beta'
Model type, specified as a string with the value of "Beta" or a character vector with the value of 'Beta'.
Data Types: char | string

Beta Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Example: BetaLGDModel = fitLGDModel(data,'Beta',PredictorVars=\{'LTV' 'Age' 'Type'\},ResponseVar='LGD' ,BoundaryTolerance=1e-4)

ModelID - User-defined model ID
"Beta" (default) | string | character vector
User-defined model ID, specified as ModelID and a string or character vector. The software uses the Model ID text to format outputs and is expected to be short.

Data Types: string | char

Description - User-defined description for model

" " (default) | string | character vector
User-defined description for model, specified as Description and a string or character vector.
Data Types: string | char
PredictorVars - Predictor variables
all columns of data except for ResponseVar (default) | string array | cell array of character vectors
Predictor variables, specified as PredictorVars and a string array or cell array of character vectors. PredictorVars indicates which columns in the data input contain the predictor information. By default, PredictorVars is set to all the columns in the data input except for ResponseVar.
Data Types: string | cell

ResponseVar - Response variable

last column of data (default) | string | character vector
Response variable, specified as ResponseVar and a string or character vector. The response variable contains the LGD data and must be a numeric variable. An LGD value of 0 indicates no loss (full recovery), 1 indicates total loss (no recovery), and values between 0 and 1 indicate a partial loss. By default, ResponseVar is set to the last column.
Data Types: string |char

BoundaryTolerance - Value to perturb LGD responses

1e-5 (default) | positive numeric
Value to perturb LGD response values away from 0 to 1, specified as BoundaryTolerance and a positive scalar numeric.
Data Types: double

SolverOptions - optimoptions object

object
Options for fitting, specified as SolverOptions and an optimoptions object that is created using optimoptions from Optimization Toolbox. The defaults for the optimoptions object are:

- "Display" - "none"
- "Algorithm" - "quasi-newton"
- "MaxFunctionEvaluations" $-500 \times$ Number of model coefficients
- "MaxIterations" - 1000

Note When using optimoptions with a Beta model, specify the SolverName as fminunc.

The number of Beta model coefficients is determined at run time, depending on the number of predictors and the number of categories in the categorical predictors.
Data Types: object

Properties

ModelID - User-defined model ID

Beta (default) | string
User-defined model ID, returned as a string.

Data Types: string

Description - User-defined description

"" (default) | string
User-defined description, returned as a string.
Data Types: string

UnderlyingModel - Underlying statistical model

compact linear model
This property is read-only.
Underlying statistical model, returned as a compact linear model object. The compact version of the underlying regression model is an instance of the risk. internal. credit. BetaModel class.

Data Types: object

PredictorVars - Predictor variables

all columns of data except for the ResponseVar (default) | string array
Predictor variables, returned as a string array.
Data Types: string
ResponseVar - Response variable
last column of data (default) | string
Response variable, returned as a string.
Data Types: string

BoundaryTolerance - Value to perturb LGD responses

le-5 (default) | positive numeric

Value to perturb LGD response values away from 0 to 1 , returned as a positive scalar numeric.
Data Types: double

Object Functions

predict
modelDiscrimination modelDiscriminationPlot modelCalibration
modelCalibrationPlot

Predict loss given default
Compute AUROC and ROC data
Plot ROC curve
Compute R-square, RMSE, correlation, and sample mean error of predicted and observed LGDs
Scatter plot of predicted and observed LGDs

Examples

Create Beta LGD Model

This example shows how to use fitLGDModel to create a Beta model object for loss given default (LGD).

Load LGD Data

Load the LGD data.
load LGDData.mat
head(data)

LTV	Age	Type	LGD
0.89101	0.39716	residential	0. 032659
0.70176	2.0939	residential	0.43564
0.72078	2.7948	residential	0.0064766
0.37013	1.237	residential	0.007947
0.36492	2.5818	residential	0
0.796	1.5957	residential	0.14572
0.60203	1.1599	residential	0.025688
0.92005	0.50253	investment	0.063182

rng('default');
NumObs = height(data);
$\mathrm{c}=$ cvpartition(NumObs,'HoldOut', 0.4);
TrainingInd = training(c);
TestInd = test(c);

Create Beta LGD Model

Use fitLGDModel to create a Beta model object using the TrainingInd data.

```
BetaLGDModel = fitLGDModel(data(TrainingInd,:),'Beta',...
    ModelID='Example LGD Beta',...
    PredictorVars={'LTV' 'Age' 'Type'},...
    ResponseVar='LGD',...
    BoundaryTolerance=2e-05);
disp(BetaLGDModel)
```

```
Beta with properties:
    BoundaryTolerance: 2.0000e-05
                            ModelID: "Example LGD Beta"
        Description: ""
        UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
            PredictorVars: ["LTV" "Age" "Type"]
                ResponseVar: "LGD"
```

Display the underlying model.

```
disp(BetaLGDModel.UnderlyingModel)
```

Beta regression model:
logit(LGD) ~ 1_mu + LTV_mu + Age_mu + Type_mu
log(LGD) ~ 1_phi + LTV_phi + Age_phi + Type_phi
Estimated coefficients:

Estimate	SE	tStat	pValue
-1.3884	0.13116	-10.585	0
0.61404	0.14988	4.0967	4.3501e-05
-0.47446	0.039808	-11.919	0
0.45159	0.084719	5.3305	1.0847e-07
-0.113	0.12578	-0.89843	0.36906
0.030906	0.14692	0.21036	0.83341
0.23972	0.040152	5.9703	$2.7749 \mathrm{e}-09$
-0.14724	0.078187	-1.8831	0.059823

Number of observations: 2093
Log-likelihood: -4976.51

Predict LGD

For Beta models, use predict to calculate the predicted LGD value, which is the unconditional expected value of the response, given the predictor values.

```
predictedLGD = predict(BetaLGDModel,data(TestInd,:))
predictedLGD = 1394×1
    0.0935
    0.1483
    0.3520
    0.0963
    0.1879
    0.2587
    0.2671
    0.0212
    0.1768
    0.2249
```


Validate LGD Model

Use modelDiscriminationPlot to plot the ROC curve.

Use modelCalibrationPlot to show a scatter plot of the predictions. modelCalibrationPlot(BetaLGDModel,data(TestInd,:))

Scatter

More About

Beta Regression Models

Beta regression models model continuous variables that assume values in the open standard unit interval (0,1).

The beta regression model is based on the assumption that the dependent variable is beta-distributed and that its mean is related to a set of regressors through a linear predictor with unknown coefficients and a link function. The beta regression model also includes a precision parameter that may be constant or depend on a potentially different set of regressors through a link function as well.

The beta regression model is based on an alternative parameterization of the beta density in terms of the mean and a precision parameter: $\mu=a /(a+b)$ and $\varphi=a+b, 0<\mu<1, \varphi>0$.

$$
\begin{aligned}
& f(y ; \mu, \phi)=\frac{\Gamma(\phi)}{\Gamma(\mu \phi) \Gamma((1-\mu) \phi)} y^{\mu \phi-1}\left({ }^{1}, \quad 0<y<1,\right. \\
& y \sim \mathrm{~B}(\mu, \varphi) \text { with } \mathrm{E}(y)=\mu, \operatorname{VAR}(\varphi)=\mu(1-\mu) /(1+\varphi)
\end{aligned}
$$

The beta regression model is defined as

$$
\begin{aligned}
& g_{1}\left(\mu_{i}\right)=\eta_{1 i}=x_{i}^{T} \beta, \\
& g_{2}\left(\phi_{i}\right)=\eta_{2 i}=z_{i}^{T} \gamma,
\end{aligned}
$$

where $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)^{\mathrm{T}},{ }^{\gamma}=\left({ }_{0},{ }^{\gamma}{ }_{1}, \ldots,{ }^{\gamma}{ }^{2}\right)^{\mathrm{T}}$ are the regression coefficients, $\eta_{1 i}, \eta_{2 i}$ are the linear predictors, and x_{i}, z_{i} are the independent variables. g_{1} and g_{2} are the link functions where g_{1} is logit and g_{2} is \log.

Parameter estimation is performed by maximum likelihood (ML).

Version History

Introduced in R2022b

R2023a: modelAccuracy object function is renamed to modelCalibration function

 Not recommended starting in R2023aThe modelAccuracy object function is renamed to modelCalibration function. The use of modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot function
 Not recommended starting in R2023a

The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

See Also

Functions

fitLGDModel|Regression | Tobit

Topics

"Model Loss Given Default" on page 4-90
"Basic Loss Given Default Model Validation" on page 4-131
"Compare Tobit LGD Model to Benchmark Model" on page 4-133
"Compare Loss Given Default Models Using Cross-Validation" on page 4-140
"Overview of Loss Given Default Models" on page 1-31

Tobit

Create Tobit model object for loss given default

Description

Create and analyze a Tobit model object to calculate loss given default (LGD) using this workflow:
1 Use fitLGDModel to create a Tobit model object.
2 Use predict to predict the LGD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using modelDiscriminationPlot.
4 Use modelCalibration to return the R-squared, RMSE, correlation, and sample mean error of predicted and observed LGD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax

TobitLGDModel = fitLGDModel(data,ModelType)
TobitLGDModel = fitLGDModel(\qquad ,Name, Value)

Description

TobitLGDModel = fitLGDModel(data,ModelType) creates a Tobit LGD model object.
TobitLGDModel = fitLGDModel (value pair arguments in addition to the input arguments in the pious ung ane value pair arguments set the model object propertios on page 6 689 . For example lgdModel $=$ fitLGDMad (data, ' fitLGDModel(data,'tobit','PredictorVars',\{'LTV' 'Age'
'Type'\},'ResponseVar','LGD', 'CensoringSide','left','LeftLimit', 1e-4) creates a lgdModel object using a Tobit model type.

Input Arguments

data - Data for loss given default

table
Data for loss given default, specified as a table.
Data Types: table

ModelType - Model type

string with value "Tobit" | character vector with value 'Tobit'
Model type, specified as a string with the value of "Tobit" or a character vector with the value of 'Tobit'.
Data Types: char | string

Tobit Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: lgdModel = fitLGDModel(data,'tobit','PredictorVars', \{'LTV' 'Age'
'Type'\},'ResponseVar','LGD','CensoringSide','left','LeftLimit',1e-4)
ModelID - User-defined model ID
"Tobit" (default) | string | character vector
User-defined model ID, specified as the comma-separated pair consisting of 'ModelID' and a string or character vector. The software uses the ModelID text to format outputs and is expected to be short.

Data Types: string | char

Description - User-defined description for model

" " (default) | string | character vector
User-defined description for model, specified as the comma-separated pair consisting of 'Description' and a string or character vector.

Data Types: string |char

PredictorVars - Predictor variables

all columns of data except for ResponseVar (default) | string array | cell array of character vectors
Predictor variables, specified as the comma-separated pair consisting of 'PredictorVars ' and a string array or cell array of character vectors. PredictorVars indicates which columns in the data input contain the predictor information. By default, PredictorVars is set to all the columns in the data input except for ResponseVar.
Data Types: string | cell

ResponseVar - Response variable

last column of data (default) | string | character vector
Response variable, specified as the comma-separated pair consisting of 'ResponseVar' and a string or character vector. The response variable contains the LGD data and must be a numeric variable. An LGD value of 0 indicates no loss (full recovery), 1 indicates total loss (no recovery), and values between 0 and 1 indicate a partial loss. By default, ResponseVar is set to the last column.

Data Types: string | char

CensoringSide - Censoring side

"both" (default) | character vector with value of 'left', 'right', or 'both' | string with value of "left", "right", or "both"

Censoring side, specified as the comma-separated pair consisting of 'CensoringSide' and a character vector or string. CensoringSide indicates whether the desired Tobit model is leftcensored, right-censored, or censored on both sides.

Data Types: string|char

LeftLimit - Left-censoring limit

0 (default) | numeric between 0 and 1
Left-censoring limit, specified as the comma-separated pair consisting of 'LeftLimit' and a scalar numeric between 0 and 1 .

Data Types: double

RightLimit - Right-censoring limit

1 (default) | numeric between 0 and 1
Right-censoring limit, specified as the comma-separated pair consisting of 'RightLimit' and a scalar numeric between 0 and 1 .

Data Types: double

SolverOptions - optimoptions object

object
Options for fitting, specified as the comma-separated pair consisting of 'SolverOptions ' and an optimoptions object that is created using optimoptions from Optimization Toolbox. The defaults for the optimoptions object are:

- "Display" - "none"
- "Algorithm" - "sqp"
- "MaxFunctionEvaluations" $-500 \times$ Number of model coefficients
- "MaxIterations" - The number of Tobit model coefficients is determined at run time, it depends on the number of predictors and the number of categories in the categorical predictors.

Note When using optimoptions with a Tobit model, specify the SolverName as fmincon.

Data Types: object

Properties

ModelID - User-defined model ID

Tobit (default) | string
User-defined model ID, returned as a string.
Data Types: string

Description - User-defined description

" " (default) | string
User-defined description, returned as a string.
Data Types: string
UnderlyingModel - Underlying statistical model
compact linear model
This property is read-only.

Underlying statistical model, returned as a compact linear model object. The compact version of the underlying regression model is an instance of the classreg. regr. CompactLinearModel class. For more information, see fitlm and CompactLinearModel.

Data Types: CompactLinearModel
PredictorVars - Predictor variables
all columns of data except for the ResponseVar (default) | string array
Predictor variables, returned as a string array.
Data Types: string
ResponseVar - Response variable
last column of data (default) | string
Response variable, returned as a string.
Data Types: string

CensoringSide - Censoring side

"both" (default) | string with value of "left", "right", or "both"
This property is read-only.
Censoring side, returned as a string.
Data Types: string

LeftLimit - Left-censoring limit

0 (default) | numeric between 0 and 1
This property is read-only.
Left-censoring limit, returned as a scalar numeric between 0 and 1 .
Data Types: double
RightLimit - Right-censoring limit
1 (default) | numeric between 0 and 1
This property is read-only.
Right-censoring limit, returned as a scalar numeric between 0 and 1.
Data Types: double

```
Object Functions
predict Predict loss given default
modelDiscrimination Compute AUROC and ROC data
modelDiscriminationPlot Plot ROC curve
modelCalibration Compute R-square, RMSE, correlation, and sample mean error of
    predicted and observed LGDs
    Scatter plot of predicted and observed LGDs
```


Examples

Create Tobit LGD Model

This example shows how to use fitLGDModel to create a Tobit model for loss given default (LGD).

Load LGD Data

Load the LGD data.

Create Tobit LGD Model

Use fitLGDModel to create a Tobit model using the TrainingInd data.

```
lgdModel = fitLGDModel(data(TrainingInd,:),'Tobit',...
    'ModelID','Example Tobit',...
    'PredictorVars',{'LTV' 'Age' 'Type'},...
    'ResponseVar','LGD',...
    'CensoringSide','left',...
    'LeftLimit',1e-4);
disp(lgdModel)
    Tobit with properties:
        CensoringSide: "left"
            LeftLimit: 1.0000e-04
            RightLimit: 1
                ModelID: "Example Tobit"
            Description: ""
        UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
            PredictorVars: ["LTV" "Age" "Type"]
            ResponseVar: "LGD"
```

Display the underlying model. The underlying model is a left-censored Tobit model. Use the 'CensoringSide' argument and the 'LeftLimit' and 'RightLimit' arguments to modify the underlying Tobit model.
disp(lgdModel.UnderlyingModel)

```
Tobit regression model, left-censored:
    LGD = max(0.0001,Y*)
```


Predict LGD

For Tobit models, use predict to calculate the predicted LGD value, which is the unconditional expected value of the response, given the predictor values.

```
predictedLGD = predict(lgdModel,data(TestInd,:))
predictedLGD = 1394×1
    0.0871
    0.1228
    0.3181
    0.0926
    0.1654
    0.2215
    0.2347
    0.0102
    0.1576
    0.1969
```


Validate LGD Model

Use modelDiscriminationPlot to plot the ROC curve.
modelDiscriminationPlot(lgdModel,data(TestInd,:))

Use modelCalibrationPlot to show a scatter plot of the predictions.
modelCalibrationPlot(lgdModel,data(TestInd,:))

More About

Loss Given Default Tobit Models

The loss given default (LGD) Tobit models fit a Tobit model to LGD data.
Tobit models are "censored" regression models. Tobit models assume that the response variable can be observed only within certain limits, and no value outside the limits can be observed. In the case of LGD models, the limits are typically 0 (total recovery or cure) and 1 (total loss). A distribution of response values where there is a high frequency of observations at the limits is consistent with the model assumptions. For LGD models, it is common to have distributions with a high proportion of cures, or high proportion of total losses, or both.

The Tobit model combines the following two formulas:

$$
\begin{aligned}
& Y=\min \left\{\max \left\{L, Y^{*}\right\}, R\right\} \\
& Y^{*}=\beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{p} X_{p}+\sigma \varepsilon=X \beta+\sigma \varepsilon
\end{aligned}
$$

where

- Y is the observed response variable, the observed LGD data for an LGD model.
- L is the left limit, the lower bound for the response values, typically 0 for LGD models.
- R is the right limit, the upper bound for the response values, typically 1 for LGD models.
- Y^{*} is a latent, unobserved variable.
- β_{j} is the coefficient of the j th predictor (or the intercept for $j=0$).
- σ is the standard deviation of the error term.
- ε is the error term, assumed to follow a standard normal distribution.

The first formula above is written using min and max operators and is equivalent to

$$
Y=\left\{\begin{array}{l}
L \text { if } Y^{*} \leq L \\
Y^{*} \text { if } L<Y^{*}<R \\
R \quad \text { if } Y^{*} \geq R
\end{array}\right\}
$$

The standard deviation of the error is explicitly indicated in the formulas. Unlike traditional regression least-squares estimation, where the standard deviation of the error can be inferred from the residuals, for Tobit models the estimation is via maximum likelihood and the standard deviation needs to be handled explicitly during the estimation. If there are p predictor variables, the Tobit model estimates $p+2$ coefficients, namely, one coefficient for each predictor, plus an intercept, plus a standard deviation.

Three censoring side options are supported in the Tobit LGD models with the CensoringSide namevalue argument:

- 'both ' - This is the default option, with censoring on both sides. The estimation uses left and right limits.
- ' left ' - The left-censored version of the model has no right limit (or $R=\infty$). The relationship between Y and Y^{*} is $Y=\max \left\{L, Y^{*}\right\}$.
- 'right' - The right-censored version of the model has no left limit (or $L=-\infty$). The relationship between Y and Y^{*} is $Y=\min \left\{Y^{*}, R\right\}$.

The parameters of the Tobit model are estimated using maximum likelihood. For observation $i=1$, ...,n, the likelihood function is

$$
L F\left(\beta, \sigma \mid X_{i}, Y_{i}\right)=\left\{\begin{array}{ll}
\Phi\left(L ; X_{i} \beta, \sigma\right) & \text { if } Y_{i} \leq L \\
\phi\left(Y_{i} ; X_{i} \beta, \sigma\right) & \text { if } L<Y_{i}<R \\
1-\Phi\left(R ; X_{i} \beta, \sigma\right) & \text { if } Y_{i} \geq R
\end{array}\right\}
$$

where

- $\Phi(x ; m, s)$ is the cumulative normal distribution with mean m and standard deviation s.
- $\phi(x ; m, s)$ is the normal density function with mean m and standard deviation s.

This likelihood function is for models censored on both sides. For left-censored models, the right limit has no effect, and the likelihood function has two cases only ($R=\infty$); likewise for right-censored models $(L=-\infty)$.

The log-likelihood function is the sum of the logarithm of the likelihood functions for individual observations

$$
\operatorname{LLF}(\beta, \sigma \mid X, Y)=\sum_{i=1}^{n} \log \left(L F\left(\beta, \sigma \mid X_{i}, Y_{i}\right)\right)
$$

The parameters are estimated by maximizing the log-likelihood function. The only constraint is that the σ parameter must be positive.

To predict an LGD value, Tobit LGD models return the unconditional expected value of the response, given the predictor values

$$
L G D_{i}^{\text {pred }}=E\left[Y_{i} \mid X_{i}\right]
$$

The expression for the expected value can be separated into the cases

$$
\begin{aligned}
& E[Y]=E[Y \mid Y=L] P(Y=L) \\
& +E[Y \mid L<Y<R] P(L<Y<R) \\
& +E[Y \mid Y=R] P(Y=R)
\end{aligned}
$$

Using the previous expression and the properties of the (truncated) normal distribution, it follows that

$$
E\left[Y_{i} \mid X_{i}\right]=\Phi\left(a_{i}\right) L+\left(\Phi\left(b_{i}\right)-\Phi\left(a_{i}\right)\right)\left(X_{i} \beta+\sigma \lambda_{i}\right)+\left(1-\Phi\left(b_{i}\right)\right) R
$$

where

$$
a_{i}=\frac{L-X_{i} \beta}{\sigma}, b_{i}=\frac{R-X_{i} \beta}{\sigma}, \text { and } \lambda_{i}=\frac{\phi\left(a_{i}\right)-\phi\left(b_{i}\right)}{\Phi\left(b_{i}\right)-\Phi\left(a_{i}\right)}
$$

This expression applies to the models censored on both sides. For models censored on one side only, the corresponding expressions can be derived from here. For example, for left-censored models, let the R limit in the expression above go to infinity, and the resulting expression is

$$
E\left[Y_{i} \mid X_{i}\right]=\Phi\left(a_{i}\right) L+\left(1-\Phi\left(a_{i}\right)\right)\left(X_{i} \beta+\sigma \frac{\phi\left(a_{i}\right)}{1-\Phi\left(a_{i}\right)}\right)
$$

Similarly, for right-censored models, the L limit is decreased to minus infinity to get

$$
E\left[Y_{i} \mid X_{i}\right]=\Phi\left(b_{i}\right)\left(X_{i} \beta-\sigma \frac{\phi\left(b_{i}\right)}{\Phi\left(b_{i}\right)}\right)+\left(1-\Phi\left(b_{i}\right)\right) R
$$

Version History

Introduced in R2021a
R2023a: modelAccuracy object function is renamed to modelCalibration function
Not recommended starting in R2023a
The modelAccuracy object function is renamed to modelCalibration function. The use of modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot function
Not recommended starting in R2023a
The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

See Also

Functions

fitLGDModel|Regression | Beta

Topics

"Model Loss Given Default" on page 4-90
"Basic Loss Given Default Model Validation" on page 4-131
"Compare Tobit LGD Model to Benchmark Model" on page 4-133
"Compare Loss Given Default Models Using Cross-Validation" on page 4-140
"Overview of Loss Given Default Models" on page 1-31

varbacktest

Create varbacktest object to run suite of value-at-risk (VaR) backtests

Description

The general workflow is:
1 Load or generate the data for the VaR backtesting analysis.
2 Create a varbacktest object. For more information, see "Create varbacktest" on page 6-698.
3 Use the summary function to generate a summary report for the given data on the number of observations and the number of failures.
4 Use the runtests function to run all tests at once.
5 For additional test details, run the following individual tests:

- tl - Traffic light test
- bin - Binomial test
- pof - Proportion of failures
- tuff - Time until first failure
- cc - Conditional coverage mixed
- cci - Conditional coverage independence
- tbf - Time between failures mixed
- tbfi - Time between failures independence

For more information, see "VaR Backtesting Workflow" on page 2-6.

Creation

Syntax

```
vbt = varbacktest(PortfolioData,VaRData)
vbt = varbacktest(
```

\qquad

``` ,Name, Value)
```


Description

vbt = varbacktest(PortfolioData,VaRData) creates a varbacktest (vbt) object using portfolio outcomes data and corresponding value-at-risk (VaR) data. The vbt object has the following properties:

- PortfolioData on page 6-0 - NumRows-by-1 numeric array containing a copy of the PortfolioData
- VaRData on page 6-0 - NumRows-by-NumVaRs numeric array containing a copy of the VaRData
- PortfolioID on page 6-0 — String containing the PortfolioID
- VaRID on page 6-0 - 1-by-NumVaRs string vector containing the VaRIDs for the corresponding columns in VaRData
- VaRLevel on page 6-0 - 1-by-NumVaRs numeric array containing the VaRLevels for the corresponding columns in VaRData.

Note

- The required input arguments for PortfolioData and VaRData must all be in the same units. These arguments can be expressed as returns or as profits and losses. There are no validations in the varbacktest object regarding the units of these arguments.
- If there are missing values (NaNs) in the data for PortfolioData or VaRData, the row of data is discarded before applying the tests. Therefore, a different number of observations are reported for models with different number of missing values. The reported number of observations equals the original number of rows minus the number of missing values. To determine if there are discarded rows, use the 'Missing' column of the summary report.
vbt = varbacktest(___ ,Name, Value) sets Properties on page 6-701 using name-value pairs and any of the arguments in the previous syntax. For example, vbt $=$ varbacktest(PortfolioData,VaRData,'PortfolioID','Equity100', 'VaRID', 'TotalVaR ', 'VaRLevel' , .99). You can specify multiple name-value pairs as optional name-value pair arguments.

Input Arguments

PortfolioData - Portfolio outcomes data

NumRows-by-1 numeric array | NumRows-by-1 numeric columns table | NumRows-by-1 numeric columns timetable

Portfolio outcomes data, specified as a NumRows-by-1 numeric array, NumRows-by-1 table, or a NumRows-by-1 timetable with a numeric column containing portfolio outcomes data. PortfolioData input sets the PortfolioData on page 6-0 property.

Note The required input arguments for PortfolioData and VaRData must all be in the same units. These arguments can be expressed as returns or as profits and losses. There are no validations in the varbacktest object regarding the units of these arguments.

Data Types: double |table | timetable

VaRData - Value-at-risk (VaR) data

NumRows-by-NumVaRs numeric array | NumRows-by-NumVaRs table with numeric columns | NumRows-by-NumVaRs timetable with numeric columns

Value-at-risk (VaR) data, specified using a NumRows-by-NumVaRs numeric array, NumRows-by-NumVaRs table, or a NumRows-by-NumVaRs timetable with numeric columns. VaRData input sets the VaRData on page 6-0 property.

If VaRData has more than one column (NumVaRs> 1), the PortfolioData is tested against each column in VaRData. By default, a 0.95 VaR confidence level is used for all columns in VaRData. (Use VaRLevel to specify different VaR confidence levels.)

The convention is that VaR is a positive amount. Therefore, a failure is recorded when the loss (the negative of the portfolio data) exceeds the VaR, that is, when

```
-PortfolioData > VaRData
```

For example, a VaR of $1,000,000$ (positive) is violated whenever there is an outcome worse than a $1,000,000$ loss (the negative of the portfolio outcome, or loss, is larger than the VaR).

Negative VaRData values are allowed, however negative VaR values indicate a highly profitable portfolio that cannot lose money at the given VaR confidence level. That is, the worst-case scenario at the given confidence level is still a profit.

Note The required input arguments for PortfolioData and VaRData must all be in the same units. These arguments can be expressed as returns or as profits and losses. There are no validations in the varbacktest object regarding the units of these arguments.

Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

```
Example: vbt =
varbacktest(PortfolioData,VaRData,'PortfolioID','Equity100','VaRID','TotalVaR
','VaRLevel',.99)
```


PortfolioID - User-defined ID for PortfolioData input

character vector | string

User-defined ID for PortfolioData input, specified as the comma-separated pair consisting of 'PortfolioID' and a character vector or string. The PortfolioID name-value pair argument sets the PortfolioID on page 6-0 property.

If PortfolioData is a numeric array, the default value for PortfolioID is 'Portfolio'. If PortfolioData is a table, PortfolioID is set by default to the corresponding variable name in the table.

Data Types: char \| string

VaRID - VaR identifier for VaRData columns

character vector | cell array of character vectors | string | string array
VaR identifier for VaRData columns, specified as the comma-separated pair consisting of 'VaRID' and a character vector or string. Multiple VaRIDs are specified using a 1-by-NumVaRs (or NumVaRs-by-1) cell array of character vectors or string vector with user-defined IDs for the VaRData columns. The VaRID name-value pair argument sets the VaRID on page 6-0 property.

If NumVaRs = 1 , the default value for VaRID is 'VaR'. If NumVaRs >1, the default value is 'VaR1', 'VaR2', and so on. If VaRData is a table, 'VaRID' is set by default to the corresponding variable names in the table.

Data Types: char|cell|string

VaRLevel - VaR confidence level

0.95 (default) | numeric with values between 0 and 1 | numeric array with values between 0 and 1

VaR confidence level, specified as the comma-separated pair consisting of 'VaRLevel' and a numeric between 0 and 1 or a 1 -by-NumVaRs numeric array with values between 0 and 1 for the corresponding columns in VaRData. The VaRLevel name-value pair argument sets the VaRLevel on page 6-0 property.
Data Types: double

Properties

PortfolioData - Portfolio data for VaR backtesting analysis

numeric array
Portfolio data for the VaR backtesting analysis, specified as a NumRows-by-1 numeric array containing a copy of the portfolio data.
Data Types: double

VaRData - VaR data for VaR backtesting analysis

numeric array
VaR data for the VaR backtesting analysis, specified as a NumRows-by-NumVaRs numeric array containing a copy of the VaR data.

Data Types: double

PortfolioID - Portfolio identifier

string
Portfolio identifier, specified as a string.
Data Types: string
VaRID - VaR identifier
string array
VaR identifier, specified as a 1-by-NumVaRs string array containing the VaR IDs for the corresponding columns in VaRData.

Data Types: string

VaRLevel - VaR level

numeric array with values between 0 and 1
VaR level, specified as a 1-by-NumVaRs numeric array containing the VaR levels for the corresponding columns in VaRData.

Data Types: double

varbacktest Property	Set or Modify Property from Command Line Using varbacktest	Modify Property Using Dot Notation
PortfolioData	Yes	No
VaRData	Yes	No
PortfolioID	Yes	Yes
VaRID	Yes	Yes
VaRLevel	Yes	Yes

Object Functions

tl
Traffic light test for value-at-risk (VaR) backtesting
bin Binomial test for value-at-risk (VaR) backtesting
pof Proportion of failures test for value-at-risk (VaR) backtesting
tuff Time until first failure test for value-at-risk (VaR) backtesting
cc Conditional coverage mixed test for value-at-risk (VaR) backtesting
cci Conditional coverage independence test for value-at-risk (VaR) backtesting
tbf Time between failures mixed test for value-at-risk (VaR) backtesting
tbfi Time between failures independence test for value-at-risk (VaR) backtesting
summary Report on varbacktest data
runtests Run all tests in varbacktest

Examples

Create varbacktest Object and Run VaR Backtests for Single VaR at 95\%

varbacktest takes in portfolio outcomes data and corresponding value-at-risk (VaR) data and returns a varbacktest object.

Create a varbacktest object.

```
load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)
vbt =
    varbacktest with properties:
        PortfolioData: [1043x1 double]
            VaRData: [1043x1 double]
            PortfolioID: "Portfolio"
            VaRID: "VaR"
            VaRLevel: 0.9500
```

vbt, the varbacktest object, contains a copy of the given portfolio data (PortfolioData property), the given VaR data (VaRData property) and all combinations of portfolio ID, VaR ID, and VaR level to be tested (PortfolioID, VaRID, and VaRLevel properties).

Run the tests using the vbt object.

```
runtests(vbt)
```

```
ans=1\times11 table
\begin{tabular}{llllllllll} 
PortfolioID & VaRID & VaRLevel & TL & & Bin & & POF & TUFF & CC
\end{tabular}
```

Change the PortfolfioID and VaRID properties using dot notation.

```
vbt.PortfolioID = 'S&P'
vbt =
    varbacktest with properties:
        PortfolioData: [1043x1 double]
            VaRData: [1043x1 double]
        PortfolioID: "S&P"
            VaRID: "VaR"
            VaRLevel: 0.9500
```

vbt. VaRID = 'Normal at 95\%'
vbt =
varbacktest with properties:
PortfolioData: [1043x1 double]
VaRData: [1043x1 double]
PortfolioID: "S\&P"
VaRID: "Normal at 95\%"
VaRLevel: 0.9500

Run all tests using the updated varbacktest object.

```
runtests(vbt)
```

```
ans=1\times11 table
```

 PortfolioID VaRID VaRLevel TL Bin POF TUFF
 -
 "S\&P" "Normal at 95\%"
 $\underline{ }$

$\mathrm{TL} \quad \mathrm{Bin}$

0.95
green
accept

POF
TUFF
accept

CC
accept

Run VaR Backtests for a Single VaR at 95\%
Create a varbacktest object.

```
    load VaRBacktestData
    vbt = varbacktest(EquityIndex,Normal95)
vbt =
    varbacktest with properties:
        PortfolioData: [1043x1 double]
            VaRData: [1043x1 double]
```

```
PortfolioID: "Portfolio"
    VaRID: "VaR"
    VaRLevel: 0.9500
```

vbt, the varbacktest object, contains a copy of the given portfolio data (PortfolioData property), the given VaR data (VaRData property) and all combinations of portfolio ID, VaR ID, and VaR level to be tested (PortfolioID, VaRID, and VaRLevel properties).

Run the tests using the varbacktest object.

```
runtests(vbt)
ans=1\times11 table
    PortfolioID 
    "Portfolio" "VaR" 0.95 green accept accept accept accept accept
```

Change the PortfolfioID and VaRID properties using dot notation.

```
vbt.PortfolioID = 'S&P'
vbt =
    varbacktest with properties:
        PortfolioData: [1043x1 double]
            VaRData: [1043x1 double]
        PortfolioID: "S&P"
            VaRID: "VaR"
            VaRLevel: 0.9500
vbt.VaRID = 'Normal at 95%'
vbt =
    varbacktest with properties:
        PortfolioData: [1043x1 double]
            VaRData: [1043x1 double]
        PortfolioID: "S&P"
            VaRID: "Normal at 95%"
            VaRLevel: 0.9500
```

Run all tests using the updated varbacktest object.

```
    runtests(vbt)
```

```
ans=1\times11 table
\begin{tabular}{ccccccccc} 
PortfolioID & VaRID & VaRLevel & TL & & Bin & & POF & TUFF
\end{tabular}
```


Run VaR Backtests for Multiple VaRs at Different Confidence Levels

Create a varbacktest object that has multiple VaR identifiers with different confidence levels.

```
load VaRBacktestData
    vbt = varbacktest(EquityIndex,...
        [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
        'PortfolioID','Equity',...
        'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
        'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);
```

Run the summary report for the varbacktest object.

```
summary(vbt)
```


Run all tests using the varbacktest object.

```
runtests(vbt)
ans=6\times11 table
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PortfolioID & VaRID & VaRLevel & TL & Bin & POF & TUFF & CC \\
\hline "Equity" & "Normal95" & 0.95 & green & accept & accept & accept & accept \\
\hline "Equity" & "Normal99" & 0.99 & yellow & reject & accept & accept & accept \\
\hline "Equity" & "Historical95" & 0.95 & green & accept & accept & accept & accept \\
\hline "Equity" & "Historical99" & 0.99 & green & accept & accept & accept & accept \\
\hline "Equity" & "EWMA95" & 0.95 & green & accept & accept & accept & accept \\
\hline "Equity" & "EWMA99" & 0.99 & yellow & reject & reject & accept & reject \\
\hline
\end{tabular}
```

Run the traffic light test (tl) using the varbacktest object.

```
tl(vbt)
```

ans $=6 \times 9$ table

PortfolioID	VaRID	VaRLevel	TL	Probability	TypeI	Increase
"Equity"	"Normal95"	0.95	green	0.77913	0.26396	0
"Equity"	"Normal99"	0.99	yellow	0.97991	0.03686	0.26582
"Equity"	"Historical95"	0.95	green	0.85155	0.18232	0
"Equity"	"Historical99"	0.99	green	0.74996	0.35269	0
"Equity"	"EWMA95"	0.95	green	0.85155	0.18232	0
"Equity"	"EWMA99"	0.99	yellow	0.99952	0.0011122	0.43511

Run VaR Backtests for Multiple Portfolios and Concatenate Results

Use varbacktest with table inputs and name-value pair arguments to create two varbacktest objects and run the concatenated summary report. varbacktest uses the variable names in the table inputs as PortfolioID and VaRID.

```
load VaRBacktestData
vbtE = varbacktest(DataTable(:,2),DataTable(:,3:4),'VaRLevel',[0.95 0.99]);
vbtD = varbacktest(DataTable(:,5),DataTable(:,6:7),'VaRLevel',[0.95 0.99]);
[summary(vbtE); summary(vbtD)]
```

ans $=4 \times 10$ table

PortfolioID	VaRID	VaRLevel	ObservedLevel	Observations	Failures
"Equity"	"VaREquity95"	0.95	0.94343	1043	59
"Equity"	"VaREquity99"	0.99	0.97891	1043	22
"Derivatives"	"VaRDerivatives95"	0.95	0.95014	1043	52
"Derivatives"	"VaRDerivatives99"	0.99	0.97028	1043	31

Run all the tests and concatenate the results.
[runtests(vbtE); runtests(vbtD)]
ans $=4 \times 11$ table

PortfolioID
\qquad
VaRID
"Equity"
"Equity"
"Derivatives"
"Derivatives"
"VaREquity95"
"VaREquity99"
"VaRDerivatives95"
"VaRDerivatives99"

VaRLevel
\qquad
0.9
0.99
0.95
0.99
TL
green yellow green red

Bin
accept
reject accept reject

POF
\qquad
TUFF
accept accept reject accept accept accept reject accept

Run the pof test and concatenate the results.

```
[pof(vbtE); pof(vbtD)]
```

ans $=4 \times 9$ table

PortfolioID	VaRID	VaRLevel	POF	LRatioP0F	PValuePOF
"Equity"	"VaREquity95"	0.95	accept	0.91023	0.34005
"Equity"	"VaREquity99"	0.99	reject	9.8298	0.0017171
"Derivatives"	"VaRDerivatives95"	0.95	accept	0.00045457	0.98299
"Derivatives"	"VaRDerivatives99"	0.99	reject	26.809	$2.2457 \mathrm{e}-07$

Version History

Introduced in R2016b

References

[1] Basel Committee on Banking Supervision, Supervisory Framework for the Use of 'Backtesting' in Conjunction with the Internal Models Approach to Market Risk Capital Requirements. January, 1996, https://www.bis.org/publ/bcbs22.htm.
[2] Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol. 39, 1998, pp. 841-862.
[3] Cogneau, Ph. "Backtesting Value-at-Risk: How Good is the Model?" Intelligent Risk, PRMIA, July, 2015.
[4] Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar, Bonn, 2001.
[5] Jorion, Ph. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.
[6] Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal of Derivatives. Vol. 3, 1995, pp. 73-84.
[7] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management. Princeton University Press, 2005.
[8] Nieppola, O. "Backtesting Value-at-Risk Models." Helsinki School of Economics, 2009.

See Also

tl|tuff|bin|pof|cc|cci|tbf|tbfi|summary|runtests|table|esbacktest| esbacktestbysim

Topics

"VaR Backtesting Workflow" on page 2-6
"Value-at-Risk Estimation and Backtesting" on page 2-10
"Overview of VaR Backtesting" on page 2-2
"Comparison of ES Backtesting Methods" on page 2-26

[^0]: disp(head(dataMacro))

