
Risk Management Toolbox™
User’s Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Risk Management Toolbox™ User’s Guide
© COPYRIGHT 2016 – 2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2016 Online only New for Version 1.0 (Release 2016b)
March 2017 Online only Revised for Version 1.1 (Release 2017a)
September 2017 Online only Revised for Version 1.2 (Release 2017b)
March 2018 Online only Revised for Version 1.3 (Release 2018a)
September 2018 Online only Revised for Version 1.4 (Release 2018b)
March 2019 Online only Revised for Version 1.5 (Release 2019a)
September 2019 Online only Revised for Version 1.6 (Release 2019b)
March 2020 Online only Revised for Version 1.7 (Release 2020a)
September 2020 Online only Revised for Version 1.8 (Release 2020b)
March 2021 Online only Revised for Version 1.9 (Release 2021a)
September 2021 Online only Revised for Version 1.10 (Release 2021b)
March 2022 Online only Revised for Version 2.0 (Release 2022a)
September 2022 Online only Revised for Version 2.1 (Release 2022b)
March 2023 Online only Revised for Version 2.2 (Release 2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Getting Started
1

Risk Management Toolbox Product Description . 1-2

Risk Modeling with Risk Management Toolbox . 1-3
Consumer Credit Risk . 1-3
Corporate Credit Risk . 1-3
Market Risk . 1-5
Insurance Risk . 1-6
Lifetime Models for Probability of Default . 1-6
Loss Given Default Models . 1-7
Exposure at Default Models . 1-7

Credit Rating Migration Risk . 1-10

Default Probability by Using the Merton Model for Structural Credit Risk
. 1-13

Concentration Indices . 1-15

Overview of Claims Estimation Methods for Non-Life Insurance 1-16
Workflow to Estimate Unpaid Claims . 1-16
Estimation of Ultimate Claims Using Development Triangles 1-17
Estimation of Unpaid Claims Using Chain Ladder Method 1-19
Estimation of Unpaid Claims Using Expected Claims Method 1-20
Estimation of Unpaid Claims Using Bornhuetter-Ferguson Method 1-21
Estimation of Unpaid Claims Using Cape Cod Method 1-23

Overview of Lifetime Probability of Default Models 1-25
Traditional PD Models Compared to Lifetime PD Models 1-25
Model Development and Validation . 1-26
Computation of Lifetime ECL . 1-27
Lifetime Credit Analysis Compared to Stress Testing 1-28

Overview of Loss Given Default Models . 1-31
Model Development and Validation . 1-31

Overview of Exposure at Default Models . 1-34
Model Development and Validation . 1-34

iii

Contents

Market Risk Measurements Using VaR BackTesting Tools
2

Overview of VaR Backtesting . 2-2
Binomial Test . 2-2
Traffic Light Test . 2-3
Kupiec’s POF and TUFF Tests . 2-3
Christoffersen’s Interval Forecast Tests . 2-4
Haas’s Time Between Failures or Mixed Kupiec’s Test 2-4

VaR Backtesting Workflow . 2-6

Value-at-Risk Estimation and Backtesting . 2-10

Overview of Expected Shortfall Backtesting . 2-20
Conditional Test by Acerbi and Szekely . 2-21
Unconditional Test by Acerbi and Szekely . 2-22
Quantile Test by Acerbi and Szekely . 2-22
Minimally Biased Test by Acerbi and Szekely . 2-23
ES Backtest Using Du-Escanciano Method . 2-24
Comparison of ES Backtesting Methods . 2-26

Expected Shortfall (ES) Backtesting Workflow with No Model Distribution
Information . 2-30

Expected Shortfall (ES) Backtesting Workflow Using Simulation 2-34

Expected Shortfall Estimation and Backtesting . 2-44

Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano
. 2-63

Rolling Windows and Multiple Models for Expected Shortfall (ES)
Backtesting by Du and Escanciano . 2-72

Managing Consumer Credit Risk Using the Binning Explorer
for Credit Scorecards

3
Overview of Binning Explorer . 3-2

Common Binning Explorer Tasks . 3-4
Import Data . 3-4
Change Predictor Type . 3-5
Change Binning Algorithm for One or More Predictors 3-6
Change Algorithm Options for Binning Algorithms 3-7
Split Bins for a Numeric Predictor . 3-11
Split Bins for a Categorical Predictor . 3-13
Manual Binning to Merge Bins for a Numeric or Categorical Predictor . . 3-15
Change Bin Boundaries for a Single Predictor . 3-16
Change Bin Boundaries for Multiple Predictors . 3-17

iv Contents

Set Options for Display . 3-18
Export and Save the Binning . 3-19
Troubleshoot the Binning . 3-19

Bin Data to Create Credit Scorecards Using Binning Explorer 3-23

Stress Testing of Consumer Credit Default Probabilities Using Panel Data
. 3-36

compactCreditScorecard Object Workflow . 3-57

Feature Screening with screenpredictors . 3-64

Use Reject Inference Techniques with Credit Scorecards 3-69

Credit Scoring Using Logistic Regression and Decision Trees 3-87

Explore Fairness Metrics for Credit Scoring Model 3-98

Bias Mitigation in Credit Scoring by Reweighting 3-110

Bias Mitigation in Credit Scoring by Disparate Impact Removal 3-119

Create Custom Lifetime PD Model for Credit Scorecard Model with
Function Handle . 3-131

Corporate Credit Risk Simulations for Portfolios
4

Credit Simulation Using Copulas . 4-2
Factor Models . 4-2
Supported Simulations . 4-3

creditDefaultCopula Simulation Workflow . 4-5

creditMigrationCopula Simulation Workflow . 4-10

Modeling Correlated Defaults with Copulas . 4-18

Modeling Probabilities of Default with Cox Proportional Hazards 4-28

Analyze the Sensitivity of Concentration to a Given Exposure 4-49

Compare Concentration Indices for Random Portfolios 4-51

Comparison of the Merton Model Single-Point Approach to the Time-
Series Approach . 4-54

Calculating Regulatory Capital with the ASRF Model 4-59

One-Factor Model Calibration . 4-64

v

Compare Probability of Default Using Through-the-Cycle and Point-in-
Time Models . 4-75

Model Loss Given Default . 4-90

Compare Logistic Model for Lifetime PD to Champion Model 4-113

Compare Lifetime PD Models Using Cross-Validation 4-121

Expected Credit Loss Computation . 4-124

Basic Lifetime PD Model Validation . 4-129

Basic Loss Given Default Model Validation . 4-131

Compare Tobit LGD Model to Benchmark Model 4-133

Compare Loss Given Default Models Using Cross-Validation 4-140

Compare Model Discrimination and Model Calibration to Validate of
Probability of Default . 4-144

Compare Results for Regression and Tobit EAD Models 4-151

Mean Square Error of Prediction for Estimated Ultimate Claims 4-161

Bootstrap Using Chain Ladder Method . 4-168

Interpret and Stress-Test Deep Learning Networks for Probability of
Default . 4-178

Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL
Calculations . 4-195

Create Custom Lifetime PD Model for Decision Tree Model with Function
Handle . 4-224

Measure Transition Risk for Loan Portfolios with Respect to Climate
Scenarios . 4-231

Assess Physical and Transition Risk for Mortgages 4-248

Analyze Transition Scenarios for Climate-Related Financial Risks 4-267

Interpretability and Explainability for Credit Scoring 4-287

Model Risk Management with Modelscape
5

Get Started with Modelscape . 5-2
Installation . 5-2

vi Contents

Modelscape Workflow . 5-2

Modelscape Governance . 5-4
Modelscape Governance Workflow . 5-4

Modelscape Develop . 5-6
Modelscape Develop Workflow . 5-6

Modelscape Validate . 5-9
Modelscape Validate Workflow . 5-9

Modelscape Test . 5-12
Modelscape Test Workflow . 5-12

Modelscape Deploy . 5-13
Modelscape Deploy Workflow . 5-13

Extensibility . 5-15
Customize Inventory Browser . 5-15
Implement Test Metrics . 5-15
Customize Review Editor . 5-15

Model Development and Experiment Manager . 5-16

Remove Risk Factors . 5-22

Fairness Metrics in Modelscape . 5-26

Screen Risk Factors by Custom Criteria . 5-30

Model Documentation in Modelscape . 5-35

Metrics Handlers . 5-45

Credit Scorecard Validation Metrics . 5-48

Validation of Credit Models in ECB Templates . 5-57

Validation of External Models . 5-60

File Attachments in Modelscape Review Editor . 5-68

Customization of Signoff Forms in Review Editor 5-70

Model Implementation for Modelscape Deploy . 5-74

Customizing Model Inventory: Risk Tiering . 5-78

Test Metrics in Modelscape . 5-85

vii

Functions
6

viii Contents

Getting Started

• “Risk Management Toolbox Product Description” on page 1-2
• “Risk Modeling with Risk Management Toolbox” on page 1-3
• “Credit Rating Migration Risk” on page 1-10
• “Default Probability by Using the Merton Model for Structural Credit Risk” on page 1-13
• “Concentration Indices” on page 1-15
• “Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16
• “Overview of Lifetime Probability of Default Models” on page 1-25
• “Overview of Loss Given Default Models” on page 1-31
• “Overview of Exposure at Default Models” on page 1-34

1

Risk Management Toolbox Product Description
Develop risk models and perform risk simulation

Risk Management Toolbox provides functions and interactive workflows for mathematical modeling
and simulation of credit, insurance, and market risk. You can perform lifetime credit modeling of
probabilities of default (PD), exposure at default (EAD), and loss given default (LGD), as well as
expected credit loss (ECL) calculations. You can assess corporate and consumer credit risk, create
credit scorecards, estimate probabilities of default, perform credit portfolio analysis, and backtest
models to assess potential for financial loss. The toolbox lets you identify important scorecard
variables using the predictor screening tools and use the Binning Explorer app to automatically or
manually bin variables for credit scorecards. It also includes mortality and unpaid claims models to
quantify and analyze insurance risk. Market risk can be assessed with backtesting and simulation
tools to evaluate value-at-risk (VaR) and expected shortfall (ES).

1 Getting Started

1-2

Risk Modeling with Risk Management Toolbox
In this section...
“Consumer Credit Risk” on page 1-3
“Corporate Credit Risk” on page 1-3
“Market Risk” on page 1-5
“Insurance Risk” on page 1-6
“Lifetime Models for Probability of Default” on page 1-6
“Loss Given Default Models” on page 1-7
“Exposure at Default Models” on page 1-7

Risk Management Toolbox provides tools for modeling seven areas of risk assessment:

• Consumer credit risk
• Corporate credit risk
• Market risk
• Insurance risk
• Lifetime models for probability of default
• Loss given default models
• Exposure at default models

Consumer Credit Risk
Consumer credit risk (also referred to as retail credit risk) is the risk of loss due to a customer's
default (non-repayment) on a consumer credit product. These products can include a mortgage,
unsecured personal loan, credit card, or overdraft. A common method for predicting credit risk is
through a credit scorecard. The scorecard is a statistically based model for attributing a score to a
customer that indicates the predicted probability that the customer will default. The data used to
calculate the score can be from sources such as application forms, credit reference agencies, or
products the customer already holds with the lender. Financial Toolbox™ provides tools for creating
credit scorecards and performing credit portfolio analysis using scorecards. Risk Management
Toolbox includes a Binning Explorer app for automatic or manual binning to streamline the binning
phase of credit scorecard development. For more information, see “Overview of Binning Explorer” on
page 3-2.

Corporate Credit Risk
Corporate credit risk (also referred to as wholesale credit risk) is the risk that counterparties default
on their financial obligations.

At an individual counterparty level, one of the main credit risk parameters is the probability of default
(PD). Risk Management Toolbox allows you to estimate probabilities of default using the following
methodologies:

• Structural models: mertonmodel and mertonByTimeSeries
• Reduced-form models: cdsbootstrap and bondDefaultBootstrap using Financial Toolbox

 Risk Modeling with Risk Management Toolbox

1-3

• Historical credit ratings migrations: transprob using Financial Toolbox
• Statistical approaches: credit scorecards using Binning Explorer and the creditscorecard

object using Financial Toolbox, and a wide selection of predictive models in Statistics and Machine
Learning Toolbox™

At a credit portfolio level, on the other hand, to assess credit risk, to assess this risk, the main
question to ask is, Given a current credit portfolio, how much can be lost in a given time period due
to defaults? In differing circumstances, the answer to this question might mean:

• How much do you expect to lose?
• How likely is it that you will lose more than a specific amount?
• What is the most you can lose under relatively normal circumstances?
• How much can you lose if things get bad?

Mathematically, these questions all depend on estimating a distribution of losses for the credit
portfolio: What are the different amounts you can lose, and how likely is it that you lose each
individual amount.

Corporate credit risk is fundamentally different from market risk, which is the risk that assets lose
value due to market movements. The most important difference is that markets move all the time, but
defaults occur infrequently. Therefore, the sample sizes to support any modeling efforts are different.
The challenge is to calibrate a distribution of credit losses, because the sample sizes are small. For
credit risk, even for an individual bond that has not defaulted, you cannot collect direct data on what
happens in the event of default because it has not defaulted. And once the issuer actually defaults,
unless you can pool default information from similar companies, that is the only data point that you
have.

For corporate credit portfolio analysis, estimating credit correlations so that you can understand the
benefits of diversification is also challenging. Two companies can only default in the same time
window once, so you cannot collect data on how often they default together. To collect more data, you
can pool data from similar companies and under similar economic conditions.

Risk Management Toolbox provides a credit default simulation framework for credit portfolios using
the creditDefaultCopula object, where the three main elements of credit risk for a single
instrument are:

• The probability of default (PD) which is the likelihood that the issuer defaults in a given time
period.

• The exposure at default (EAD) which is the amount of money that is at stake. For a traditional
bond, this is the bond principal.

• The loss given default (LGD) which is the fraction of the exposure that would be lost at default.
When default occurs, usually some money is recovered eventually.

The assumption is that these three quantities are fixed and known for all the companies in the credit
portfolio. With this assumption, the only uncertainty is whether each company defaults, which
happens with probability PDi.

At the credit portfolio level, however, the main question is, "What are the default correlations
between issuers?" For example, for two bonds with 10MM principal each, the risk is different if you
expect the companies to default together. In this scenario, you could lose 20MM minus the recovery,
all at once. Alternatively, if the defaults are independent, you could lose 10MM minus recovery if one
defaults, but the other company is likely still alive. Default correlations are therefore important

1 Getting Started

1-4

parameters for understanding the risk at a portfolio level. These parameters are also important for
understanding the diversification and concentration characteristics of the portfolio. The approach in
Risk Management Toolbox is to simulate correlated variables that can be efficiently simulated and
parameterized, then map the simulated values to default or nondefault states to preserve the
individual default probabilities. This approach is called a copula. When normal variables are used,
this approach is called a Gaussian copula. Risk Management Toolbox also provides a credit migration
simulation framework for credit portfolios using the creditMigrationCopula object. For more
information, see “Credit Rating Migration Risk” on page 1-10.

Related to the creditDefaultCopula and creditMigrationCopula objects, Risk Management
Toolbox provides an analytical model known as the Asymptotic Single Risk Factor (ASRF) model. The
ASRF model is useful because the Basel II documents propose this model as the standard for certain
types of capital requirements. ASRF is not a Monte-Carlo model, so you can quickly compute the
capital requirements for large credit portfolios. You can use the ASRF model to perform a quick
sensitivity analysis and exploring "what-if" scenarios more easily than rerunning large simulations.
For more information, see asrf.

Risk Management Toolbox also provides tools for portfolio concentration analysis, see “Concentration
Indices” on page 1-15.

Market Risk
Market risk is the risk of losses in positions arising from movements in market prices. Value-at-risk is
a statistical method that quantifies the risk level associated with a portfolio. VaR measures the
maximum amount of loss over a specified time horizon, at a given confidence level. For example, if
the one-day 95% VaR of a portfolio is 10MM, then there is a 95% chance that the portfolio loses less
than 10MM the following day. In other words, only 5% of the time (or about once in 20 days) the
portfolio losses exceed 10MM.

VaR Backtesting, on the other hand, measures how accurate the VaR calculations are. For many
portfolios, especially trading portfolios, VaR is computed daily. At the closing of the following day, the
actual profits and losses for the portfolio are known, and can be compared to the VaR estimated the
day before. You can use this daily data to assess the performance of VaR models, which is the goal of
VaR backtesting. As such, backtesting is a method that looks retrospectively at data and refines the
VaR models. Many VaR backtesting methodologies have been proposed. As a best practice, use more
than one criterion to backtest the performance of VaR models, because all tests have strengths and
weaknesses.

Risk Management Toolbox provides the following VaR backtesting individual tests:

• Traffic light test (tl)
• Binomial test (bin)
• Kupiec’s tests (pof, tuff)
• Christoffersen’s tests (cc, cci)
• Haas’s tests (tbf, tbfi)

For information on the different tests, see “Overview of VaR Backtesting” on page 2-2.

Expected Shortfall (ES) Backtesting gives an estimate of the loss in those very bad days when the VaR
is violated. ES is the expected loss on days when there is a VaR failure. If the VaR is 10 million and
the ES is 12 million, you know that the expected loss tomorrow, if it happens to be a very bad day, is
about 20% higher than the VaR.

 Risk Modeling with Risk Management Toolbox

1-5

Risk Management Toolbox provides the following table-based tests for expected shortfall based on the
esbacktest object:

• unconditionalNormal
• unconditionalT

The following tools support expected shortfall simulation-based tests for the esbacktestbysim
object:

• conditional
• unconditional
• quantile

For information on the different tests, see “Overview of Expected Shortfall Backtesting” on page 2-
20.

Insurance Risk
The ability to accurately estimate unpaid claims is important to insurers. Unlike companies in other
sectors, insurers might not know the exact earnings during a financial reporting period until many
years later. Insurance companies take in insurance premiums on a regular basis and pay out claims
when events occur. In order to maximize profits, an insurance company must accurately estimate how
much will be paid out on existing claims in the future. If the estimate for unpaid claims is too low, the
insurance company will become insolvent. Conversely, if the estimate is too high, then the claims
reserve capital of the insurance company could have been invested elsewhere or reinvested in the
business

Risk Management Toolbox supports four claims estimation methods for actuaries to use with a
developmentTriangle for estimating unpaid claims:

• chainLadder
• expectedClaims
• bornhuetterFerguson
• capeCod

For information on the estimation methods, see “Overview of Claims Estimation Methods for Non-Life
Insurance” on page 1-16.

Lifetime Models for Probability of Default
Regulatory frameworks such as IFRS 9 and CECL require institutions to estimate loss reserves based
on a lifetime analysis that is conditional on macroeconomic scenarios. Earlier models were frequently
designed to predict one period ahead and often with no explicit sensitivities to macroeconomic
scenarios. With the IFRS 9 and CECL regulations, models must predict multiple periods ahead and
the models must have an explicit dependency on macroeconomic variables.

The main output of the lifetime credit analysis is the lifetime expected credit loss (ECL). The lifetime
ECL consists of the reserves that banks need to set aside for expected losses throughout the life of a
loan. There are different approaches to the estimation of lifetime ECL. Some approaches use
relatively simple techniques on loss data, with qualitative adjustments. Other approaches use more
advanced time-series techniques or econometric models to forecast losses, with dependencies on

1 Getting Started

1-6

macro variables. Another methodology uses probability of default (PD) models, loss given default
(LGD) models, and exposure at default (EAD) models, and combines their outputs to estimate the
ECL. The lifetime PD models in Risk Management Toolbox are in the PD-LGD-EAD category

Risk Management Toolbox provides the following lifetime PD models:

• Logistic
• Probit
• Cox
• customLifetimePDModel

For information on the different models, see “Overview of Lifetime Probability of Default Models” on
page 1-25.

Loss Given Default Models
Loss given default (LGD) is the proportion of a credit that is lost in the event of default. LGD is one of
the main parameters for credit risk analysis. Although there are different approaches to estimate
credit loss reserves and credit capital, common methodologies require the estimation of probabilities
of default (PD), loss given default (LGD), and exposure at default (EAD). The reserves and capital
requirements are computed using formulas or simulations that use these parameters. For example,
the loss reserves are usually estimated as the expected loss (EL), given by the following formula:

EL = PD * LGD * EAD

Risk Management Toolbox provides the following LGD models:

• Regression
• Tobit
• Beta

For information on the different models, see “Overview of Loss Given Default Models” on page 1-31.

Exposure at Default Models
EAD is seen as an estimation of the extent to which a bank may be exposed to a counterparty in the
event of, and at the time of, that counterparty’s default. EAD is equal to the current amount
outstanding in case of fixed exposures such as term loans. For example, the loss reserves are usually
estimated as the expected loss (EL), given by the following formula:

EL = PD * LGD * EAD

Risk Management Toolbox provides the following EAD models:

• Regression
• Tobit
• Beta

For information on the different models, see “Overview of Exposure at Default Models” on page 1-
34.

 Risk Modeling with Risk Management Toolbox

1-7

See Also
varbacktest | esbacktest | esbacktestbysim | mertonmodel | mertonByTimeSeries |
concentrationIndices | creditDefaultCopula | creditMigrationCopula | asrf |
developmentTriangle | chainLadder | expectedClaims | bornhuetterFerguson | Logistic
| Probit | Cox | Regression | Tobit | Beta | Regression | Tobit | Beta

Related Examples
• “Common Binning Explorer Tasks” on page 3-4
• “Bin Data to Create Credit Scorecards Using Binning Explorer” on page 3-23
• “creditMigrationCopula Simulation Workflow” on page 4-10
• “creditDefaultCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-18
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page 3-36
• “VaR Backtesting Workflow” on page 2-6
• “Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information” on page

2-30
• “Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
• “Expected Shortfall Estimation and Backtesting” on page 2-44
• “Value-at-Risk Estimation and Backtesting” on page 2-10
• “Basic Lifetime PD Model Validation” on page 4-129
• “Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
• “Compare Lifetime PD Models Using Cross-Validation” on page 4-121
• “Expected Credit Loss Computation” on page 4-124
• “Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations” on page

4-195

More About
• “Credit Simulation Using Copulas” on page 4-2
• “Credit Rating Migration Risk” on page 1-10
• “Default Probability by Using the Merton Model for Structural Credit Risk” on page 1-13
• “Concentration Indices” on page 1-15
• “Traffic Light Test” on page 2-3
• “Binomial Test” on page 2-2
• “Kupiec’s POF and TUFF Tests” on page 2-3
• “Christoffersen’s Interval Forecast Tests” on page 2-4
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-4
• “Overview of Expected Shortfall Backtesting” on page 2-20
• “Overview of Lifetime Probability of Default Models” on page 1-25
• “Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

1 Getting Started

1-8

External Websites
• Introduction to Risk Management Toolbox (26 min 24 sec)
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)
• Credit Risk Modeling with MATLAB (53 min 09 sec)
• Forecasting Corporate Default Rates with MATLAB (54 min 36 sec)

 Risk Modeling with Risk Management Toolbox

1-9

https://www.mathworks.com/videos/introduction-to-risk-management-toolbox-1493406805838.html
https://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-121587.html
https://www.mathworks.com/videos/credit-risk-modeling-with-matlab-81728.html
https://www.mathworks.com/videos/forecasting-corporate-default-rates-with-matlab-81876.html

Credit Rating Migration Risk
The migration-based multi-factor copula (creditMigrationCopula) is similar to the
creditDefaultCopula object. As described in “Credit Simulation Using Copulas” on page 4-2,
each counterparty’s credit quality is represented by a “latent variable” which is simulated over many
scenarios. The latent variable is composed of a series of correlated factors which are weighted based
on the counterparty’s sensitivity to each factor. The two objects differ in how the latent variables are
used for the remainder of the analysis. Instead of thinking in terms of probability of default for each
obligor, the creditMigrationCopula object works with each obligor’s credit rating. Credit ratings
are issued by several companies (S&P, Moody's, and so on). Each rating represents a level of credit
quality and ratings are changed periodically as a company’s situation improves or deteriorates.

Given enough historical data, the likelihood is calculated that a company at a particular rating will
migrate to a different rating over some time period. For example, this table shows the probabilities
that a company with credit rating "B" will transition to each other rating.

While the creditDefaultCopula object is concerned with the 2.4% chance of default exclusively, a
migration-based approach using an creditMigrationCopula object accounts for all possible rating
states. Given these probabilities, the cut-points are calculated for the distribution of all possible
latent variable values that correspond to each rating value.

1 Getting Started

1-10

For each scenario, the latent variable value determines the credit rating of the counterparty at the
end of the time period based on these cut-points. The cut-points are set such that the probability of
transitioning to each rating matches the probabilities in the provided transition table. You now have
not just correlated defaults for each counterparty, but correlated rating changes across the entire
range of credit ratings.

 Credit Rating Migration Risk

1-11

Each credit rating has a unique discount curve associated with it. As an obligor’s credit rating falls,
the obligor’s bond cashflows become more deeply discounted and the total bond value drops
accordingly. Conversely, if an obligor’s rating improves, the cashflows are discounted less deeply, and
the bond values will rise. After repricing the portfolio with all obligors’ new ratings, the total portfolio
value can be calculated as the sum of the new bond values. As with the creditDefaultCopula
object, various risk measures are calculated and reported for the creditMigrationCopula object.

See Also
creditMigrationCopula | simulate | portfolioRisk | riskContribution |
confidenceBands | getScenarios

Related Examples
• “creditMigrationCopula Simulation Workflow” on page 4-10

1 Getting Started

1-12

Default Probability by Using the Merton Model for Structural
Credit Risk

In 1974, Robert Merton proposed a model for assessing the structural credit risk of a company by
modeling the company's equity as a call option on its assets. The Merton model uses the Black-
Scholes-Merton option pricing methods and is structural because it provides a relationship between
the default risk and the asset (capital) structure of the firm.

A company balance sheet records book values—the value of a firm's equity E, its total assets A, and
its total liabilities L. The relationship between these values is defined by the equation

A = E + L

These book values for E, A, and L are all observable because they are recorded on a firm's balance
sheet. However, the book values are reported infrequently. Alternatively, only the equity’s market
value is observable, and is given by the firm’s stock market price times the number of outstanding
shares. The market value of the firm’s assets and total liabilities are unobservable.

The Merton model relates the market values of equity, assets, and liabilities in an option pricing
framework. The Merton model assumes a single liability L with maturity T, usually a period of one
year or less. At time T, the firm’s value to the shareholders equals the difference A – L when the asset
value A is greater than the liabilities L. However, if the liabilities L exceed the asset value A, then the
shareholders get nothing. The value of the equity ET at time T is related to the value of the assets and
liabilities by the following formula:

ET = max(AT − L, 0)

In practice, firms have multiple maturities for their liabilities, so for a selected maturity T, a liability
threshold L is chosen based on the whole liability structure of the firm. The liability threshold is also
referred to as the default point. For a typical time horizon of one year, the liability threshold is
commonly set to a value between the value of the short-term liabilities and the value of the total
liabilities.

Assuming a lognormal distribution for the asset returns, you can use the Black-Scholes-Merton
equations to relate the observable market value of equity E, and the unobservable market value of
assets A, at any time prior to the maturity T:

E = AN(d1)− Le−rTN(d2)

In this equation, r is the risk-free interest rate, N is the cumulative standard normal distribution, and
d1 and d2 are given by

d1 =
ln A

L + (r + 0.5σA
2)T

σA T

d2 = d1− σA T

You can solve this equation using one of two approaches:

• The mertonmodel approach uses single-point calibration and requires values for the equity,
liability, and equity volatility (σE).

 Default Probability by Using the Merton Model for Structural Credit Risk

1-13

This approach solves for (A,σA) using a 2-by-2 system of nonlinear equations. The first equation is
the aforementioned option pricing formula. The second equation relates the unobservable
volatility of assets σA to the given equity volatility σE:

σE = A
E N(d1)σA

• The mertonByTimeSeries approach requires time series for the equity and for all other model
parameters.

If the equity time series has n data points, this approach calibrates a time series of n asset values
A1,…,An that solve the following system of equations:

E1 = A1N(d1)− L1e−r1T1N(d2)
...

En = AnN(d1)− Lne−rnTnN(d2)

The function directly computes the volatility of assets σA from the time series A1,…,An as the
annualized standard deviation of the log returns. This value is a single volatility value that
captures the volatility of the assets during the time period spanned by the time series.

After computing the values of A and σA, the function computes the distance to default (DD) is
computed as the number of standard deviations between the expected asset value at maturity T
and the liability threshold:

DD =
logA + μA− σA

2 /2 T − log(L)
σA T

The drift parameter μA is the expected return for the assets, which can be equal to the risk-free
interest rate, or any other value based on expectations for that firm.

The probability of default (PD) is defined as the probability of the asset value falling below the
liability threshold at the end of the time horizon T:

PD = 1− N(DD)

See Also
mertonmodel | mertonByTimeSeries

Related Examples
• “Comparison of the Merton Model Single-Point Approach to the Time-Series Approach” on page

4-54

1 Getting Started

1-14

Concentration Indices
In financial risk applications, concentration is the opposite of diversification. If all or most of your risk
is in one area, it is concentrated. Higher concentration is interpreted as a risk, although for someone
with a high tolerance for risk and who wants higher returns, that person might prefer concentration.

You can use concentration indices to measure and monitor concentration in a credit portfolio. Ad-hoc
concentration indices are typically computed by using exposures, and therefore do not usually take
into account other risk parameters such as probabilities of default. Ad-hoc concentration indices are
frequently included in comprehensive concentration reports, with other concentration measures and
concentration limits.

When you use the concentrationIndices function, Risk Management Toolbox supports the
following ad-hoc concentration indices or measures:

• Concentration ratio
• Deciles of the portfolio weight distribution
• Gini coefficient
• Herfindahl-Hirschman index
• Hannah-Kay index
• Hall-Tideman index
• Theil entropy index

See Also
concentrationIndices

Related Examples
• “Analyze the Sensitivity of Concentration to a Given Exposure” on page 4-49
• “Compare Concentration Indices for Random Portfolios” on page 4-51

 Concentration Indices

1-15

Overview of Claims Estimation Methods for Non-Life Insurance
The ability to accurately estimate unpaid claims is important to insurers. Unlike companies in other
sectors, insurers might not know the exact earnings during a financial reporting period until many
years later. Insurance companies take in insurance premiums on a regular basis and pay out claims
when events occur. In order to maximize profits, an insurance company must accurately estimate how
much will be paid out on existing claims in the future. If the estimate for unpaid claims is too low, the
insurance company will become insolvent. Conversely, if the estimate is too high, then the claims
reserve capital of the insurance company could have been invested elsewhere or reinvested in the
business [1 on page 1-24].

Risk Management Toolbox supports four claims estimation methods for actuaries to use for
estimating unpaid claims:

• chainLadder
• expectedClaims
• bornhuetterFerguson
• capeCod

Workflow to Estimate Unpaid Claims
For the different claims estimation methods, the basic workflow follows.

1 Create a development triangle with insurance claims data using developmentTriangle. The
claims data can be for either reported claims or paid claims. You can plot reported claims using
claimsPlot.

2 Use the development triangle to compute link ratios using linkRatios. You can plot link ratios
using linkRatiosPlot.

3 Use the development triangle link ratio for reported claims or paid claims to compute the link
ratio averages with linkRatioAverages.

4 Use ultimateClaims to compute the projected ultimate claims based on the link ratio averages
for either reported claims or unpaid claims.

5 Using the projected ultimate claims for both the reported and paid development triangles, use
any of the following to compute incurred-but-not-reported (IBNR) values and the total unpaid
claims estimates:

• Chain ladder method — Create a chainLadder object with development triangles for
reported and paid claims, generate the IBNR values using ibnr, and compute the unpaid
claims estimation with unpaidClaims.

• Expected claims method — Create an expectedClaims object with development triangles
for reported and paid claims as well as the earned premium. By default, the initial claims are
calculated as the average of the reported ultimate claims and the paid ultimate claims.
However, you can specify custom values for the initial claims. Similar to the chain ladder
method, you can compute IBNR values using ibnr and the unpaid claims estimates with
unpaidClaims.

• Bornhuetter-Ferguson method — Create a bornhuetterFerguson object with development
triangles for reported and paid claims as well as initial expected claims values, generate IBNR
using ibnr, and compute the unpaid claims estimation with unpaidClaims.

1 Getting Started

1-16

• Cape Cod method — Create a capeCod object with development triangles for reported and
paid claims as well as initial expected claims values, generate IBNR using ibnr, and compute
the unpaid claims estimation with unpaidClaims.

Estimation of Ultimate Claims Using Development Triangles
One characteristic of Development Triangles is that the ultimate claims are estimated from recorded
values assuming that the development of future claims resembles that in prior years — the past is
indicative of the future.

The steps for development triangles are demonstrated using simulated data:

1 Use developmentTriangle to generate the reported claims in what is called a development
triangle, where there is one row for each origin year and the columns depict how the claims
develop over time.

2 Use linkRatios to calculate the age-to-age factors. These factors are also known as report-to-
report factors or link ratios. The link ratios measure the change in recorded claims from one
valuation date to the next. The standard naming convention is starting month-ending month. For
example, the age-to-age factor for the 12-month period to the 24-month period is often referred
to as the 12-24 factor.

To calculate the age-to-age factors for the 12-24 period, divide the claims as of 24 months by the
claims as of 12 months. Thus, the triangle of age-to-age factors has one less row and one less
column than the original data triangle.

3 After calculating the age-to-age factors, use linkRatioAverages to calculate the averages of
the age-to-age factors. Actuaries use a wide variety of averages for age-to-age factors. Some of
the common ones are the simple average, medial average, geometric average, and volume-
weighted average.

 Overview of Claims Estimation Methods for Non-Life Insurance

1-17

4 Use cdfSummary to obtain the cumulative claim development factors (CDF), which are
calculated by successive multiplications beginning with the tail factor and the oldest age-to-age
factor. The cumulative claim development factor projects the total growth over the remaining
valuations.

5 All of the previous steps apply to the reported claims. In order to calculate the unpaid claims
estimates, you need the paid claims as well as the reported claims. Use developmentTriangle
to generate the development triangle for paid claims.

Similar to the reported claims development triangle, you use the paid claims develop triangle to
calculate link ratios, average link ratios, and then you can select one link ratio and calculate the
cumulative development factors.

6 Use ultimateClaims to project the ultimate claims. The ultimate claims are equal to the
product of the latest valuation of claims and the appropriate cumulative claim development
factors. The projected ultimate claims are displayed for both the reported claims and the paid
claims.

1 Getting Started

1-18

7 After calculating the projected ultimate claims, use a chainLadder, expectedClaims, or
bornhuetterFerguson method for estimating the unpaid claims.

Estimation of Unpaid Claims Using Chain Ladder Method
The chain ladder method requires the Development Triangles for reported and paid claims. The chain
ladder method assumes that you can predict future claims activity for a given origin year (accident
year, policy year, report year, and so on) based on historical claims activity to date for that origin year.
The primary assumption of this method is that the reporting and payment of future claims resembles
the patterns observed in the past.

In addition, the chain ladder method requires a large volume of historical claims experience. It works
best when the presence or absence of large claims does not greatly distort the data. If the volume of
data is not sufficient, large claims can greatly distort the age-to-age factors, the projections of
ultimate claims, and the estimate of unpaid claims.

1 After calculating the projected ultimate claims using Development Triangles, create a
chainLadder object based on the reported and paid Development Triangles in order to compute
the unpaid claim estimates with unpaidClaims.

2 Actuaries calculate the unpaid claims estimate as the difference between the projected ultimate
claims and the actual paid claims. This value of the unpaid claim estimate represents total unpaid
claims, including both the outstanding claims cases and the IBNR claims. To determine estimated
IBNR values based on the chain ladder technique, subtract reported claims from the projected
ultimate claims. Alternatively, you can use ibnr to calculate the IBNR, which is equal to the
estimate of total unpaid claims less the outstanding cases.

 Overview of Claims Estimation Methods for Non-Life Insurance

1-19

Estimation of Unpaid Claims Using Expected Claims Method
The key assumption of the expected claims method is that an actuary can better estimate unpaid
claims based on an initial estimate rather than existing claims observed to date.

The expected claims method requires the Development Triangles for reported and paid claims as well
as the earned premium. By default, the initial claims are calculated as the average of the reported
ultimate claims and the paid ultimate claims. However, you can specify custom values for the initial
claims. Using the initial claims, an actuary applies a claim ratio method, where ultimate claims for a
development period are equal to a selected expected claim ratio multiplied by the earned premium.
Using these calculated ultimate claims, the actuary can then compute the unpaid claims estimates.

1 Create an expectedClaims object to calculate the ultimateClaims.

1 Getting Started

1-20

2 Use the expectedClaims object to calculate the unpaidClaims.

Estimation of Unpaid Claims Using Bornhuetter-Ferguson Method
The Bornhuetter-Ferguson method combines the chain ladder method and the expected claims
method by splitting ultimate claims into two components, actual reported (or paid) claims and
expected unreported (or unpaid) claims. As the claim matures over development periods, more
weight is given to the actual claims and the expected claims become gradually less important.

The Bornhuetter-Ferguson method requires the Development Triangles for reported and paid claims
as well as initial expected claims values. The Bornhuetter-Ferguson method calculates its own

 Overview of Claims Estimation Methods for Non-Life Insurance

1-21

projected ultimate claims, different from those calculated in the Development Triangle object. Using
these new projected ultimate claims, the unpaid claims estimates are computed.

1 Create a bornhuetterFerguson object to calculate the ultimateClaims.

2 Use the bornhuetterFerguson object to calculate the unpaidClaims.

1 Getting Started

1-22

Estimation of Unpaid Claims Using Cape Cod Method
As in the Bornhuetter-Ferguson technique, the Cape Cod technique splits ultimate claims into two
components: actual reported (or paid) and expected unreported (or unpaid). As an accident year (or
other time interval) matures, the actual reported claims replace the expected unreported claims and
the initial expected claims assumption becomes gradually less important. The primary difference
between the two methods is the derivation of the expected claim ratio. In the Cape Cod technique,
the expected claim ratio is obtained from the reported claims experience instead of an independent
and often judgmental selection as in the Bornhuetter-Ferguson technique.

The Cape Cod technique requires the Development Triangles for reported and paid claims as well as
the earned premium. The key assumption of the Cape Cod technique is that unreported claims will
develop based on expected claims, which are derived using reported (or paid) claims and earned
premium. Both the Cape Cod and Bornhuetter-Ferguson methods differ from the development method
where the primary assumption is that unreported claims will develop based on reported claims to
date (not expected claims).

1 Create a capeCod object to calculate the ultimateClaims.

2 Use the capeCod object to calculate the unpaidClaims.

 Overview of Claims Estimation Methods for Non-Life Insurance

1-23

References
[1] Friedland, Jacqueline. "Estimating Unpaid Claims using Basic Techniques." Arlington, VA:

Casualty Actuarial Society, 2010.

[2] Wüthrich, Mario, and Michael Merz. Stochastic Claims Reserving Methods in Insurance. Hoboken,
NJ: Wiley, 2008.

See Also
developmentTriangle | chainLadder | expectedClaims | bornhuetterFerguson | capeCod

Related Examples
• “Mean Square Error of Prediction for Estimated Ultimate Claims” on page 4-161
• “Bootstrap Using Chain Ladder Method” on page 4-168

1 Getting Started

1-24

Overview of Lifetime Probability of Default Models
Regulatory frameworks such as IFRS 9 and CECL require institutions to estimate loss reserves based
on a lifetime analysis that is conditional on macroeconomic scenarios. Earlier models were frequently
designed to predict one period ahead and often with no explicit sensitivities to macroeconomic
scenarios. With the IFRS 9 and CECL regulations, models must predict multiple periods ahead and
the models must have an explicit dependency on macroeconomic variables.

The main output of the lifetime credit analysis is the lifetime expected credit loss (ECL). The lifetime
ECL consists of the reserves that banks need to set aside for expected losses throughout the life of a
loan. There are different approaches to the estimation of lifetime ECL. Some approaches use
relatively simple techniques on loss data, with qualitative adjustments. Other approaches use more
advanced time-series techniques or econometric models to forecast losses, with dependencies on
macro variables. Another methodology uses probability of default (PD) models, loss given default
(LGD) models, and exposure at default (EAD) models, and combines their outputs to estimate the
ECL. The lifetime PD models in Risk Management Toolbox are in the PD-LGD-EAD category.

Traditional PD Models Compared to Lifetime PD Models
Traditional PD models predict the probability of default for the next period (that is, next year, next
quarter, and so on). These one-period ahead models include a range of methodologies, such as credit
scorecards (creditscorecard), decision trees (fitctree), and transition matrices (transprob).
These models include different types of predictors. Some of them are simple, such as customer
income, and others are more complex, such as utilization rate, or some other metrics related to the
financial activities of the borrower. For these models, the latest observed values of the predictors,
possibly with some lagged information, are usually enough to make a prediction, and there is no need
to project or forecast the values of the predictors going forward.

In contrast, the lifetime PD models require forward looking values of all predictors to make a
prediction of the lifetime PD through the end of the life of the loan. Because the projected values of
the predictors are needed, these models can reduce the amount and complexity of predictors and use
either predictors with constant values, such as origination score, or predictors that can be projected
with little effort, such as loan-to-value ratio. One predictor typically included in these models is the
age of the loan. When used for regulatory purposes, macroeconomic predictors must be included in
the model, and multiple macroeconomic scenarios are required for the lifetime credit analysis.

Lifetime credit analysis also requires the cumulative lifetime PD, which is a transformation of the
predicted, conditional PDs. Specifically, the marginal PD, which is the increments in the cumulative
lifetime PD, is used for the computation of the ECL. The survival probability is often reported as well.
These alternative versions of the probability are recursive operations on the predicted, conditional PD
values for a single loan. In other words, the prediction data may include rows for the same ID a few
periods ahead, and the corresponding conditional PDs may show a time-dependent structure. But
these conditional PD predictions are "one-period ahead" predictions where the "period" is the same
time interval implicit in the training data. Conditional PD predictions are "row-by-row" predictions,
where one row of the inputs predicts a conditional PD independently of all other rows. However, for
the cumulative lifetime PD, the cumulative PD value for the second period depends on the conditional
PDs for the first and second periods, and all subsequent periods have an explicit dependency on the
previous period (a recursion). For the lifetime predictions, therefore, the software must know which
rows in the inputs correspond to the same loan, so some form of loan identifier is required for the
lifetime prediction. Moreover, consecutive rows in the lifetime prediction data must correspond to
consecutive time periods, the recursion is defined for consecutive, one-period ahead conditional PDs,
it cannot skip periods.

 Overview of Lifetime Probability of Default Models

1-25

The following table summarizes the differences between traditional PD models and lifetime PD
models.

Traditional PD Models Lifetime PD Models
Predict one period ahead Predict multiple periods ahead
Predict conditional PD only Predict conditional PD, cumulative lifetime PD,

marginal PD, and survival probability
Predict for each row of the data inputs,
independently of all other rows

Predict for all rows of the data inputs that
correspond to the same loan; this is a recursive
operation that requires some form of loan
identifier to know where to start the recursion

Need only most recent observed information to
make PD predictions

Need the most recent information and projected,
period-by-period values of predictor variables
over the lifetime of the loan to make PD
predictions

Can use complex predictors that result from
nontrivial data processing or data
transformations

Typically use simpler predictors, variables that
are not hard to project and forecast

Besides loan-specific predictors, models can
include macroeconomic variables or an age
variable

Besides loan-specific predictors, models must
include macroeconomic predictors (especially if
used for regulatory purposes) and typically
include an age variable

Model Development and Validation
Risk Management Toolbox supports the modeling and validation of lifetime PD models through a
family of classes supporting:

• Model fitting with the fitLifetimePDModel
• Prediction of conditional PD with the predict function
• Prediction of lifetime PD (cumulative, marginal, and survival) with the predictLifetime

function
• Model discrimination metrics with the modelDiscrimination function
• Plot the ROC curve with the modelDiscriminationPlot function
• Model calibration metrics with the modelCalibration function
• Plot observed default rates compared to predicted PDs on grouped data with the

modelCalibrationPlot function

The supported model types are Logistic, Probit, Cox, and customLifetimePDModel models.

A typical modeling workflow for lifetime PD analysis includes:

1 Data preparation

The lifetime PD models require a panel data input for fitting, prediction, and validation. The
response variable must be a binary (0 or 1) variable, with 1 indicating default. There is a wide
range of tools available to treat missing data (using fillmissing), handle outliers (using
filloutliers), and perform other data preparation tasks.

1 Getting Started

1-26

2 Model fitting

Use the fitLifetimePDModel function to fit a lifetime PD model. You must use the previously
prepared data, select a model type, and indicate which variables correspond to loan-specific
variables (such as origination score and loan-to-value ratio). Also, you can also include an age
variable (such as years on books) and the macroeconomic variables (such as gross domestic
product growth or unemployment rate), as well as the ID variable and response variable. You can
specify a model description and also specify a model ID or tag for reporting purposes during
model validation. Alternatively, you can use customLifetimePDModel to use a function handle
to define a custom PD model.

3 Model validation

There are multiple tasks involved in model validation, including

• Inspect the underlying statistical model, which is stored in the 'UnderlyingModel'
property of the Logistic, Probit, or Cox object. For more information, see “Basic Lifetime
PD Model Validation” on page 4-129.

• Measure the model discrimination on either training or test data with the
modelDiscrimination function. Visualizations can also be generated using the
modelDiscriminationPlot function. Data can be segmented to measure discrimination
over different segments.

• Measure the model calibration on either training or test data with the modelCalibration
function. Visualizations can also be generated using the modelCalibrationPlot function. A
grouping variable is required to measure the observed default rate for each group and
compare it against the average predicted conditional PD for the group.

• Validate the model against a benchmark (for example, a champion model). For more
information, see “Compare Logistic Model for Lifetime PD to Champion Model” on page 4-
113.

• Perform a cross-validation analysis to compare alternative models. For more information, see
“Compare Lifetime PD Models Using Cross-Validation” on page 4-121.

• Perform a qualitative assessment of conditional PD predictions by using the predict function
directly with edge cases. Note that model validation relies on the conditional PD predictions
generated by the predict function. The predict function is automatically called by
modelDiscrimination and modelCalibration to generate metrics.

• Visualize the lifetime PD predictions for model validation by using the predictLifetime
function with edge cases and then perform a qualitative assessment of the predictions.

Computation of Lifetime ECL
Once you develop and validate a lifetime PD model, you can use it for lifetime ECL analysis. The
“Expected Credit Loss Computation” on page 4-124 example demonstrates the basic workflow for
computing ECL.

The “Expected Credit Loss Computation” on page 4-124 example shows how to visualize the lifetime
PD predictions, for different macro scenarios.

 Overview of Lifetime Probability of Default Models

1-27

The “Expected Credit Loss Computation” on page 4-124 example also shows how to compute the ECL
per scenario and how to compute the final lifetime ECL for a given loan.

For more information on preparing the data for prediction (including joining loan data projections
and macro forecasts) and the additional parameters and computations necessary for the estimation of
the lifetime ECL, see “Expected Credit Loss Computation” on page 4-124 and portfolioECL.

Lifetime Credit Analysis Compared to Stress Testing
You can also use the lifetime PD models for stress testing analysis. However, lifetime credit analysis
and stress testing have several differences that the following table summarizes.

1 Getting Started

1-28

Stress Testing Lifetime Credit Analysis
Focus on negative, pessimistic scenarios Must consider a range of scenarios, including

pessimistic, neutral, and optimistic ones
Models are often biased, calibrated to produce
more conservative results

Models are expected to be unbiased

Spans a few quarters ahead Can span many years ahead
Macroeconomic forecasts for stress testing go a
few quarters into the future

Macro scenarios reach far into the future and are
typically expected to revert to some baseline level
after a few quarters

The types of models used for both of these analyses are very similar. You can use lifetime PD models
for stress testing analysis with some additional considerations to account for the differences listed in
the previous table.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models
LLC, 2018.

See Also
fitLifetimePDModel | Logistic | Probit | Cox | customLifetimePDModel | predict |
predictLifetime | modelDiscrimination | modelCalibration | modelDiscriminationPlot
| modelCalibrationPlot | portfolioECL

Related Examples
• “Basic Lifetime PD Model Validation” on page 4-129
• “Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
• “Compare Lifetime PD Models Using Cross-Validation” on page 4-121
• “Expected Credit Loss Computation” on page 4-124
• “Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations” on page

4-195
• “Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on

page 4-144
• “Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-

75
• “Create Custom Lifetime PD Model for Decision Tree Model with Function Handle” on page 4-

224
• “Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle” on page

3-131

 Overview of Lifetime Probability of Default Models

1-29

• “Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations” on page
4-195

More About
• “Overview of Loss Given Default Models” on page 1-31
• “Overview of Exposure at Default Models” on page 1-34

1 Getting Started

1-30

Overview of Loss Given Default Models
Loss given default (LGD) is the proportion of a credit that is lost in the event of default. LGD is one of
the main parameters for credit risk analysis. Although there are different approaches to estimate
credit loss reserves and credit capital, common methodologies require the estimation of probabilities
of default (PD), loss given default (LGD), and exposure at default (EAD). The reserves and capital
requirements are computed using formulas or simulations that use these parameters. For example,
the loss reserves are usually estimated as the expected loss (EL), given by the following formula:

EL = PD * LGD * EAD

With increased availability of data, there are several different types of LGD models. Risk Management
Toolbox supports:

• Regression models — These are linear regression models where the response is a transformation
of the LGD data. For more information on the supported transformations, see Regression.

• Tobit models — These are censored regression models with explicit limits on the response values
to capture the fact that LGD can take values only between 0 and 1. Censoring on the left, right or
both sides are supported. For more information, see Tobit.

• Beta models — These are beta regression models with explicit limits on the response values to
capture the fact that LGD can take values only between 0 and 1. Censoring on the left, right or
both sides are supported. For more information, see Beta.

The “Model Loss Given Default” on page 4-90 example shows these two types of models, as well as
other models, are fitted using Statistics and Machine Learning Toolbox. Specifically, besides the
regression and Tobit models, this example also includes a non-parametric, look-up table type of
model; a Beta regression model; and a “two-stage” model where a classification model (cure-no cure)
and a regression model (predicted LGD conditional on no cure) work together to make LGD
predictions.

In addition, you can use the Regression, Tobit, and Beta models to develop LGD models that
include macroeconomic predictors for stress testing or to support regulatory requirements such as
IFRS 9 and CECL. For more information, see “Overview of Lifetime Probability of Default Models” on
page 1-25.

Model Development and Validation
Risk Management Toolbox supports the modeling and validation of LGD models through a family of
classes supporting:

• Model fitting with the fitLGDModel
• Prediction of LGD with the predict function
• Model discrimination metrics with the modelDiscrimination function and visualization with the

modelDiscriminationPlot function
• Model calibration metrics with the modelCalibration function and visualization with the

modelCalibartionPlot function

The supported model types are Regression, Tobit, and Beta models.

A typical modeling workflow for LGD analysis includes:

 Overview of Loss Given Default Models

1-31

1 Data preparation

Data preparation for LGD modeling requires a significant amount of work in practice. Data
preparation requires consolidation of account information, pulling data from multiple data
sources, accounting for recoveries, direct and indirect costs, determination of discount rates to
determine the observed LGD values. There is also work regarding predictor transformations and
screening. There is a wide range of tools available to treat missing data (using fillmissing),
handle outliers (using filloutliers), and perform other data preparation tasks. The output of
the data preparation is a training dataset with predictor columns and a response column
containing the LGD values.

2 Model fitting

Use the fitLGDModel function to fit an LGD model. You must use the previously prepared data
and select a model type. Optional inputs allow you to indicate which variables correspond to
predictor variables, or which transformation to use for a regression model, or the censoring side
for a Tobit or Beta model. You can specify a model description and also specify a model ID or
tag for reporting purposes during model validation.

3 Model validation

There are multiple tasks involved in model validation, including

• Inspect the underlying statistical model, which is stored in the 'UnderlyingModel'
property of the Regression, Tobit, or Beta object. For more information, see “Basic Loss
Given Default Model Validation” on page 4-131.

• Measure the model discrimination on either training or test data with the
modelDiscrimination function. Visualizations are generated using the
modelDiscriminationPlot function. Data can be segmented to measure discrimination
over different segments.

• Measure the model calibration on either training or test data with the modelCalibration
function. Visualizations are generated using the modelCalibartionPlot function. Also, you
can visualize the residuals.

• Validate the model against a benchmark (for example, a champion model). For more
information, see “Compare Tobit LGD Model to Benchmark Model” on page 4-133.

• Perform a cross-validation analysis to compare alternative models. For more information, see
“Compare Loss Given Default Models Using Cross-Validation” on page 4-140.

• Perform a qualitative assessment of conditional PD predictions by using the predict function
directly with edge cases. Visualize residuals using the modelCalibartionPlot function.
There are examples of additional visualizations using histograms and box plots in the “Model
Loss Given Default” on page 4-90 example.

4 Once you develop and validate a LGD model, you can use it for lifetime ECL analysis. The
“Expected Credit Loss Computation” on page 4-124 example and portfolioECL demonstrates
the basic workflow for computing ECL.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

1 Getting Started

1-32

[3] Gupton, G., and R Stein. "Losscalc v2: Dynamic Prediction of LGD Modeling Methodology".
Moody’s KMV Investor Services, 2005.

See Also
fitLGDModel | predict | modelDiscrimination | modelDiscriminationPlot |
modelCalibration | modelCalibartionPlot | Regression | Tobit | Beta | portfolioECL

Related Examples
• “Model Loss Given Default” on page 4-90
• “Basic Loss Given Default Model Validation” on page 4-131
• “Compare Tobit LGD Model to Benchmark Model” on page 4-133
• “Compare Loss Given Default Models Using Cross-Validation” on page 4-140
• “Expected Credit Loss Computation” on page 4-124
• “Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations” on page

4-195

More About
• “Overview of Lifetime Probability of Default Models” on page 1-25
• “Overview of Exposure at Default Models” on page 1-34

 Overview of Loss Given Default Models

1-33

Overview of Exposure at Default Models
Exposure at default (EAD) is the loss exposure (balance at the time of default) for a bank when a
debtor defaults on a loan.

For example, the loss reserves are usually estimated as the expected loss (EL), given by the following
formula:

EL = PD × LGD × EAD

With increased availability of data, there are several different types of EAD models. Risk Management
Toolbox supports:

• Regression models — These are linear regression models where the response is a transformation
of the EAD data. For more information on the supported transformations, see Regression.

• Tobit models — These are censored regression models with explicit limits on the response values.
Censoring on the left, right or both sides are supported. For more information, see Tobit.

• Beta models — These are beta regression models with explicit limits on the response values.
Censoring on the left, right or both sides are supported. For more information, see Beta.

Model Development and Validation
Risk Management Toolbox supports the modeling and validation of EAD models through a family of
classes supporting:

• Model fitting with the fitEADModel
• Prediction of EAD with the predict function
• Model discrimination metrics with the modelDiscrimination function and visualization with the

modelDiscriminationPlot function
• Model calibration metrics with the modelCalibration function and visualization with the

modelCalibrationPlot function

The supported model types are Regression, Tobit, and Beta models.

A typical modeling workflow for EAD analysis includes:

1 Data preparation

Data preparation for EAD modeling requires a significant amount of work in practice. Data
preparation requires consolidation of account information, pulling data from multiple data
sources, accounting for recoveries, direct and indirect costs, determination of discount rates to
determine the observed EAD values. There is also work regarding predictor transformations and
screening. There is a wide range of tools available to treat missing data (using fillmissing),
handle outliers (using filloutliers), and perform other data preparation tasks. The output of
the data preparation is a training dataset with predictor columns and a response column
containing the EAD values.

2 Model fitting

Use the fitEADModel function to fit an EAD model. You must use the previously prepared data
and select a model type. Optional inputs allow you to indicate the limit (LimitVar) and drawn
(DrawnVar) values for a Regression, Tobit, or Beta model. The limit value depends on the

1 Getting Started

1-34

loan. If its a credit card, the limit is the credit limit, and if this is a mortgage limit it is the initial
loan amount. In general, LimitVar is the maximum amount that can be borrowed. DrawnVar is
the balance on the account at the time of observation, prior to default and EAD is the balance at
the time of default. Also, you can specify a model description and also specify a model ID or tag
for reporting purposes during model validation.

3 Model validation

There are multiple tasks involved in model validation, including

• Inspect the underlying statistical model, which is stored in the 'UnderlyingModel'
property of the Regression, Tobit, or Beta object.

• Measure the model discrimination on either training or test data with the
modelDiscrimination function. Visualizations are generated using the
modelDiscriminationPlot function. Data can be segmented to measure discrimination
over different segments.

• Measure the model calibration on either training or test data with the modelCalibration
function. Visualizations are generated using the modelCalibrationPlot function. Also, you
can visualize the residuals.

4 Once you develop and validate an EAD model, you can use it for lifetime ECL analysis. The
“Expected Credit Loss Computation” on page 4-124 example and portfolioECL demonstrates
the basic workflow for computing ECL.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory
and Applications. SAS Institute, 2014.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also
fitEADModel | predict | modelDiscrimination | modelDiscriminationPlot |
modelCalibration | modelCalibrationPlot | Regression | Tobit | Beta | portfolioECL

Related Examples
• “Compare Results for Regression and Tobit EAD Models” on page 4-151
• “Expected Credit Loss Computation” on page 4-124
• “Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations” on page

4-195

More About
• “Exposure at Default Regression Models” on page 6-645

 Overview of Exposure at Default Models

1-35

• “Exposure at Default Tobit Models” on page 6-656
• “Beta Regression Models” on page 6-669
• “Conversion Measure Options” on page 6-658
• “Overview of Lifetime Probability of Default Models” on page 1-25
• “Overview of Loss Given Default Models” on page 1-31

1 Getting Started

1-36

Market Risk Measurements Using VaR
BackTesting Tools

• “Overview of VaR Backtesting” on page 2-2
• “VaR Backtesting Workflow” on page 2-6
• “Value-at-Risk Estimation and Backtesting” on page 2-10
• “Overview of Expected Shortfall Backtesting” on page 2-20
• “Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information”

on page 2-30
• “Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
• “Expected Shortfall Estimation and Backtesting” on page 2-44
• “Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano” on page 2-63
• “Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and

Escanciano” on page 2-72

2

Overview of VaR Backtesting
Market risk is the risk of losses in positions arising from movements in market prices. Value-at-risk
(VaR) is one of the main measures of financial risk. VaR is an estimate of how much value a portfolio
can lose in a given time period with a given confidence level. For example, if the one-day 95% VaR of
a portfolio is 10MM, then there is a 95% chance that the portfolio loses less than 10MM the following
day. In other words, only 5% of the time (or about once in 20 days) the portfolio losses exceed 10MM.

For many portfolios, especially trading portfolios, VaR is computed daily. At the closing of the
following day, the actual profits and losses for the portfolio are known and can be compared to the
VaR estimated the day before. You can use this daily data to assess the performance of VaR models,
which is the goal of VaR backtesting. The performance of VaR models can be measured in different
ways. In practice, many different metrics and statistical tests are used to identify VaR models that are
performing poorly or performing better. As a best practice, use more than one criterion to backtest
the performance of VaR models, because all tests have strengths and weaknesses.

Suppose that you have VaR limits and corresponding returns or profits and losses for days t = 1,…,N.
Use VaRt to denote the VaR estimate for day t (determined on day t − 1). Use Rt to denote the actual
return or profit and loss observed on day t. Profits and losses are expressed in monetary units and
represent value changes in a portfolio. The corresponding VaR limits are also given in monetary units.
Returns represent the change in portfolio value as a proportion (or percentage) of its value on the
previous day. The corresponding VaR limits are also given as a proportion (or percentage). The VaR
limits must be produced from existing VaR models. Then, to perform a VaR backtesting analysis,
provide these limits and their corresponding returns as data inputs to the VaR backtesting tools in
Risk Management Toolbox.

The toolbox supports these VaR backtests:

• Binomial test
• Traffic light test
• Kupiec’s tests
• Christoffersen’s tests
• Haas’s tests

Binomial Test
The most straightforward test is to compare the observed number of exceptions, x, to the expected
number of exceptions. From the properties of a binomial distribution, you can build a confidence
interval for the expected number of exceptions. Using exact probabilities from the binomial
distribution or a normal approximation, the bin function uses a normal approximation. By computing
the probability of observing x exceptions, you can compute the probability of wrongly rejecting a
good model when x exceptions occur. This is the p-value for the observed number of exceptions x. For
a given test confidence level, a straightforward accept-or-reject result in this case is to fail the VaR
model whenever x is outside the test confidence interval for the expected number of exceptions.
“Outside the confidence interval” can mean too many exceptions, or too few exceptions. Too few
exceptions might be a sign that the VaR model is too conservative.

The test statistic is

Zbin = x− Np
Np(1− p)

2 Market Risk Measurements Using VaR BackTesting Tools

2-2

where x is the number of failures, N is the number of observations, and p = 1 – VaR level. The
binomial test is approximately distributed as a standard normal distribution.

For more information, see “References” on page 2-5 for Jorion and bin.

Traffic Light Test
A variation on the binomial test proposed by the Basel Committee is the traffic light test or three
zones test. For a given number of exceptions x, you can compute the probability of observing up to x
exceptions. That is, any number of exceptions from 0 to x, or the cumulative probability up to x. The
probability is computed using a binomial distribution. The three zones are defined as follows:

• The “red” zone starts at the number of exceptions where this probability equals or exceeds
99.99%. It is unlikely that too many exceptions come from a correct VaR model.

• The “yellow” zone covers the number of exceptions where the probability equals or exceeds 95%
but is smaller than 99.99%. Even though there is a high number of violations, the violation count
is not exceedingly high.

• Everything below the yellow zone is "green." If you have too few failures, they fall in the green
zone. Only too many failures lead to model rejections.

For more information, see “References” on page 2-5 for Basel Committee on Banking Supervision
and tl.

Kupiec’s POF and TUFF Tests
Kupiec (1995) introduced a variation on the binomial test called the proportion of failures (POF) test.
The POF test works with the binomial distribution approach. In addition, it uses a likelihood ratio to
test whether the probability of exceptions is synchronized with the probability p implied by the VaR
confidence level. If the data suggests that the probability of exceptions is different than p, the VaR
model is rejected. The POF test statistic is

LRPOF = − 2log 1− p N − xpx

1− x
N

N − x x
N

x

where x is the number of failures, N the number of observations and p = 1 – VaR level.

This statistic is asymptotically distributed as a chi-square variable with 1 degree of freedom. The VaR
model fails the test if this likelihood ratio exceeds a critical value. The critical value depends on the
test confidence level.

Kupiec also proposed a second test called the time until first failure (TUFF). The TUFF test looks at
when the first rejection occurred. If it happens too soon, the test fails the VaR model. Checking only
the first exception leaves much information out, specifically, whatever happened after the first
exception is ignored. The TBFI test extends the TUFF approach to include all the failures. See tbfi.

The TUFF test is also based on a likelihood ratio, but the underlying distribution is a geometric
distribution. If n is the number of days until the first rejection, the test statistic is given by

LRTUFF = − 2log p 1− p n− 1

1
n 1− 1

n
n− 1

 Overview of VaR Backtesting

2-3

This statistic is asymptotically distributed as a chi-square variable with 1 degree of freedom. For
more information, see “References” on page 2-5 for Kupiec, pof, and tuff.

Christoffersen’s Interval Forecast Tests
Christoffersen (1998) proposed a test to measure whether the probability of observing an exception
on a particular day depends on whether an exception occurred. Unlike the unconditional probability
of observing an exception, Christoffersen's test measures the dependency between consecutive days
only. The test statistic for independence in Christoffersen’s interval forecast (IF) approach is given by

LRCCI = − 2log 1− π n00 + n10πn01 + n11

1− π0
n00π0

n01 1− π1
n10π1

n11

where

• n00 = Number of periods with no failures followed by a period with no failures.
• n10 = Number of periods with failures followed by a period with no failures.
• n01 = Number of periods with no failures followed by a period with failures.
• n11 = Number of periods with failures followed by a period with failures.

and

• π0 — Probability of having a failure on period t, given that no failure occurred on period t − 1 =
n01 / (n00 + n01)

• π1 — Probability of having a failure on period t, given that a failure occurred on period t − 1 =
n11 / (n10 + n11)

• π — Probability of having a failure on period t = (n01 + n11 / (n00 + n01 + n10 + n11)

This statistic is asymptotically distributed as a chi-square with 1 degree of freedom. You can combine
this statistic with the frequency POF test to get a conditional coverage (CC) mixed test:

LRCC = LRPOF + LRCCI

This test is asymptotically distributed as a chi-square variable with 2 degrees of freedom.

For more information, see “References” on page 2-5 for Christoffersen, cc, and cci.

Haas’s Time Between Failures or Mixed Kupiec’s Test
Haas (2001) extended Kupiec’s TUFF test to incorporate the time information between all the
exceptions in the sample. Haas’s test applies the TUFF test to each exception in the sample and
aggregates the time between failures (TBF) test statistic.

LRTBFI = − 2∑i = 1
x log p 1− p ni− 1

1
ni

1− 1
ni

ni− 1

In this statistic, p = 1 – VaR level and ni is the number of days between failures i-1 and i (or until the
first exception for i = 1). This statistic is asymptotically distributed as a chi-square variable with x
degrees of freedom, where x is the number of failures.

2 Market Risk Measurements Using VaR BackTesting Tools

2-4

Like Christoffersen’s test, you can combine this test with the frequency POF test to get a TBF mixed
test, sometimes called Haas’ mixed Kupiec’s test:

LRTBF = LRPOF + LRTBFI

This test is asymptotically distributed as a chi-square variable with x+1 degrees of freedom. For more
information, see “References” on page 2-5 for Haas, tbf, and tbfi.

References
[1] Basel Committee on Banking Supervision, Supervisory framework for the use of “backtesting” in

conjunction with the internal models approach to market risk capital requirements. January
1996, https://www.bis.org/publ/bcbs22.htm.

[2] Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol. 39, 1998,
pp. 841–862.

[3] Cogneau, P. “Backtesting Value-at-Risk: how good is the model?" Intelligent Risk, PRMIA, July,
2015.

[4] Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar, Bonn,
2001.

[5] Jorion, P. Financial Risk Manager Handbook. 6th Edition, Wiley Finance, 2011.

[6] Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal of
Derivatives. Vol. 3, 1995, pp. 73–84.

[7] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management. Princeton University Press,
2005.

[8] Nieppola, O. “Backtesting Value-at-Risk Models.” Helsinki School of Economics, 2009.

See Also
varbacktest | tl | bin | pof | tuff | cc | cci | tbf | tbfi | summary | runtests

Related Examples
• “Value-at-Risk Estimation and Backtesting” on page 2-10

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3

 Overview of VaR Backtesting

2-5

https://www.bis.org/publ/bcbs22.htm

VaR Backtesting Workflow

This example shows a value-at-risk (VaR) backtesting workflow and the use of VaR backtesting tools.
For a more comprehensive example of VaR backtesting, see “Value-at-Risk Estimation and
Backtesting” on page 2-10.

Step 1. Load the VaR backtesting data.

Use the VaRBacktestData.mat file to load the VaR data into the workspace. This example works
with the EquityIndex, Normal95, and Normal99 numeric arrays. These arrays are equity returns
and the corresponding VaR data at 95% and 99% confidence levels is produced with a normal
distribution (a variance-covariance approach). See “Value-at-Risk Estimation and Backtesting” on
page 2-10 for an example on how to generate this VaR data.

load('VaRBacktestData')
disp([EquityIndex(1:5) Normal95(1:5) Normal99(1:5)])

 -0.0043 0.0196 0.0277
 -0.0036 0.0195 0.0276
 -0.0000 0.0195 0.0275
 0.0298 0.0194 0.0275
 0.0023 0.0197 0.0278

The first column shows three losses in the first three days, but none of these losses exceeds the
corresponding VaR (columns 2 and 3). The VaR model fails whenever the loss (negative of returns)
exceeds the VaR.

Step 2. Generate a VaR backtesting plot.

Use the plot function to visualize the VaR backtesting data. This type of visualization is a common
first step when performing a VaR backtesting analysis.

plot(Date,[EquityIndex -Normal95 -Normal99])
title('VaR Backtesting')
xlabel('Date')
ylabel('Returns')
legend('Returns','VaR 95%','VaR 99%')

2 Market Risk Measurements Using VaR BackTesting Tools

2-6

Step 3. Create a varbacktest object.

Create a varbacktest object for the equity returns and the VaRs at 95% and 99% confidence levels.

vbt = varbacktest(EquityIndex,[Normal95 Normal99],...
 'PortfolioID','S&P', ...
 'VaRID',{'Normal95' 'Normal99'}, ...
 'VaRLevel',[0.95 0.99]);
disp(vbt)

 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x2 double]
 PortfolioID: "S&P"
 VaRID: ["Normal95" "Normal99"]
 VaRLevel: [0.9500 0.9900]

Step 4. Run a summary report.

Use the summary function to obtain a summary for the number of observations, the number of
failures, and other simple metrics.

summary(vbt)

ans=2×10 table
 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected Ratio FirstFailure Missing
 ___________ __________ ________ _____________ ____________ ________ ________ ______ ____________ _______

 VaR Backtesting Workflow

2-7

 "S&P" "Normal95" 0.95 0.94535 1043 57 52.15 1.093 58 0
 "S&P" "Normal99" 0.99 0.9837 1043 17 10.43 1.6299 173 0

Step 5. Run all tests.

Use the runtests function to display the final test results all at once.

runtests(vbt)

ans=2×11 table
 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI
 ___________ __________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "S&P" "Normal95" 0.95 green accept accept accept accept accept reject reject
 "S&P" "Normal99" 0.99 yellow reject accept accept accept accept accept accept

Step 6. Run individual tests.

After running all tests, you can investigate the details of particular tests. For example, use the tl
function to run the traffic light test.

tl(vbt)

ans=2×9 table
 PortfolioID VaRID VaRLevel TL Probability TypeI Increase Observations Failures
 ___________ __________ ________ ______ ___________ _______ ________ ____________ ________

 "S&P" "Normal95" 0.95 green 0.77913 0.26396 0 1043 57
 "S&P" "Normal99" 0.99 yellow 0.97991 0.03686 0.26582 1043 17

Step 7. Create VaR backtests for multiple portfolios.

You can create VaR backtests for different portfolios, or the same portfolio over different time
windows. Run tests over two different subwindows of the original test window.

Ind1 = year(Date)<=2000;
Ind2 = year(Date)>2000;

vbt1 = varbacktest(EquityIndex(Ind1),[Normal95(Ind1,:) Normal99(Ind1,:)],...
 'PortfolioID','S&P, 1999-2000',...
 'VaRID',{'Normal95' 'Normal99'},...
 'VaRLevel',[0.95 0.99]);

vbt2 = varbacktest(EquityIndex(Ind2),[Normal95(Ind2,:) Normal99(Ind2,:)],...
 'PortfolioID','S&P, 2001-2002',...
 'VaRID',{'Normal95' 'Normal99'},...
 'VaRLevel',[0.95 0.99]);

Step 8. Display a summary report for both portfolios.

Use the summary function to display a summary for both portfolios.

Summary = [summary(vbt1); summary(vbt2)];
disp(Summary)

2 Market Risk Measurements Using VaR BackTesting Tools

2-8

 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected Ratio FirstFailure Missing
 ________________ __________ ________ _____________ ____________ ________ ________ ______ ____________ _______

 "S&P, 1999-2000" "Normal95" 0.95 0.94626 521 28 26.05 1.0749 58 0
 "S&P, 1999-2000" "Normal99" 0.99 0.98464 521 8 5.21 1.5355 173 0
 "S&P, 2001-2002" "Normal95" 0.95 0.94444 522 29 26.1 1.1111 35 0
 "S&P, 2001-2002" "Normal99" 0.99 0.98276 522 9 5.22 1.7241 45 0

Step 9. Run all tests for both portfolios.

Use the runtests function to display the final test result for both portfolios.

Results = [runtests(vbt1);runtests(vbt2)];
disp(Results)

 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI
 ________________ __________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "S&P, 1999-2000" "Normal95" 0.95 green accept accept accept accept accept reject reject
 "S&P, 1999-2000" "Normal99" 0.99 green accept accept accept accept accept accept accept
 "S&P, 2001-2002" "Normal95" 0.95 green accept accept accept accept accept accept accept
 "S&P, 2001-2002" "Normal99" 0.99 yellow accept accept accept accept accept accept accept

See Also
varbacktest | tl | bin | pof | tuff | cc | cci | tbf | tbfi | summary | runtests

Related Examples
• “Value-at-Risk Estimation and Backtesting” on page 2-10

More About
• “Traffic Light Test” on page 2-3
• “Binomial Test” on page 2-2
• “Kupiec’s POF and TUFF Tests” on page 2-3
• “Christoffersen’s Interval Forecast Tests” on page 2-4
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-4

 VaR Backtesting Workflow

2-9

Value-at-Risk Estimation and Backtesting

This example shows how to estimate the value-at-risk (VaR) using three methods and perform a VaR
backtesting analysis. The three methods are:

1 Normal distribution
2 Historical simulation
3 Exponential weighted moving average (EWMA)

Value-at-risk is a statistical method that quantifies the risk level associated with a portfolio. The VaR
measures the maximum amount of loss over a specified time horizon and at a given confidence level.

Backtesting measures the accuracy of the VaR calculations. Using VaR methods, the loss forecast is
calculated and then compared to the actual losses at the end of the next day. The degree of difference
between the predicted and actual losses indicates whether the VaR model is underestimating or
overestimating the risk. As such, backtesting looks retrospectively at data and helps to assess the VaR
model.

The three estimation methods used in this example estimate the VaR at 95% and 99% confidence
levels.

Load the Data and Define the Test Window

Load the data. The data used in this example is from a time series of returns on the S&P index from
1993 through 2003.

load VaRExampleData.mat
Returns = tick2ret(sp);
DateReturns = dates(2:end);
SampleSize = length(Returns);

Define the estimation window as 250 trading days. The test window starts on the first day in 1996
and runs through the end of the sample.

TestWindowStart = find(year(DateReturns)==1996,1);
TestWindow = TestWindowStart : SampleSize;
EstimationWindowSize = 250;

For a VaR confidence level of 95% and 99%, set the complement of the VaR level.

pVaR = [0.05 0.01];

These values mean that there is at most a 5% and 1% probability, respectively, that the loss incurred
will be greater than the maximum threshold (that is, greater than the VaR).

Compute the VaR Using the Normal Distribution Method

For the normal distribution method, assume that the profit and loss of the portfolio is normally
distributed. Using this assumption, compute the VaR by multiplying the z-score, at each confidence
level by the standard deviation of the returns. Because VaR backtesting looks retrospectively at data,
the VaR "today" is computed based on values of the returns in the last N = 250 days leading to, but
not including, "today."

Zscore = norminv(pVaR);
Normal95 = zeros(length(TestWindow),1);

2 Market Risk Measurements Using VaR BackTesting Tools

2-10

Normal99 = zeros(length(TestWindow),1);

for t = TestWindow
 i = t - TestWindowStart + 1;
 EstimationWindow = t-EstimationWindowSize:t-1;
 Sigma = std(Returns(EstimationWindow));
 Normal95(i) = -Zscore(1)*Sigma;
 Normal99(i) = -Zscore(2)*Sigma;
end

figure;
plot(DateReturns(TestWindow),[Normal95 Normal99])
xlabel('Date')
ylabel('VaR')
legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')
title('VaR Estimation Using the Normal Distribution Method')

The normal distribution method is also known as parametric VaR because its estimation involves
computing a parameter for the standard deviation of the returns. The advantage of the normal
distribution method is its simplicity. However, the weakness of the normal distribution method is the
assumption that returns are normally distributed. Another name for the normal distribution method is
the variance-covariance approach.

Compute the VaR Using the Historical Simulation Method

Unlike the normal distribution method, the historical simulation (HS) is a nonparametric method. It
does not assume a particular distribution of the asset returns. Historical simulation forecasts risk by

 Value-at-Risk Estimation and Backtesting

2-11

assuming that past profits and losses can be used as the distribution of profits and losses for the next
period of returns. The VaR "today" is computed as the p th-quantile of the last N returns prior to
"today."

Historical95 = zeros(length(TestWindow),1);
Historical99 = zeros(length(TestWindow),1);

for t = TestWindow
 i = t - TestWindowStart + 1;
 EstimationWindow = t-EstimationWindowSize:t-1;
 X = Returns(EstimationWindow);
 Historical95(i) = -quantile(X,pVaR(1));
 Historical99(i) = -quantile(X,pVaR(2));
end

figure;
plot(DateReturns(TestWindow),[Historical95 Historical99])
ylabel('VaR')
xlabel('Date')
legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')
title('VaR Estimation Using the Historical Simulation Method')

The preceding figure shows that the historical simulation curve has a piecewise constant profile. The
reason for this is that quantiles do not change for several days until extreme events occur. Thus, the
historical simulation method is slow to react to changes in volatility.

2 Market Risk Measurements Using VaR BackTesting Tools

2-12

Compute the VaR Using the Exponential Weighted Moving Average Method (EWMA)

The first two VaR methods assume that all past returns carry the same weight. The exponential
weighted moving average (EWMA) method assigns nonequal weights, particularly exponentially
decreasing weights. The most recent returns have higher weights because they influence "today's"
return more heavily than returns further in the past. The formula for the EWMA variance over an
estimation window of size WE is:

σt
2 = 1

c ∑i = 1

WE
λi− 1yt − i

2

where c is a normalizing constant:

c = ∑
i = 1

WE
λi− 1 = 1− λWE

1− λ
1

1− λ as WE ∞

For convenience, we assume an infinitely large estimation window to approximate the variance:

σt
2 ≈ (1− λ)(yt − 1

2 + ∑
i = 2

∞
λi− 1yt − i

2) = (1− λ)yt − 1
2 + λσt − 1

2

A value of the decay factor frequently used in practice is 0.94. This is the value used in this example.
For more information, see References.

Initiate the EWMA using a warm-up phase to set up the standard deviation.

Lambda = 0.94;
Sigma2 = zeros(length(Returns),1);
Sigma2(1) = Returns(1)^2;

for i = 2 : (TestWindowStart-1)
 Sigma2(i) = (1-Lambda) * Returns(i-1)^2 + Lambda * Sigma2(i-1);
end

Use the EWMA in the test window to estimate the VaR.

Zscore = norminv(pVaR);
EWMA95 = zeros(length(TestWindow),1);
EWMA99 = zeros(length(TestWindow),1);

for t = TestWindow
 k = t - TestWindowStart + 1;
 Sigma2(t) = (1-Lambda) * Returns(t-1)^2 + Lambda * Sigma2(t-1);
 Sigma = sqrt(Sigma2(t));
 EWMA95(k) = -Zscore(1)*Sigma;
 EWMA99(k) = -Zscore(2)*Sigma;
end

figure;
plot(DateReturns(TestWindow),[EWMA95 EWMA99])
ylabel('VaR')
xlabel('Date')
legend({'95% Confidence Level','99% Confidence Level'},'Location','Best')
title('VaR Estimation Using the EWMA Method')

 Value-at-Risk Estimation and Backtesting

2-13

In the preceding figure, the EWMA reacts very quickly to periods of large (or small) returns.

VaR Backtesting

In the first part of this example, VaR was estimated over the test window with three different methods
and at two different VaR confidence levels. The goal of VaR backtesting is to evaluate the
performance of VaR models. A VaR estimate at 95% confidence is violated only about 5% of the time,
and VaR failures do not cluster. Clustering of VaR failures indicates the lack of independence across
time because the VaR models are slow to react to changing market conditions.

A common first step in VaR backtesting analysis is to plot the returns and the VaR estimates together.
Plot all three methods at the 95% confidence level and compare them to the returns.

ReturnsTest = Returns(TestWindow);
DatesTest = DateReturns(TestWindow);
figure;
plot(DatesTest,[ReturnsTest -Normal95 -Historical95 -EWMA95])
ylabel('VaR')
xlabel('Date')
legend({'Returns','Normal','Historical','EWMA'},'Location','Best')
title('Comparison of returns and VaR at 95% for different models')

2 Market Risk Measurements Using VaR BackTesting Tools

2-14

To highlight how the different approaches react differently to changing market conditions, you can
zoom in on the time series where there is a large and sudden change in the value of returns. For
example, around August 1998:

ZoomInd = (DatesTest >= datetime(1998,8,5)) & (DatesTest <= datetime(1998,10,31));
VaRData = [-Normal95(ZoomInd) -Historical95(ZoomInd) -EWMA95(ZoomInd)];
VaRFormat = {'-','--','-.'};
D = DatesTest(ZoomInd);
R = ReturnsTest(ZoomInd);
N = Normal95(ZoomInd);
H = Historical95(ZoomInd);
E = EWMA95(ZoomInd);
IndN95 = (R < -N);
IndHS95 = (R < -H);
IndEWMA95 = (R < -E);
figure;
bar(D,R,0.5,'FaceColor',[0.7 0.7 0.7]);
hold on
for i = 1 : size(VaRData,2)
 stairs(D-0.5,VaRData(:,i),VaRFormat{i});
end
ylabel('VaR')
xlabel('Date')
legend({'Returns','Normal','Historical','EWMA'},'Location','Best','AutoUpdate','Off')
title('95% VaR violations for different models')
ax = gca;
ax.ColorOrderIndex = 1;

 Value-at-Risk Estimation and Backtesting

2-15

plot(D(IndN95),-N(IndN95),'o',D(IndHS95),-H(IndHS95),'o',...
 D(IndEWMA95),-E(IndEWMA95),'o','MarkerSize',8,'LineWidth',1.5)
xlim([D(1)-1, D(end)+1])
hold off;

A VaR failure or violation happens when the returns have a negative VaR. A closer look around August
27 to August 31 shows a significant dip in the returns. On the dates starting from August 27 onward,
the EWMA follows the trend of the returns closely and more accurately. Consequently, EWMA has
fewer VaR violations (two (2) violations, yellow diamonds) compared to the Normal Distribution
approach (seven (7) violations, blue stars) or the Historical Simulation method (eight (8) violations,
red squares).

Besides visual tools, you can use statistical tests for VaR backtesting. In Risk Management Toolbox™,
a varbacktest object supports multiple statistical tests for VaR backtesting analysis. In this
example, start by comparing the different test results for the normal distribution approach at the 95%
and 99% VaR levels.

vbt = varbacktest(ReturnsTest,[Normal95 Normal99],'PortfolioID','S&P','VaRID',...
 {'Normal95','Normal99'},'VaRLevel',[0.95 0.99]);
summary(vbt)

ans=2×10 table
 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected Ratio FirstFailure Missing
 ___________ __________ ________ _____________ ____________ ________ ________ ______ ____________ _______

 "S&P" "Normal95" 0.95 0.94863 1966 101 98.3 1.0275 7 0

2 Market Risk Measurements Using VaR BackTesting Tools

2-16

 "S&P" "Normal99" 0.99 0.98372 1966 32 19.66 1.6277 7 0

The summary report shows that the observed level is close enough to the defined VaR level. The 95%
and 99% VaR levels have at most (1-VaR_level) x N expected failures, where N is the number of
observations. The failure ratio shows that the Normal95 VaR level is within range, whereas the
Normal99 VaR Level is imprecise and under-forecasts the risk. To run all tests supported in
varbacktest, use runtests.

runtests(vbt)

ans=2×11 table
 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI
 ___________ __________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "S&P" "Normal95" 0.95 green accept accept accept accept reject reject reject
 "S&P" "Normal99" 0.99 yellow reject reject accept reject accept reject reject

The 95% VaR passes the frequency tests, such as traffic light, binomial and proportion of failures
tests (tl, bin, and pof columns). The 99% VaR does not pass these same tests, as indicated by the
yellow and reject results. Both confidence levels got rejected in the conditional coverage
independence, and time between failures independence (cci and tbfi columns). This result
suggests that the VaR violations are not independent, and there are probably periods with multiple
failures in a short span. Also, one failure may make it more likely that other failures will follow in
subsequent days. For more information on the tests methodologies and the interpretation of results,
see varbacktest and the individual tests.

Using a varbacktest object, run the same tests on the portfolio for the three approaches at both
VaR confidence levels.

vbt = varbacktest(ReturnsTest,[Normal95 Historical95 EWMA95 Normal99 Historical99 ...
 EWMA99],'PortfolioID','S&P','VaRID',{'Normal95','Historical95','EWMA95',...
 'Normal99','Historical99','EWMA99'},'VaRLevel',[0.95 0.95 0.95 0.99 0.99 0.99]);
runtests(vbt)

ans=6×11 table
 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI
 ___________ ______________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "S&P" "Normal95" 0.95 green accept accept accept accept reject reject reject
 "S&P" "Historical95" 0.95 yellow accept accept accept accept accept reject reject
 "S&P" "EWMA95" 0.95 green accept accept accept accept accept reject reject
 "S&P" "Normal99" 0.99 yellow reject reject accept reject accept reject reject
 "S&P" "Historical99" 0.99 yellow reject reject accept reject accept reject reject
 "S&P" "EWMA99" 0.99 red reject reject accept reject accept reject reject

The results are similar to the previous results, and at the 95% level, the frequency results are
generally acceptable. However, the frequency results at the 99% level are generally rejections.
Regarding independence, most tests pass the conditional coverage independence test (cci), which
tests for independence on consecutive days. Notice that all tests fail the time between failures
independence test (tbfi), which takes into account the times between all failures. This result
suggests that all methods have issues with the independence assumption.

To better understand how these results change given market conditions, look at the years 2000 and
2002 for the 95% VaR confidence level.

 Value-at-Risk Estimation and Backtesting

2-17

Ind2000 = (year(DatesTest) == 2000);
vbt2000 = varbacktest(ReturnsTest(Ind2000),[Normal95(Ind2000) Historical95(Ind2000) EWMA95(Ind2000)],...
 'PortfolioID','S&P, 2000','VaRID',{'Normal','Historical','EWMA'});
runtests(vbt2000)

ans=3×11 table
 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI
 ___________ ____________ ________ _____ ______ ______ ______ ______ ______ ______ ______

 "S&P, 2000" "Normal" 0.95 green accept accept accept accept accept accept accept
 "S&P, 2000" "Historical" 0.95 green accept accept accept accept accept accept accept
 "S&P, 2000" "EWMA" 0.95 green accept accept accept accept accept accept accept

Ind2002 = (year(DatesTest) == 2002);
vbt2002 = varbacktest(ReturnsTest(Ind2002),[Normal95(Ind2002) Historical95(Ind2002) EWMA95(Ind2002)],...
 'PortfolioID','S&P, 2002','VaRID',{'Normal','Historical','EWMA'});
runtests(vbt2002)

ans=3×11 table
 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI
 ___________ ____________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "S&P, 2002" "Normal" 0.95 yellow reject reject accept reject reject reject reject
 "S&P, 2002" "Historical" 0.95 yellow reject accept accept reject reject reject reject
 "S&P, 2002" "EWMA" 0.95 green accept accept accept accept reject reject reject

For the year 2000, all three methods pass all the tests. However, for the year 2002, the test results
are mostly rejections for all methods. The EWMA method seems to perform better in 2002, yet all
methods fail the independence tests.

To get more insight into the independence tests, look into the conditional coverage independence
(cci) and the time between failures independence (tbfi) test details for the year 2002. To access the
test details for all tests, run the individual test functions.

cci(vbt2002)

ans=3×13 table
 PortfolioID VaRID VaRLevel CCI LRatioCCI PValueCCI Observations Failures N00 N10 N01 N11 TestLevel
 ___________ ____________ ________ ______ _________ _________ ____________ ________ ___ ___ ___ ___ _________

 "S&P, 2002" "Normal" 0.95 reject 12.591 0.0003877 261 21 225 14 14 7 0.95
 "S&P, 2002" "Historical" 0.95 reject 6.3051 0.012039 261 20 225 15 15 5 0.95
 "S&P, 2002" "EWMA" 0.95 reject 4.6253 0.031504 261 14 235 11 11 3 0.95

In the CCI test, the probability p 01 of having a failure at time t, knowing that there was no failure at
time t-1 is given by

p01 =
N01

N01 + N00

The probability p 11 of having a failure at time t, knowing that there was failure at time t-1 is given
by

p11 =
N11

N11 + N10

2 Market Risk Measurements Using VaR BackTesting Tools

2-18

From the N00, N10, N01, N11 columns in the test results, the value of p 01 is at around 5% for the
three methods, yet the values of p 11 are above 20%. Because there is evidence that a failure is
followed by another failure much more frequently than 5% of the time, this CCI test fails.

In the time between failures independence test, look at the minimum, maximum, and quartiles of the
distribution of times between failures, in the columns TBFMin, TBFQ1, TBFQ2, TBFQ3, TBFMax.

tbfi(vbt2002)

ans=3×14 table
 PortfolioID VaRID VaRLevel TBFI LRatioTBFI PValueTBFI Observations Failures TBFMin TBFQ1 TBFQ2 TBFQ3 TBFMax TestLevel
 ___________ ____________ ________ ______ __________ __________ ____________ ________ ______ _____ _____ _____ ______ _________

 "S&P, 2002" "Normal" 0.95 reject 53.936 0.00010087 261 21 1 1 5 17 48 0.95
 "S&P, 2002" "Historical" 0.95 reject 45.274 0.0010127 261 20 1 1.5 5.5 17 48 0.95
 "S&P, 2002" "EWMA" 0.95 reject 25.756 0.027796 261 14 1 4 7.5 20 48 0.95

For a VaR level of 95%, you expect an average time between failures of 20 days, or one failure every
20 days. However, the median of the time between failures for the year 2002 ranges between 5 and
7.5 for the three methods. This result suggests that half of the time, two consecutive failures occur
within 5 to 7 days, much more frequently than the 20 expected days. Consequently, more test failures
occur. For the normal method, the first quartile is 1, meaning that 25% of the failures occur on
consecutive days.

References

Nieppola, O. Backtesting Value-at-Risk Models. Helsinki School of Economics. 2009.

Danielsson, J. Financial Risk Forecasting: The Theory and Practice of Forecasting Market Risk, with
Implementation in R and MATLAB®. Wiley Finance, 2012.

See Also
varbacktest | tl | bin | pof | tuff | cc | cci | tbf | tbfi | summary | runtests

Related Examples
• “VaR Backtesting Workflow” on page 2-6

More About
• “Traffic Light Test” on page 2-3
• “Binomial Test” on page 2-2
• “Kupiec’s POF and TUFF Tests” on page 2-3
• “Christoffersen’s Interval Forecast Tests” on page 2-4
• “Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-4

 Value-at-Risk Estimation and Backtesting

2-19

Overview of Expected Shortfall Backtesting
Expected Shortfall (ES) is the expected loss on days when there is a Value-at-Risk (VaR) failure. If the
VaR is 10 million and the ES is 12 million, we know the expected loss tomorrow; if it happens to be a
very bad day, it is 20% higher than the VaR. ES is sometimes called Conditional Value-at-Risk (CVaR),
Tail Value-at-Risk (TVaR), Tail Conditional Expectation (TCE), or Conditional Tail Expectation (CTE).

There are many approaches to estimating VaR and ES, and they may lead to different VaR and ES
estimates. How can one determine if models are accurately estimating the risk on a daily basis? How
can one evaluate which model performs better? The varbacktest tools help validate the
performance of VaR models with regards to estimated VaR values. The esbacktest,
esbacktestbysim, and esbacktestbyde tools extend these capabilities to evaluate VaR models
with regards to estimated ES values.

For VaR backtesting, the possibilities every day are two: either there is a VaR failure or not. If the VaR
confidence level is 95%, VaR failures should happen approximately 5% of the time. To backtest VaR,
you only need to know whether the VaR was exceeded (VaR failure) or not on each day of the test
window and the VaR confidence level. Risk Management Toolbox VaR backtesting tools support
“frequency” (assess the proportion of failures) and “independence” (assess independence across
time) tests, and these tests work with the binary sequence of "failure" or "no-failure" results over the
test window.

For expected shortfall (ES), the possibilities every day are infinite: The VaR may be exceeded by 1%,
or by 10%, or by 150%, and so on. For example, there are three VaR failures in the following example:

On failure days, the VaR is exceeded on average by 39%, but the estimated ES exceeds VaR by an
average of 27%. How can you tell if 39% is significantly larger than 27%? Knowing the VaR
confidence level is not enough, you must also know how likely are the different exceedances over the
VaR according to the VaR model. In other words, you need some distribution information about what
happens beyond the VaR according to your model assumptions. For thin-tail VaR models, 39% vs. 27%
may be a large difference. However, for a heavy-tail VaR model where a severity of twice the VaR has
a non-trivial probability of happening, then 39% vs. 27% over the three failure dates may not be a red
flag.

A key difference between VaR backtesting and ES backtesting is that most ES backtesting methods
require information about the distribution of the returns on each day, or at least the distribution of
the tails beyond the VaR. One exception is the “unconditional” test (see unconditionalNormal and
unconditionalT) where you can get approximate test results without providing the distribution
information. This is important in practice, because the “unconditional” test is much simpler to use
and can be used in principle for any VaR or ES model. The trade-off is that the approximate results
may be inaccurate, especially in borderline accept, or reject cases, or for certain types of
distributions.

2 Market Risk Measurements Using VaR BackTesting Tools

2-20

The toolbox supports the following tests for expected shortfall backtesting for table-based tests for
the unconditional Acerbi-Szekely test using the esbacktest object:

• unconditionalNormal
• unconditionalT

ES backtests are necessarily approximated in that they are sensitive to errors in the predicted VaR.
However, the minimally biased test has only a small sensitivity to VaR errors and the sensitivity is
prudential, in the sense that VaR errors lead to a more punitive ES test. See Acerbi-Szekely (2017 and
2019) for details. When distribution information is available, the minimally biased test
(minBiasRelative or minBiasAbsolute) is recommended.

The toolbox supports the following Acerbi-Szekely simulation-based tests for expected shortfall
backtesting using the esbacktestbysim object:

• conditional
• unconditional
• quantile
• minBiasRelative
• minBiasAbsolute

For the Acerbi-Szekely simulation-based tests, you must provide the model distribution information as
part of the inputs to esbacktestbysim.

The toolbox also supports the following Du and Escanciano tests for expected shortfall backtesting
using the esbacktestbyde object:

• unconditionalDE
• conditionalDE

For the Du and Escanciano simulation-based tests, you must provide the model distribution
information as part of the inputs to esbacktestbyde.

Conditional Test by Acerbi and Szekely
The conditional test statistic by Acerbi and Szekely is based on the conditional relationship

ESt = − Et Xt Xt < − VaRt

where

Xt is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period t.

VaRt is the estimated VaR for period t.

ESt is the estimated expected shortfall for period t.

The number of failures is defined as

NumFailures = ∑
t = 1

N
It

where

 Overview of Expected Shortfall Backtesting

2-21

N is the number of periods in the test window (t = 1,…,N).

It is the VaR failure indicator on period t with a value of 1 if Xt < -VaR, and 0 otherwise.

The conditional test statistic is defined as

Zcond = 1
NumFailures ∑t = 1

N XtIt
ESt

+ 1

The conditional test has two parts. A VaR backtest must be run for the number of failures
(NumFailures), and a standalone conditional test is performed for the conditional test statistic Zcond.
The conditional test accepts the model only when both the VaR test and the standalone conditional
test accept the model. For more information, see conditional.

Unconditional Test by Acerbi and Szekely
The unconditional test statistic by Acerbi and Szekely is based on the unconditional relationship,

ESt = − Et
XtIt

pVaR

where

Xt is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period t.

PVaR is the probability of VaR failure defined as 1-VaR level.

ESt is the estimated expected shortfall for period t.

It is the VaR failure indicator on period t with a value of 1 if Xt < -VaR, and 0 otherwise.

The unconditional test statistic is defined as

Zuncond = 1
NpVaR

∑
t = 1

N XtIt
ESt

+ 1

The critical values for the unconditional test statistic are stable across a range of distributions, which
is the basis for the table-based tests. The esbacktest class runs the unconditional test against
precomputed critical values under two distributional assumptions, namely, normal distribution (thin
tails, see unconditionalNormal), and t distribution with 3 degrees of freedom (heavy tails, see
unconditionalT).

Quantile Test by Acerbi and Szekely
A sample estimator of the expected shortfall for a sample Y1,…,YN is:

ES(Y) = − 1
NpVaR

∑
i = 1

NpVaR
Y i

where

N is the number of periods in the test window (t = 1,…,N).

2 Market Risk Measurements Using VaR BackTesting Tools

2-22

PVaR is the probability of VaR failure defined as 1-VaR level.

Y1,…,YN are the sorted sample values (from smallest to largest), and NpVaR is the largest integer
less than or equal to NpVaR.

To compute the quantile test statistic, a sample of size N is created at each time t as follows. First,
convert the portfolio outcomes to Xt to ranks U1 = P1(X1), ..., UN = PN(XN) using the cumulative
distribution function Pt. If the distribution assumptions are correct, the rank values U1,…,UN are
uniformly distributed in the interval (0,1). Then at each time t:

1 Invert the ranks U = (U1,…,UN) to get N quantiles Pt
−1(U) = (Pt

−1(U1), ..., Pt
−1(UN)).

2 Compute the sample estimator ES(Pt
−1(U)).

3 Compute the expected value of the sample estimator E ES(Pt
−1(V))

where V = (V1,…,VN) is a sample of N independent uniform random variables in the interval (0,1).
This can be computed analytically.

The quantile test statistic by Acerbi and Szekely is defined as

Zquantile = − 1
N ∑

t = 1

N ES(Pt
−1(U))

E[ES(Pt
−1(V))]

+ 1

The denominator inside the sum can be computed analytically as

E[ES(Pt
−1(V))] = − N

NpVaR
∫0 1

I1− p(N − NpVaR , NpVaR)Pt
−1(p)dp

where Ix(z,w) is the regularized incomplete beta function. For more information, see betainc and
quantile.

Minimally Biased Test by Acerbi and Szekely
The minimally biased test statistic by Acerbi and Szekely is based on the following representation of
the VaR and ES (see Acerbi and Szekely 2017 and 2019 for details and also Rockafellar and Uryasev
2002, and Acerbi and Tasche 2002):

ESα = minvE v + 1
α (X + v)

VaRα = argminvE v + 1
α (X + v)

where

X is the portfolio outcome.

(x)_ is the negative part function defined as (x)_ = max(0,-x).

ɑ is 1-VaR level.

The test statistic has an absolute version and a relative version. The absolute version of the minimally
biased test statistic is given by

 Overview of Expected Shortfall Backtesting

2-23

Zminbias
abs = 1

N ∑
t = 1

N
(ESt − VaRt −

1
pVaR

(Xt + VaRt)_)

where

Xt is the portfolio outcome, that is the portfolio return or portfolio profit and loss for period t.

VaRt is the essential VaR for period t.

ESt is the expected shortfall for period t.

pVaR is the probability of Var Failure defined as 1-VaR level.

N is the number of periods in the test window (t = 1,...N).

(x)_ is the negative part function defined as (x)_ = max(0,-x).

The relative version of the minimally biased test statistic is given by

Zminbias
rel = 1

N ∑
t = 1

N 1
ESt

(ESt − VaRt −
1

pVaR
(Xt + VaRt)_)

ES backtests are necessarily approximated in that they are sensitive to errors in the predicted VaR.
However, the minimally biased test has only a small sensitivity to VaR errors and the sensitivity is
prudential, in the sense that VaR errors lead to a more punitive ES test. See Acerbi-Szekely (2017 and
2019) for details. When distribution information is available, the minimally biased test is
recommended. For more information, see minBiasRelative and minBiasAbsolute.

ES Backtest Using Du-Escanciano Method
For each day, the Du-Escanciano model assumes a distribution for the returns. For example, if you
have a normal distribution with a conditional variance of 1.5%, there is a corresponding cumulative
distribution function Pt. By mapping the returns Xt with the distribution Pt, you get the “mapped
returns” series Ut, also known as the "ranks" series, which by construction has values between 0 and
1 (see column 2 in the following table). Let α be the complement of the VaR level — for example, if
the VaR level is 95%, α is 5%. If the mapped return Ut is smaller than α, then there is a VaR
“violation” or VaR “failure.” This is equivalent to observing a return Xt smaller than the negative of
the VaR value for that day, since, by construction, the negative of the VaR value gets mapped to α.
Therefore, you can compare Ut against α without even knowing the VaR value. The series of VaR
failures is denoted by ht and it is a series of 0's and 1's stored in column 3 in the following table.
Finally, column 4 in the following table contains the “cumulative violations” series, denoted by Ht.
This is the severity of the mapped VaR violations on days on which the VaR is violated. For example, if
the mapped return Ut is 1% and α is 5%, Ht is 4%. Ht is defined as zero if there are no VaR violations.

Xt Ut = Pt(Xt) ht = Ut < α Ht = (α - Ut) * ht

0.00208 0.5799 0 0
-0.01073 0.1554 0 0
-0.00825 0.2159 0 0
-0.02967 0.0073 1 0.0427
0.01242 0.8745 0 0

2 Market Risk Measurements Using VaR BackTesting Tools

2-24

Xt Ut = Pt(Xt) ht = Ut < α Ht = (α - Ut) * ht

...

Given the violations series ht and the cumulative violations series Ht, the Du-Escanciano (DE) tests
are summarized as:

Du-Escanciano Test VaR Test ES Test
Unconditional Mean of ht Mean of Ht

Conditional Autocorrelation of ht Autocorrelation of Ht

The DE VaR tests assess the mean value and the autocorrelation of the ht series, and the resulting
tests overlap with known VaR tests. For example, the mean of ht is expected to match α. In other
words, the proportion of time the VaR is violated is expected to match the confidence level. This test
is supported in the varbacktest class with the proportion of failures (pof) test (finite sample) and
the binomial (bin) test (large-sample approximation). In turn, the conditional VaR test measures if
there is a time pattern in the sequence of VaR failures (back-to-back failures, and so on). The
conditional coverage independence (cci) test in the varbacktest class tests for one-lag
independence. The time between failures independence (tbfi) test in the varbacktest class also
assesses time independence for VaR models.

The esbacktestbyde class supports the DE ES tests. The DE ES tests assess the mean value and
the autocorrelation of the Ht series. For the unconditional test (unconditionalDE), the expected
value is α/2 — for example, the average value in the bottom 5% of a uniform (0,1) distribution is 2.5%.
The conditional test (conditionalDE) assesses not only if a failure occurs but also if the failure
severity is correlated to previous failure occurrences and their severities.

The test statistic for the unconditional DE ES test is

UES = 1
N∑t = 1

N Ht

If the number of observations is large, the test statistic is distributed as

UES dist N α
2, α(1/3− α/4)

N = PU

where N(μ,σ2) is the normal distribution with mean μ and variance σ2.

The unconditional DE ES test is a two-sided test that checks if the test statistic is close to the
expected value of α/2. From the limiting distribution, a confidence level is derived. Finite-sample
confidence intervals are estimated through simulation.

The test statistic for the conditional DE ES test is derived in several steps. First, define the
autocovariance for lag j:

γ j = 1
N − j∑t = j + 1

N (Ht − α/2)(Ht − j− α/2)

The autocorrelation for lag j is then

ρ j =
γ j
γ0

 Overview of Expected Shortfall Backtesting

2-25

The test statistic for m lags is then

CES(m) = N∑ j = 1
m ρ j

2

If the number of observations is large, the test statistic is distributed as a chi-square distribution with
m degrees of freedom:

CES(m) dist χm
2

The conditional DE ES test is a one-sided test to determine if the conditional DE ES test statistic is
much larger than zero. If so, there is evidence of autocorrelation. The limiting distribution computes
large-sample critical values. Finite-sample critical values are estimated through simulation.

Comparison of ES Backtesting Methods
The backtesting tools supported by Risk Management Toolbox have the following requirements and
features.

Backtest
ing Tool

Portfol
ioData
Required

VarData
Required

ESData
Required

VaRLeve
l
Required
a

Portfol
ioID and
VaRID
Supporte
d

Distrib
ution
Informat
ion
Required

Supports
Multiple
Modelsb

Supports
Multiple
VaRLeve
ls

varback
test

Yes Yes No Yes Yes No Yes Yes

esbackt
est

Yes Yes Yes Yes Yes No Yes Yes

esbackt
estbysi
m

Yes Yes Yes Yes Yes Yes No Yes

esbackt
estbyde

Yes No No Yes Yes Yes No Yes

a VaRLevel is an optional name-value pair argument with a default value of 95%. It is recommended to set the VaRLevel
when creating the backtesting object.

b For example, you can backtest a normal and a t model in the same object with varbacktest, but you need two
separate instances of the esbacktestbyde class to backtest them.

Risk Management Toolbox supports the following backtesting tools and their associated tests.

Test Type Test Name Tests for Risk
Measure

Critical
Value
Computatio
n

Use Object Use
Function

Basel Traffic light Frequency VaR Exact finite-
sample
(binomial)

varbacktes
t

tl

2 Market Risk Measurements Using VaR BackTesting Tools

2-26

Test Type Test Name Tests for Risk
Measure

Critical
Value
Computatio
n

Use Object Use
Function

Various Binomial Frequency VaR Large-
sample
normal
approximatio
n

varbacktes
t

bin

Kupiec Proportion of
failures

Frequency VaR Exact finite-
sample (log
likelihood)

varbacktes
t

pof

Kupiec Time until
first failure

Independenc
e

VaR Exact finite-
sample (log
likelihood)

varbacktes
t

tuff

Christofferse
n

Conditional
coverage,
mixed

Frequency
and
independenc
e

VaR Exact finite-
sample (log
likelihood)

varbacktes
t

cc

Christofferse
n

Conditional
coverage,
independenc
e

Independenc
e

VaR Exact finite-
sample (log
likelihood)

varbacktes
t

cci

Haas Mixed
Kupiec test

Frequency
and
independenc
e

VaR Exact finite-
sample (log
likelihood)

varbacktes
t

tbf

Haas Independenc
e (time
between
failures)

Independenc
e

VaR Exact finite-
sample (log
likelihood)

varbacktes
t

tbfi

Acerbi-
Szekely

"Test 2" or
unconditiona
l

Severity ES Tables of
presimulated
critical
values,
under
normal and t
distribution

esbacktest unconditio
nalNormal
and
unconditio
nalT

Acerbi-
Szekely

"Test 1" or
conditional

Severity ES Finite-
sample
simulation

esbacktest
bysim

conditiona
l

Acerbi-
Szekely

"Test 2" or
unconditiona
l

Severity ES Finite-
sample
simulation

esbacktest
bysim

unconditio
nal

Acerbi-
Szekely

"Test 1" or
ranks
(quantile)

Severity ES Finite-
sample
simulation

esbacktest
bysim

quantile

 Overview of Expected Shortfall Backtesting

2-27

Test Type Test Name Tests for Risk
Measure

Critical
Value
Computatio
n

Use Object Use
Function

Acerbi-
Szekely

Minimally
Biased,
relative
version

Severity ES Finite-
sample
simulation

esbacktest
bysim

minBiasRel
ative

Acerbi-
Szekely

Minimally
Biased,
absolute
version

Severity ES Finite-
sample
simulation

esbacktest
bysim

minBiasAbs
olute

Du-
Escanciano

Uncondition
al

Severity ES Large-
sample
approximatio
n and finite-
sample
simulation

esbacktest
byde

unconditio
nalDE

Du-
Escanciano

Conditional Independenc
e

ES Large-
sample
approximatio
n and finite-
sample
simulation

esbacktest
byde

conditiona
lDE

References
[1] Basel Committee on Banking Supervision. Supervisory Framework for the Use of “Backtesting” in

Conjunction with the Internal Models Approach to Market Risk Capital Requirements.
January 1996. https://www.bis.org/publ/bcbs22.htm.

[2] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December 2014.

[3] Acerbi, C., and B. Szekely. "General Properties of Backtestable Statistics. SSRN Electronic
Journal. January, 2017.

[4] Acerbi, C., and B. Szekely. "The Minimally Biased Backtest for ES." Risk. September, 2019.

[5] Acerbi, C. and D. Tasche. “On the Coherence of Expected Shortfall.” Journal of Banking and
Finance. Vol. 26, 2002, pp. 1487-1503.

[6] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk."
Management Science. Vol. 63, Issue 4, April 2017.

[7] Rockafellar, R. T. and S. Uryasev. "Conditional Value-at-Risk for General Loss Distributions."
Journal of Banking and Finance. Vol. 26, 2002, pp. 1443-1471.

See Also
esbacktestbyde | esbacktest | esbacktestbysim | varbacktest

2 Market Risk Measurements Using VaR BackTesting Tools

2-28

https://www.bis.org/publ/bcbs22.htm

Related Examples
• “VaR Backtesting Workflow” on page 2-6
• “Value-at-Risk Estimation and Backtesting” on page 2-10
• “Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information” on page

2-30
• “Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
• “Expected Shortfall Estimation and Backtesting” on page 2-44
• “Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano” on page 2-63
• “Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and

Escanciano” on page 2-72

 Overview of Expected Shortfall Backtesting

2-29

Expected Shortfall (ES) Backtesting Workflow with No Model
Distribution Information

This example shows an expected shortfall (ES) backtesting workflow and the use of ES backtesting
tools. The esbacktest class supports two tests -- unconditional normal and unconditional t -- which
are based on Acerbi-Szekely's unconditional test statistic (also known as the Acerbi-Szekely second
test). These tests use presimulated critical values for the unconditional test statistic, with an
assumption of normal distribution for the normal case and a t distribution with 3 degrees of freedom
for the t case.

Step 1. Load the ES backtesting data.

Use the ESBacktestData.mat file to load the data into the workspace. This example works with the
Returns numeric array. This array represents the equity returns, VaRModel1, VaRModel2, and
VaRModel3, and the corresponding VaR data at 97.5% confidence levels, generated with three
different models. The expected shortfall data is contained in ESModel1, ESModel2, and ESModel3.
The three model distributions used to generate the expected shortfall data in this example are normal
(model 1), t with 10 degrees of freedom (model 2), and t with 5 degrees of freedom (model 3).
However, this distribution information is not needed in this example because the esbacktest object
does not require it.

load('ESBacktestData')
whos

 Name Size Bytes Class Attributes

 Data 1966x13 223945 timetable
 Dates 1966x1 15728 datetime
 ESModel1 1966x1 15728 double
 ESModel2 1966x1 15728 double
 ESModel3 1966x1 15728 double
 Returns 1966x1 15728 double
 VaRLevel 1x1 8 double
 VaRModel1 1966x1 15728 double
 VaRModel2 1966x1 15728 double
 VaRModel3 1966x1 15728 double

Step 2. Generate an ES backtesting plot.

Use the plot function to visualize the ES backtesting data. This type of visualization is a common
first step when performing an ES backtesting analysis. For illustration purposes only, visualize the
returns, together with VaR and ES, for a particular model.

The resulting plot shows some large violations in 1997, 1998, and 2000. The violations in 1996 look
smaller in absolute terms, however relative to the volatility of that period, those violations are also
significant. For the unconditional test, the magnitude of the violations and the number of violations
make a difference, because the test statistic averages over the expected number of failures. If the
expected number is small, but there are several violations, the effective severity for the test is larger.
The year 2002 is an example of a year with small, but many VaR failures.

figure;
plot(Dates,Returns,Dates,-VaRModel1,Dates,-ESModel1)
legend('Returns','VaR','ES')

2 Market Risk Measurements Using VaR BackTesting Tools

2-30

title('Test Data, Model 1, VaR level 95%')
grid on

Step 3. Create an esbacktest object.

Create an esbacktest object using esbacktest.

load ESBacktestData
ebt = esbacktest(Returns,[VaRModel1 VaRModel2 VaRModel3],[ESModel1 ESModel2 ESModel3],...
 'PortfolioID',"S&P",'VaRID',["Model1","Model2","Model3"],'VaRLevel',VaRLevel)

ebt =
 esbacktest with properties:

 PortfolioData: [1966x1 double]
 VaRData: [1966x3 double]
 ESData: [1966x3 double]
 PortfolioID: "S&P"
 VaRID: ["Model1" "Model2" "Model3"]
 VaRLevel: [0.9750 0.9750 0.9750]

Step 4. Generate the ES summary report.

Generate the ES summary report. The ObservedSeverity column shows the average ratio of loss to
VaR on periods when the VaR is violated. The ExpectedSeverity column shows the average ratio of
ES to VaR for the VaR violation periods.

 Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information

2-31

S = summary(ebt);
disp(S)

 PortfolioID VaRID VaRLevel ObservedLevel ExpectedSeverity ObservedSeverity Observations Failures Expected Ratio Missing
 ___________ ________ ________ _____________ ________________ ________________ ____________ ________ ________ ______ _______

 "S&P" "Model1" 0.975 0.97101 1.1928 1.4221 1966 57 49.15 1.1597 0
 "S&P" "Model2" 0.975 0.97202 1.2652 1.4134 1966 55 49.15 1.119 0
 "S&P" "Model3" 0.975 0.97202 1.37 1.4146 1966 55 49.15 1.119 0

Step 5. Run a report for all tests.

Run all tests and generate a report only on the accept or reject results.

t = runtests(ebt);
disp(t)

 PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT
 ___________ ________ ________ ___________________ ______________

 "S&P" "Model1" 0.975 reject reject
 "S&P" "Model2" 0.975 reject accept
 "S&P" "Model3" 0.975 accept accept

Step 6. Run the unconditional normal test.

Run the individual test for the unconditional normal test.

t = unconditionalNormal(ebt);
disp(t)

 PortfolioID VaRID VaRLevel UnconditionalNormal PValue TestStatistic CriticalValue Observations TestLevel
 ___________ ________ ________ ___________________ _________ _____________ _____________ ____________ _________

 "S&P" "Model1" 0.975 reject 0.0054099 -0.38265 -0.2403 1966 0.95
 "S&P" "Model2" 0.975 reject 0.044967 -0.25011 -0.2403 1966 0.95
 "S&P" "Model3" 0.975 accept 0.149 -0.15551 -0.2403 1966 0.95

Step 7. Run the unconditional t test.

Run the individual test for the unconditional t test.

t = unconditionalT(ebt);
disp(t)

 PortfolioID VaRID VaRLevel UnconditionalT PValue TestStatistic CriticalValue Observations TestLevel
 ___________ ________ ________ ______________ ________ _____________ _____________ ____________ _________

 "S&P" "Model1" 0.975 reject 0.018566 -0.38265 -0.28242 1966 0.95
 "S&P" "Model2" 0.975 accept 0.073292 -0.25011 -0.28242 1966 0.95
 "S&P" "Model3" 0.975 accept 0.17932 -0.15551 -0.28242 1966 0.95

Step 8. Run ES backtests for a particular year.

Select a particular calendar year and run the tests for that year only by creating an esbacktest
object and passing only the data of interest.

Year = 1996;
Ind = year(Dates)==Year;

2 Market Risk Measurements Using VaR BackTesting Tools

2-32

PortID = ['S&P, ' num2str(Year)];
PortfolioData = Returns(Ind);
VaRData = [VaRModel1(Ind) VaRModel2(Ind) VaRModel3(Ind)];
ESData = [ESModel1(Ind) ESModel2(Ind) ESModel3(Ind)];
ebt = esbacktest(PortfolioData,VaRData,ESData,...
 'PortfolioID',PortID,'VaRID',["Model1","Model2","Model3"],'VaRLevel',VaRLevel);
disp(ebt)

 esbacktest with properties:

 PortfolioData: [262x1 double]
 VaRData: [262x3 double]
 ESData: [262x3 double]
 PortfolioID: "S&P, 1996"
 VaRID: ["Model1" "Model2" "Model3"]
 VaRLevel: [0.9750 0.9750 0.9750]

tt = runtests(ebt);
disp(tt)

 PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT
 ___________ ________ ________ ___________________ ______________

 "S&P, 1996" "Model1" 0.975 reject reject
 "S&P, 1996" "Model2" 0.975 reject reject
 "S&P, 1996" "Model3" 0.975 reject accept

See Also
esbacktest | summary | runtests | unconditionalNormal | unconditionalT

Related Examples
• “Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
• “Expected Shortfall Estimation and Backtesting” on page 2-44

More About
• “Overview of Expected Shortfall Backtesting” on page 2-20

 Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information

2-33

Expected Shortfall (ES) Backtesting Workflow Using Simulation

This example shows an expected shortfall (ES) backtesting workflow using the esbacktestbysim
object. The tests supported in the esbacktestbysim object require as inputs not only the test data
(Portfolio, VaR, and ES data), but also the distribution information of the model being tested.

The esbacktestbysim class supports five tests -- conditional, unconditional, quantile, which are
based on Acerbi-Szekely (2014) and minBiasAbsolute and minBiasRelative, which are based on
Acerbi-Szekely (2017 ans 2019). These tests use the distributional assumptions to simulate return
scenarios, assuming the distributional assumptions are correct (null hypothesis). The simulated
scenarios find the distribution of typical values for the test statistics and the significance of the tests.
esbacktestbysim supports normal and t location-scale distributions (with a fixed number of
degrees of freedom throughout the test window).

Step 1. Load the ES backtesting data.

Use the ESBacktestBySimData.mat file to load the data into the workspace. This example works
with the Returns numeric array. This array represents the equity returns. The corresponding VaR
data and VaR confidence levels are in VaR and VaRLevel. The expected shortfall data is contained in
ES.

load ESBacktestBySimData

Step 2. Generate an ES backtesting plot.

Use the plot function to visualize the ES backtesting data. This type of visualization is a common
first step when performing an ES backtesting analysis. This plot displays the returns data against the
VaR and ES data.

VaRInd = 2;
figure;
plot(Dates,Returns,Dates,-VaR(:,VaRInd),Dates,-ES(:,VaRInd))
legend('Returns','VaR','ES')
title(['Test Data, ' num2str(VaRLevel(VaRInd)*100) '% Confidence'])
grid on

2 Market Risk Measurements Using VaR BackTesting Tools

2-34

Step 3. Create an esbacktestbysim object.

Create an esbacktestbysim object using esbacktestbysim. The Distribution information is
used to simulate returns to estimate the significance of the tests. The simulation to estimate the
significance is run by default when you create the esbacktestbysim object. Therefore, the test
results are available when you create the object. You can set the optional name-value pair input
argument 'Simulate' to false to avoid the simulation, in which case you can use the simulate
function before querying for test results.

rng('default'); % for reproducibility
IDs = ["t(dof) 95%","t(dof) 97.5%","t(dof) 99%"];
IDs = strrep(IDs,"dof",num2str(DoF));
ebts = esbacktestbysim(Returns,VaR,ES,Distribution,...
 'DegreesOfFreedom',DoF,...
 'Location',Mu,...
 'Scale',Sigma,...
 'PortfolioID',"S&P",...
 'VaRID',IDs,...
 'VaRLevel',VaRLevel);
disp(ebts)

 esbacktestbysim with properties:

 PortfolioData: [1966x1 double]
 VaRData: [1966x3 double]
 ESData: [1966x3 double]
 Distribution: [1x1 struct]

 Expected Shortfall (ES) Backtesting Workflow Using Simulation

2-35

 PortfolioID: "S&P"
 VaRID: ["t(10) 95%" "t(10) 97.5%" "t(10) 99%"]
 VaRLevel: [0.9500 0.9750 0.9900]

disp(ebts.Distribution) % distribution information stored in the 'Distribution' property

 Name: "t"
 DegreesOfFreedom: 10
 Location: 0
 Scale: [1966x1 double]

Step 4. Generate the ES summary report.

The ES summary report provides information about the severity of the violations, that is, how large
the loss is compared to the VaR on days when the VaR was violated. The ObservedSeverity (or
observed average severity ratio) column is the ratio of loss to VaR over days when the VaR is violated.
The ExpectedSeverity (or expected average severity ratio) column shows the average of the ratio
of ES to VaR on the days when the VaR is violated.

S = summary(ebts);
disp(S)

 PortfolioID VaRID VaRLevel ObservedLevel ExpectedSeverity ObservedSeverity Observations Failures Expected Ratio Missing
 ___________ _____________ ________ _____________ ________________ ________________ ____________ ________ ________ ______ _______

 "S&P" "t(10) 95%" 0.95 0.94812 1.3288 1.4515 1966 102 98.3 1.0376 0
 "S&P" "t(10) 97.5%" 0.975 0.97202 1.2652 1.4134 1966 55 49.15 1.119 0
 "S&P" "t(10) 99%" 0.99 0.98627 1.2169 1.3947 1966 27 19.66 1.3733 0

Step 5. Run a report for all tests.

Run all tests and generate a report on only the accept or reject results.

t = runtests(ebts);
disp(t)

 PortfolioID VaRID VaRLevel Conditional Unconditional Quantile MinBiasAbsolute MinBiasRelative
 ___________ _____________ ________ ___________ _____________ ________ _______________ _______________

 "S&P" "t(10) 95%" 0.95 reject accept reject accept reject
 "S&P" "t(10) 97.5%" 0.975 reject reject reject reject reject
 "S&P" "t(10) 99%" 0.99 reject reject reject reject reject

Step 6. Run the conditional test.

Run the individual test for the conditional test (also known as the first Acerbi-Szekely test). The
second output (s) contains simulated test statistic values, assuming the distributional assumptions
are correct. Each row of the s output matches the VaRID in the corresponding row of the t output.
Use these simulated statistics to determine the significance of the tests.

[t,s] = conditional(ebts);
disp(t)

 PortfolioID VaRID VaRLevel Conditional ConditionalOnly PValue TestStatistic CriticalValue VaRTest VaRTestResult VaRTestPValue Observations Scenarios TestLevel
 ___________ _____________ ________ ___________ _______________ ______ _____________ _____________ _______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 reject reject 0 -0.092302 -0.043941 "pof" accept 0.70347 1966 1000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject reject 0.001 -0.11714 -0.052575 "pof" accept 0.40682 1966 1000 0.95
 "S&P" "t(10) 99%" 0.99 reject reject 0.003 -0.14608 -0.085433 "pof" accept 0.11536 1966 1000 0.95

2 Market Risk Measurements Using VaR BackTesting Tools

2-36

whos s

 Name Size Bytes Class Attributes

 s 3x1000 24000 double

Step 7. Visualize the significance of the conditional test.

Visualize the significance of the conditional test using histograms to show the distribution of typical
values (simulation results). In the histograms, the asterisk shows the value of the test statistic
observed for the actual returns. This is a visualization of the standalone conditional test. The final
conditional test result also depends on a preliminary VaR backtest, as shown in the conditional test
output.

NumVaRs = height(t);
figure;
for VaRInd = 1:NumVaRs
 subplot(NumVaRs,1,VaRInd)
 histogram(s(VaRInd,:));
 hold on;
 plot(t.TestStatistic(VaRInd),0,'*');
 hold off;
 Title = sprintf('Conditional: %s, p-value: %4.3f',t.VaRID(VaRInd),t.PValue(VaRInd));
 title(Title)
end

 Expected Shortfall (ES) Backtesting Workflow Using Simulation

2-37

Step 8. Run the unconditional test.

Run the individual test for the unconditional test (also known as the second Acerbi-Szekely test).

[t,s] = unconditional(ebts);
disp(t)

 PortfolioID VaRID VaRLevel Unconditional PValue TestStatistic CriticalValue Observations Scenarios TestLevel
 ___________ _____________ ________ _____________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 accept 0.093 -0.13342 -0.16252 1966 1000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject 0.031 -0.25011 -0.2268 1966 1000 0.95
 "S&P" "t(10) 99%" 0.99 reject 0.008 -0.57396 -0.38264 1966 1000 0.95

Step 9. Visualize the significance of the unconditional test.

Visualize the significance of the unconditional test using histograms to show the distribution of
typical values (simulation results). In the histograms, the asterisk shows the value of the test statistic
observed for the actual returns.

NumVaRs = height(t);
figure;
for VaRInd = 1:NumVaRs
 subplot(NumVaRs,1,VaRInd)
 histogram(s(VaRInd,:));
 hold on;
 plot(t.TestStatistic(VaRInd),0,'*');
 hold off;
 Title = sprintf('Unconditional: %s, p-value: %4.3f',t.VaRID(VaRInd),t.PValue(VaRInd));
 title(Title)
end

2 Market Risk Measurements Using VaR BackTesting Tools

2-38

Step 10. Run the quantile test.

Run the individual test for the quantile test (also known as the third Acerbi-Szekely test).

[t,s] = quantile(ebts);
disp(t)

 PortfolioID VaRID VaRLevel Quantile PValue TestStatistic CriticalValue Observations Scenarios TestLevel
 ___________ _____________ ________ ________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 reject 0.002 -0.10602 -0.055798 1966 1000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject 0 -0.15697 -0.073513 1966 1000 0.95
 "S&P" "t(10) 99%" 0.99 reject 0 -0.26561 -0.10117 1966 1000 0.95

Step 11. Visualize the significance of the quantile test.

Visualize the significance of the quantile test using histograms to show the distribution of typical
values (simulation results). In the histograms, the asterisk shows the value of the test statistic
observed for the actual returns.

NumVaRs = height(t);
figure;
for VaRInd = 1:NumVaRs
 subplot(NumVaRs,1,VaRInd)
 histogram(s(VaRInd,:));
 hold on;
 plot(t.TestStatistic(VaRInd),0,'*');
 hold off;

 Expected Shortfall (ES) Backtesting Workflow Using Simulation

2-39

 Title = sprintf('Quantile: %s, p-value: %4.3f',t.VaRID(VaRInd),t.PValue(VaRInd));
 title(Title)
end

Step 10. Run the minBiasAbsolute test.

Run the individual test for the minBiasAbsolute test.

[t,s] = minBiasAbsolute(ebts);
disp(t)

 PortfolioID VaRID VaRLevel MinBiasAbsolute PValue TestStatistic CriticalValue Observations Scenarios TestLevel
 ___________ _____________ ________ _______________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 accept 0.062 -0.0014247 -0.0015578 1966 1000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject 0.029 -0.0026674 -0.0023251 1966 1000 0.95
 "S&P" "t(10) 99%" 0.99 reject 0.005 -0.0060982 -0.0039004 1966 1000 0.95

Step 11. Visualize the significance of the minBiasAbsolute test.

Visualize the significance of the minBiasAbsolute test using histograms to show the distribution of
typical values (simulation results). In the histograms, the asterisk shows the value of the test statistic
observed for the actual returns.

NumVaRs = height(t);
figure;
for VaRInd = 1:NumVaRs
 subplot(NumVaRs,1,VaRInd)

2 Market Risk Measurements Using VaR BackTesting Tools

2-40

 histogram(s(VaRInd,:));
 hold on;
 plot(t.TestStatistic(VaRInd),0,'*');
 hold off;
 Title = sprintf('minBiasAbsolute: %s, p-value: %4.3f',t.VaRID(VaRInd),t.PValue(VaRInd));
 title(Title)
end

Step 10. Run the minBiasRelative test.

Run the individual test for the minBiasRelative test.

[t,s] = minBiasRelative(ebts);
disp(t)

 PortfolioID VaRID VaRLevel MinBiasRelative PValue TestStatistic CriticalValue Observations Scenarios TestLevel
 ___________ _____________ ________ _______________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 reject 0.003 -0.10509 -0.056072 1966 1000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject 0 -0.15603 -0.073324 1966 1000 0.95
 "S&P" "t(10) 99%" 0.99 reject 0 -0.26716 -0.104 1966 1000 0.95

Step 11. Visualize the significance of the minBiasAbsolute test.

Visualize the significance of the minBiasRelative test using histograms to show the distribution of
typical values (simulation results). In the histograms, the asterisk shows the value of the test statistic
observed for the actual returns.

 Expected Shortfall (ES) Backtesting Workflow Using Simulation

2-41

NumVaRs = height(t);
figure;
for VaRInd = 1:NumVaRs
 subplot(NumVaRs,1,VaRInd)
 histogram(s(VaRInd,:));
 hold on;
 plot(t.TestStatistic(VaRInd),0,'*');
 hold off;
 Title = sprintf('minBiasRelative: %s, p-value: %4.3f',t.VaRID(VaRInd),t.PValue(VaRInd));
 title(Title)
end

Step 12. Run a new simulation to estimate the significance of the tests.

Run the simulation again using 5000 scenarios to generate a new set of test results. If the initial test
results for one of the tests are borderline, using a larger simulation can help clarify the test results.

ebts = simulate(ebts,'NumScenarios',5000);
t = unconditional(ebts); % new results for unconditional test
disp(t)

 PortfolioID VaRID VaRLevel Unconditional PValue TestStatistic CriticalValue Observations Scenarios TestLevel
 ___________ _____________ ________ _____________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 accept 0.0984 -0.13342 -0.17216 1966 5000 0.95

2 Market Risk Measurements Using VaR BackTesting Tools

2-42

 "S&P" "t(10) 97.5%" 0.975 reject 0.0456 -0.25011 -0.24251 1966 5000 0.95
 "S&P" "t(10) 99%" 0.99 reject 0.0104 -0.57396 -0.40089 1966 5000 0.95

See Also
summary | runtests | conditional | unconditional | quantile | simulate |
minBiasRelative | minBiasAbsolute

Related Examples
• “Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information” on page

2-30
• “Expected Shortfall Estimation and Backtesting” on page 2-44
• “Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano” on page 2-63

More About
• “Overview of Expected Shortfall Backtesting” on page 2-20

 Expected Shortfall (ES) Backtesting Workflow Using Simulation

2-43

Expected Shortfall Estimation and Backtesting

This example shows how to perform estimation and backtesting of Expected Shortfall models.

Value-at-Risk (VaR) and Expected Shortfall (ES) must be estimated together because the ES estimate
depends on the VaR estimate. Using historical data, this example estimates VaR and ES over a test
window, using historical and parametric VaR approaches. The parametric VaR is calculated under the
assumption of normal and t distributions.

This example runs the ES back tests supported in the esbacktest, esbacktestbysim, and
esbacktestbyde functionality to assess the performance of the ES models in the test window.

The esbacktest object does not require any distribution information. Like the varbacktest object,
the esbacktest object only takes test data as input. The inputs to esbacktest include portfolio
data, VaR data and corresponding VaR level, and also the ES data, since this is what is back tested.
Like varbacktest, esbacktest runs tests for a single portfolio, but can back test multiple models
and multiple VaR levels at once. The esbacktest object uses precomputed tables of critical values to
determine if the models should be rejected. These table-based tests can be applied as approximate
tests for any VaR model. In this example, they are applied to back test historical and parametric VaR
models. They could be used for other VaR approaches such as Monte-Carlo or Extreme-Value models.

In contrast, the esbacktestbysim and esbacktestbyde objects require the distribution
information, namely, the distribution name (normal or t) and the distribution parameters for each
day in the test window. esbacktestbysim and esbacktestbyde can only back test one model at a
time because they are linked to a particular distribution, although you can still back test multiple VaR
levels at once. The esbacktestbysim object implements simulation-based tests and it uses the
provided distribution information to run simulations to determine critical values. The
esbacktestbyde object implements tests where the critical values are derived from either a large-
sample approximation or a simulation (finite sample). The conditionalDE test in the
esbacktestbyde object tests for independence over time, to assess if there is evidence of
autocorrelation in the series of tail losses. All other tests are severity tests to assess if the magnitude
of the tail losses is consistent with the model predictions. Both the esbacktestbysim and
esbacktestbyde objects support normal and t distributions. These tests can be used for any model
where the underlying distribution of portfolio outcomes is normal or t, such as exponentially weighted
moving average (EWMA), delta-gamma, or generalized autoregressive conditional heteroskedasticity
(GARCH) models.

For additional information on the ES backtesting methodology, see esbacktest, esbacktestbysim,
and esbacktestbyde, also see [1 on page 2-61], [2 on page 2-61], [3 on page 2-61] and [5 on
page 2-61] in the References.

Estimate VaR and ES

The data set used in this example contains historical data for the S&P index spanning approximately
10 years, from the middle of 1993 through the middle of 2003. The estimation window size is defined
as 250 days, so that a full year of data is used to estimate both the historical VaR, and the volatility.
The test window in this example runs from the beginning of 1995 through the end of 2002.

Throughout this example, a VaR confidence level of 97.5% is used, as required by the Fundamental
Review of the Trading Book (FRTB) regulation; see [4 on page 2-61].

load VaRExampleData.mat
Returns = tick2ret(sp);

2 Market Risk Measurements Using VaR BackTesting Tools

2-44

DateReturns = dates(2:end);
SampleSize = length(Returns);

TestWindowStart = find(year(DateReturns)==1995,1);
TestWindowEnd = find(year(DateReturns)==2002,1,'last');
TestWindow = TestWindowStart:TestWindowEnd;
EstimationWindowSize = 250;

DatesTest = DateReturns(TestWindow);
ReturnsTest = Returns(TestWindow);

VaRLevel = 0.975;

The historical VaR is a non-parametric approach to estimate the VaR and ES from historical data over
an estimation window. The VaR is a percentile, and there are alternative ways to estimate the
percentile of a distribution based on a finite sample. One common approach is to use the prctile
function. An alternative approach is to sort the data and determine a cut point based on the sample
size and VaR confidence level. Similarly, there are alternative approaches to estimate the ES based on
a finite sample.

The hHistoricalVaRES local function on the bottom of this example uses a finite-sample approach
for the estimation of VaR and ES following the methodology described in [7 on page 2-61]. In a finite
sample, the number of observations below the VaR may not match the total tail probability
corresponding to the VaR level. For example, for 100 observations and a VaR level of 97.5%, the tail
observations are 2, which is 2% of the sample, however the desired tail probability is 2.5%. It could
be even worse for samples with repeated observed values, for example, if the second and third sorted
values were the same, both equal to the VaR, then only the smallest observed value in the sample
would have a value less than the VaR, and that is 1% of the sample, not the desired 2.5%. The method
implemented in hHistoricalVaRES makes a correction so that the tail probability is always
consistent with the VaR level; see [7 on page 2-61] for details.

VaR_Hist = zeros(length(TestWindow),1);
ES_Hist = zeros(length(TestWindow),1);

for t = TestWindow

 i = t - TestWindowStart + 1;
 EstimationWindow = t-EstimationWindowSize:t-1;

 [VaR_Hist(i),ES_Hist(i)] = hHistoricalVaRES(Returns(EstimationWindow),VaRLevel);

end

The following plot shows the daily returns, and the VaR and ES estimated with the historical method.

figure;
plot(DatesTest,ReturnsTest,DatesTest,-VaR_Hist,DatesTest,-ES_Hist)
legend('Returns','VaR','ES','Location','southeast')
title('Historical VaR and ES')
grid on

 Expected Shortfall Estimation and Backtesting

2-45

For the parametric models, the volatility of the returns must be computed. Given the volatility, the
VaR, and ES can be computed analytically.

A zero mean is assumed in this example, but can be estimated in a similar way.

For the normal distribution, the estimated volatility is used directly to get the VaR and ES. For the t
location-scale distribution, the scale parameter is computed from the estimated volatility and the
degrees of freedom.

The hNormalVaRES and hTVaRES local functions take as inputs the distribution parameters (which
can be passed as arrays), and return the VaR and ES. These local functions use the analytical
expressions for VaR and ES for normal and t location-scale distributions, respectively; see [6 on page
2-61] for details.

% Estimate volatility over the test window
Volatility = zeros(length(TestWindow),1);

for t = TestWindow

 i = t - TestWindowStart + 1;
 EstimationWindow = t-EstimationWindowSize:t-1;

 Volatility(i) = std(Returns(EstimationWindow));

end

% Mu=0 in this example
Mu = 0;

% Sigma (standard deviation parameter) for normal distribution = Volatility
SigmaNormal = Volatility;
% Sigma (scale parameter) for t distribution = Volatility * sqrt((DoF-2)/DoF)
SigmaT10 = Volatility*sqrt((10-2)/10);
SigmaT5 = Volatility*sqrt((5-2)/5);

2 Market Risk Measurements Using VaR BackTesting Tools

2-46

% Estimate VaR and ES, normal
[VaR_Normal,ES_Normal] = hNormalVaRES(Mu,SigmaNormal,VaRLevel);
% Estimate VaR and ES, t with 10 and 5 degrees of freedom
[VaR_T10,ES_T10] = hTVaRES(10,Mu,SigmaT10,VaRLevel);
[VaR_T5,ES_T5] = hTVaRES(5,Mu,SigmaT5,VaRLevel);

The following plot shows the daily returns, and the VaR and ES estimated with the normal method.

figure;
plot(DatesTest,ReturnsTest,DatesTest,-VaR_Normal,DatesTest,-ES_Normal)
legend('Returns','VaR','ES','Location','southeast')
title('Normal VaR and ES')
grid on

For the parametric approach, the same steps can be used to estimate the VaR and ES for alternative
approaches, such as EWMA, delta-gamma approximations, and GARCH models. In all these
parametric approaches, a volatility is estimated every day, either from an EWMA update, from a
delta-gamma approximation, or as the conditional volatility of a GARCH model. The volatility can then
be used as above to get the VaR and ES estimates for either normal or t location-scale distributions.

ES Backtest Without Distribution Information

The esbacktest object offers two back tests for ES models. Both tests use the unconditional test
statistic proposed by Acerbi and Szekely in [1 on page 2-61], given by

Zuncond = 1
NpVaR

∑t = 1
N XtIt

ESt
+ 1

where

• N is the number of time periods in the test window.
• Xt is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period t.

 Expected Shortfall Estimation and Backtesting

2-47

• pVaR is the probability of VaR failure defined as 1-VaR level.
• ESt is the estimated expected shortfall for period t.
• It is the VaR failure indicator on period t with a value of 1 if Xt < −VaRt, and 0 otherwise.

The expected value for this test statistic is 0, and it is negative when there is evidence of risk
underestimation. To determine how negative it should be to reject the model, critical values are
needed, and to determine critical values, distributional assumptions are needed for the portfolio
outcomes Xt.

The unconditional test statistic turns out to be stable across a range of distributional assumptions for
Xt, from thin-tailed distributions such as normal, to heavy-tailed distributions such as t with low
degrees of freedom (high single digits). Only the most heavy-tailed t distributions (low single digits)
lead to more noticeable differences in the critical values. See [1 on page 2-61] for details.

The esbacktest object takes advantage of the stability of the critical values of the unconditional test
statistic and uses tables of precomputed critical values to run ES back tests. esbacktest has two
sets of critical-value tables. The first set of critical values assumes that the portfolio outcomes Xt
follow a standard normal distribution; this is the unconditionalNormal test. The second set of
critical values uses the heaviest possible tails, it assumes that the portfolio outcomes Xt follow a t
distribution with 3 degrees of freedom; this is the unconditionalT test.

The unconditional test statistic is sensitive to both the severity of the VaR failures relative to the ES
estimate, and also to the number of VaR failures (how many times the VaR is violated). Therefore, a
single but very large VaR failure relative to the ES (or only very few large losses) may cause the
rejection of a model in a particular time window. A large loss on a day when the ES estimate is also
large may not impact the test results as much as a large loss when the ES is smaller. And a model can
also be rejected in periods with many VaR failures, even if all the VaR violations are relatively small
and only slightly higher than the VaR. Both situations are illustrated in this example.

The esbacktest object takes as input the test data, but no distribution information is provided to
esbacktest. Optionally, you can specify ID's for the portfolio, and for each of the VaR and ES models
being backtested. Although the model ID's in this example do have distribution references (for
example, "normal" or "t 10"), these are only labels used for reporting purposes. The tests do not
use the fact that the first model is a historical VaR method, or that the other models are alternative
parametric VaR models. The distribution parameters used to estimate the VaR and ES in the previous
section are not passed to esbacktest, and are not used in any way in this section. These
parameters, however, must be provided for the simulation-based tests supported in the
esbacktestbysim object discussed in the Simulation-Based Tests on page 2-55 section, and for the
tests supported in the esbacktestbyde object discussed in the Large-Sample and Simulation Tests
on page 2-58 section.

ebt = esbacktest(ReturnsTest,[VaR_Hist VaR_Normal VaR_T10 VaR_T5],...
 [ES_Hist ES_Normal ES_T10 ES_T5],'PortfolioID',"S&P, 1995-2002",...
 'VaRID',["Historical" "Normal","T 10","T 5"],'VaRLevel',VaRLevel);
disp(ebt)

 esbacktest with properties:

 PortfolioData: [2087x1 double]
 VaRData: [2087x4 double]
 ESData: [2087x4 double]
 PortfolioID: "S&P, 1995-2002"
 VaRID: ["Historical" "Normal" "T 10" "T 5"]
 VaRLevel: [0.9750 0.9750 0.9750 0.9750]

2 Market Risk Measurements Using VaR BackTesting Tools

2-48

Start the analysis by running the summary function.

s = summary(ebt);
disp(s)

 PortfolioID VaRID VaRLevel ObservedLevel ExpectedSeverity ObservedSeverity Observations Failures Expected Ratio Missing
 ________________ ____________ ________ _____________ ________________ ________________ ____________ ________ ________ ______ _______

 "S&P, 1995-2002" "Historical" 0.975 0.96694 1.3711 1.4039 2087 69 52.175 1.3225 0
 "S&P, 1995-2002" "Normal" 0.975 0.97077 1.1928 1.416 2087 61 52.175 1.1691 0
 "S&P, 1995-2002" "T 10" 0.975 0.97173 1.2652 1.4063 2087 59 52.175 1.1308 0
 "S&P, 1995-2002" "T 5" 0.975 0.97173 1.37 1.4075 2087 59 52.175 1.1308 0

The ObservedSeverity column shows the average ratio of loss to VaR on periods when the VaR was
violated. The ExpectedSeverity column uses the average ratio of ES to VaR for the VaR violation
periods. For the "Historical" and "T 5" models, the observed and expected severities are
comparable. However, for the "Historical" method, the observed number of failures (Failures
column) is considerably higher than the expected number of failures (Expected column), about 32%
higher (see the Ratio column). Both the "Normal" and the "T 10" models have observed
severities much higher than the expected severities.

figure;

subplot(2,1,1)
bar(categorical(s.VaRID),[s.ExpectedSeverity,s.ObservedSeverity])
ylim([1 1.5])
legend('Expected','Observed','Location','southeast')
title('Average Severity Ratio')

subplot(2,1,2)
bar(categorical(s.VaRID),[s.Expected,s.Failures])
ylim([40 70])
legend('Expected','Observed','Location','southeast')
title('Number of VaR Failures')

 Expected Shortfall Estimation and Backtesting

2-49

The runtests function runs all tests and reports only the accept or reject result. The unconditional
normal test is more strict. For the 8-year test window here, two models fail both tests
("Historical" and "Normal"), one model fails the unconditional normal test, but passes the
unconditional t test ("T 10"), and one model passes both tests ("T 5").

t = runtests(ebt);
disp(t)

 PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT
 ________________ ____________ ________ ___________________ ______________

 "S&P, 1995-2002" "Historical" 0.975 reject reject
 "S&P, 1995-2002" "Normal" 0.975 reject reject
 "S&P, 1995-2002" "T 10" 0.975 reject accept
 "S&P, 1995-2002" "T 5" 0.975 accept accept

Additional details on the tests can be obtained by calling the individual test functions. Here are the
details for the unconditionalNormal test.

t = unconditionalNormal(ebt);
disp(t)

 PortfolioID VaRID VaRLevel UnconditionalNormal PValue TestStatistic CriticalValue Observations TestLevel
 ________________ ____________ ________ ___________________ _________ _____________ _____________ ____________ _________

 "S&P, 1995-2002" "Historical" 0.975 reject 0.0047612 -0.37917 -0.23338 2087 0.95
 "S&P, 1995-2002" "Normal" 0.975 reject 0.0043287 -0.38798 -0.23338 2087 0.95
 "S&P, 1995-2002" "T 10" 0.975 reject 0.037528 -0.2569 -0.23338 2087 0.95
 "S&P, 1995-2002" "T 5" 0.975 accept 0.13069 -0.16179 -0.23338 2087 0.95

Here are the details for the unconditionalT test.

t = unconditionalT(ebt);
disp(t)

 PortfolioID VaRID VaRLevel UnconditionalT PValue TestStatistic CriticalValue Observations TestLevel
 ________________ ____________ ________ ______________ ________ _____________ _____________ ____________ _________

 "S&P, 1995-2002" "Historical" 0.975 reject 0.017032 -0.37917 -0.27415 2087 0.95
 "S&P, 1995-2002" "Normal" 0.975 reject 0.015375 -0.38798 -0.27415 2087 0.95
 "S&P, 1995-2002" "T 10" 0.975 accept 0.062835 -0.2569 -0.27415 2087 0.95
 "S&P, 1995-2002" "T 5" 0.975 accept 0.16414 -0.16179 -0.27415 2087 0.95

Using the Tests for More Advanced Analyses

This section shows how to use the esbacktest object to run user-defined traffic-light tests, and also
how to run tests over rolling test windows.

One way to define a traffic-light test is by combining the results from the unconditional normal and
the unconditional t tests. Because the unconditional normal is more strict, one can define a traffic-
light test with these levels:

• Green: The model passes both the unconditional normal and unconditional t tests.
• Yellow: The model fails the unconditional normal test, but passes the unconditional t test.
• Red: The model is rejected by both the unconditional normal and unconditional t tests.

t = runtests(ebt);
TLValue = (t.UnconditionalNormal=='reject')+(t.UnconditionalT=='reject');

2 Market Risk Measurements Using VaR BackTesting Tools

2-50

t.TrafficLight = categorical(TLValue,0:2,{'green','yellow','red'},'Ordinal',true);
disp(t)

 PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT TrafficLight
 ________________ ____________ ________ ___________________ ______________ ____________

 "S&P, 1995-2002" "Historical" 0.975 reject reject red
 "S&P, 1995-2002" "Normal" 0.975 reject reject red
 "S&P, 1995-2002" "T 10" 0.975 reject accept yellow
 "S&P, 1995-2002" "T 5" 0.975 accept accept green

An alternative user-defined traffic-light test can use a single test, but at different test confidence
levels:

• Green: The result is to 'accept' with a test level of 95%.
• Yellow: The result is to 'reject' at a 95% test level, but 'accept' at 99%.
• Red: The result is 'reject' at 99% test level.

A similar test is proposed in [1 on page 2-61] with a high test level of 99.99%.

t95 = runtests(ebt); % 95% is the default test level value
t99 = runtests(ebt,'TestLevel',0.99);
TLValue = (t95.UnconditionalNormal=='reject')+(t99.UnconditionalNormal=='reject');
tRolling = t95(:,1:3);
tRolling.UnconditionalNormal95 = t95.UnconditionalNormal;
tRolling.UnconditionalNormal99 = t99.UnconditionalNormal;
tRolling.TrafficLight = categorical(TLValue,0:2,{'green','yellow','red'},'Ordinal',true);
disp(tRolling)

 PortfolioID VaRID VaRLevel UnconditionalNormal95 UnconditionalNormal99 TrafficLight
 ________________ ____________ ________ _____________________ _____________________ ____________

 "S&P, 1995-2002" "Historical" 0.975 reject reject red
 "S&P, 1995-2002" "Normal" 0.975 reject reject red
 "S&P, 1995-2002" "T 10" 0.975 reject accept yellow
 "S&P, 1995-2002" "T 5" 0.975 accept accept green

The test results may be different over different test windows. Here, a one-year rolling window is used
to run the ES back tests over the eight individual years spanned by the original test window. The first
user-defined traffic-light described above is added to the test results table. The summary function is
also called for each individual year to view the history of the severity and the number of VaR failures.

sRolling = table;
tRolling = table;
for Year = 1995:2002
 Ind = year(DatesTest)==Year;
 PortID = ['S&P, ' num2str(Year)];
 PortfolioData = ReturnsTest(Ind);
 VaRData = [VaR_Hist(Ind) VaR_Normal(Ind) VaR_T10(Ind) VaR_T5(Ind)];
 ESData = [ES_Hist(Ind) ES_Normal(Ind) ES_T10(Ind) ES_T5(Ind)];
 ebt = esbacktest(PortfolioData,VaRData,ESData,...
 'PortfolioID',PortID,'VaRID',["Historical" "Normal" "T 10" "T 5"],...
 'VaRLevel',VaRLevel);
 if Year == 1995
 sRolling = summary(ebt);
 tRolling = runtests(ebt);
 else

 Expected Shortfall Estimation and Backtesting

2-51

 sRolling = [sRolling;summary(ebt)]; %#ok<AGROW>
 tRolling = [tRolling;runtests(ebt)]; %#ok<AGROW>
 end
end

% Optional: Add the first user-defined traffic light test described above
TLValue = (tRolling.UnconditionalNormal=='reject')+(tRolling.UnconditionalT=='reject');
tRolling.TrafficLight = categorical(TLValue,0:2,{'green','yellow','red'},'Ordinal',true);

Display the results, one model at a time. The "T 5" model has the best performance in these tests
(two "yellow"), and the "Normal" model the worst (three "red" and one "yellow").

disp(tRolling(tRolling.VaRID=="Historical",:))

 PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT TrafficLight
 ___________ ____________ ________ ___________________ ______________ ____________

 "S&P, 1995" "Historical" 0.975 accept accept green
 "S&P, 1996" "Historical" 0.975 reject accept yellow
 "S&P, 1997" "Historical" 0.975 reject reject red
 "S&P, 1998" "Historical" 0.975 accept accept green
 "S&P, 1999" "Historical" 0.975 accept accept green
 "S&P, 2000" "Historical" 0.975 accept accept green
 "S&P, 2001" "Historical" 0.975 accept accept green
 "S&P, 2002" "Historical" 0.975 reject reject red

disp(tRolling(tRolling.VaRID=="Normal",:))

 PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT TrafficLight
 ___________ ________ ________ ___________________ ______________ ____________

 "S&P, 1995" "Normal" 0.975 accept accept green
 "S&P, 1996" "Normal" 0.975 reject reject red
 "S&P, 1997" "Normal" 0.975 reject reject red
 "S&P, 1998" "Normal" 0.975 reject accept yellow
 "S&P, 1999" "Normal" 0.975 accept accept green
 "S&P, 2000" "Normal" 0.975 accept accept green
 "S&P, 2001" "Normal" 0.975 accept accept green
 "S&P, 2002" "Normal" 0.975 reject reject red

disp(tRolling(tRolling.VaRID=="T 10",:))

 PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT TrafficLight
 ___________ ______ ________ ___________________ ______________ ____________

 "S&P, 1995" "T 10" 0.975 accept accept green
 "S&P, 1996" "T 10" 0.975 reject reject red
 "S&P, 1997" "T 10" 0.975 reject accept yellow
 "S&P, 1998" "T 10" 0.975 accept accept green
 "S&P, 1999" "T 10" 0.975 accept accept green
 "S&P, 2000" "T 10" 0.975 accept accept green
 "S&P, 2001" "T 10" 0.975 accept accept green
 "S&P, 2002" "T 10" 0.975 reject reject red

disp(tRolling(tRolling.VaRID=="T 5",:))

 PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT TrafficLight
 ___________ _____ ________ ___________________ ______________ ____________

2 Market Risk Measurements Using VaR BackTesting Tools

2-52

 "S&P, 1995" "T 5" 0.975 accept accept green
 "S&P, 1996" "T 5" 0.975 reject accept yellow
 "S&P, 1997" "T 5" 0.975 accept accept green
 "S&P, 1998" "T 5" 0.975 accept accept green
 "S&P, 1999" "T 5" 0.975 accept accept green
 "S&P, 2000" "T 5" 0.975 accept accept green
 "S&P, 2001" "T 5" 0.975 accept accept green
 "S&P, 2002" "T 5" 0.975 reject accept yellow

The year 2002 is an example of a year with relatively small severities, yet many VaR failures. All
models perform poorly in 2002, even though the observed severities are low. However, the number of
VaR failures for some models is more than twice the expected number of VaR failures.

disp(summary(ebt))

 PortfolioID VaRID VaRLevel ObservedLevel ExpectedSeverity ObservedSeverity Observations Failures Expected Ratio Missing
 ___________ ____________ ________ _____________ ________________ ________________ ____________ ________ ________ ______ _______

 "S&P, 2002" "Historical" 0.975 0.94636 1.2022 1.2 261 14 6.525 2.1456 0
 "S&P, 2002" "Normal" 0.975 0.94636 1.1928 1.2111 261 14 6.525 2.1456 0
 "S&P, 2002" "T 10" 0.975 0.95019 1.2652 1.2066 261 13 6.525 1.9923 0
 "S&P, 2002" "T 5" 0.975 0.95019 1.37 1.2077 261 13 6.525 1.9923 0

The following figure shows the data on the entire 8-year window, and severity ratio year by year
(expected and observed) for the "Historical" model. The absolute size of the losses is not as
important as the relative size compared to the ES (or equivalently, compared to the VaR). Both 1997
and 1998 have large losses, comparable in magnitude. However the expected severity in 1998 is
much higher (larger ES estimates). Overall, the "Historical" method seems to do well with
respect to severity ratios.

sH = sRolling(sRolling.VaRID=="Historical",:);

figure;

subplot(2,1,1)
FailureInd = ReturnsTest<-VaR_Hist;
plot(DatesTest,ReturnsTest,DatesTest,-VaR_Hist,DatesTest,-ES_Hist)
hold on
plot(DatesTest(FailureInd),ReturnsTest(FailureInd),'.')
hold off
legend('Returns','VaR','ES','Location','best')
title('Historical VaR and ES')
grid on

subplot(2,1,2)
bar(1995:2002,[sH.ExpectedSeverity,sH.ObservedSeverity])
ylim([1 1.8])
legend('Expected','Observed','Location','best')
title('Yearly Average Severity Ratio, Historical VaR')

 Expected Shortfall Estimation and Backtesting

2-53

However, a similar visualization with the expected against observed number of VaR failures shows
that the "Historical" method tends to get violated many more times than expected. For example,
even though in 2002 the expected average severity ratio is very close to the observed one, the
number of VaR failures was more than twice the expected number. This then leads to test failures for
both the unconditional normal and unconditional t tests.

figure;

subplot(2,1,1)
plot(DatesTest,ReturnsTest,DatesTest,-VaR_Hist,DatesTest,-ES_Hist)
hold on
plot(DatesTest(FailureInd),ReturnsTest(FailureInd),'.')
hold off
legend('Returns','VaR','ES','Location','best')
title('Historical VaR and ES')
grid on

subplot(2,1,2)
bar(1995:2002,[sH.Expected,sH.Failures])
legend('Expected','Observed','Location','best')
title('Yearly VaR Failures, Historical VaR')

2 Market Risk Measurements Using VaR BackTesting Tools

2-54

Simulation-Based Tests

The esbacktestbysim object supports five simulation-based ES back tests. esbacktestbysim
requires the distribution information for the portfolio outcomes, namely, the distribution name
("normal" or "t") and the distribution parameters for each day in the test window.
esbacktestbysim uses the provided distribution information to run simulations to determine
critical values. The tests supported in esbacktestbysim are conditional, unconditional,
quantile, minBiasAbsolute, and minBiasRelative. These are implementations of the tests
proposed by Acerbi and Szekely in [1 on page 2-61], and [2 on page 2-61], [3 on page 2-61] for
2017 and 2019.

The esbacktestbysim object supports normal and t distributions. These tests can be used for any
model where the underlying distribution of portfolio outcomes is normal or t, such as exponentially
weighted moving average (EWMA), delta-gamma, or generalized autoregressive conditional
heteroskedasticity (GARCH) models.

ES backtests are necessarily approximated in that they are sensitive to errors in the predicted VaR.
However, the minimally biased test has only a small sensitivity to VaR errors and the sensitivity is
prudential, in the sense that VaR errors lead to a more punitive ES test. See Acerbi-Szekely ([2 on
page 2-61], [3 on page 2-61] for 2017 and 2019) for details. When distribution information is
available, the minimally biased test is recommended (see minBiasAbsolute, minBiasRelative).

The "Normal", "T 10", and "T 5" models can be backtested with the simulation-based tests in
esbacktestbysim. For illustration purposes, only "T 5" is backtested. The distribution name ("t")
and parameters (degrees of freedom, location, and scale) are provided when the esbacktestbysim
object is created.

rng('default'); % for reproducibility; the esbacktestbysim constructor runs a simulation
ebts = esbacktestbysim(ReturnsTest,VaR_T5,ES_T5,"t",'DegreesOfFreedom',5,...
 'Location',Mu,'Scale',SigmaT5,...
 'PortfolioID',"S&P",'VaRID',"T 5",'VaRLevel',VaRLevel);

The recommended workflow is the same: first, run the summary function, then run the runtests
function, and then run the individual test functions.

 Expected Shortfall Estimation and Backtesting

2-55

The summary function provides exactly the same information as the summary function from
esbacktest.

s = summary(ebts);
disp(s)

 PortfolioID VaRID VaRLevel ObservedLevel ExpectedSeverity ObservedSeverity Observations Failures Expected Ratio Missing
 ___________ _____ ________ _____________ ________________ ________________ ____________ ________ ________ ______ _______

 "S&P" "T 5" 0.975 0.97173 1.37 1.4075 2087 59 52.175 1.1308 0

The runtests function shows the final accept or reject result.

t = runtests(ebts);
disp(t)

 PortfolioID VaRID VaRLevel Conditional Unconditional Quantile MinBiasAbsolute MinBiasRelative
 ___________ _____ ________ ___________ _____________ ________ _______________ _______________

 "S&P" "T 5" 0.975 accept accept accept accept accept

Additional details on the test results are obtained by calling the individual test functions. For
example, call the minBiasAbsolute test. The first output, t, has the test results and additional
details such as the p-value, test statistic, and so on. The second output, s, contains simulated test
statistic values assuming the distributional assumptions are correct. For example,
esbacktestbysim generated 1000 scenarios of portfolio outcomes in this case, where each scenario
is a series of 2087 observations simulated from t random variables with 5 degrees of freedom and the
given location and scale parameters. The simulated values returned in the optional s output show
typical values of the test statistic if the distributional assumptions are correct. These are the
simulated statistics used to determine the significance of the tests, that is, the reported critical values
and p-values.

[t,s] = minBiasAbsolute(ebts);
disp(t)

 PortfolioID VaRID VaRLevel MinBiasAbsolute PValue TestStatistic CriticalValue Observations Scenarios TestLevel
 ___________ _____ ________ _______________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "T 5" 0.975 accept 0.299 -0.00080059 -0.0030373 2087 1000 0.95

whos s

 Name Size Bytes Class Attributes

 s 1x1000 8000 double

Select a test to show the test results and visualize the significance of the tests. The histogram shows
the distribution of simulated test statistics, and the asterisk shows the value of the test statistic for
the actual portfolio returns.

ESTestChoice = ;

switch ESTestChoice
 case 'MinBiasAbsolute'
 [t,s] = minBiasAbsolute(ebts);
 case 'MinBiasRelative'
 [t,s] = minBiasRelative(ebts);

2 Market Risk Measurements Using VaR BackTesting Tools

2-56

 case 'Conditional'
 [t,s] = conditional(ebts);
 case 'Unconditional'
 [t,s] = unconditional(ebts);
 case 'Quantile'
 [t,s] = quantile(ebts);
end

disp(t)

 PortfolioID VaRID VaRLevel MinBiasAbsolute PValue TestStatistic CriticalValue Observations Scenarios TestLevel
 ___________ _____ ________ _______________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "T 5" 0.975 accept 0.299 -0.00080059 -0.0030373 2087 1000 0.95

figure;
histogram(s);
hold on;
plot(t.TestStatistic,0,'*');
hold off;
Title = sprintf('%s: %s, p-value: %4.3f',ESTestChoice,t.VaRID,t.PValue);
title(Title)

The unconditional test statistic reported by esbacktestbysim is exactly the same as the
unconditional test statistic reported by esbacktest. However the critical values reported by
esbacktestbysim are based on a simulation using a t distribution with 5 degrees of freedom and
the given location and scale parameters. The esbacktest object gives approximate test results for
the "T 5" model, whereas the results here are specific for the distribution information provided.
Also, for the conditional test, this is a visualization of the standalone conditional test
(ConditionalOnly result in the table above). The final conditional test result (Conditional
column) depends also on a preliminary VaR backtest (VaRTestResult column).

The "T 5" model is accepted by the five tests.

 Expected Shortfall Estimation and Backtesting

2-57

The esbacktestbysim object provides a simulate function to run a new simulation. For example,
if there is a borderline test result where the test statistic is near the critical value, you might use the
simulate function to simulate new scenarios. In cases where more precision is required, a larger
simulation can be run.

The esbacktestbysim tests can be run over a rolling window, following the same approach
described above for esbacktest. User-defined traffic-light tests can also be defined, for example,
using two different test confidence levels, similar to what was done above for esbacktest.

Large-Sample and Simulation Tests

The esbacktestbyde object supports two ES back tests with critical values determined either with
a large-sample approximation or a simulation (finite sample). esbacktestbyde requires the
distribution information for the portfolio outcomes, namely, the distribution name ("normal" or "t")
and the distribution parameters for each day in the test window. It does not require the VaR of the ES
data. esbacktestbyde uses the provided distribution information to map the portfolio outcomes into
"ranks", that is, to apply the cumulative distribution function to map returns into values in the unit
interval, where the test statistics are defined. esbacktestbyde can determine critical values by
using a large-sample approximation or a finite-sample simulation.

The tests supported in esbacktestbyde are conditionalDE and unconditionalDE. These are
implementations of the tests proposed by Du and Escanciano in [3 on page 2-61]. The
unconditionalDE tests and all the tests previously discussed in this example are severity tests that
assess if the magnitude of the tail losses is consistent with the model predictions. The
conditionalDE test, however, is a test for independence over time that assess if there is evidence of
autocorrelation in the series of tail losses.

The esbacktestbyde object supports normal and t distributions. These tests can be used for any
model where the underlying distribution of portfolio outcomes is normal or t, such as exponentially
weighted moving average (EWMA), delta-gamma, or generalized autoregressive conditional
heteroskedasticity (GARCH) models.

The "Normal", "T 10", and "T 5" models can be backtested with the tests in esbacktestbyde.
For illustration purposes, only "T 5" is backtested. The distribution name ("t") and parameters
(DegreesOfFreedom, Location, and Scale) are provided when the esbacktestbyde object is
created.

rng('default'); % for reproducibility; the esbacktestbyde constructor runs a simulation
ebtde = esbacktestbyde(ReturnsTest,"t",'DegreesOfFreedom',5,...
 'Location',Mu,'Scale',SigmaT5,...
 'PortfolioID',"S&P",'VaRID',"T 5",'VaRLevel',VaRLevel);

The recommended workflow is the same: first, run the summary function, then run the runtests
function, and then run the individual test functions. The summary function provides exactly the same
information as the summary function from esbacktest.

s = summary(ebtde);
disp(s)

 PortfolioID VaRID VaRLevel ObservedLevel ExpectedSeverity ObservedSeverity Observations Failures Expected Ratio Missing
 ___________ _____ ________ _____________ ________________ ________________ ____________ ________ ________ ______ _______

 "S&P" "T 5" 0.975 0.97173 1.37 1.4075 2087 59 52.175 1.1308 0

The runtests function shows the final accept or reject result.

2 Market Risk Measurements Using VaR BackTesting Tools

2-58

t = runtests(ebtde);
disp(t)

 PortfolioID VaRID VaRLevel ConditionalDE UnconditionalDE
 ___________ _____ ________ _____________ _______________

 "S&P" "T 5" 0.975 reject accept

Additional details on the test results are obtained by calling the individual test functions.

t = conditionalDE(ebtde);
disp(t)

 PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic CriticalValue AutoCorrelation Observations CriticalValueMethod NumLags Scenarios TestLevel
 ___________ _____ ________ _____________ __________ _____________ _____________ _______________ ____________ ___________________ _______ _________ _________

 "S&P" "T 5" 0.975 reject 0.00034769 12.794 3.8415 0.078297 2087 "large-sample" 1 NaN 0.95

By default, the critical values are determined by a large-sample approximation. Critical values based
on a finite-sample distribution estimated by using a simulation are available when using the
'CriticalValueMethod' optional name-value pair argument.

[t,s] = conditionalDE(ebtde,'CriticalValueMethod','simulation');
disp(t)

 PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic CriticalValue AutoCorrelation Observations CriticalValueMethod NumLags Scenarios TestLevel
 ___________ _____ ________ _____________ ______ _____________ _____________ _______________ ____________ ___________________ _______ _________ _________

 "S&P" "T 5" 0.975 reject 0.01 12.794 3.7961 0.078297 2087 "simulation" 1 1000 0.95

The second output, s, contains simulated test statistic values. The following visualization is useful for
comparing how well the simulated finite-sample distribution matches the large-sample
approximation. The plot shows that the tail of the distribution of test statistics is slightly heavier for
the simulation-based (finite-sample) distribution. This means the simulation-based version of the tests
are more tolerant and would not reject in some cases where the large-sample approximation results
reject. How closely the large-sample and simulation distributions match depends not only on the
number of observations in the test window, but also on the VaR confidence level (higher VaR levels
lead to heavier tails in the finite-sample distribution).

xLS = 0:0.05:30;
pdfLS = chi2pdf(xLS,t.NumLags);
histogram(s,'Normalization',"pdf")
hold on
plot(xLS,pdfLS)
hold off
ylim([0 0.1])
legend({'Simulation','Large-Sample'})
Title = sprintf('Conditional Test Distribution\nVaR Level: %g%%, Sample Size = %d',VaRLevel*100,t.Observations);
title(Title)

 Expected Shortfall Estimation and Backtesting

2-59

Similar steps can be used to see details on the unconditionalDE test, and to compare the large-
sample and simulation based results.

The esbacktestbyde object provides a simulate function to run a new simulation. For example, if
there is a borderline test result where the test statistic is near the critical value, you can use the
simulate function to simulate new scenarios. Also, by default, the simulation stores results for up to
5 lags for the conditional test, so if simulation-based results for a larger number of lags is needed,
you must use the simulate function.

If the large-sample approximation tests are the only tests that you need because they are reliable for
a particular sample size and VaR level, you can turn off simulation when creating an
esbacktestbyde object by using the 'Simulate' optional input.

The esbacktestbyde tests can be run over a rolling window, following the same approach described
above for esbacktest. You can also define traffic-light tests, for example, you could use two
different test confidence levels, similar to what was done above for esbacktest.

Conclusions

To contrast the three ES backtesting objects:

• The esbacktest object is used for a wide range of distributional assumptions: historical VaR,
parametric VaR, Monte-Carlo VaR, or extreme-value models. However, esbacktest offers
approximate test results based on two variations of the same test: the unconditional test statistic
with two different sets of precomputed critical values (unconditionalNormal and
unconditionalT).

• The esbacktestbysim object is used for parametric methods with normal and t distributions
(which includes EWMA, GARCH, and delta-gamma) and requires distribution parameters as
inputs. esbacktestbysim offers five different tests (conditional, unconditional, quantile,
minBiasAbsolute, and minBiasRelative and the critical values for these tests are simulated
using the distribution information that you provide, and therefore, are more accurate. Although all
ES backtests are sensitive to VaR estimation errors, the minimally biased test has only a small

2 Market Risk Measurements Using VaR BackTesting Tools

2-60

sensitivity and is recommended (see Acerbi-Szekely 2017 and 2019 for details [2 on page 2-61],
[3 on page 2-61]).

• The esbacktestbyde object is also used for parametric methods with normal and t distributions
(which includes EWMA, GARCH, and delta-gamma) and requires distribution parameters as
inputs. esbacktestbyde contains a severity (unconditionalDE) and a time-independence
(conditionalDE) tests and it has the convenience of a large-sample, fast version of the tests. The
conditionalDE test is the only test for independence over time for ES models among all the
tests supported in these three classes.

As shown in this example, all three ES backtesting objects provide functionality to generate reports
on severities, VaR failures, and test results information. The three ES backtest objects provide the
flexibility to build on them. For example, you can create user-defined traffic-light tests and run the ES
backtesting analysis over rolling windows.

References

[1] Acerbi, C., and B. Szekely. "Backtesting Expected Shortfall." MSCI Inc., December 2014.

[2] Acerbi, C., and B. Szekely. "General Properties of Backtestable Statistics. SSRN Electronic
Journal. January, 2017.

[3] Acerbi, C., and B. Szekely. "The Minimally Biased Backtest for ES." Risk. September, 2019.

[4] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk."
January 2016, https://www.bis.org/bcbs/publ/d352.htm

[5] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk."
Management Science. Vol 63, Issue 4, April 2017.

[6] McNeil, A., R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts, Techniques and
Tools. Princeton University Press. 2005.

[7] Rockafellar, R. T. and S. Uryasev. "Conditional Value-at-Risk for General Loss Distributions."
Journal of Banking and Finance. Vol. 26, 2002, pp. 1443-1471.

Local Functions

function [VaR,ES] = hHistoricalVaRES(Sample,VaRLevel)
 % Compute historical VaR and ES
 % See [7] for technical details

 % Convert to losses
 Sample = -Sample;

 N = length(Sample);
 k = ceil(N*VaRLevel);

 Expected Shortfall Estimation and Backtesting

2-61

https://www.bis.org/bcbs/publ/d352.htm

 z = sort(Sample);

 VaR = z(k);

 if k < N
 ES = ((k - N*VaRLevel)*z(k) + sum(z(k+1:N)))/(N*(1 - VaRLevel));
 else
 ES = z(k);
 end
end

function [VaR,ES] = hNormalVaRES(Mu,Sigma,VaRLevel)
 % Compute VaR and ES for normal distribution
 % See [6] for technical details

 VaR = -1*(Mu-Sigma*norminv(VaRLevel));
 ES = -1*(Mu-Sigma*normpdf(norminv(VaRLevel))./(1-VaRLevel));

end

function [VaR,ES] = hTVaRES(DoF,Mu,Sigma,VaRLevel)
 % Compute VaR and ES for t location-scale distribution
 % See [6] for technical details

 VaR = -1*(Mu-Sigma*tinv(VaRLevel,DoF));
 ES_StandardT = (tpdf(tinv(VaRLevel,DoF),DoF).*(DoF+tinv(VaRLevel,DoF).^2)./((1-VaRLevel).*(DoF-1)));
 ES = -1*(Mu-Sigma*ES_StandardT);

end

See Also

Related Examples
• “Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information” on page

2-30
• “Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano” on page 2-63

More About
• “Overview of Expected Shortfall Backtesting” on page 2-20

2 Market Risk Measurements Using VaR BackTesting Tools

2-62

Workflow for Expected Shortfall (ES) Backtesting by Du and
Escanciano

This example shows the workflow for using the Du-Escanciano (DE) expected shortfall (ES) backtests
and demonstrates a fixed test window for a single DE model with multiple VaR levels.

Load Data

The data in the ESBacktestDistributionData.mat file has returns, VaR and ES data, and
distribution information for three models: normal, and t with 5 degrees of freedom and t with 10
degrees of freedom. The data spans multiple years from January 1996 to July 2003 and includes a
total of 1966 observations.

This example uses a t distribution with 10 degrees of freedom and focuses on one year of data to
show the difference between the critical value methods for large-sample approximation and
simulation supported by the esbacktestbyde class.

load ESBacktestDistributionData.mat

TargetYear = 1998; % Change to test other calendar years
Ind = year(Dates)==TargetYear;
Dates = Dates(Ind);
Returns = Returns(Ind);
VaR = T10VaR(Ind,:);
ES = T10ES(Ind,:);
Mu = 0; % Always 0 in this data set
Sigma = T10Scale(Ind);

Plot Data

Plot the data for a VaR level of 0.975.

% Plot data
TargetVaRLevel = 0.975;
VaRInd = VaRLevel==TargetVaRLevel;

FailureInd = Returns<-VaR(:,VaRInd);

bar(Dates,Returns)
hold on
plot(Dates,-VaR(:,VaRInd),Dates,-ES(:,VaRInd))
plot(Dates(FailureInd),Returns(FailureInd),'.')
hold off
legend('Returns','VaR','ES','Location','best')
title(['Test Data, VaR Level ' num2str(TargetVaRLevel*100) '%'])
ylabel('Returns')
grid on

 Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano

2-63

Create an esbacktestbyde Object

Create an esbacktestbyde object to run the DE tests. Note that VaR and ES data are not required
inputs because the DE tests work on "mapped returns" or "ranks" and perform mapping by using the
distribution information. However, for convenience, the esbacktestbyde object computes the VaR
and ES data internally using the distribution information and stores the data in the VaRData and
ESData properties of the esbacktestbyde object. The VaR and ES data is used only to estimate the
severity ratios reported by the summary function and are not used for any of the DE tests.

By default, when you create a esbacktestbyde object, a simulation runs and large-sample and
simulation-based critical values are available immediately. Although the simulation processing is
efficient, if you verify that large-sample approximation is appropriate for the sample size and VaR
level under consideration, you can turn the simulation off to increase processing speed. To turn off
the simulation, when using esbacktestbyde to create an esbacktestbtde object, set the name-
value pair argument 'Simulate' to false.

rng('default'); % For reproducibility
tic;
ebtde = esbacktestbyde(Returns,"t",...
'DegreesOfFreedom',10,...
'Location',Mu,...
'Scale',Sigma,...
'VaRLevel',VaRLevel,...
'PortfolioID',"S&P",...
'VaRID',"t(10)");
toc;

2 Market Risk Measurements Using VaR BackTesting Tools

2-64

Elapsed time is 0.098999 seconds.

disp(ebtde)

 esbacktestbyde with properties:

 PortfolioData: [261x1 double]
 VaRData: [261x3 double]
 ESData: [261x3 double]
 Distribution: [1x1 struct]
 PortfolioID: "S&P"
 VaRID: ["t(10)" "t(10)" "t(10)"]
 VaRLevel: [0.9500 0.9750 0.9900]

disp(ebtde.Distribution)

 Name: "t"
 DegreesOfFreedom: 10
 Location: 0
 Scale: [261x1 double]

Summary Statistics

Use summary to return a basic expected shortfall (ES) report on failures and severity. This is the
same summary output as the other ES backtesting classes esbacktest and esbacktestbysim.
When the esbacktestbyde object is created, the VaR and ES data are computed using the
distribution information. This information is stored in the VaRData and ESData properties. The
summary function uses the VaRData and ESData properties to compute the observed severity ratio.

disp(summary(ebtde))

 PortfolioID VaRID VaRLevel ObservedLevel ExpectedSeverity ObservedSeverity Observations Failures Expected Ratio Missing
 ___________ _______ ________ _____________ ________________ ________________ ____________ ________ ________ ______ _______

 "S&P" "t(10)" 0.95 0.94253 1.3288 1.5295 261 15 13.05 1.1494 0
 "S&P" "t(10)" 0.975 0.96935 1.2652 1.5269 261 8 6.525 1.2261 0
 "S&P" "t(10)" 0.99 0.98467 1.2169 1.5786 261 4 2.61 1.5326 0

Run Tests

Use runtests to run all expected shortfall (ES) backtests for esbacktestbyde object. The default
critical value method is 'large-sample' or asymptotic approximation.

disp(runtests(ebtde))

 PortfolioID VaRID VaRLevel ConditionalDE UnconditionalDE
 ___________ _______ ________ _____________ _______________

 "S&P" "t(10)" 0.95 accept accept
 "S&P" "t(10)" 0.975 accept accept
 "S&P" "t(10)" 0.99 accept accept

Run the tests with 'simulation' or finite-sample critical values.

disp(runtests(ebtde,'CriticalValueMethod','simulation'))

 PortfolioID VaRID VaRLevel ConditionalDE UnconditionalDE
 ___________ _______ ________ _____________ _______________

 Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano

2-65

 "S&P" "t(10)" 0.95 accept accept
 "S&P" "t(10)" 0.975 accept accept
 "S&P" "t(10)" 0.99 accept accept

The runtests function accepts the name-value pair argument 'ShowDetails' which includes extra
columns in the output. Specifically, this output includes the critical value method used, number of
lags, and test confidence level.

disp(runtests(ebtde,'CriticalValueMethod','simulation','ShowDetails',true))

 PortfolioID VaRID VaRLevel ConditionalDE UnconditionalDE CriticalValueMethod NumLags TestLevel
 ___________ _______ ________ _____________ _______________ ___________________ _______ _________

 "S&P" "t(10)" 0.95 accept accept "simulation" 1 0.95
 "S&P" "t(10)" 0.975 accept accept "simulation" 1 0.95
 "S&P" "t(10)" 0.99 accept accept "simulation" 1 0.95

Unconditional DE Test Details

The unconditional DE test assesses the severity of the violations based on an evaluation of the
observed average tail loss and determines whether the severity is consistent with the model
assumptions. All the tests supported in the related classes esbacktest and esbacktestbysim are
also severity tests.

To view the unconditional DE test details, use the unconditionalDE function. By default, this
function uses the 'large-sample' critical value method.

disp(unconditionalDE(ebtde))

 PortfolioID VaRID VaRLevel UnconditionalDE PValue TestStatistic LowerCI UpperCI Observations CriticalValueMethod MeanLS StdLS Scenarios TestLevel
 ___________ _______ ________ _______________ ________ _____________ _________ ________ ____________ ___________________ ______ _________ _________ _________

 "S&P" "t(10)" 0.95 accept 0.31715 0.032842 0.0096343 0.040366 261 "large-sample" 0.025 0.0078398 NaN 0.95
 "S&P" "t(10)" 0.975 accept 0.32497 0.018009 0.0015295 0.023471 261 "large-sample" 0.0125 0.0055973 NaN 0.95
 "S&P" "t(10)" 0.99 accept 0.076391 0.011309 0 0.011978 261 "large-sample" 0.005 0.0035603 NaN 0.95

To compare the results of 'large-sample' to simulation-based critical values, use the name-value
pair argument 'CriticalValueMethod'. In this example, the results of both critical value methods,
including the confidence interval and the p-values, look similar.

disp(unconditionalDE(ebtde,'CriticalValueMethod','simulation'))

 PortfolioID VaRID VaRLevel UnconditionalDE PValue TestStatistic LowerCI UpperCI Observations CriticalValueMethod MeanLS StdLS Scenarios TestLevel
 ___________ _______ ________ _______________ ______ _____________ _________ ________ ____________ ___________________ ______ _____ _________ _________

 "S&P" "t(10)" 0.95 accept 0.326 0.032842 0.010859 0.041709 261 "simulation" NaN NaN 1000 0.95
 "S&P" "t(10)" 0.975 accept 0.336 0.018009 0.0032446 0.024657 261 "simulation" NaN NaN 1000 0.95
 "S&P" "t(10)" 0.99 accept 0.126 0.011309 0 0.013311 261 "simulation" NaN NaN 1000 0.95

You can visualize the 'simulation' and 'large-sample' distributions to assess whether the
'large-sample' approximation is accurate enough for the sample size and VaR level under
consideration. The unconditionalDE function returns the 'simulated' test statistics as an
optional output.

In this example, higher VaR levels cause a noticeable mismatch between the 'large-sample' and
'simulation' distributions. However, the confidence intervals and p-values are comparable.

% Choose VaR level
TargetVaRLevel = 0.975;

2 Market Risk Measurements Using VaR BackTesting Tools

2-66

VaRInd = VaRLevel==TargetVaRLevel;

[~,s] = unconditionalDE(ebtde,'CriticalValueMethod','simulation');
histogram(s(VaRInd,:),'Normalization',"pdf")
hold on
t = unconditionalDE(ebtde,'CriticalValueMethod','large-sample');
Mu = t.MeanLS(VaRInd);
Sigma = t.StdLS(VaRInd);
MinValPlot = min(s(VaRInd,:))-0.001;
MaxValPlot = max(s(VaRInd,:))+0.001;
xLS = linspace(MinValPlot,MaxValPlot,101);
pdfLS = normpdf(xLS,Mu,Sigma);
plot(xLS,pdfLS)
hold off
legend({'Simulation','Large-Sample'})
Title = sprintf('UnconditionalDE Test Distribution\nVaR Level: %g%%, Sample Size = %d',VaRLevel(VaRInd)*100,t.Observations(VaRInd));
title(Title)

Conditional DE Test Details

The conditional DE test assesses whether there is evidence of autocorrelation in the tail losses.

Although the names are similar, the conditional DE test and the conditional test supported in
esbacktestbysim are qualitatively different tests. The conditional Acerbi-Szekely test supported in
esbacktestbysim tests the severity of the ES, conditional on whether the model passes a VaR test.
The Acerbi-Szekely conditional test is a severity test, comparable to the tests supported in
esbacktest, esbacktestbysim, and the unconditionalDE test.

 Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano

2-67

However, the conditional DE test in esbacktestbyde is a test for independence across time periods.

To see the details of the conditional DE test results, use the conditionalDE function. By default,
this function uses the 'large-sample' critical value method and tests for one lag (correlation with
the previous time period).

disp(conditionalDE(ebtde))

 PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic CriticalValue AutoCorrelation Observations CriticalValueMethod NumLags Scenarios TestLevel
 ___________ _______ ________ _____________ _______ _____________ _____________ _______________ ____________ ___________________ _______ _________ _________

 "S&P" "t(10)" 0.95 accept 0.45361 0.5616 3.8415 0.046387 261 "large-sample" 1 NaN 0.95
 "S&P" "t(10)" 0.975 accept 0.54189 0.37205 3.8415 0.037755 261 "large-sample" 1 NaN 0.95
 "S&P" "t(10)" 0.99 accept 0.87949 0.022989 3.8415 -0.0093851 261 "large-sample" 1 NaN 0.95

The results of the 'large-sample' critical value method, particularly the simulation critical values
and p-values, differ substantially from the results of the 'simulation' critical value method.

The critical value is similar for a 95% VaR level, but the simulation-based critical value is much larger
for higher VaR levels, especially for a 99% VaR. The autocorrelation is 1 for any sample without VaR
failures. Therefore, the test statistic equals the number of observations for any scenario without VaR
failures. For a 99% VaR level, scenarios without VaR failures are like; consequently, there is a mass
point at the number of observations which appears as a long, heavy tail in the simulated distribution
of the test statistic.

disp(conditionalDE(ebtde,'CriticalValueMethod','simulation'))

 PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic CriticalValue AutoCorrelation Observations CriticalValueMethod NumLags Scenarios TestLevel
 ___________ _______ ________ _____________ ______ _____________ _____________ _______________ ____________ ___________________ _______ _________ _________

 "S&P" "t(10)" 0.95 accept 0.257 0.5616 3.6876 0.046387 261 "simulation" 1 1000 0.95
 "S&P" "t(10)" 0.975 accept 0.141 0.37205 5.3504 0.037755 261 "simulation" 1 1000 0.95
 "S&P" "t(10)" 0.99 accept 0.502 0.022989 261 -0.0093851 261 "simulation" 1 1000 0.95

You can visually compare the 'large-sample' and 'simulation' distributions. The
conditionalDE function also returns the simulated test statistics as an optional output.

Notice that the tail of the distribution gets heavier as the VaR level increases.

% Choose VaR level
TargetVaRLevel = 0.975;
VaRInd = VaRLevel==TargetVaRLevel;

[t,s] = conditionalDE(ebtde,'CriticalValueMethod','simulation');
xLS = 0:0.01:20;
pdfLS = chi2pdf(xLS,t.NumLags(1));
histogram(s(VaRInd,:),'Normalization',"pdf")
hold on
plot(xLS,pdfLS)
hold off
ylim([0 0.01])
legend({'Simulation','Large-Sample'})
Title = sprintf('ConditionalDE Test Distribution\nVaR Level: %g%%, Sample Size = %d',VaRLevel(VaRInd)*100,t.Observations(VaRInd));
title(Title)

2 Market Risk Measurements Using VaR BackTesting Tools

2-68

Because the conditional DE test is based on autocorrelations, you can run the test for differing
numbers of lags.

Run the conditional DE test for 2 lags. At a VaR level of 99%, the 'large-sample' critical value
method rejects the model but the 'simulation' critical value method does not reject the model,
with a p-value close to 10%. This shows that the 'simulation' distribution and the 'large-
sample' approximation can lead to different results, depending on the sample size and VaR level.

disp(conditionalDE(ebtde,'NumLags',2,'CriticalValueMethod','large-sample'))

 PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic CriticalValue AutoCorrelation Observations CriticalValueMethod NumLags Scenarios TestLevel
 ___________ _______ ________ _____________ __________ _____________ _____________ _______________ ____________ ___________________ _______ _________ _________

 "S&P" "t(10)" 0.95 reject 0.015812 8.294 5.9915 0.17212 261 "large-sample" 2 NaN 0.95
 "S&P" "t(10)" 0.975 reject 0.00045758 15.379 5.9915 0.23979 261 "large-sample" 2 NaN 0.95
 "S&P" "t(10)" 0.99 reject 2.5771e-07 30.343 5.9915 0.34083 261 "large-sample" 2 NaN 0.95

disp(conditionalDE(ebtde,'NumLags',2,'CriticalValueMethod','simulation'))

 PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic CriticalValue AutoCorrelation Observations CriticalValueMethod NumLags Scenarios TestLevel
 ___________ _______ ________ _____________ ______ _____________ _____________ _______________ ____________ ___________________ _______ _________ _________

 "S&P" "t(10)" 0.95 reject 0.03 8.294 6.1397 0.17212 261 "simulation" 2 1000 0.95
 "S&P" "t(10)" 0.975 reject 0.019 15.379 9.3364 0.23979 261 "simulation" 2 1000 0.95
 "S&P" "t(10)" 0.99 accept 0.098 30.343 522 0.34083 261 "simulation" 2 1000 0.95

 Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano

2-69

Running a New Simulation with simulate

If a p-value is near a rejection boundary, you can run a new simulation to request more scenarios to
reduce a simulation error.

You can also run a new simulation to request a higher number of lags. By default, creating an
esbacktestbyde object causes the simulation to run so that the simulation test results are available
immediately. However, to avoid extra storage, only 5 lags are simulated. If you request more than 5
lags with the simulate function, the conditionalDE test function displays the following message:

No simulation results available for the number of lags requested. Call
'simulate' with the desired number of lags.

You first need to run a new simulation using esbacktestbyde and specify the number of lags to use
for that simulation. Displaying the size of the esbacktestbyde object before and after the new
simulation illustrates how simulating with more lags increases the amount of data stored in the
esbacktestbyde object, as more simulated test statistics are stored with more lags.

% See bytes before new simulation, 5 lags stored
whos ebtde

 Name Size Bytes Class Attributes

 ebtde 1x1 164883 esbacktestbyde

% Simulate 6 lags
rng('default'); % for reproducibility
ebtde = simulate(ebtde,'NumLags',6);

% See bytes after new simulation, 6 lags stored
whos ebtde

 Name Size Bytes Class Attributes

 ebtde 1x1 188891 esbacktestbyde

After you run a new simulation with esbacktestbyde that increases the number of lags to 6, the
test results for conditionalDE are available for the 'simulation' method using 6 lags.

disp(conditionalDE(ebtde,'NumLags',6,'CriticalValueMethod','simulation'))

 PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic CriticalValue AutoCorrelation Observations CriticalValueMethod NumLags Scenarios TestLevel
 ___________ _______ ________ _____________ ______ _____________ _____________ _______________ ____________ ___________________ _______ _________ _________

 "S&P" "t(10)" 0.95 accept 0.136 9.5173 16.412 -0.022881 261 "simulation" 6 1000 0.95
 "S&P" "t(10)" 0.975 accept 0.086 15.854 21.299 -0.021864 261 "simulation" 6 1000 0.95
 "S&P" "t(10)" 0.99 accept 0.128 30.438 1566 -0.0096211 261 "simulation" 6 1000 0.95

Alternatively, the conditionalDE test results are always available for the 'large-sample' method
for any number of lags.

disp(conditionalDE(ebtde,'NumLags',10,'CriticalValueMethod','large-sample'))

 PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic CriticalValue AutoCorrelation Observations CriticalValueMethod NumLags Scenarios TestLevel
 ___________ _______ ________ _____________ __________ _____________ _____________ _______________ ____________ ___________________ _______ _________ _________

 "S&P" "t(10)" 0.95 reject 0.018711 21.361 18.307 0.15415 261 "large-sample" 10 NaN 0.95

2 Market Risk Measurements Using VaR BackTesting Tools

2-70

 "S&P" "t(10)" 0.975 accept 0.088587 16.406 18.307 0.027955 261 "large-sample" 10 NaN 0.95
 "S&P" "t(10)" 0.99 reject 0.00070234 30.526 18.307 -0.0092432 261 "large-sample" 10 NaN 0.95

See Also
esbacktestbyde | esbacktest | esbacktestbysim | varbacktest

Related Examples
• “VaR Backtesting Workflow” on page 2-6
• “Value-at-Risk Estimation and Backtesting” on page 2-10
• “Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information” on page

2-30
• “Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
• “Expected Shortfall Estimation and Backtesting” on page 2-44
• “Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and

Escanciano” on page 2-72

 Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano

2-71

Rolling Windows and Multiple Models for Expected Shortfall
(ES) Backtesting by Du and Escanciano

This example shows the workflow for using the Du-Escanciano (DE) expected shortfall (ES) backtests
for rolling window analyses and testing multiple VaR/ES models.

The rolling window workflow in this example is also used for the value-at-risk (VaR) backtests in
varbacktest and for the Acerbi-Szekely ES backtests in the esbacktest and esbacktestbysim
classes.

The multiple-model workflow in this example is also used for the esbacktestbysim class. For
esbacktest and varbacktest, you can create a single object with multiple models and multiple
VaR levels.

Rolling Window

The data in the ESBacktestDistributionData.mat file has returns, VaR and ES data, and
distribution information for three models: normal, and t with 5 degrees of freedom and t with 10
degrees of freedom. The data spans multiple years from January 1996 to July 2003, for a total of 1966
observations.

To run the test over a rolling window, one esbacktestbyde object must be created for each year (or
time period) of interest. In this example, each year from 1996 through 2002 is tested separately. You
can test all VaR levels together, but to simplify the output, this example uses a single VaR level. You
can also call any test, or the summary report inside the processing loop, but this example calls only
the runtests function.

load ESBacktestDistributionData.mat

rng('default'); % For reproducibility

Years = 1996:2002;
TargetVaRLevel = 0.99;

t = table;
for TargetYear = Years

 Ind = year(Dates)==TargetYear;
 VaRInd = VaRLevel==TargetVaRLevel;

 ebtde = esbacktestbyde(Returns(Ind),"t",...
 'DegreesOfFreedom',10,...
 'Location',0,... % Always 0 in this data set
 'Scale',T10Scale(Ind),...
 'VaRLevel',VaRLevel(VaRInd),...
 'PortfolioID',strcat("S&P, ",string(TargetYear)),...
 'VaRID',"t(10)");

 t = [t; runtests(ebtde)];
end

disp(t)

 PortfolioID VaRID VaRLevel ConditionalDE UnconditionalDE
 ___________ _______ ________ _____________ _______________

2 Market Risk Measurements Using VaR BackTesting Tools

2-72

 "S&P, 1996" "t(10)" 0.99 reject reject
 "S&P, 1997" "t(10)" 0.99 accept reject
 "S&P, 1998" "t(10)" 0.99 accept accept
 "S&P, 1999" "t(10)" 0.99 reject accept
 "S&P, 2000" "t(10)" 0.99 accept accept
 "S&P, 2001" "t(10)" 0.99 accept accept
 "S&P, 2002" "t(10)" 0.99 reject accept

For a more advanced approach, you can use arrays of esbacktestbyde objects and then call
different functions on objects corresponding to different years as needed.

rng('default'); % For reproducibility

NumYears = length(Years);
ebtdeArray(NumYears) = esbacktestbyde;

TargetVaRLevel = 0.99;

for yy = 1:NumYears

 TargetYear = Years(yy);
 Ind = year(Dates)==TargetYear;
 VaRInd = VaRLevel==TargetVaRLevel;

 ebtdeArray(yy) = esbacktestbyde(Returns(Ind),"t",...
 'DegreesOfFreedom',10,...
 'Location',0,... % Always 0 in this data set
 'Scale',T10Scale(Ind),...
 'VaRLevel',VaRLevel(VaRInd),...
 'PortfolioID',strcat("S&P, ",string(TargetYear)),...
 'VaRID',"t(10)");

end

disp(ebtdeArray)

 1x7 esbacktestbyde array with properties:

 PortfolioData
 VaRData
 ESData
 Distribution
 PortfolioID
 VaRID
 VaRLevel

Display the summary for the year 2002.

disp(summary(ebtdeArray(Years==2002)))

 PortfolioID VaRID VaRLevel ObservedLevel ExpectedSeverity ObservedSeverity Observations Failures Expected Ratio Missing
 ___________ _______ ________ _____________ ________________ ________________ ____________ ________ ________ ______ _______

 "S&P, 2002" "t(10)" 0.99 0.98467 1.2169 1.1481 261 4 2.61 1.5326 0

Concatenate the conditional tests for all years.

condDEResults = table;
for yy = 1:NumYears

 Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and Escanciano

2-73

 condDEResults = [condDEResults; conditionalDE(ebtdeArray(yy))];
end
disp(condDEResults)

 PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic CriticalValue AutoCorrelation Observations CriticalValueMethod NumLags Scenarios TestLevel
 ___________ _______ ________ _____________ __________ _____________ _____________ _______________ ____________ ___________________ _______ _________ _________

 "S&P, 1996" "t(10)" 0.99 reject 0.0084691 6.9315 3.8415 0.16265 262 "large-sample" 1 NaN 0.95
 "S&P, 1997" "t(10)" 0.99 accept 0.85691 0.032512 3.8415 -0.011161 261 "large-sample" 1 NaN 0.95
 "S&P, 1998" "t(10)" 0.99 accept 0.87949 0.022989 3.8415 -0.0093851 261 "large-sample" 1 NaN 0.95
 "S&P, 1999" "t(10)" 0.99 reject 2.1168e-50 222.89 3.8415 0.92412 261 "large-sample" 1 NaN 0.95
 "S&P, 2000" "t(10)" 0.99 accept 0.89052 0.018948 3.8415 -0.0085367 260 "large-sample" 1 NaN 0.95
 "S&P, 2001" "t(10)" 0.99 accept 0.92088 0.0098664 3.8415 -0.0061484 261 "large-sample" 1 NaN 0.95
 "S&P, 2002" "t(10)" 0.99 reject 3.5974e-05 17.073 3.8415 0.25576 261 "large-sample" 1 NaN 0.95

Multiple Models

Similar to the esbacktestbysim object, the esbacktestbyde object accepts only one distribution
at a time. If you need to test different models side by side, then you must create different instances of
the class.

In this example you run the test for a normal distribution assumption and t distributions with 5 and
10 degrees of freedom. You then concatenate the test results to generate a single report.

The data in the ESBacktestDistributionData.mat file has returns, VaR and ES data, and
distribution information for three models: normal, and t with 5 and 10 degrees of freedom. The data
spans multiple years from January 1996 to July 2003, for a total of 1966 observations. For simplicity,
this example uses only data from 1998.

load ESBacktestDistributionData.mat

TargetYear = 1998;
Ind = year(Dates)==TargetYear;

rng('default'); % For reproducibility

Create an instance of an esbacktestbyde object for the normal distribution.

ebtdeNormal = esbacktestbyde(Returns(Ind),"normal",...
'Mean',0,...
'StandardDeviation',NormalStd(Ind),...
'VaRLevel',VaRLevel,...
'PortfolioID',strcat("S&P, ",string(TargetYear)),...
'VaRID',"normal");

disp(ebtdeNormal)

 esbacktestbyde with properties:

 PortfolioData: [261x1 double]
 VaRData: [261x3 double]
 ESData: [261x3 double]
 Distribution: [1x1 struct]
 PortfolioID: "S&P, 1998"
 VaRID: ["normal" "normal" "normal"]
 VaRLevel: [0.9500 0.9750 0.9900]

disp(ebtdeNormal.Distribution)

2 Market Risk Measurements Using VaR BackTesting Tools

2-74

 Name: "normal"
 Mean: 0
 StandardDeviation: [261x1 double]

Create an instance of an esbacktestbyde object for the t distribution with 10 degrees of freedom.

ebtdeT10 = esbacktestbyde(Returns(Ind),"t",...
'DegreesOfFreedom',10,...
'Location',0,...
'Scale',T10Scale(Ind),...
'VaRLevel',VaRLevel,...
'PortfolioID',strcat("S&P, ",string(TargetYear)),...
'VaRID',"t(10)");

disp(ebtdeT10)

 esbacktestbyde with properties:

 PortfolioData: [261x1 double]
 VaRData: [261x3 double]
 ESData: [261x3 double]
 Distribution: [1x1 struct]
 PortfolioID: "S&P, 1998"
 VaRID: ["t(10)" "t(10)" "t(10)"]
 VaRLevel: [0.9500 0.9750 0.9900]

disp(ebtdeT10.Distribution)

 Name: "t"
 DegreesOfFreedom: 10
 Location: 0
 Scale: [261x1 double]

Create an instance of an esbacktestbyde object for the t distribution with 5 degrees of freedom.

ebtdeT5 = esbacktestbyde(Returns(Ind),"t",...
'DegreesOfFreedom',5,...
'Location',0,...
'Scale',T5Scale(Ind),...
'VaRLevel',VaRLevel,...
'PortfolioID',strcat("S&P, ",string(TargetYear)),...
'VaRID',"t(5)");

disp(ebtdeT5)

 esbacktestbyde with properties:

 PortfolioData: [261x1 double]
 VaRData: [261x3 double]
 ESData: [261x3 double]
 Distribution: [1x1 struct]
 PortfolioID: "S&P, 1998"
 VaRID: ["t(5)" "t(5)" "t(5)"]
 VaRLevel: [0.9500 0.9750 0.9900]

disp(ebtdeT5.Distribution)

 Name: "t"
 DegreesOfFreedom: 5

 Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and Escanciano

2-75

 Location: 0
 Scale: [261x1 double]

Run the tests and then concatenate the results.

testResults = [runtests(ebtdeNormal); runtests(ebtdeT10); runtests(ebtdeT5)];
disp(testResults)

 PortfolioID VaRID VaRLevel ConditionalDE UnconditionalDE
 ___________ ________ ________ _____________ _______________

 "S&P, 1998" "normal" 0.95 accept accept
 "S&P, 1998" "normal" 0.975 accept accept
 "S&P, 1998" "normal" 0.99 accept reject
 "S&P, 1998" "t(10)" 0.95 accept accept
 "S&P, 1998" "t(10)" 0.975 accept accept
 "S&P, 1998" "t(10)" 0.99 accept accept
 "S&P, 1998" "t(5)" 0.95 accept accept
 "S&P, 1998" "t(5)" 0.975 accept accept
 "S&P, 1998" "t(5)" 0.99 accept accept

Display the results for a VaR level of 0.99.

TargetVaRLevel = 0.99;
disp(testResults(testResults.VaRLevel == TargetVaRLevel,:))

 PortfolioID VaRID VaRLevel ConditionalDE UnconditionalDE
 ___________ ________ ________ _____________ _______________

 "S&P, 1998" "normal" 0.99 accept reject
 "S&P, 1998" "t(10)" 0.99 accept accept
 "S&P, 1998" "t(5)" 0.99 accept accept

See Also
esbacktestbyde | esbacktest | esbacktestbysim | varbacktest

Related Examples
• “VaR Backtesting Workflow” on page 2-6
• “Value-at-Risk Estimation and Backtesting” on page 2-10
• “Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information” on page

2-30
• “Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
• “Expected Shortfall Estimation and Backtesting” on page 2-44
• “Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano” on page 2-63

2 Market Risk Measurements Using VaR BackTesting Tools

2-76

Managing Consumer Credit Risk Using
the Binning Explorer for Credit
Scorecards

• “Overview of Binning Explorer” on page 3-2
• “Common Binning Explorer Tasks” on page 3-4
• “Bin Data to Create Credit Scorecards Using Binning Explorer” on page 3-23
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page 3-36
• “compactCreditScorecard Object Workflow” on page 3-57
• “Feature Screening with screenpredictors” on page 3-64
• “Use Reject Inference Techniques with Credit Scorecards” on page 3-69
• “Credit Scoring Using Logistic Regression and Decision Trees” on page 3-87
• “Explore Fairness Metrics for Credit Scoring Model” on page 3-98
• “Bias Mitigation in Credit Scoring by Reweighting” on page 3-110
• “Bias Mitigation in Credit Scoring by Disparate Impact Removal” on page 3-119
• “Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle”

on page 3-131

3

Overview of Binning Explorer
The Binning Explorer app enables you to interactively bin credit scorecard data. Use the Binning
Explorer to:

• Select an automatic binning algorithm with an option to bin missing data. (For more information
on algorithms for automatic binning, see autobinning.)

• Shift bin boundaries.
• Split bins.
• Merge bins.
• Save and export a creditscorecard object.

Binning Explorer complements the overall workflow for developing a credit scorecard model. Use
screenpredictors to pare down a potentially large set of predictors to a subset that is most
predictive of the credit score card response variable. You can then use this subset of predictors when
using Binning Explorer to create the creditscorecard object.

Using Binning Explorer:
1. Open the Binning Explorer app.

• MATLAB® toolstrip: On the Apps tab, under Computational Finance, click the app icon.
• MATLAB command prompt:

• Enter binningExplorer to open the Binning Explorer app.
• Enter binningExplorer(data) or binningExplorer(data,Name,Value) to open

a table in the Binning Explorer app by specifying a table (data) as input.
• Enter binningExplorer(sc) to open a creditscorecard object in the Binning

Explorer app by specifying a creditscorecard object (sc) as input.
2. Import the data into the app.

You can import data into Binning Explorer by either starting directly from a data set or by
loading an existing creditscorecard object from the MATLAB workspace.

3. Use Binning Explorer to work interactively with the binning assignments for a scorecard.
4. Export the scorecard to a new creditscorecard object.

Continue the workflow from the MATLAB command line using creditscorecard object
functions from Financial Toolbox. For more information, see creditscorecard.

Using creditscorecard Object Functions in Financial Toolbox:
5. Fit a logistic regression model.
6. Review and format the credit scorecard points.
7. Score the data.
8. Calculate the probabilities of default for the data.
9. Validate the quality of the credit scorecard model.

For more detailed information on this workflow, see “Bin Data to Create Credit Scorecards Using
Binning Explorer” on page 3-23.

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-2

See Also
Apps
Binning Explorer

Classes
creditscorecard

Related Examples
• “Common Binning Explorer Tasks” on page 3-4
• “Bin Data to Create Credit Scorecards Using Binning Explorer” on page 3-23
• “Case Study for Credit Scorecard Analysis”

More About
• “Credit Scorecard Modeling Workflow”

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

 Overview of Binning Explorer

3-3

https://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-121587.html

Common Binning Explorer Tasks
The Binning Explorer app supports the following tasks:

In this section...
“Import Data” on page 3-4
“Change Predictor Type” on page 3-5
“Change Binning Algorithm for One or More Predictors” on page 3-6
“Change Algorithm Options for Binning Algorithms” on page 3-7
“Split Bins for a Numeric Predictor” on page 3-11
“Split Bins for a Categorical Predictor” on page 3-13
“Manual Binning to Merge Bins for a Numeric or Categorical Predictor” on page 3-15
“Change Bin Boundaries for a Single Predictor” on page 3-16
“Change Bin Boundaries for Multiple Predictors” on page 3-17
“Set Options for Display” on page 3-18
“Export and Save the Binning” on page 3-19
“Troubleshoot the Binning” on page 3-19

Import Data
Binning Explorer enables you to import data by either starting directly from the data stored in a
MATLAB table or by loading an existing creditscorecard object.

Clean Start from Data

To start directly from data:

1 Place the credit scorecard data in your MATLAB workspace. The data must be in a MATLAB
table, where each column of data can be any one of the following data types:

• Numeric
• Logical
• Cell array of character vectors
• Character array
• Categorical

In addition, the table must contain a binary response variable.
2 Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under Computational

Finance, click the app icon.
3 Click Import Data and select the data from the Step 1 pane of the Import Data window.
4 From the Step 2 pane, set the Variable Type for each of the predictors, as needed. If the input

MATLAB table contains a column for weights, from the Step 2 pane, using the Variable Type
column, click the drop-down to select Weights. If the data contains missing values, from the
Step 2 pane, set Bin missing data: to Yes. For more information on working with missing data,
see “Credit Scorecard Modeling with Missing Values”.

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-4

5 From the Step 3 pane, select an initial binning algorithm and click Import Data. The bins are
plotted and displayed for each predictor. By clicking an individual predictor plot in the Overview
pane, the details for that predictor plot display in the main pane with additional information in
the Bin Information and Predictor Information panes.

Start from an Existing creditscorecard Object

To start using an existing creditscorecard object:

1 Place the creditscorecard object in your MATLAB workspace. Create the creditscorecard
object either by using creditscorecard or by clicking Export in the Binning Explorer to
export and save a creditscorecard object to the MATLAB workspace.

2 Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under Computational
Finance, click the app icon.

3 Click Import Data and from Step 1 pane of the Import Data window, select the
creditscorecard object.

4 From the Step 3 pane, select a binning algorithm. When using an existing creditscorecard
object, it is recommended to select the No Binning option. To display the predictor plots, click
Import Data.

The bins are plotted and displayed for each predictor. By clicking an individual predictor plot in
the Overview pane, the predictor plot displays in the main pane and associated information
displays in the Bin Information and Predictor Information panes.

Start from MATLAB Command Line Using Data or an Existing creditscorecard Object

To start Binning Explorer from the MATLAB command line:

1 Place the credit scorecard data or existing creditscorecard object in your MATLAB
workspace.

2 At the MATLAB command prompt:

• Enter binningExplorer(data) or binningExplorer(data,Name,Value) to open a
table in the Binning Explorer app by specifying a table (data) as input.

• Enter binningExplorer(sc) to open an existing creditscorecard object in the Binning
Explorer app by specifying a creditscorecard object (sc) as input.

The bins are plotted and displayed for each predictor. By clicking an individual predictor plot in
the Overview pane, the details for that predictor plot display in the main pane and the associated
details display in the Bin Information and Predictor Information panes.

Change Predictor Type
After you import data or a creditscorecard object into Binning Explorer, you can change the
predictor type.

1 Click any predictor plot. The name of the selected predictor displays on the Binning Explorer
toolstrip under Selected Predictor.

On the Binning Explorer toolstrip, the predictor type for the selected predictor displays under
Predictor Type.

 Common Binning Explorer Tasks

3-5

2 To change the predictor type, under Predictor Type, select: Numeric, Categorical, or
Ordinal. The predictor plot is updated and the details in the Bin Information and Predictor
Information panes are also updated.

Change Binning Algorithm for One or More Predictors
After you import data or a creditscorecard object into Binning Explorer, you can change the
binning algorithm for an individual predictor or for multiple predictors.

1 Click any predictor plot in the Overview pane. The selected predictor plot displays in the main
pane.

Tip When you select a predictor plot, a status message appears above Bin Information that
displays the last binning information for that predictor. Use this information to determine which
binning algorithm is most recently applied to an individual predictor plot.

2 On the Binning Explorer toolstrip, click to select Monotone, Split, Merge, Equal Frequency,
or Equal Width. The predictor plot is updated with a change of algorithm. The details in the Bin
Information and Predictor Information panes are also updated.

3 To change the binning algorithm for multiple predictors, multiselect more than one predictor plot
by using Ctrl + click or Shift + click to highlight each predictor plot with a blue outline.

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-6

4 Click to select Monotone, Split, Merge, Equal Frequency, or Equal Width. All the selected
predictor plots are updated for a change of algorithm.

Change Algorithm Options for Binning Algorithms
After you import data or a creditscorecard object into Binning Explorer, you can change the
binning algorithm options for an individual predictor or for multiple predictors.

1 Click any predictor plot in the Overview pane. The predictor plot displays with a blue outline and
displays in the main pane.

Tip When you select a predictor plot with the blue outline, a status message appears above Bin
Information that displays the last binning information for that predictor. Use this information to
determine which binning algorithm is most recently applied to an individual predictor plot.

2 On the Binning Explorer toolstrip, click Options to open a list of options for the Monotone,
Split, Merge, Equal Frequency, and Equal Width algorithms. Click an option to open the
associated Algorithm options dialog box. For example, clicking Monotone Options opens the
Algorithm options dialog box for Monotone.

 Common Binning Explorer Tasks

3-7

3 From the associated Algorithm options dialog box:

• Monotone

• For Trend, select one of the following:

• Auto (default) — Automatically determines if the WOE trend is increasing or
decreasing.

• Increasing — Looks for an increasing WOE trend.
• Decreasing — Looks for a decreasing WOE trend.

The value of Trend does not necessarily reflect that of the resulting WOE curve. The
Trend option tells the algorithm to look for an increasing or decreasing trend, but the
outcome might not show the desired trend. For example, the algorithm cannot find a
decreasing trend when the data actually has an increasing WOE trend. For more
information on the Trend option, see “Monotone”.

• For Initial number of bins, enter an initial number of bins (default is 10). The initial
number of bins must be an integer > 2. Used for numeric predictors only.

• For Category Sorting, used for categorical predictors only, select one of the following:

• Odds (default) — The categories are sorted by order of increasing values of odds,
defined as the ratio of “Good” to “Bad” observations, for the given category.

• Goods — The categories are sorted by order of increasing values of “Good.”
• Bads — The categories are sorted by order of increasing values of “Bad.”
• Totals — The categories are sorted by order of increasing values of the total

number of observations (“Good” plus “Bad”).
• None — No sorting is applied. The existing order of the categories is unchanged

before applying the algorithm.

For more information, see Sort Categories

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-8

• Split

• For Measure, select one of the following: Gini (default), Chi2, InfoValue, or Entropy.
• For Tolerance, specify a tolerance value above which the gain in the information value has

to be for the split to be accepted. The default is 1e-4.
• For Significance, only for the Chi2 measure, specify a significance level threshold for the

chi-square statistic, above which splitting happens. Values are in the interval [0,1].
Default is 0.9 (90% significance level).

• For Bin distribution, specify values for

• MinBad — Specifies the minimum number n (n>=0) of Bads per bin. The default value
is 1, to avoid pure bins.

• MaxBad — Specifies the maximum number n (n>=0) of Bads per bin. The default value
is Inf.

• MinGood — Specifies the minimum number n (n>=0) of Goods per bin. The default
value is 1, to avoid pure bins.

• MaxGood — Specifies the maximum number n (n>=0) of Goods per bin. The default
value is Inf.

• MinCount — Specifies the minimum number n (n>=0) of observations per bin. The
default value is 1, to avoid empty bins.

• MaxCount — Specifies the maximum number n (n>=0) of observations per bin. The
default value is Inf.

• MaxNumBins — Specifies the maximum number n (n>=2) of bins resulting from the
splitting. The default value is 5.

• For Initial number bins, specify an integer that determines the number (n >0) of bins
that the predictor is initially binned into before splitting. Valid for numeric predictors only.
Default is 50.

• For Category sorting, used for categorical predictors only, select a value:

• Goods — The categories are sorted by order of increasing values of “Good.”
• Bads — The categories are sorted by order of increasing values of “Bad.”
• Odds — (default) The categories are sorted by order of increasing values of odds,
defined as the ratio of “Good” to “Bad” observations, for the given category.

• Totals — The categories are sorted by order of increasing values of total number of
observations (“Good” plus “Bad”).

• None — No sorting is applied. The existing order of the categories is unchanged before
applying the algorithm. (The existing order of the categories can be seen in the
category grouping optional output from bininfo.)

For more information, see Sort Categories

• Merge

• For Measure, select one of the following: Chi2 (default), Gini, InfoValue, or Entropy.
• For Tolerance, specify the minimum threshold below which merging happens for the

information value and entropy statistics. Valid values are in the interval (0.1). Default is
1e-3.

 Common Binning Explorer Tasks

3-9

• For Significance, specify the significance level threshold for the chi-square statistic,
below which merging happens. Values are in the interval [0,1]. Default is 0.9 (90%
significance level).

• For Bin distribution, specify the following:

• MinNumBins — Specifies the minimum number n (n>=2) of bins that result from
merging. The default value is 2.

• MaxNumBins — Specifies the maximum number n (n>=2) of bins that result from
merging. The default value is 5.

• For Initial number of bins, specify an integer that determines the number (n >0) of bins
that the predictor is initially binned into before merging. Valid for numeric predictors only.
Default is 50.

• For Category sorting, used for categorical predictors only. Select a value:

• Goods — The categories are sorted by order of increasing values of “Good.”
• Bads — The categories are sorted by order of increasing values of “Bad.”
• Odds — (default) The categories are sorted by order of increasing values of odds,
defined as the ratio of “Good” to “Bad” observations, for the given category.

• Totals — The categories are sorted by order of increasing values of total number of
observations (“Good” plus “Bad”).

• None — No sorting is applied. The existing order of the categories is unchanged before
applying the algorithm. (The existing order of the categories can be seen in the
category grouping optional output from bininfo.)

For more information, see Sort Categories

• Equal Frequency

• For Number of bins, enter the number of bins. The default is 5, and the number of bins
must be a positive number.

• For Category Sorting, select one of the following:

• Odds (default) — The categories are sorted by order of increasing values of odds,
defined as the ratio of “Good” to “Bad” observations, for the given category.

• Goods — The categories are sorted by order of increasing values of “Good.”
• Bads — The categories are sorted by order of increasing values of “Bad.”
• Totals — The categories are sorted by order of increasing values of the total number of

observations (“Good” plus “Bad”).
• None — No sorting is applied. The existing order of the categories is unchanged before

applying the algorithm.

Note You can use Category Sorting with categorical predictors only.

• Equal Width

• For Number of bins, enter the number of bins. The default is 5 and the number of bins
must be a positive number.

• For Category Sorting, select one of the following:

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-10

• Odds (default) — The categories are sorted by order of increasing values of odds,
defined as the ratio of “Good” to “Bad” observations, for the given category.

• Goods — The categories are sorted by order of increasing values of “Good.”
• Bads — The categories are sorted by order of increasing values of “Bad.”
• Totals — The categories are sorted by order of increasing values of the total number of

observations (“Good” plus “Bad”).
• None — No sorting is applied. The existing order of the categories is unchanged before

applying the algorithm.

Note You can use Category Sorting with categorical predictors only.

Click OK. The selected predictor plot is updated with the change of algorithm options. The
details in the Bin Information and Predictor Information panes are also updated. In addition,
the updated algorithm options apply to any subsequent application of that algorithm to other
predictors as described in “Change Binning Algorithm for One or More Predictors” on page 3-6.

4 To change the binning algorithm option for multiple predictors, multiselect more than one
predictor plot by using Ctrl+ click or Shift + click to highlight each predictor plot with a blue
outline.

5 On the Binning Explorer toolstrip, click Options to open a list of options for the Monotone,
Split, Merge, Equal Frequency, and Equal Width algorithms. Click an option to open the
associated Algorithm options dialog box. Make your selection from the respective Algorithm
Options dialog box and click OK. The selected predictor plots are updated for the change of
algorithm.

Split Bins for a Numeric Predictor
After you import data or a creditscorecard object into Binning Explorer, you can split bins for a
numeric predictor.

1 Click any numeric predictor plot in the Overview pane. The predictor plot displays in the main
pane.

 Common Binning Explorer Tasks

3-11

2 On the Binning Explorer toolstrip, the Split button is enabled. From the main pane, click a bin
to apply the Split operation. To deselect a bin, use Ctrl+ click.

3 On the Binning Explorer toolstrip, the Edges text boxes display values for the edges of the
selected bin. Click Split to open the Split dialog box.

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-12

4 Use the Number of bins control to split the selected bin into multiple bins. Click OK to
complete the split operation.

The plot for the selected numeric predictor is updated with the new bin information. The details
in the Bin Information and Predictor Information panes are also updated.

Split Bins for a Categorical Predictor
After you import data or a creditscorecard object into Binning Explorer, you can split bins for a
categorical predictor.

1 Click any categorical predictor plot in the Overview pane. The predictor plot displays in the main
pane.

 Common Binning Explorer Tasks

3-13

2 From the main pane, click a bin to enable the Split button for that bin. To deselect a bin, use
Ctrl+ click.

On the Binning Explorer toolstrip, click Split to open the Split dialog for the selected bin.

Note The Split button is enabled when the selected bin has more than one unique category in it.

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-14

Use the Number of bins control to split the selected bin into multiple bins.

Use the arrow controls on the Split dialog box to control the contents for each of the bins that
you are splitting the selected bin into.

3 Click OK to complete the split operation.

The plot for the selected categorical predictor is updated with the new bin information. The
details in the Bin Information and Predictor Information panes are also updated.

Manual Binning to Merge Bins for a Numeric or Categorical Predictor
After you import data or a creditscorecard object into Binning Explorer, you can split or merge
bins for a predictor.

1 Click any predictor plot in the Overview pane. The selected predictor plot displays in the main
pane.

 Common Binning Explorer Tasks

3-15

2 From the main pane, to merge bins, select two or more bins for merging by using Ctrl + click or
Shift + click to multiselect bins to display with blue outlines. To change your bin selection, use
Ctrl+ click to deselect a bin.

Note The Merge button is active only when more than one bin is selected. Only adjacent bins
can be merged for numeric or ordinal predictors. Nonadjacent bins can be merged for
categorical predictors.

3 Click Merge to complete the merge operation. The plot for the selected predictor is updated with
the new bin information. The details in the Bin Information and Predictor Information panes
are also updated.

Change Bin Boundaries for a Single Predictor
After you import data or a creditscorecard object into Binning Explorer, you can change the bin
boundaries for a single predictor.

1 Click any numeric predictor plot in the Overview pane. The selected predictor plot displays with
a blue outline and the predictor plot displays in the main pane.

2 From the main pane, click to select a specific bin where you want to change the bin dimensions.
The selected bin displays with a blue outline.

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-16

3 On the Binning Explorer toolstrip, the Edges text boxes display values for the edges of the
selected bin.

Edit the values in the Edges text boxes to change the selected bin’s dimensions.
4 Click the main pane to complete the operation. The plot for the predictor is updated with the

updated bin’s dimension information. The details in the Bin Information and Predictor
Information panes are also updated.

Change Bin Boundaries for Multiple Predictors
After you import data or a creditscorecard object into Binning Explorer, you can change the
algorithm applied to one or more predictors and you can also redefine the number of bins.

1 From the Overview pane, click any predictor plot. The predictor plot displays with a blue outline.

 Common Binning Explorer Tasks

3-17

Alternatively, select two or more predictors by using Ctrl + click or Shift + click to multiselect
predictors to display with blue outlines.

2 On the Binning Explorer toolstrip, click Options to open a list of options for the Monotone,
Split, Merge, Equal Frequency, and Equal Width algorithms. Click an option to open the
associated Algorithm options dialog box. Make your selection from the respective Algorithm
Options dialog box and click OK. The selected predictor plots are updated for the change of
algorithm and the plots for the selected predictors are updated with the new bin information. The
details in the Bin Information and Predictor Information panes are also updated.

Set Options for Display
Binning Explorer has options for displaying predictor plots and plot options and the associated
tables displayed in Bin Information.

Plot Options

1 From the Binning Explorer toolstrip item for Plot Options, select any of the following
predictor plot options:

• No labels (default)
• Bin count
• % Bin level
• % Data level
• % Total count

2 The selected label is applied to all predictor plots.

Table Options

You can set the table display options for predictor information displayed in Bin Information.

1 From the Binning Explorer toolstrip item for Table Columns, select any of the following
options:

• Odds
• WOE

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-18

• InfoValue
• Entropy
• Gini
• Chi2
• Members (option is enabled for categorical predictors)

2 When selected, these options are applied to all predictors for the information displayed in Bin
Information.

Export and Save the Binning
Binning Explorer enables you to export and save your credit scorecard binning definitions to a
creditscorecard object.

1 Click Export and then click Export Scorecard and provide a creditscorecard object name.
The creditscorecard object is saved to the MATLAB workspace.

Note If you export a previously existing creditscorecard object that was fit (using
fitmodel), all fitting settings in the creditscorecard object are lost. You must rerun
fitmodel on the updated creditscorecard object.

2 To reopen a previously saved creditscorecard object, click Import Data and select the
creditscorecard object from the Step 1 pane of the Import Data window.

Troubleshoot the Binning
• “Numeric Predictor Converted to Categorical Predictor Does Not Display Split Data Properly”

on page 3-19
• “Predictor Plot Appears Distorted” on page 3-20

This topic shows some of the results when using Binning Explorer with credit scorecards that need
troubleshooting. For details on the overall process of creating and developing credit scorecards, see
“Overview of Binning Explorer” on page 3-2 and “Bin Data to Create Credit Scorecards Using Binning
Explorer” on page 3-23.

Numeric Predictor Converted to Categorical Predictor Does Not Display Split Data Properly

When you convert a numeric predictor with hundreds of values (for example, continuous data) to
categorical data, the resulting data has hundreds of categories. The following example illustrates this
scenario.

load CreditCardData

Open the Binning Explorer and select the numeric predictor AMBalance from the Overview pane.
From the Binning Explorer toolstrip, change the predictor type to Categorical.

From the Binning Explorer toolstrip and click Split. The Split dialog box displays as follows:

 Common Binning Explorer Tasks

3-19

The predictor has too many categories to display properly.

Solution: If you have a categorical predictor with a large number of categories, use the Algorithm
Options to change the binning algorithm for that predictor to Equal Frequency, with the Number
of bins set to 100 (or another smaller value). The Split dialog box then displays properly.

Predictor Plot Appears Distorted

When using the Binning Explorer, if you import data that has not been previously binned and you
select No Binning from the Import Data window, the resulting plots might be distorted. For example,

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-20

if you load the following data set into the MATLAB workspace and use Binning Explorer to import
the data using No Binning, the following plot displays for the TmAtAddress predictor.

load CreditCardData

Solution: When you import data that has not been previously binned, select Monotone from the
Import Data window instead. The following plot displays for the TmAtAddress predictor.

See Also
Apps
Binning Explorer

Classes
creditscorecard

Related Examples
• “Bin Data to Create Credit Scorecards Using Binning Explorer” on page 3-23

 Common Binning Explorer Tasks

3-21

• “Case Study for Credit Scorecard Analysis”
• “Credit Scorecard Modeling with Missing Values”

More About
• “Overview of Binning Explorer” on page 3-2
• “Credit Scorecard Modeling Workflow”

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-22

https://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-121587.html

Bin Data to Create Credit Scorecards Using Binning Explorer
Create a credit scorecard using the Binning Explorer app. Use the Binning Explorer to bin the
data, plot the binned data information, and export a creditscorecard object. Then use the
creditscorecard object with functions from Financial Toolbox to fit a logistic regression model,
determine a score for the data, determine the probabilities of default, and validate the credit
scorecard model using three different metrics.

Step 1. Load credit scorecard data into the MATLAB workspace.

Use the CreditCardData.mat file to load the data into the MATLAB workspace (using a dataset
from Refaat 2011).

load CreditCardData
disp(data(1:10,:))

 CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status
 ______ _______ ___________ __________ _________ __________ _______ _______ _________ ________ ______

 1 53 62 Tenant Unknown 50000 55 Yes 1055.9 0.22 0
 2 61 22 Home Owner Employed 52000 25 Yes 1161.6 0.24 0
 3 47 30 Tenant Employed 37000 61 No 877.23 0.29 0
 4 50 75 Home Owner Employed 53000 20 Yes 157.37 0.08 0
 5 68 56 Home Owner Employed 53000 14 Yes 561.84 0.11 0
 6 65 13 Home Owner Employed 48000 59 Yes 968.18 0.15 0
 7 34 32 Home Owner Unknown 32000 26 Yes 717.82 0.02 1
 8 50 57 Other Employed 51000 33 No 3041.2 0.13 0
 9 50 10 Tenant Unknown 52000 25 Yes 115.56 0.02 1
 10 49 30 Home Owner Unknown 53000 23 Yes 718.5 0.17 1

Step 2. Import the data into Binning Explorer.

Open Binning Explorer from the MATLAB toolstrip: On the Apps tab, under Computational
Finance, click the app icon. Alternatively, you can enter binningExplorer on the MATLAB
command line. For more information on starting the Binning Explorer from the command line, see
“Start from MATLAB Command Line Using Data or an Existing creditscorecard Object” on page 3-5.

From the Binning Explorer toolstrip, select Import Data to open the Import Data window.

 Bin Data to Create Credit Scorecards Using Binning Explorer

3-23

Under Step 1, select data.

Under Step 2, optionally set the Variable Type for each of the predictors. By default, the last column
in the data ('status' in this example) is set to 'Response'. All other variables are considered
predictors. However, in this example, because 'CustID' (customer identification number) is not a
useful predictor, set the Variable Type column for 'CustID' to Do not include.

Note If the input MATLAB table contains a column for weights, from the Step 2 pane, using the
Variable Type column, click the drop-down to select Weights. For more information on using
observation weights with a creditscorecard object, see “Credit Scorecard Modeling Using
Observation Weights”.

If the data contains missing values, from the Step 2 pane, set Bin missing data: to Yes. For more
information on working with missing data, see “Credit Scorecard Modeling with Missing Values”.

Under Step 3, leave Monotone as the default initial binning algorithm.

Click Import Data to complete the import operation. Automatic binning using the selected algorithm
is applied to all predictors as they are imported into Binning Explorer.

The bins are plotted and displayed for each predictor. By clicking to select an individual predictor plot
from the Overview pane, the details for that predictor plot display in the main pane and in the Bin
Information and Predictor Information panes at the bottom of the app.

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-24

Binning Explorer performs automatic binning for every predictor variable, using the default
'Monotone' algorithm with default algorithm options. A monotonic, ideally linear trend in the
Weight of Evidence (WOE) is often desirable for credit scorecards because this translates into linear
points for a given predictor. WOE trends are visualized on the plots for each predictor in Binning
Explorer.

Perform some initial data exploration. Inquire about predictor statistics for the 'ResStatus'
categorical variable.

Click the ResStatus plot. The Bin Information pane contains the “Good” and “Bad” frequencies and
other bin statistics such as weight of evidence (WOE).

For numeric data, the same statistics are displayed. Click the CustIncome plot. The Bin
Information is updated with the information about CustIncome.

 Bin Data to Create Credit Scorecards Using Binning Explorer

3-25

Step 3. Fine-tune the bins using manual binning in Binning Explorer.

Click the CustAge predictor plot. Notice that bins 1 and 2 have similar WOEs, as do bins 5 and 6.

To merge bins 1 and 2, from the main pane, click Ctrl + click or Shift + click to multiselect bin 1 and
2 to display with blue outlines for merging.

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-26

On the Binning Explorer toolstrip, use the read-only display for the Edges text boxes to verify
values for the edges of the selected bins to merge.

Click Merge to finish merging bins 1 and 2. The CustAge predictor plot is updated for the new bin
information and the details in the Bin Information and Predictor Information panes are also
updated.

Next, merge bins 4 and 5, because they also have similar WOEs.

 Bin Data to Create Credit Scorecards Using Binning Explorer

3-27

The CustAge predictor plot is updated with the new bin information. The details in the Bin
Information and Predictor Information panes are also updated.

Repeat this merge operation for the following bins that have similar WOEs:

• For CustIncome, merge bins 3, 4 and 5.
• For TmWBank, merge bins 2 and 3.
• For AMBalance, merge bins 2 and 3.

Now the bins for all predictors have close-to-linear WOE trends.

Step 4. Export the creditscorecard object from Binning Explorer.

After you complete your binning assignments, using Binning Explorer, click Export and then click
Export Scorecard and provide a creditscorecard object name. The creditscorecard object
(sc) is saved to the MATLAB workspace.

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-28

Step 5. Fit a logistic regression model.

Use the fitmodel function to fit a logistic regression model to the WOE data. fitmodel internally
bins the training data, transforms it into WOE values, maps the response variable so that 'Good' is
1, and fits a linear logistic regression model. By default, fitmodel uses a stepwise procedure to
determine which predictors belong in the model.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8954, Chi2Stat = 32.545914, PValue = 1.1640961e-08
2. Adding TmWBank, Deviance = 1467.3249, Chi2Stat = 23.570535, PValue = 1.2041739e-06
3. Adding AMBalance, Deviance = 1455.858, Chi2Stat = 11.466846, PValue = 0.00070848829
4. Adding EmpStatus, Deviance = 1447.6148, Chi2Stat = 8.2432677, PValue = 0.0040903428
5. Adding CustAge, Deviance = 1442.06, Chi2Stat = 5.5547849, PValue = 0.018430237
6. Adding ResStatus, Deviance = 1437.9435, Chi2Stat = 4.1164321, PValue = 0.042468555
7. Adding OtherCC, Deviance = 1433.7372, Chi2Stat = 4.2063597, PValue = 0.040272676

Generalized Linear regression model:
 logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ _______ ______ __________

 (Intercept) 0.7024 0.064 10.975 5.0407e-28
 CustAge 0.61562 0.24783 2.4841 0.012988
 ResStatus 1.3776 0.65266 2.1107 0.034799
 EmpStatus 0.88592 0.29296 3.024 0.0024946
 CustIncome 0.69836 0.21715 3.216 0.0013001
 TmWBank 1.106 0.23266 4.7538 1.9958e-06
 OtherCC 1.0933 0.52911 2.0662 0.038806
 AMBalance 1.0437 0.32292 3.2322 0.0012285

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.42e-16

Step 6. Review and format scorecard points.

After fitting the logistic model, the points are unscaled by default and come directly from the
combination of WOE values and model coefficients. Use the displaypoints function to summarize
the scorecard points.

p1 = displaypoints(sc);
disp(p1)

 Predictors Bin Points
 ____________ __________________ _________

 'CustAge' '[-Inf,37)' -0.15314
 'CustAge' '[37,40)' -0.062247
 'CustAge' '[40,46)' 0.045763
 'CustAge' '[46,58)' 0.22888
 'CustAge' '[58,Inf]' 0.48354
 'ResStatus' 'Tenant' -0.031302
 'ResStatus' 'Home Owner' 0.12697
 'ResStatus' 'Other' 0.37652
 'EmpStatus' 'Unknown' -0.076369
 'EmpStatus' 'Employed' 0.31456
 'CustIncome' '[-Inf,29000)' -0.45455
 'CustIncome' '[29000,33000)' -0.1037
 'CustIncome' '[33000,42000)' 0.077768
 'CustIncome' '[42000,47000)' 0.24406
 'CustIncome' '[47000,Inf]' 0.43536
 'TmWBank' '[-Inf,12)' -0.18221
 'TmWBank' '[12,45)' -0.038279
 'TmWBank' '[45,71)' 0.39569
 'TmWBank' '[71,Inf]' 0.95074
 'OtherCC' 'No' -0.193
 'OtherCC' 'Yes' 0.15868
 'AMBalance' '[-Inf,558.88)' 0.3552

 Bin Data to Create Credit Scorecards Using Binning Explorer

3-29

 'AMBalance' '[558.88,1597.44)' -0.026797
 'AMBalance' '[1597.44,Inf]' -0.21168

Use modifybins to give the bins more descriptive labels.
sc = modifybins(sc,'CustAge','BinLabels',...
{'Up to 36' '37 to 39' '40 to 45' '46 to 57' '58 and up'});

sc = modifybins(sc,'CustIncome','BinLabels',...
{'Up to 28999' '29000 to 32999' '33000 to 41999' '42000 to 46999' '47000 and up'});

sc = modifybins(sc,'TmWBank','BinLabels',...
{'Up to 11' '12 to 44' '45 to 70' '71 and up'});

sc = modifybins(sc,'AMBalance','BinLabels',...
{'Up to 558.87' '558.88 to 1597.43' '1597.44 and up'});

p1 = displaypoints(sc);
disp(p1)

 Predictors Bin Points
 ____________ ___________________ _________

 'CustAge' 'Up to 36' -0.15314
 'CustAge' '37 to 39' -0.062247
 'CustAge' '40 to 45' 0.045763
 'CustAge' '46 to 57' 0.22888
 'CustAge' '58 and up' 0.48354
 'ResStatus' 'Tenant' -0.031302
 'ResStatus' 'Home Owner' 0.12697
 'ResStatus' 'Other' 0.37652
 'EmpStatus' 'Unknown' -0.076369
 'EmpStatus' 'Employed' 0.31456
 'CustIncome' 'Up to 28999' -0.45455
 'CustIncome' '29000 to 32999' -0.1037
 'CustIncome' '33000 to 41999' 0.077768
 'CustIncome' '42000 to 46999' 0.24406
 'CustIncome' '47000 and up' 0.43536
 'TmWBank' 'Up to 11' -0.18221
 'TmWBank' '12 to 44' -0.038279
 'TmWBank' '45 to 70' 0.39569
 'TmWBank' '71 and up' 0.95074
 'OtherCC' 'No' -0.193
 'OtherCC' 'Yes' 0.15868
 'AMBalance' 'Up to 558.87' 0.3552
 'AMBalance' '558.88 to 1597.43' -0.026797
 'AMBalance' '1597.44 and up' -0.21168

Points are scaled and are also often rounded. To round and scale the points, use the formatpoints
function. For example, you can set a target level of points corresponding to a target odds level and
also set the required points-to-double-the-odds (PDO).
TargetPoints = 500;
TargetOdds = 2;
PDO = 50; % Points to double the odds

sc = formatpoints(sc,'PointsOddsAndPDO',[TargetPoints TargetOdds PDO]);
p2 = displaypoints(sc);
disp(p2)

 Predictors Bin Points
 ____________ ___________________ ______

 'CustAge' 'Up to 36' 53.239
 'CustAge' '37 to 39' 59.796

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-30

 'CustAge' '40 to 45' 67.587
 'CustAge' '46 to 57' 80.796
 'CustAge' '58 and up' 99.166
 'ResStatus' 'Tenant' 62.028
 'ResStatus' 'Home Owner' 73.445
 'ResStatus' 'Other' 91.446
 'EmpStatus' 'Unknown' 58.777
 'EmpStatus' 'Employed' 86.976
 'CustIncome' 'Up to 28999' 31.497
 'CustIncome' '29000 to 32999' 56.805
 'CustIncome' '33000 to 41999' 69.896
 'CustIncome' '42000 to 46999' 81.891
 'CustIncome' '47000 and up' 95.69
 'TmWBank' 'Up to 11' 51.142
 'TmWBank' '12 to 44' 61.524
 'TmWBank' '45 to 70' 92.829
 'TmWBank' '71 and up' 132.87
 'OtherCC' 'No' 50.364
 'OtherCC' 'Yes' 75.732
 'AMBalance' 'Up to 558.87' 89.908
 'AMBalance' '558.88 to 1597.43' 62.353
 'AMBalance' '1597.44 and up' 49.016

Step 7. Score the data.

Use the score function to compute the scores for the training data. You can also pass an optional
data input to score, for example, validation data. The points per predictor for each customer are
provided as an optional output.

[Scores,Points] = score(sc);
disp(Scores(1:10))
disp(Points(1:10,:))

 528.2044
 554.8861
 505.2406
 564.0717
 554.8861
 586.1904
 441.8755
 515.8125
 524.4553
 508.3169

 CustAge ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance
 _______ _________ _________ __________ _______ _______ _________

 80.796 62.028 58.777 95.69 92.829 75.732 62.353
 99.166 73.445 86.976 95.69 61.524 75.732 62.353
 80.796 62.028 86.976 69.896 92.829 50.364 62.353
 80.796 73.445 86.976 95.69 61.524 75.732 89.908
 99.166 73.445 86.976 95.69 61.524 75.732 62.353
 99.166 73.445 86.976 95.69 92.829 75.732 62.353
 53.239 73.445 58.777 56.805 61.524 75.732 62.353
 80.796 91.446 86.976 95.69 61.524 50.364 49.016
 80.796 62.028 58.777 95.69 61.524 75.732 89.908
 80.796 73.445 58.777 95.69 61.524 75.732 62.353

Step 8. Calculate the probability of default.

To calculate the probability of default, use the probdefault function.
pd = probdefault(sc);

 Bin Data to Create Credit Scorecards Using Binning Explorer

3-31

Define the probability of being “Good” and plot the predicted odds versus the formatted scores.
Visually analyze that the target points and target odds match and that the points-to-double-the-odds
(PDO) relationship holds.
ProbGood = 1-pd;
PredictedOdds = ProbGood./pd;

figure
scatter(Scores,PredictedOdds)
title('Predicted Odds vs. Score')
xlabel('Score')
ylabel('Predicted Odds')

hold on

xLimits = xlim;
yLimits = ylim;

% Target points and odds
plot([TargetPoints TargetPoints],[yLimits(1) TargetOdds],'k:')
plot([xLimits(1) TargetPoints],[TargetOdds TargetOdds],'k:')

% Target points plus PDO
plot([TargetPoints+PDO TargetPoints+PDO],[yLimits(1) 2*TargetOdds],'k:')
plot([xLimits(1) TargetPoints+PDO],[2*TargetOdds 2*TargetOdds],'k:')

% Target points minus PDO
plot([TargetPoints-PDO TargetPoints-PDO],[yLimits(1) TargetOdds/2],'k:')
plot([xLimits(1) TargetPoints-PDO],[TargetOdds/2 TargetOdds/2],'k:')

hold off

Step 9. Validate the credit scorecard model using the CAP, ROC, and Kolmogorov-Smirnov
statistic

The creditscorecard object supports three validation methods, the Cumulative Accuracy Profile
(CAP), the Receiver Operating Characteristic (ROC), and the Kolmogorov-Smirnov (KS) statistic. For
more information on CAP, ROC, and KS, see validatemodel.
[Stats,T] = validatemodel(sc,'Plot',{'CAP','ROC','KS'});
disp(Stats)
disp(T(1:15,:))

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-32

 Measure Value
 ______________________ _______

 'Accuracy Ratio' 0.32225
 'Area under ROC curve' 0.66113
 'KS statistic' 0.22324
 'KS score' 499.18

 Scores ProbDefault TrueBads FalseBads TrueGoods FalseGoods Sensitivity FalseAlarm PctObs
 ______ ___________ ________ _________ _________ __________ ___________ __________ __________

 369.4 0.7535 0 1 802 397 0 0.0012453 0.00083333
 377.86 0.73107 1 1 802 396 0.0025189 0.0012453 0.0016667
 379.78 0.7258 2 1 802 395 0.0050378 0.0012453 0.0025
 391.81 0.69139 3 1 802 394 0.0075567 0.0012453 0.0033333
 394.77 0.68259 3 2 801 394 0.0075567 0.0024907 0.0041667
 395.78 0.67954 4 2 801 393 0.010076 0.0024907 0.005
 396.95 0.67598 5 2 801 392 0.012594 0.0024907 0.0058333
 398.37 0.67167 6 2 801 391 0.015113 0.0024907 0.0066667
 401.26 0.66276 7 2 801 390 0.017632 0.0024907 0.0075
 403.23 0.65664 8 2 801 389 0.020151 0.0024907 0.0083333
 405.09 0.65081 8 3 800 389 0.020151 0.003736 0.0091667
 405.15 0.65062 11 5 798 386 0.027708 0.0062267 0.013333
 405.37 0.64991 11 6 797 386 0.027708 0.007472 0.014167
 406.18 0.64735 12 6 797 385 0.030227 0.007472 0.015
 407.14 0.64433 13 6 797 384 0.032746 0.007472 0.015833

 Bin Data to Create Credit Scorecards Using Binning Explorer

3-33

See Also
creditscorecard | screenpredictors | autobinning | bininfo | predictorinfo |
modifypredictor | modifybins | bindata | plotbins | fitmodel | displaypoints |
formatpoints | score | setmodel | probdefault | validatemodel |
compactCreditScorecard

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-34

Related Examples
• “Common Binning Explorer Tasks” on page 3-4
• “Credit Scorecard Modeling with Missing Values”
• “Feature Screening with screenpredictors” on page 3-64
• “Troubleshooting Credit Scorecard Results”
• “Credit Rating by Bagging Decision Trees”
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page 3-36

More About
• “Overview of Binning Explorer” on page 3-2
• “About Credit Scorecards”
• “Credit Scorecard Modeling Workflow”
• Monotone Adjacent Pooling Algorithm (MAPA)
• “Credit Scorecard Modeling Using Observation Weights”

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

 Bin Data to Create Credit Scorecards Using Binning Explorer

3-35

https://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-121587.html

Stress Testing of Consumer Credit Default Probabilities Using
Panel Data

This example shows how to work with consumer (retail) credit panel data to visualize observed
default rates at different levels. It also shows how to fit a model to predict probabilities of default
(PD) and lifetime PD values, and perform a stress-testing analysis.

The panel data set of consumer loans enables you to identify default rate patterns for loans of
different ages, or years on books. You can use information about a score group to distinguish default
rates for different score levels. In addition, you can use macroeconomic information to assess how the
state of the economy affects consumer loan default rates.

A standard logistic regression model, a type of generalized linear model, is fitted to the retail credit
panel data with and without macroeconomic predictors, using fitLifetimePDModel from Risk
Management Toolbox™. Although the same model can be fitted using the fitglm function from
Statistics and Machine Learning Toolbox™, the lifetime probability of default (PD) version of the
model is designed for credit applications, and supports lifetime PD prediction and model validation
tools, including the discrimination and accuracy plots shown in this example. The example also
describes how to fit a more advanced model to account for panel data effects, a generalized linear
mixed effects model. However, the panel effects are negligible for the data set in this example and the
standard logistic model is preferred for efficiency.

The logistic regression model predicts probabilities of default for all score levels, years on books, and
macroeconomic variable scenarios. There is a brief discussion on how to predict lifetime PD values,
with pointers to additional functionality. The example shows model discrimination and model
accuracy tools to validate and compare models. In the last section of this example, the logistic model
is used for a stress-testing analysis, the model predicts probabilities of default for a given baseline, as
well as default probabilities for adverse and severely adverse macroeconomic scenarios.

For additional information, refer to “Overview of Lifetime Probability of Default Models” on page 1-
25. See also the example “Modeling Probabilities of Default with Cox Proportional Hazards” on page
4-28, which follows the same workflow but uses Cox regression instead of logistic regression and
also has information on the computation of lifetime PD and lifetime Expected Credit Loss (ECL).

Panel Data Description

The main data set (data) contains the following variables:

• ID: Loan identifier.
• ScoreGroup: Credit score at the beginning of the loan, discretized into three groups: High

Risk, Medium Risk, and Low Risk.
• YOB: Years on books.
• Default: Default indicator. This is the response variable.
• Year: Calendar year.

There is also a small data set (dataMacro) with macroeconomic data for the corresponding calendar
years:

• Year: Calendar year.
• GDP: Gross domestic product growth (year over year).

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-36

• Market: Market return (year over year).

The variables YOB, Year, GDP, and Market are observed at the end of the corresponding calendar
year. The score group is a discretization of the original credit score when the loan started. A value of
1 for Default means that the loan defaulted in the corresponding calendar year.

There is also a third data set (dataMacroStress) with baseline, adverse, and severely adverse
scenarios for the macroeconomic variables. This table is used for the stress-testing analysis.

This example uses simulated data, but the same approach has been successfully applied to real data
sets.

Load the Panel Data

Load the data and view the first 10 and last 10 rows of the table. The panel data is stacked, in the
sense that observations for the same ID are stored in contiguous rows, creating a tall, thin table. The
panel is unbalanced, because not all IDs have the same number of observations.

load RetailCreditPanelData.mat

fprintf('\nFirst ten rows:\n')

First ten rows:

disp(data(1:10,:))

 ID ScoreGroup YOB Default Year
 __ ___________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004
 2 Medium Risk 1 0 1997
 2 Medium Risk 2 0 1998

fprintf('Last ten rows:\n')

Last ten rows:

disp(data(end-9:end,:))

 ID ScoreGroup YOB Default Year
 _____ ___________ ___ _______ ____

 96819 High Risk 6 0 2003
 96819 High Risk 7 0 2004
 96820 Medium Risk 1 0 1997
 96820 Medium Risk 2 0 1998
 96820 Medium Risk 3 0 1999
 96820 Medium Risk 4 0 2000
 96820 Medium Risk 5 0 2001
 96820 Medium Risk 6 0 2002
 96820 Medium Risk 7 0 2003
 96820 Medium Risk 8 0 2004

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

3-37

nRows = height(data);
UniqueIDs = unique(data.ID);
nIDs = length(UniqueIDs);

fprintf('Total number of IDs: %d\n',nIDs)

Total number of IDs: 96820

fprintf('Total number of rows: %d\n',nRows)

Total number of rows: 646724

Default Rates by Score Groups and Years on Books

Use the credit score group as a grouping variable to compute the observed default rate for each score
group. For this, use the groupsummary function to compute the mean of the Default variable,
grouping by the ScoreGroup variable. Plot the results on a bar chart. As expected, the default rate
goes down as the credit quality improves.

DefRateByScore = groupsummary(data,'ScoreGroup','mean','Default');
NumScoreGroups = height(DefRateByScore);

disp(DefRateByScore)

 ScoreGroup GroupCount mean_Default
 ___________ __________ ____________

 High Risk 2.0999e+05 0.017167
 Medium Risk 2.1743e+05 0.0086006
 Low Risk 2.193e+05 0.0046784

bar(DefRateByScore.ScoreGroup,DefRateByScore.mean_Default*100)
title('Default Rate vs. Score Group')
xlabel('Score Group')
ylabel('Observed Default Rate (%)')
grid on

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-38

Next, compute default rates grouping by years on books (represented by the YOB variable). The
resulting rates are conditional one-year default rates. For example, the default rate for the third year
on books is the proportion of loans defaulting in the third year, relative to the number of loans that
are in the portfolio past the second year. In other words, the default rate for the third year is the
number of rows with YOB = 3 and Default = 1, divided by the number of rows with YOB = 3.

Plot the results. There is a clear downward trend, with default rates going down as the number of
years on books increases. Years three and four have similar default rates. However, it is unclear from
this plot whether this is a characteristic of the loan product or an effect of the macroeconomic
environment.

DefRateByYOB = groupsummary(data,'YOB','mean','Default');
NumYOB = height(DefRateByYOB);

disp(DefRateByYOB)

 YOB GroupCount mean_Default
 ___ __________ ____________

 1 96820 0.017507
 2 94535 0.012704
 3 92497 0.011168
 4 91068 0.010728
 5 89588 0.0085949
 6 88570 0.006413
 7 61689 0.0033231
 8 31957 0.0016272

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

3-39

plot(double(DefRateByYOB.YOB),DefRateByYOB.mean_Default*100,'-*')
title('Default Rate vs. Years on Books')
xlabel('Years on Books')
ylabel('Observed Default Rate (%)')
grid on

Now, group both by the score group and number of years on books and then plot the results. The plot
shows that all score groups behave similarly as time progresses, with a general downward trend.
Years three and four are an exception to the downward trend: the rates flatten for the High Risk
group, and go up in year three for the Low Risk group.

DefRateByScoreYOB = groupsummary(data,{'ScoreGroup','YOB'},'mean','Default');

% Display output table to show the way it is structured
% Display only the first 10 rows, for brevity
disp(DefRateByScoreYOB(1:10,:))

 ScoreGroup YOB GroupCount mean_Default
 ___________ ___ __________ ____________

 High Risk 1 32601 0.029692
 High Risk 2 31338 0.021252
 High Risk 3 30138 0.018448
 High Risk 4 29438 0.018276
 High Risk 5 28661 0.014794
 High Risk 6 28117 0.011168
 High Risk 7 19606 0.0056615
 High Risk 8 10094 0.0027739

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-40

 Medium Risk 1 32373 0.014302
 Medium Risk 2 31775 0.011676

DefRateByScoreYOB2 = reshape(DefRateByScoreYOB.mean_Default,...
 NumYOB,NumScoreGroups);

plot(DefRateByScoreYOB2*100,'-*')
title('Default Rate vs. Years on Books')
xlabel('Years on Books')
ylabel('Observed Default Rate (%)')
legend(categories(data.ScoreGroup))
grid on

Years on Books Versus Calendar Years

The data contains three cohorts, or vintages: loans started in 1997, 1998, and 1999. No loan in the
panel data started after 1999.

This section shows how to visualize the default rate for each cohort separately. The default rates for
all cohorts are plotted, both against the number of years on books and against the calendar year.
Patterns in the years on books suggest the loan product characteristics. Patterns in the calendar
years suggest the influence of the macroeconomic environment.

From years two through four on books, the curves show different patterns for the three cohorts.
When plotted against the calendar year, however, the three cohorts show similar behavior from 2000
through 2002. The curves flatten during that period.

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

3-41

% Get IDs of 1997, 1998, and 1999 cohorts
IDs1997 = data.ID(data.YOB==1&data.Year==1997);
IDs1998 = data.ID(data.YOB==1&data.Year==1998);
IDs1999 = data.ID(data.YOB==1&data.Year==1999);
% IDs2000AndUp is unused, it is only computed to show that this is empty,
% no loans started after 1999
IDs2000AndUp = data.ID(data.YOB==1&data.Year>1999);

% Get default rates for each cohort separately
ObsDefRate1997 = groupsummary(data(ismember(data.ID,IDs1997),:),...
 'YOB','mean','Default');

ObsDefRate1998 = groupsummary(data(ismember(data.ID,IDs1998),:),...
 'YOB','mean','Default');

ObsDefRate1999 = groupsummary(data(ismember(data.ID,IDs1999),:),...
 'YOB','mean','Default');

% Plot against the years on books
plot(ObsDefRate1997.YOB,ObsDefRate1997.mean_Default*100,'-*')
hold on
plot(ObsDefRate1998.YOB,ObsDefRate1998.mean_Default*100,'-*')
plot(ObsDefRate1999.YOB,ObsDefRate1999.mean_Default*100,'-*')
hold off
title('Default Rate vs. Years on Books')
xlabel('Years on Books')
ylabel('Default Rate (%)')
legend('Cohort 97','Cohort 98','Cohort 99')
grid on

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-42

% Plot against the calendar year
Year = unique(data.Year);

plot(Year,ObsDefRate1997.mean_Default*100,'-*')
hold on
plot(Year(2:end),ObsDefRate1998.mean_Default*100,'-*')
plot(Year(3:end),ObsDefRate1999.mean_Default*100,'-*')
hold off
title('Default Rate vs. Calendar Year')
xlabel('Calendar Year')
ylabel('Default Rate (%)')
legend('Cohort 97','Cohort 98','Cohort 99')
grid on

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

3-43

Model of Default Rates Using Score Group and Years on Books

After you visualize the data, you can build predictive models for the default rates.

Split the panel data into training and testing sets, defining these sets based on ID numbers.

NumTraining = floor(0.6*nIDs);

rng('default'); % for reproducibility
TrainIDInd = randsample(nIDs,NumTraining);
TrainDataInd = ismember(data.ID,UniqueIDs(TrainIDInd));
TestDataInd = ~TrainDataInd;

The first model uses only score group and number of years on books as predictors of the default rate
p. The odds of defaulting are defined as p/(1-p). The logistic model relates the logarithm of the odds,
or log odds, to the predictors as follows:

log p
1− p = aH + aM1M + aL1L + bYOBYOB + ϵ

1M is an indicator with a value 1 for Medium Risk loans and 0 otherwise, and similarly for 1L for
Low Risk loans. This is a standard way of handling a categorical predictor such as ScoreGroup.
There is effectively a different constant for each risk level: aH for High Risk, aH+aM for Medium
Risk, and aH+aL for Low Risk.

ModelNoMacro = fitLifetimePDModel(data(TrainDataInd,:),'logistic',...
 'ModelID','No Macro','Description','Logistic model with YOB and score group, but no macro variables',...

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-44

 'IDVar','ID','LoanVars','ScoreGroup','AgeVar','YOB','ResponseVar','Default');
disp(ModelNoMacro.UnderlyingModel)

Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ ___________

 (Intercept) -3.2453 0.033768 -96.106 0
 ScoreGroup_Medium Risk -0.7058 0.037103 -19.023 1.1014e-80
 ScoreGroup_Low Risk -1.2893 0.045635 -28.253 1.3076e-175
 YOB -0.22693 0.008437 -26.897 2.3578e-159

388018 observations, 388014 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.83e+03, p-value = 0

For any row in the data, the value of p is not observed, only a 0 or 1 default indicator is observed. The
calibration finds model coefficients, and the predicted values of p for individual rows can be
recovered with the predict function.

The Intercept coefficient is the constant for the High Risk level (the aH term), and the
ScoreGroup_Medium Risk and ScoreGroup_Low Risk coefficients are the adjustments for
Medium Risk and Low Risk levels (the aM and aL terms).

The default probability p and the log odds (the left side of the model) move in the same direction
when the predictors change. Therefore, because the adjustments for Medium Risk and Low Risk
are negative, the default rates are lower for better risk levels, as expected. The coefficient for number
of years on books is also negative, consistent with the overall downward trend for number of years on
books observed in the data.

An alternative way to fit the model is using the fitglm function from Statistics and Machine
Learning Toolbox™. The formula above is expressed as

Default ~ 1 + ScoreGroup + YOB

The 1 + ScoreGroup terms account for the baseline constant and the adjustments for risk level. Set
the optional argument Distribution to binomial to indicate that a logistic model is desired (that
is, a model with log odds on the left side), as follows:

ModelNoMacro = fitglm(data(TrainDataInd,:), 'Default ~ 1 + ScoreGroup +
YOB','Distribution','binomial');

As mentioned in the introduction, the advantage of the lifetime PD version of the model fitted with
fitLifetimePDModel is that it is designed for credit applications, and it can predict lifetime PD and
supports model validation tools, including the discrimination and accuracy plots. For more
information, see “Overview of Lifetime Probability of Default Models” on page 1-25.

To account for panel data effects, a more advanced model using mixed effects can be fitted using the
fitglme function from Statistics and Machine Learning Toolbox™. Although this model is not fitted
in this example, the code is very similar:

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

3-45

ModelNoMacro = fitglme(data(TrainDataInd,:),'Default ~ 1 + ScoreGroup + YOB +
(1|ID)','Distribution','binomial');

The (1|ID) term in the formula adds a random effect to the model. This effect is a predictor whose
values are not given in the data, but fitted together with the model coefficients. A random value is fit
for each ID. This additional fitting requirement substantially increases the computational time to fit
the model in this case, because of the very large number of IDs. For the panel data set in this
example, the random term has a negligible effect. The variance of the random effects is very small
and the model coefficients barely change when the random effect is introduced. The simpler logistic
regression model is preferred, because it is faster to fit and to predict, and the default rates predicted
with both models are essentially the same.

Predict the probability of default for training and testing data. The predict function predicts
conditional PD values, row by row. We store the data to compare the predictions against the macro
model in the next section.

data.PDNoMacro = zeros(height(data),1);

% Predict in-sample
data.PDNoMacro(TrainDataInd) = predict(ModelNoMacro,data(TrainDataInd,:));
% Predict out-of-sample
data.PDNoMacro(TestDataInd) = predict(ModelNoMacro,data(TestDataInd,:));

To make lifetime PD predictions, use the predictLifetime function. For lifetime predictions,
projected values of the predictors are required for each ID value in the prediction data set. For
example, predict the survival probability for the first two IDs in the dataset. See how the conditional
PD (PDNoMacro column) and the lifetime PD (LifetimePD column) match for the first year of each
ID. After that year, the lifetime PD increases because it is a cumulative probability. For more
information, see predictLifetime. See also the “Expected Credit Loss Computation” on page 4-
124 example.

data1 = data(1:16,:);
data1.LifetimePD = predictLifetime(ModelNoMacro,data1);
disp(data1)

 ID ScoreGroup YOB Default Year PDNoMacro LifetimePD
 __ ___________ ___ _______ ____ _________ __________

 1 Low Risk 1 0 1997 0.0084797 0.0084797
 1 Low Risk 2 0 1998 0.0067697 0.015192
 1 Low Risk 3 0 1999 0.0054027 0.020513
 1 Low Risk 4 0 2000 0.0043105 0.024735
 1 Low Risk 5 0 2001 0.0034384 0.028088
 1 Low Risk 6 0 2002 0.0027422 0.030753
 1 Low Risk 7 0 2003 0.0021867 0.032873
 1 Low Risk 8 0 2004 0.0017435 0.034559
 2 Medium Risk 1 0 1997 0.015097 0.015097
 2 Medium Risk 2 0 1998 0.012069 0.026984
 2 Medium Risk 3 0 1999 0.0096422 0.036366
 2 Medium Risk 4 0 2000 0.0076996 0.043785
 2 Medium Risk 5 0 2001 0.006146 0.049662
 2 Medium Risk 6 0 2002 0.0049043 0.054323
 2 Medium Risk 7 0 2003 0.0039125 0.058023
 2 Medium Risk 8 0 2004 0.0031207 0.060962

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-46

Visualize the in-sample (training) or out-of-sample (test) fit using modelCalibrationPlot. It
requires a grouping variable to compute default rates and average predicted PD values for each
group. Use the years on books as grouping variable here.

DataSetChoice = ;
if DataSetChoice=="Training"
 Ind = TrainDataInd;
else
 Ind = TestDataInd;
end
modelCalibrationPlot(ModelNoMacro,data(Ind,:),'YOB','DataID',DataSetChoice)

The score group can be input as a second grouping variable to visualize the fit by score groups.

modelCalibrationPlot(ModelNoMacro,data(Ind,:),{'YOB' 'ScoreGroup'},'DataID',DataSetChoice)

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

3-47

Lifetime PD models also support validation tools for model discrimination. In particular, the
modelDiscriminationPlot function creates the receiver operating characteristic (ROC) curve
plot. Here a separate ROC curve is requested for each score group. For more information, see
modelDiscriminationPlot.

modelDiscriminationPlot(ModelNoMacro,data(Ind,:),'SegmentBy','ScoreGroup','DataID',DataSetChoice)

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-48

Model of Default Rates Including Macroeconomic Variables

The trend predicted with the previous model, as a function of years on books, has a very regular
decreasing pattern. The data, however, shows some deviations from that trend. To try to account for
those deviations, add the gross domestic product annual growth (represented by the GDP variable)
and stock market annual returns (represented by the Market variable) to the model.

log p
1− p = aH + aM1M + aL1L + bYOBYOB + bGDPGDP + bMarketMarket + ϵ

Expand the data set to add one column for GDP and one for Market, using the data from the
dataMacro table.

data = join(data,dataMacro);
disp(data(1:10,:))

 ID ScoreGroup YOB Default Year PDNoMacro GDP Market
 __ ___________ ___ _______ ____ _________ _____ ______

 1 Low Risk 1 0 1997 0.0084797 2.72 7.61
 1 Low Risk 2 0 1998 0.0067697 3.57 26.24
 1 Low Risk 3 0 1999 0.0054027 2.86 18.1
 1 Low Risk 4 0 2000 0.0043105 2.43 3.19
 1 Low Risk 5 0 2001 0.0034384 1.26 -10.51
 1 Low Risk 6 0 2002 0.0027422 -0.59 -22.95
 1 Low Risk 7 0 2003 0.0021867 0.63 2.78
 1 Low Risk 8 0 2004 0.0017435 1.85 9.48

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

3-49

 2 Medium Risk 1 0 1997 0.015097 2.72 7.61
 2 Medium Risk 2 0 1998 0.012069 3.57 26.24

Fit the model with the macroeconomic variables, or macro model, by expanding the model formula to
include the GDP and the Market variables.

ModelMacro = fitLifetimePDModel(data(TrainDataInd,:),'logistic',...
 'ModelID','Macro','Description','Logistic model with YOB, score group and macro variables',...
 'IDVar','ID','LoanVars','ScoreGroup','AgeVar','YOB',...
 'MacroVars',{'GDP','Market'},'ResponseVar','Default');
disp(ModelMacro.UnderlyingModel)

Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -2.667 0.10146 -26.287 2.6919e-152
 ScoreGroup_Medium Risk -0.70751 0.037108 -19.066 4.8223e-81
 ScoreGroup_Low Risk -1.2895 0.045639 -28.253 1.2892e-175
 YOB -0.32082 0.013636 -23.528 2.0867e-122
 GDP -0.12295 0.039725 -3.095 0.0019681
 Market -0.0071812 0.0028298 -2.5377 0.011159

388018 observations, 388012 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.97e+03, p-value = 0

Both macroeconomic variables show a negative coefficient, consistent with the intuition that higher
economic growth reduces default rates.

Use the predict function to predict the conditional PD. For illustration, here is how to predict the
conditional PD on training and testing data using the macro model. The results are stored as a new
column in the data table. Lifetime PD prediction is also supported with the predictLifetime
function, as shown in the Model of Default Rates Using Score Group and Years on Books on page 3-44
section.

data.PDMacro = zeros(height(data),1);

% Predict in-sample
data.PDMacro(TrainDataInd) = predict(ModelMacro,data(TrainDataInd,:));
% Predict out-of-sample
data.PDMacro(TestDataInd) = predict(ModelMacro,data(TestDataInd,:));

The model accuracy and discrimination plots offer readily available comparison tools for the models.

Visualize the in-sample or out of sample fit using modelCalibrationPlot. Pass the predictions
from the model without macroeconomic variables as a reference model. Plot both using years on
books as the single grouping variable first, and then using score group as a second grouping variable.

DataSetChoice = ;
if DataSetChoice=="Training"
 Ind = TrainDataInd;

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-50

else
 Ind = TestDataInd;
end
modelCalibrationPlot(ModelMacro,data(Ind,:),'YOB','ReferencePD',data.PDNoMacro(Ind),'ReferenceID',ModelNoMacro.ModelID,'DataID',DataSetChoice)

modelCalibrationPlot(ModelMacro,data(Ind,:),{'YOB','ScoreGroup'},'ReferencePD',data.PDNoMacro(Ind),'ReferenceID',ModelNoMacro.ModelID,'DataID',DataSetChoice)

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

3-51

The accuracy of the predictions significantly improves compared to the model with no
macroeconomic variables. The predicted conditional PD values more closely follow the pattern of the
observed default rates and the root mean square error (RMSE) reported is significantly smaller when
the macroeconomic variables are included in the model.

Plot the ROC curve of the macro model and the model without macroeconomic variables to compare
their performance with regards to model discrimination.

modelDiscriminationPlot(ModelMacro,data(Ind,:),'ReferencePD',data.PDNoMacro(Ind),'ReferenceID',ModelNoMacro.ModelID,'DataID',DataSetChoice)

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-52

Discrimination measures the ranking of customers by risk. Both models perform similarly, with only a
slight improvement when the macroeconomic variables are added to the model. This means both
models do a similar job separating low risk, medium risk and high risk customers by assigning higher
PD values to customers with higher risk.

Although the discrimination performance of both models is similar, the predicted PD values are more
accurate for the macro model. Using both discrimination and accuracy tools is important for model
validation and model comparison.

Stress Testing of Probability of Default

Use the fitted macro model to stress-test the predicted probabilities of default.

Assume the following are stress scenarios for the macroeconomic variables provided, for example, by
a regulator.

disp(dataMacroStress)

 GDP Market
 _____ ______

 Baseline 2.27 15.02
 Adverse 1.31 4.56
 Severe -0.22 -5.64

Set up a basic data table for predicting the probabilities of default. This is a dummy data table, with
one row for each combination of score group and number of years on books.

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

3-53

dataBaseline = table;
[ScoreGroup,YOB]=meshgrid(1:NumScoreGroups,1:NumYOB);
dataBaseline.ScoreGroup = categorical(ScoreGroup(:),1:NumScoreGroups,...
 categories(data.ScoreGroup),'Ordinal',true);
dataBaseline.YOB = YOB(:);
dataBaseline.ID = ones(height(dataBaseline),1);
dataBaseline.GDP = zeros(height(dataBaseline),1);
dataBaseline.Market = zeros(height(dataBaseline),1);

To make the predictions, set the same macroeconomic conditions (baseline, adverse, or severely
adverse) for all combinations of score groups and number of years on books.

% Predict baseline the probabilities of default
dataBaseline.GDP(:) = dataMacroStress.GDP('Baseline');
dataBaseline.Market(:) = dataMacroStress.Market('Baseline');
dataBaseline.PD = predict(ModelMacro,dataBaseline);

% Predict the probabilities of default in the adverse scenario
dataAdverse = dataBaseline;
dataAdverse.GDP(:) = dataMacroStress.GDP('Adverse');
dataAdverse.Market(:) = dataMacroStress.Market('Adverse');
dataAdverse.PD = predict(ModelMacro,dataAdverse);

% Predict the probabilities of default in the severely adverse scenario
dataSevere = dataBaseline;
dataSevere.GDP(:) = dataMacroStress.GDP('Severe');
dataSevere.Market(:) = dataMacroStress.Market('Severe');
dataSevere.PD = predict(ModelMacro,dataSevere);

Visualize the average predicted probability of default across score groups under the three alternative
regulatory scenarios. Here, all score groups are implicitly weighted equally. However, predictions can
also be made at a loan level for any given portfolio to make the predicted default rates consistent
with the actual distribution of loans in the portfolio. The same visualization can be produced for each
score group separately.

PredPDYOB = zeros(NumYOB,3);
PredPDYOB(:,1) = mean(reshape(dataBaseline.PD,NumYOB,NumScoreGroups),2);
PredPDYOB(:,2) = mean(reshape(dataAdverse.PD,NumYOB,NumScoreGroups),2);
PredPDYOB(:,3) = mean(reshape(dataSevere.PD,NumYOB,NumScoreGroups),2);

figure;
bar(PredPDYOB*100);
xlabel('Years on Books')
ylabel('Predicted Default Rate (%)')
legend('Baseline','Adverse','Severe')
title('Stress Test, Probability of Default')
grid on

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-54

References

1 Generalized Linear Models documentation, see “Generalized Linear Models”.
2 Generalized Linear Mixed Effects Models documentation, see “Generalized Linear Mixed-Effects

Models”.
3 Federal Reserve, Comprehensive Capital Analysis and Review (CCAR): https://

www.federalreserve.gov/bankinforeg/ccar.htm
4 Bank of England, Stress Testing: https://www.bankofengland.co.uk/financial-stability
5 European Banking Authority, EU-Wide Stress Testing: https://www.eba.europa.eu/risk-analysis-

and-data/eu-wide-stress-testing

See Also
fitglm | fitglme | fitLifetimePDModel | predict | predictLifetime |
modelDiscrimination | modelDiscriminationPlot | modelCalibration |
modelCalibrationPlot | Logistic | Probit

Related Examples
• “Credit Rating by Bagging Decision Trees”
• “Credit Scorecard Modeling with Missing Values”
• “Basic Lifetime PD Model Validation” on page 4-129
• “Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113

 Stress Testing of Consumer Credit Default Probabilities Using Panel Data

3-55

https://www.federalreserve.gov/bankinforeg/ccar.htm
https://www.federalreserve.gov/bankinforeg/ccar.htm
https://www.bankofengland.co.uk/financial-stability
https://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing
https://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing

• “Compare Lifetime PD Models Using Cross-Validation” on page 4-121
• “Expected Credit Loss Computation” on page 4-124

More About
• “Overview of Lifetime Probability of Default Models” on page 1-25

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-56

compactCreditScorecard Object Workflow

This example shows a workflow for creating a compactCreditScorecard object from a
creditscorecard object.

Step 1. Create a creditscorecard object

To create a compactCreditScorecard object, you must first create a creditscorecard object.
Create a creditscorecard object with the CreditCardData.mat file, and set the name-value pair
argument 'BinMissingData' to true because the dataMissing data set contains missing data.

load CreditCardData.mat
sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);
sc = modifybins(sc,'CustAge','MinValue',0);
sc = modifybins(sc,'CustIncome','MinValue',0);

Step 2. Fit a logistic regression model for the creditscorecard object

Use fitmodel to fit a logistic regression model using the Weight of Evidence (WOE) data.

[sc, mdl] = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1442.8477, Chi2Stat = 4.4974731, PValue = 0.033944979
6. Adding ResStatus, Deviance = 1438.9783, Chi2Stat = 3.86941, PValue = 0.049173805
7. Adding OtherCC, Deviance = 1434.9751, Chi2Stat = 4.0031966, PValue = 0.045414057

Generalized linear regression model:
 logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ______ __________

 (Intercept) 0.70229 0.063959 10.98 4.7498e-28
 CustAge 0.57421 0.25708 2.2335 0.025513
 ResStatus 1.3629 0.66952 2.0356 0.04179
 EmpStatus 0.88373 0.2929 3.0172 0.002551
 CustIncome 0.73535 0.2159 3.406 0.00065929
 TmWBank 1.1065 0.23267 4.7556 1.9783e-06
 OtherCC 1.0648 0.52826 2.0156 0.043841
 AMBalance 1.0446 0.32197 3.2443 0.0011775

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 88.5, p-value = 2.55e-16

Step 3. Create a new data set for scoring the creditscorecard object

Create a new data set that is used for scoring based on the previously created creditscorecard
object.

 compactCreditScorecard Object Workflow

3-57

tdata = data(1:10, mdl.PredictorNames);
tdata.CustAge(2) = NaN;
tdata.CustAge(5) = -5;
tdata.ResStatus(1) = '<undefined>';
tdata.ResStatus(3) = 'Landlord';
tdata.EmpStatus(3) = '<undefined>';
tdata.CustIncome(4) = NaN;
tdata.EmpStatus(7) = 'Freelancer';
tdata.CustIncome(8) = -1;
tdata.CustIncome(4) = NaN;
disp(tdata);

 CustAge ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance
 _______ ___________ ___________ __________ _______ _______ _________

 53 <undefined> Unknown 50000 55 Yes 1055.9
 NaN Home Owner Employed 52000 25 Yes 1161.6
 47 Landlord <undefined> 37000 61 No 877.23
 50 Home Owner Employed NaN 20 Yes 157.37
 -5 Home Owner Employed 53000 14 Yes 561.84
 65 Home Owner Employed 48000 59 Yes 968.18
 34 Home Owner Freelancer 32000 26 Yes 717.82
 50 Other Employed -1 33 No 3041.2
 50 Tenant Unknown 52000 25 Yes 115.56
 49 Home Owner Unknown 53000 23 Yes 718.5

Use displaypoints to display the points per predictor. Use score to compute the credit scores
using the new data (tdata). Then use probdefault with the new data (tdata) to calculate
probability of default. When using formatpoints, the 'Missing' name-value pair argument is set
to 'minpoints' because tdata contains missing data.

PointsInfo = displaypoints(sc)

PointsInfo=38×3 table
 Predictors Bin Points
 _____________ ______________ _________

 {'CustAge' } {'[0,33)' } -0.14173
 {'CustAge' } {'[33,37)' } -0.11095
 {'CustAge' } {'[37,40)' } -0.059244
 {'CustAge' } {'[40,46)' } 0.074167
 {'CustAge' } {'[46,48)' } 0.1889
 {'CustAge' } {'[48,51)' } 0.20204
 {'CustAge' } {'[51,58)' } 0.22935
 {'CustAge' } {'[58,Inf]' } 0.45019
 {'CustAge' } {'<missing>' } 0.0096749
 {'ResStatus'} {'Tenant' } -0.029778
 {'ResStatus'} {'Home Owner'} 0.12425
 {'ResStatus'} {'Other' } 0.36796
 {'ResStatus'} {'<missing>' } 0.1364
 {'EmpStatus'} {'Unknown' } -0.075948
 {'EmpStatus'} {'Employed' } 0.31401
 {'EmpStatus'} {'<missing>' } NaN
 ⋮

[Scores, Points] = score(sc, tdata)

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-58

Scores = 10×1

 1.2784
 1.0071
 NaN
 NaN
 0.9960
 1.8771
 NaN
 NaN
 1.0283
 0.8095

Points=10×7 table
 CustAge ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance
 _________ _________ _________ __________ _________ ________ _________

 0.22935 0.1364 -0.075948 0.45309 0.3958 0.15715 -0.017438
 0.0096749 0.12425 0.31401 0.45309 -0.033652 0.15715 -0.017438
 0.1889 0.1364 NaN 0.080697 0.3958 -0.18537 -0.017438
 0.20204 0.12425 0.31401 NaN -0.044701 0.15715 0.35539
 0.0096749 0.12425 0.31401 0.45309 -0.044701 0.15715 -0.017438
 0.45019 0.12425 0.31401 0.45309 0.3958 0.15715 -0.017438
 -0.11095 0.12425 NaN -0.11452 -0.033652 0.15715 -0.017438
 0.20204 0.36796 0.31401 NaN -0.033652 -0.18537 -0.21195
 0.20204 -0.029778 -0.075948 0.45309 -0.033652 0.15715 0.35539
 0.20204 0.12425 -0.075948 0.45309 -0.033652 0.15715 -0.017438

pd = probdefault(sc, tdata)

pd = 10×1

 0.2178
 0.2676
 NaN
 NaN
 0.2697
 0.1327
 NaN
 NaN
 0.2634
 0.3080

sc = formatpoints(sc,'BasePoints',true,'Missing','minpoints','Round','finalscore','PointsOddsAndPDO',[500, 2, 50]);
PointsInfo1 = displaypoints(sc)

PointsInfo1=39×3 table
 Predictors Bin Points
 ______________ ______________ _______

 {'BasePoints'} {'BasePoints'} 500.66
 {'CustAge' } {'[0,33)' } -17.461
 {'CustAge' } {'[33,37)' } -15.24
 {'CustAge' } {'[37,40)' } -11.511
 {'CustAge' } {'[40,46)' } -1.8871
 {'CustAge' } {'[46,48)' } 6.3888

 compactCreditScorecard Object Workflow

3-59

 {'CustAge' } {'[48,51)' } 7.3367
 {'CustAge' } {'[51,58)' } 9.3068
 {'CustAge' } {'[58,Inf]' } 25.238
 {'CustAge' } {'<missing>' } -6.5392
 {'ResStatus' } {'Tenant' } -9.3852
 {'ResStatus' } {'Home Owner'} 1.7253
 {'ResStatus' } {'Other' } 19.305
 {'ResStatus' } {'<missing>' } 2.6022
 {'EmpStatus' } {'Unknown' } -12.716
 {'EmpStatus' } {'Employed' } 15.414
 ⋮

[Scores1, Points1] = score(sc, tdata)

Scores1 = 10×1

 542
 523
 488
 495
 522
 585
 445
 448
 524
 508

Points1=10×8 table
 BasePoints CustAge ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance
 __________ _______ _________ _________ __________ _______ _______ _________

 500.66 9.3068 2.6022 -12.716 25.446 21.314 4.0988 -8.495
 500.66 -6.5392 1.7253 15.414 25.446 -9.6646 4.0988 -8.495
 500.66 6.3888 2.6022 -12.716 -1.4161 21.314 -20.609 -8.495
 500.66 7.3367 1.7253 15.414 -42.148 -10.462 4.0988 18.399
 500.66 -6.5392 1.7253 15.414 25.446 -10.462 4.0988 -8.495
 500.66 25.238 1.7253 15.414 25.446 21.314 4.0988 -8.495
 500.66 -15.24 1.7253 -12.716 -15.498 -9.6646 4.0988 -8.495
 500.66 7.3367 19.305 15.414 -42.148 -9.6646 -20.609 -22.526
 500.66 7.3367 -9.3852 -12.716 25.446 -9.6646 4.0988 18.399
 500.66 7.3367 1.7253 -12.716 25.446 -9.6646 4.0988 -8.495

pd1 = probdefault(sc, tdata)

pd1 = 10×1

 0.2178
 0.2676
 0.3721
 0.3488
 0.2697
 0.1327
 0.5178
 0.5077
 0.2634

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-60

 0.3080

Step 4. Create a compactCreditScorecard object from the creditscorecard object

Create a compactCreditScorecard object using the creditscorecard object as the input.
Alternatively, you can create the compactCreditScorecard object using the compact function in
Financial Toolbox™.

csc = compactCreditScorecard(sc)

csc =
 compactCreditScorecard with properties:

 Description: ''
 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ''
 NumericPredictors: {'CustAge' 'CustIncome' 'TmWBank' 'AMBalance'}
 CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
 PredictorVars: {'CustAge' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance'}

Step 5. Use associated functions to analyze the compactCreditScorecard object

You can analyze the compactCreditScorecard object with displaypoints, score, and
probdefault from Risk Management Toolbox™.

PointsInfo2 = displaypoints(csc)

PointsInfo2=39×3 table
 Predictors Bin Points
 ______________ ______________ _______

 {'BasePoints'} {'BasePoints'} 500.66
 {'CustAge' } {'[0,33)' } -17.461
 {'CustAge' } {'[33,37)' } -15.24
 {'CustAge' } {'[37,40)' } -11.511
 {'CustAge' } {'[40,46)' } -1.8871
 {'CustAge' } {'[46,48)' } 6.3888
 {'CustAge' } {'[48,51)' } 7.3367
 {'CustAge' } {'[51,58)' } 9.3068
 {'CustAge' } {'[58,Inf]' } 25.238
 {'CustAge' } {'<missing>' } -6.5392
 {'ResStatus' } {'Tenant' } -9.3852
 {'ResStatus' } {'Home Owner'} 1.7253
 {'ResStatus' } {'Other' } 19.305
 {'ResStatus' } {'<missing>' } 2.6022
 {'EmpStatus' } {'Unknown' } -12.716
 {'EmpStatus' } {'Employed' } 15.414
 ⋮

[Scores2, Points2] = score(csc, tdata)

Scores2 = 10×1

 542
 523

 compactCreditScorecard Object Workflow

3-61

 488
 495
 522
 585
 445
 448
 524
 508

Points2=10×8 table
 BasePoints CustAge ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance
 __________ _______ _________ _________ __________ _______ _______ _________

 500.66 9.3068 2.6022 -12.716 25.446 21.314 4.0988 -8.495
 500.66 -6.5392 1.7253 15.414 25.446 -9.6646 4.0988 -8.495
 500.66 6.3888 2.6022 -12.716 -1.4161 21.314 -20.609 -8.495
 500.66 7.3367 1.7253 15.414 -42.148 -10.462 4.0988 18.399
 500.66 -6.5392 1.7253 15.414 25.446 -10.462 4.0988 -8.495
 500.66 25.238 1.7253 15.414 25.446 21.314 4.0988 -8.495
 500.66 -15.24 1.7253 -12.716 -15.498 -9.6646 4.0988 -8.495
 500.66 7.3367 19.305 15.414 -42.148 -9.6646 -20.609 -22.526
 500.66 7.3367 -9.3852 -12.716 25.446 -9.6646 4.0988 18.399
 500.66 7.3367 1.7253 -12.716 25.446 -9.6646 4.0988 -8.495

pd2 = probdefault(csc, tdata)

pd2 = 10×1

 0.2178
 0.2676
 0.3721
 0.3488
 0.2697
 0.1327
 0.5178
 0.5077
 0.2634
 0.3080

Compare the size of the creditscorecard and compactCreditScorecard objects.

whos('dataMissing','sc','csc')

 Name Size Bytes Class Attributes

 csc 1x1 39598 compactCreditScorecard
 dataMissing 1200x11 84603 table
 sc 1x1 166575 creditscorecard

The size of the compactCreditScorecard object is lightweight compared to the
creditscorecard object. However, the compactCreditScorecard object cannot be directly
modified. If you need to change a compactCreditScorecard object, you must change the starting

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-62

creditscorecard object, and then reconvert that object to create the compactCreditScorecard
object again.

See Also
creditscorecard | screenpredictors | autobinning | bininfo | predictorinfo |
modifypredictor | modifybins | bindata | plotbins | fitmodel | displaypoints |
formatpoints | score | setmodel | probdefault | validatemodel

Related Examples
• “Common Binning Explorer Tasks” on page 3-4
• “Credit Scorecard Modeling with Missing Values”
• “Feature Screening with screenpredictors” on page 3-64
• “Troubleshooting Credit Scorecard Results”
• “Credit Rating by Bagging Decision Trees”
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page 3-36

More About
• “Overview of Binning Explorer” on page 3-2
• “About Credit Scorecards”
• “Credit Scorecard Modeling Workflow”
• Monotone Adjacent Pooling Algorithm (MAPA)
• “Credit Scorecard Modeling Using Observation Weights”

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

 compactCreditScorecard Object Workflow

3-63

https://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-121587.html

Feature Screening with screenpredictors

This example shows how to perform predictor screening using screenpredictors and then set
predictor thresholds using the Threshold Predictors live task. Predictor screening using
screenpredictors is a type of univariate analysis performed as an early step in the “Credit
Scorecard Modeling Workflow”. Predictor screening is an important preprocessing step when you
work with credit scorecards, as data sets can be prohibitively large and have dozens or hundreds of
potential predictors.

The goal of screening predictors is to pare down the set of predictors to a subset that is more useful
in predicting the response variable based on the calculated metrics. You can set predictor thresholds
using the Threshold Predictors live task to select the top predictors as ranked by a given metric to
train your credit scorecards.

Load Data

The credit card data table contains a customer ID (CustID), nine predictors, and the response
variable (status). Some of the risk factors are more useful in predicting the probability of a loan
default, whereas others are less useful. The screening process helps you select the best subset of
predictors.

Although the data set in this example contains only a few predictors, in practice, credit scorecard
data sets can be very large. The predictor screening process is important as data sets grow to contain
dozens or hundreds of predictors.

% Load credit card data.
load CreditCardData.mat

% Use the dataMissing data set, which contains some missing values.
data = dataMissing;

% Identify the ID and response variables.
idvar = 'CustID';
responsevar = 'status';

% Examine the structure of the table.
disp(head(data));

 CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status
 ______ _______ ___________ ___________ _________ __________ _______ _______ _________ ________ ______

 1 53 62 <undefined> Unknown 50000 55 Yes 1055.9 0.22 0
 2 61 22 Home Owner Employed 52000 25 Yes 1161.6 0.24 0
 3 47 30 Tenant Employed 37000 61 No 877.23 0.29 0
 4 NaN 75 Home Owner Employed 53000 20 Yes 157.37 0.08 0
 5 68 56 Home Owner Employed 53000 14 Yes 561.84 0.11 0
 6 65 13 Home Owner Employed 48000 59 Yes 968.18 0.15 0
 7 34 32 Home Owner Unknown 32000 26 Yes 717.82 0.02 1
 8 50 57 Other Employed 51000 33 No 3041.2 0.13 0

Add Additional Derived Predictors

Often, derivative predictors can capture additional information or produce better metrics results; for
example, the ratio of two predictors or a predictor transformation for predictor x, such as x^2 or
log(x). To demonstrate this, create two derived predictors and add them to the data set.

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-64

data.BalanceUtilRatio = data.AMBalance ./ data.UtilRate;
data.BalanceIncomeRatio = data.AMBalance ./ data.CustIncome;

Compute Metrics

Use screenpredictors to compute several measures of risk factor predictiveness. The columns of
the output table contain the metrics values for the predictors. The table is sorted by the information
value (InfoValue).

T = screenpredictors(data,'IDVar',idvar,'ResponseVar',responsevar)

T=11×7 table
 InfoValue AccuracyRatio AUROC Entropy Gini Chi2PValue PercentMissing
 _________ _____________ _______ _______ _______ __________ ______________

 CustAge 0.17698 0.1672 0.5836 0.88795 0.42645 0.0020599 0.025
 TmWBank 0.15719 0.13612 0.56806 0.89167 0.42864 0.0054591 0
 CustIncome 0.15572 0.17758 0.58879 0.891 0.42731 0.0018428 0
 BalanceIncomeRatio 0.097073 0.1278 0.5639 0.90024 0.43303 0.11966 0
 TmAtAddress 0.094574 0.010421 0.50521 0.90089 0.43377 0.182 0
 UtilRate 0.075086 0.035914 0.51796 0.90405 0.43575 0.45546 0
 AMBalance 0.07159 0.087142 0.54357 0.90446 0.43592 0.48528 0
 BalanceUtilRatio 0.068955 0.026538 0.51327 0.90486 0.43614 0.52517 0
 EmpStatus 0.048038 0.10886 0.55443 0.90814 0.4381 0.00037823 0
 OtherCC 0.014301 0.044459 0.52223 0.91347 0.44132 0.047616 0
 ResStatus 0.0095558 0.049855 0.52493 0.91446 0.44198 0.29879 0.033333

Set Threshold Metrics

Set thresholds for the predictors based on one or more metrics. Use the Threshold Predictors live
task to interactively select thresholds for one or more predictors. In the plot displayed for
Predictors, green bars indicate predictors that pass the threshold and red bars indicate predictors
that do not pass the threshold. You can omit predictors that do not "pass" the threshold from the final
data set.

Use the Threshold Predictors live task to select predictors based on their information value
(InfoValue) and accuracy ratio (AccuracyRatio). Additional thresholds can be set by adding the
desired metric using the Select threshold metrics drop-down control.

 Feature Screening with screenpredictors

3-65

labelTable=11×2 table
 InfoValue AccuracyRatio
 _________ _____________

 CustAge Pass Pass
 TmWBank Pass Pass
 CustIncome Pass Pass
 BalanceIncomeRatio Pass Pass
 TmAtAddress Pass Fail
 UtilRate Fail Fail
 AMBalance Fail Pass
 BalanceUtilRatio Fail Fail
 EmpStatus Fail Pass
 OtherCC Fail Fail
 ResStatus Fail Fail

Screening Summary

Summarize the thresholding results in table form. The lableTable output from the live task
indicates which of the predictors passed each of the threshold tests.

disp(labelTable)

 InfoValue AccuracyRatio
 _________ _____________

 CustAge Pass Pass
 TmWBank Pass Pass
 CustIncome Pass Pass
 BalanceIncomeRatio Pass Pass
 TmAtAddress Pass Fail
 UtilRate Fail Fail
 AMBalance Fail Pass

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-66

 BalanceUtilRatio Fail Fail
 EmpStatus Fail Pass
 OtherCC Fail Fail
 ResStatus Fail Fail

Reduce Table

Create a reduced table that contains only the passing predictors. Select only the predictors that pass
both of the threshold tests and create a reduced data set.

% Select predictors that pass at least 2 metric threshold tests.
all_passes = labelTable.Variables == "Pass";
pass_both_idx = 2 <= sum(all_passes,2);
selected_predictors = T.Row(pass_both_idx);

% Trim the data table to contain only the ID, passing predictors, and
% response.
top_predictor_table = data(:,[idvar; selected_predictors; responsevar]);

Use creditscorecard to create a creditscorecard object using the reduced data set.

% Create the credit scorecard using the screened predictors.
sc = creditscorecard(top_predictor_table,'IDVar',idvar,'ResponseVar',responsevar,...
 'BinMissingData', true)

sc =
 creditscorecard with properties:

 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ''
 VarNames: {'CustID' 'CustAge' 'TmWBank' 'CustIncome' 'BalanceIncomeRatio' 'status'}
 NumericPredictors: {'CustAge' 'TmWBank' 'CustIncome' 'BalanceIncomeRatio'}
 CategoricalPredictors: {1x0 cell}
 BinMissingData: 1
 IDVar: 'CustID'
 PredictorVars: {'CustAge' 'TmWBank' 'CustIncome' 'BalanceIncomeRatio'}
 Data: [1200x6 table]

For more information on developing credit scorecards, see “Create Credit Scorecards”.

See Also
creditscorecard | screenpredictors | autobinning | bininfo | predictorinfo |
modifypredictor | modifybins | bindata | plotbins | fitmodel | displaypoints |
formatpoints | score | setmodel | probdefault | validatemodel

Related Examples
• “Common Binning Explorer Tasks” on page 3-4
• “Credit Scorecard Modeling with Missing Values”
• “Troubleshooting Credit Scorecard Results”
• “Credit Rating by Bagging Decision Trees”
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page 3-36

 Feature Screening with screenpredictors

3-67

More About
• “Overview of Binning Explorer” on page 3-2
• “About Credit Scorecards”
• “Credit Scorecard Modeling Workflow”
• Monotone Adjacent Pooling Algorithm (MAPA)
• “Credit Scorecard Modeling Using Observation Weights”

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-68

https://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-121587.html

Use Reject Inference Techniques with Credit Scorecards

This example demonstrates the hard-cutoff and fuzzy augmentation approaches to reject inference.

Reject inference is a method for improving the quality of a credit scorecard by incorporating data
from rejected loan applications. Bias can result if a credit scorecard model is built only on accepts
and does not account for applications rejected because of past denials for credit or unknown
nondefault status. By using the reject inference method, you can infer the performance of rejects and
include them in your credit scorecard model to remedy this bias.

To develop a credit scorecard, you must identify each borrower as either "good" or "bad". For
rejected applications, information to identify borrowers as "good" or "bad" is not available. You
cannot tell for sure to which group a borrower would have belonged had they been granted a loan.
The reject inference method allows you to infer whether a borrower would likely be "good" or "bad"
enabling you to incorporate the rejected application data into the data set that you use to build a
credit scorecard.

As the diagram shows, reject inference requires that you determine the threshold (cutoff point) below
which rejects are considered as "bad." This example demonstrates the hard-cutoff and the fuzzy
augmentation approaches to calculate this threshold.

The following diagram shows the typical process for building a scorecard model. The red box
represents the reject inference process, where the performance of the previously rejected
applications is estimated and then used to re-train the credit scorecard model.

 Use Reject Inference Techniques with Credit Scorecards

3-69

The workflow for the reject inference process is:

1 Build a logistic regression model based on the accepts.
2 Infer the class of rejects using one of the reject inference techniques.
3 Combine the accepts and rejects into a single data set.
4 Create a new scorecard, bin the expanded data set, and build a new logistic model.
5 Validate the final model.

There are two types of reject inference:

• Simple assignment does not use a reject inference process and either ignores rejects or assigns all
rejects to the "bad" class.

• Augmentation uses a reject inference process to handle rejects based on a scoring model by
combining the original data set with the rejects data.

This example focuses on augmentation techniques. The most popular techniques for augmentation
are:

• Simple augmentation — Using a cutoff value, this method assigns rejects with scores below and
above the value to the "bad" or "good" class, respectively. The cutoff value must reflect that the
rate of bads in the rejects is higher than in the accepted population. After the class ("good" or
"bad") is assigned to the rejects, the entire population of accepts and rejects are fitted in the
credit scorecard model and then scored. This approach is also called the hard-cutoff technique.

• Fuzzy augmentation — This method scores the rejects by using a credit scorecard model based
on the accepts. These rejects are duplicated into two observations, where each is assigned a
probability of being "good" or "bad," and then aggregated to the accepts. A new credit scorecard
model is then estimated on the new data set.

In this example, the following workflows are presented:

• Hard-cutoff on page 3-71
• Fuzzy augmentation on page 3-78

Both of these approaches use the binning rules preserved from the original scorecard and apply them
to the new scorecard that is based on the combined data set.

Note: The data sets in this example are technically through-the-door (TTD) observations. That is,
accepts and rejects are lumped together and differentiated based on their accept or reject decision. A
rejects data set is then created from the TTD observations.

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-70

Hard-Cutoff Technique Workflow

The hard-cutoff technique uses a predefined cutoff value and assigns rejects below the cutoff as "bad"
and above the cutoff as "good." The cutoff value must reflect that the rate of "bads" in the rejects is
higher than in the accepts. After each reject is assigned a class ("good" or "bad"), the entire
population of accepts and rejects is fitted in a credit scorecard model, and then that model is scored
and validated. This approach is also called the simple augmentation technique. The main challenge in
this approach is choosing the cutoff value.

First, visualize the data for accepts and rejects for a selected predictor.

% Load the data
load CreditCardData.mat
load RejectsCreditCardData.mat

Predictor = ;
figure;
h1 = histogram(data.(Predictor));
hold on
h2 = histogram(Rejects.(Predictor));
h1.Normalization = 'probability';
h2.Normalization = 'probability';
title(Predictor)
xlabel('Predictor Values')
ylabel('Normalized Count by Probability')
hold off
legend({'Accepts','Rejects'},'Location','best');

 Use Reject Inference Techniques with Credit Scorecards

3-71

Create a creditscorecard Object for the Accepts and Score the Data

Use creditscorecard to create a creditscorecard object that you can use to bin, fit, and then
score the accepts.

scHC = creditscorecard(data,'IDVar','CustID');
scHC = autobinning(scHC);
scHC = fitmodel(scHC);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
 logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ______ __________

 (Intercept) 0.70239 0.064001 10.975 5.0538e-28
 CustAge 0.60833 0.24932 2.44 0.014687
 ResStatus 1.377 0.65272 2.1097 0.034888

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-72

 EmpStatus 0.88565 0.293 3.0227 0.0025055
 CustIncome 0.70164 0.21844 3.2121 0.0013179
 TmWBank 1.1074 0.23271 4.7589 1.9464e-06
 OtherCC 1.0883 0.52912 2.0569 0.039696
 AMBalance 1.045 0.32214 3.2439 0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

ScoreRange = [300 850];
scHC = formatpoints(scHC,'WorstAndBestScores',ScoreRange);
ScoresAccepts = score(scHC);

Choose a Bad Rate and Score the Rejects

A reject is "good" or "bad" based on the specified bad rate (BR) value. In general, the credit scoring
industry assumes that rejects have a BR of 75%. This is a subjective evaluation that is usually based
on an unknown value. In this example, you can adjust the value of BR.

The CreditCardData.mat input data has 'status' as response. Assume that GoodLabel (which
means a nondefault) is the class that has a higher count in the response. In this example, GoodLabel
is 0, which means that default only happens when the response is equal to 1.

% Define the BR

BR = ;

% Sort rejects by ascending CustID order
N = height(Rejects);
Rejects = sortrows(Rejects);
ScoresRejects = score(scHC,Rejects);

% Find the lowest quantile based on the BR and set the corresponding observations to bad
BadLabel = setdiff(unique(scHC.Data.(scHC.ResponseVar)),scHC.GoodLabel);
ScoreThres = quantile(ScoresRejects,BR);
ResponseRejects = zeros(N,1);
ResponseRejects(ScoresRejects < ScoreThres) = BadLabel;
ResponseRejects(ScoresRejects >= ScoreThres) = scHC.GoodLabel;

% Create the rejects table
RejectsTable = [Rejects table(ResponseRejects,'VariableNames',{scHC.ResponseVar})];

Combine Accepts and Rejects Into a New Data Set, Score, and Validate

To draw a more accurate comparison between the accepts and the combined data set, use the same
binning rules from the initial accepts credit scorecard and copy them to the creditscorecard
object built on the combined dataset. This ensures that the binning assignment does not affect the
later comparison of the two credit scorecard models. Also, you can visualize how the rejects are
spread out in the data range of each predictor.

% Create the final combined scorecard
CombinedData = [data(:,2:end);RejectsTable(:,2:end)];
scNewHC = creditscorecard(CombinedData,'GoodLabel',0);

% Bin using the same binning rules as the base scorecard
Predictors = scHC.PredictorVars;

 Use Reject Inference Techniques with Credit Scorecards

3-73

Edges = struct();
for i = 1 : length(Predictors)
 Pred = Predictors{i};
 [bi,cp] = bininfo(scHC,Pred);
 if ismember(Pred,scHC.NumericPredictors)
 scNewHC = modifybins(scNewHC,Pred,'CutPoints',cp);
 else
 scNewHC = modifybins(scNewHC,Pred,'CatGrouping',cp);
 end
 Edges.(Pred) = bi.Bin(1:end-1);
end

% Visualize the rejects distribution in each bin
bd1 = bindata(scHC,data);
bd2 = bindata(scHC,CombinedData);

Predictor = ;
figure;
bar(categorical(Edges.(Predictor)),histcounts(bd1.(Predictor)))
hold on
bar(categorical(Edges.(Predictor)),histcounts(bd2.(Predictor)),'FaceAlpha',0.25)
hold off
xlabel('Bins')
ylabel('Counts')
legend({'Accepts Only','Combined'},'Location','best')

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-74

Compare the initial creditscorecard object (scHC) to the new creditscorecard object
(scNewHC) for the distribution of "goods" and "bads" for the selected predictor.

plotbins(scHC,Predictor);

plotbins(scNewHC,Predictor);

 Use Reject Inference Techniques with Credit Scorecards

3-75

Fit a logistic regression model for the creditscorecard object scNewHC and then score scNewHC.

scNewHC = fitmodel(scNewHC);

1. Adding CustIncome, Deviance = 1693.9882, Chi2Stat = 114.39516, PValue = 1.0676416e-26
2. Adding TmWBank, Deviance = 1650.6615, Chi2Stat = 43.326628, PValue = 4.6323638e-11
3. Adding AMBalance, Deviance = 1623.0668, Chi2Stat = 27.594773, PValue = 1.4958244e-07
4. Adding EmpStatus, Deviance = 1603.603, Chi2Stat = 19.463733, PValue = 1.0252802e-05
5. Adding CustAge, Deviance = 1592.3467, Chi2Stat = 11.256272, PValue = 0.00079354409
6. Adding ResStatus, Deviance = 1582.0086, Chi2Stat = 10.338134, PValue = 0.0013030966
7. Adding OtherCC, Deviance = 1572.1, Chi2Stat = 9.9086387, PValue = 0.0016450476

Generalized linear regression model:
 logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ______ __________

 (Intercept) 0.48115 0.061301 7.849 4.1925e-15
 CustAge 0.50857 0.14449 3.5197 0.00043207
 ResStatus 1.151 0.34773 3.3101 0.00093262
 EmpStatus 0.78527 0.17826 4.4051 1.0572e-05
 CustIncome 0.68743 0.12372 5.5563 2.7555e-08
 TmWBank 1.0001 0.16731 5.9779 2.2607e-09
 OtherCC 0.97659 0.30956 3.1548 0.0016062
 AMBalance 0.91563 0.19073 4.8006 1.5819e-06

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-76

1361 observations, 1353 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 236, p-value = 2.29e-47

scNewHC = formatpoints(scNewHC,'WorstAndBestScores',ScoreRange);
Scores = score(scNewHC);

% Visualize the score distribution
histogram(ScoresAccepts)
hold on
histogram(Scores,'FaceAlpha',0.25)
hold off
ylabel('Counts')
xlabel('Scores')
title(sprintf('Score Distribution for a BR = %.2f',BR))
legend({'Accepts Only','Combined'},'Location','best')

Validate the Model on the Combined Data Set

Before validation, you must adjust the data set. To adjust the data set, you can either:

• Validate the accepts for both scorecards
• Validate the combined data set for both scorecards

% Get statistics for the accepts
StatsA1 = validatemodel(scHC);

 Use Reject Inference Techniques with Credit Scorecards

3-77

StatsA2 = validatemodel(scNewHC,data);

% Get the statistics for the combined data set
StatsC1 = validatemodel(scHC,CombinedData);
StatsC2 = validatemodel(scNewHC);

s1 = table(StatsA1.Value,StatsA2.Value,'VariableNames',{'BaseScorecard','CombinedScorecard'});
s2 = table(StatsC1.Value,StatsC2.Value,'VariableNames',{'BaseScorecard','CombinedScorecard'});
Stats = table(StatsA1.Measure,s1,s2,'VariableNames',{'Measure','Accepts','Combined'});
disp(Stats)

 Measure Accepts Combined
 BaseScorecard CombinedScorecard BaseScorecard CombinedScorecard
 ________________________ __________________________________ __________________________________

 {'Accuracy Ratio' } 0.32258 0.31695 0.47022 0.46565
 {'Area under ROC curve'} 0.66129 0.65848 0.73511 0.73282
 {'KS statistic' } 0.2246 0.22946 0.34528 0.33681
 {'KS score' } 550.72 576.57 512.44 542.85

Fuzzy Augmentation Technique Workflow

The Fuzzy augmentation technique starts by building a scorecard using the accepts only and then this
scorecard model is used to score the rejects. Unlike the hard-cutoff technique, the fuzzy
augmentation approach does not assign "good" or "bad" classes. Rather, each reject is duplicated into
two observations and assigned a weighted "good" or "bad" value, based on a probability of being
"good" or "bad." The weighted rejects are then added to the accepts data set and the combined data
set is used to create a scorecard that is then fit and validated.

First, visualize the data for accepts and rejects for a selected predictor.

% Load the data
matFileName = fullfile(matlabroot,'toolbox','finance','findemos','CreditCardData');
load(matFileName)
load RejectsCreditCardData.mat

Predictor = ;
figure;
h1 = histogram(data.(Predictor));
hold on
h2 = histogram(Rejects.(Predictor));
h1.Normalization = 'probability';
h2.Normalization = 'probability';
title(Predictor)
xlabel('Predictor values')
ylabel('Normalized Count by Probability')
hold off
legend({'Accepts','Rejects'},'Location','best');

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-78

Create a creditscorecard Object for the Accepts and Score the Data

Use creditscorecard to create a creditscorecard object for the accepts, which you can bin, fit,
and then score.

scFA = creditscorecard(data,'IDVar','CustID');
scFA = autobinning(scFA);
scFA = fitmodel(scFA);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
 logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ______ __________

 (Intercept) 0.70239 0.064001 10.975 5.0538e-28
 CustAge 0.60833 0.24932 2.44 0.014687
 ResStatus 1.377 0.65272 2.1097 0.034888

 Use Reject Inference Techniques with Credit Scorecards

3-79

 EmpStatus 0.88565 0.293 3.0227 0.0025055
 CustIncome 0.70164 0.21844 3.2121 0.0013179
 TmWBank 1.1074 0.23271 4.7589 1.9464e-06
 OtherCC 1.0883 0.52912 2.0569 0.039696
 AMBalance 1.045 0.32214 3.2439 0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

ScoreRange = [300 850];
scFA = formatpoints(scFA,'WorstAndBestScores',ScoreRange);
ScoresAccepts = score(scFA);

Score the Rejects and Create the Combined Data Set

% Load the rejects dataset and score the observations
load RejectsCreditCardData.mat

ScoresRejects = score(scFA,Rejects);

% Compute the probabilities of default and use as weights
pdRejects = probdefault(scFA,Rejects);

% Assign bad status to pd (probability of default) and good status to 1-pd weights
BadLabel = setdiff(unique(scFA.Data.(scFA.ResponseVar)),scFA.GoodLabel);
Weights = zeros(2*length(pdRejects),1);
Response = zeros(2*length(pdRejects),1);
Weights(1:2:end) = pdRejects;
Response(1:2:end) = BadLabel;
Weights(2:2:end) = 1-pdRejects;
Response(2:2:end) = scFA.GoodLabel;

% Rearrange the response so that each two rows correspond to the same
% observation from rejects
RejectsTable = repelem(Rejects(:,2:end),2,1);
RejectsTable = addvars(RejectsTable,Weights,Response,'NewVariableNames',...
 {'Weights',scFA.ResponseVar});

% Combine accepts and rejects
AcceptsData = addvars(data,ones(height(data),1),'Before',scFA.ResponseVar,...
 'NewVariableNames','Weights');
CombinedData = [AcceptsData(:,2:end);RejectsTable];

Combine Accepts and Rejects into a New Data Set, Score, and Validate

To draw a more accurate comparison between the accepts and the combined data set, use the same
binning rules from the initial accepts credit scorecard and copy them to the creditscorecard
object built on the combined dataset. This ensures that the binning assignments does not affect the
later comparison of the two credit scorecard models. Also, you can visualize how the rejects are
spread out in the data range of each predictor.

scNewFA = creditscorecard(CombinedData,'GoodLabel',0,'WeightsVar','Weights');

% Bin using the same binning rules as the base scorecard
Predictors = scFA.PredictorVars;
Edges = struct();

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-80

for i = 1 : length(Predictors)
 Pred = Predictors{i};
 [bi,cp] = bininfo(scFA,Pred);
 if ismember(Pred,scFA.NumericPredictors)
 scNewFA = modifybins(scNewFA,Pred,'CutPoints',cp);
 else
 scNewFA = modifybins(scNewFA,Pred,'CatGrouping',cp);
 end
 Edges.(Pred) = bi.Bin(1:end-1);
end

% Visualize the rejects distribution in each bin
bd1 = bindata(scFA,data);
bd2 = bindata(scFA,CombinedData);

Predictor = ;
figure;
bar(categorical(Edges.(Predictor)),histcounts(bd1.(Predictor)))
hold on
bar(categorical(Edges.(Predictor)),histcounts(bd2.(Predictor)),'FaceAlpha',0.25)
hold off
xlabel('Bins')
ylabel('Counts')
legend({'Accepts Only','Combined'},'Location','best')

Compare the initial creditscorecard object (scFA) to the new creditscorecard object
(scNewFA) for the distribution of "goods" and "bads" for the selected predictor.

 Use Reject Inference Techniques with Credit Scorecards

3-81

plotbins(scFA,Predictor);

plotbins(scNewFA,Predictor);

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-82

Fit a logistic regression model for the creditscorecard object scNewFA and then score scNewFA.

scNewFA = fitmodel(scNewFA);

1. Adding CustIncome, Deviance = 1711.3102, Chi2Stat = 54.160619, PValue = 1.8475277e-13
2. Adding TmWBank, Deviance = 1682.5353, Chi2Stat = 28.774866, PValue = 8.1299351e-08
3. Adding AMBalance, Deviance = 1668.2956, Chi2Stat = 14.239727, PValue = 0.00016093686
4. Adding EmpStatus, Deviance = 1658.2944, Chi2Stat = 10.001236, PValue = 0.001564352
5. Adding CustAge, Deviance = 1652.3976, Chi2Stat = 5.8967925, PValue = 0.015168483
6. Adding OtherCC, Deviance = 1647.7632, Chi2Stat = 4.6344022, PValue = 0.031337059
7. Adding ResStatus, Deviance = 1642.8332, Chi2Stat = 4.9299914, PValue = 0.026394448

Generalized linear regression model:
 logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ______ __________

 (Intercept) 0.60838 0.059654 10.198 2.0142e-24
 CustAge 0.50755 0.20092 2.5262 0.011532
 ResStatus 1.082 0.48919 2.2119 0.026971
 EmpStatus 0.74776 0.23526 3.1784 0.0014809
 CustIncome 0.6372 0.17519 3.6371 0.00027567
 TmWBank 0.96561 0.19664 4.9106 9.0815e-07
 OtherCC 0.90699 0.40476 2.2408 0.025039
 AMBalance 0.87642 0.25404 3.4499 0.00056077

 Use Reject Inference Techniques with Credit Scorecards

3-83

1522 observations, 1514 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 123, p-value = 2.16e-23

scNewFA = formatpoints(scNewFA,'WorstAndBestScores',ScoreRange);
Scores = score(scNewFA);
pd = probdefault(scNewFA);

% Visualize the score distribution
histogram(ScoresAccepts)
hold on
histogram(Scores,'FaceAlpha',0.25)
hold off
ylabel('Counts')
xlabel('Scores')
title('Score Distribution Using Fuzzy Augmentation')
legend({'Accepts Only','Combined'},'Location','best')

Validate the Model on the Combined Data Set

Before validation, you must adjust the data set. To adjust the data set, you can either:

• Validate the accepts for both scorecards
• Validate the combined data set for both scorecards

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-84

% Get statistics for the accepts
data.Weights = ones(height(data),1);
StatsA1 = validatemodel(scFA);
StatsA2 = validatemodel(scNewFA,data);
% Get the statistics for the combined data set
StatsC1 = validatemodel(scFA,CombinedData);
StatsC2 = validatemodel(scNewFA);

s1 = table(StatsA1.Value,StatsA2.Value,'VariableNames',{'BaseScorecard','CombinedScorecard'});
s2 = table(StatsC1.Value,StatsC2.Value,'VariableNames',{'BaseScorecard','CombinedScorecard'});
Stats = table(StatsA1.Measure,s1,s2,'VariableNames',{'Measure','Accepts','Combined'});
disp(Stats)

 Measure Accepts Combined
 BaseScorecard CombinedScorecard BaseScorecard CombinedScorecard
 ________________________ __________________________________ __________________________________

 {'Accuracy Ratio' } 0.32258 0.32088 0.29419 0.35143
 {'Area under ROC curve'} 0.66129 0.66044 0.64709 0.67571
 {'KS statistic' } 0.2246 0.22799 0.22596 0.25629
 {'KS score' } 550.72 554.84 512.44 520.99

Summary

This example demonstrates how to use a reject inference process within the framework of the credit
scorecard workflow. The Hard-Cutoff and the Fuzzy Augmentation techniques show how you can bin
the data, fit a model, integrate the rejects with the accepts into a new credit scorecard model, and
then validate the new credit scorecard model.

There is no clear-cut conclusion for which of these reject inference approaches is the best. This
example is intended to illustrate how to use the features of creditscorecard to implement two
different reject inference approaches.

References

1 Baesesn, B., D. Rösch, and H. Scheule. Credit Risk Analytics: Measurement Techniques,
Applications and Examples in SAS. Wiley and SAS Business Series, 2016.

2 Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also
creditscorecard | screenpredictors | autobinning | bininfo | predictorinfo |
modifypredictor | modifybins | bindata | plotbins | fitmodel | displaypoints |
formatpoints | score | setmodel | probdefault | validatemodel

Related Examples
• “Common Binning Explorer Tasks” on page 3-4
• “Credit Scorecard Modeling with Missing Values”
• “Feature Screening with screenpredictors” on page 3-64
• “Troubleshooting Credit Scorecard Results”
• “Credit Rating by Bagging Decision Trees”
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page 3-36

 Use Reject Inference Techniques with Credit Scorecards

3-85

More About
• “Overview of Binning Explorer” on page 3-2
• “About Credit Scorecards”
• “Credit Scorecard Modeling Workflow”
• Monotone Adjacent Pooling Algorithm (MAPA)
• “Credit Scorecard Modeling Using Observation Weights”

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-86

https://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-121587.html

Credit Scoring Using Logistic Regression and Decision Trees

Create and compare two credit scoring models, one based on logistic regression and the other based
on decision trees.

Credit rating agencies and banks use challenger models to test the credibility and goodness of a
credit scoring model. In this example, the base model is a logistic regression model and the
challenger model is a decision tree model.

Logistic regression links the score and probability of default (PD) through the logistic regression
function, and is the default fitting and scoring model when you work with creditscorecard objects.
However, decision trees have gained popularity in credit scoring and are now commonly used to fit
data and predict default. The algorithms in decision trees follow a top-down approach where, at each
step, the variable that splits the dataset "best" is chosen. "Best" can be defined by any one of several
metrics, including the Gini index, information value, or entropy. For more information, see “Decision
Trees”.

In this example, you:

• Use both a logistic regression model and a decision tree model to extract PDs.
• Validate the challenger model by comparing the values of key metrics between the challenger

model and the base model.

Compute Probabilities of Default Using Logistic Regression

First, create the base model by using a creditscorecard object and the default logistic regression
function fitmodel. Fit the creditscorecard object by using the full model, which includes all
predictors for the generalized linear regression model fitting algorithm. Then, compute the PDs using
probdefault. For a detailed description of this workflow, see “Case Study for Credit Scorecard
Analysis”.

% Create a creditscorecard object, bin data, and fit a logistic regression model
load CreditCardData.mat
scl = creditscorecard(data,'IDVar','CustID');
scl = autobinning(scl);
scl = fitmodel(scl,'VariableSelection','fullmodel');

Generalized linear regression model:
 logit(status) ~ 1 + CustAge + TmAtAddress + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance + UtilRate
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 _________ ________ _________ __________

 (Intercept) 0.70246 0.064039 10.969 5.3719e-28
 CustAge 0.6057 0.24934 2.4292 0.015131
 TmAtAddress 1.0381 0.94042 1.1039 0.26963
 ResStatus 1.3794 0.6526 2.1137 0.034538
 EmpStatus 0.89648 0.29339 3.0556 0.0022458
 CustIncome 0.70179 0.21866 3.2095 0.0013295
 TmWBank 1.1132 0.23346 4.7683 1.8579e-06
 OtherCC 1.0598 0.53005 1.9994 0.045568
 AMBalance 1.0572 0.36601 2.8884 0.0038718

 Credit Scoring Using Logistic Regression and Decision Trees

3-87

 UtilRate -0.047597 0.61133 -0.077858 0.93794

1200 observations, 1190 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 91, p-value = 1.05e-15

% Compute the corresponding probabilities of default
pdL = probdefault(scl);

Compute Probabilities of Default Using Decision Trees

Next, create the challenger model. Use the Statistics and Machine Learning Toolbox™ method
fitctree to fit a Decision Tree (DT) to the data. By default, the splitting criterion is Gini's diversity
index. In this example, the model is an input argument to the function, and the response 'status'
comprises all predictors when the algorithm starts. For this example, see the name-value pairs in
fitctree to the maximum number of splits to avoid overfitting and specify the predictors as
categorical.

% Create and view classification tree
CategoricalPreds = {'ResStatus','EmpStatus','OtherCC'};
dt = fitctree(data,'status~CustAge+TmAtAddress+ResStatus+EmpStatus+CustIncome+TmWBank+OtherCC+UtilRate',...
 'MaxNumSplits',30,'CategoricalPredictors',CategoricalPreds);
disp(dt)

 ClassificationTree
 PredictorNames: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'UtilRate'}
 ResponseName: 'status'
 CategoricalPredictors: [3 4 7]
 ClassNames: [0 1]
 ScoreTransform: 'none'
 NumObservations: 1200

The decision tree is shown below. You can also use the view function with the name-value pair
argument 'mode' set to 'graph' to visualize the tree as a graph.

view(dt)

Decision tree for classification
 1 if CustIncome<30500 then node 2 elseif CustIncome>=30500 then node 3 else 0
 2 if TmWBank<60 then node 4 elseif TmWBank>=60 then node 5 else 1
 3 if TmWBank<32.5 then node 6 elseif TmWBank>=32.5 then node 7 else 0
 4 if TmAtAddress<13.5 then node 8 elseif TmAtAddress>=13.5 then node 9 else 1
 5 if UtilRate<0.255 then node 10 elseif UtilRate>=0.255 then node 11 else 0
 6 if CustAge<60.5 then node 12 elseif CustAge>=60.5 then node 13 else 0
 7 if CustAge<46.5 then node 14 elseif CustAge>=46.5 then node 15 else 0
 8 if CustIncome<24500 then node 16 elseif CustIncome>=24500 then node 17 else 1
 9 if TmWBank<56.5 then node 18 elseif TmWBank>=56.5 then node 19 else 1
10 if CustAge<21.5 then node 20 elseif CustAge>=21.5 then node 21 else 0
11 class = 1
12 if EmpStatus=Employed then node 22 elseif EmpStatus=Unknown then node 23 else 0
13 if TmAtAddress<131 then node 24 elseif TmAtAddress>=131 then node 25 else 0
14 if TmAtAddress<97.5 then node 26 elseif TmAtAddress>=97.5 then node 27 else 0
15 class = 0
16 class = 0
17 if ResStatus in {Home Owner Tenant} then node 28 elseif ResStatus=Other then node 29 else 1
18 if TmWBank<52.5 then node 30 elseif TmWBank>=52.5 then node 31 else 0
19 class = 1

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-88

20 class = 1
21 class = 0
22 if UtilRate<0.375 then node 32 elseif UtilRate>=0.375 then node 33 else 0
23 if UtilRate<0.005 then node 34 elseif UtilRate>=0.005 then node 35 else 0
24 if CustIncome<39500 then node 36 elseif CustIncome>=39500 then node 37 else 0
25 class = 1
26 if UtilRate<0.595 then node 38 elseif UtilRate>=0.595 then node 39 else 0
27 class = 1
28 class = 1
29 class = 0
30 class = 1
31 class = 0
32 class = 0
33 if UtilRate<0.635 then node 40 elseif UtilRate>=0.635 then node 41 else 0
34 if CustAge<49 then node 42 elseif CustAge>=49 then node 43 else 1
35 if CustIncome<57000 then node 44 elseif CustIncome>=57000 then node 45 else 0
36 class = 1
37 class = 0
38 class = 0
39 if CustIncome<34500 then node 46 elseif CustIncome>=34500 then node 47 else 1
40 class = 1
41 class = 0
42 class = 1
43 class = 0
44 class = 0
45 class = 1
46 class = 0
47 class = 1

When you use fitctree, you can adjust the “Name-Value Pair Arguments” depending on your use
case. For example, you can set a small minimum leaf size, which yields a better accuracy ratio (see
Model Validation on page 3-94) but can result in an overfitted model.

The decision tree has a predict function that, when used with a second and third output argument,
gives valuable information.

% Extract probabilities of default
[~,ObservationClassProb,Node] = predict(dt,data);
pdDT = ObservationClassProb(:,2);

This syntax has the following outputs:

• ObservationClassProb returns a NumObs-by-2 array with class probability at all observations.
The order of the classes is the same as in dt.ClassName. In this example, the class names are [0
1] and the good label, by choice, based on which class has the highest count in the raw data, is 0.
Therefore, the first column corresponds to nondefaults and the second column to the actual PDs.
The PDs are needed later in the workflow for scoring or validation.

• Node returns a NumObs-by-1 vector containing the node numbers corresponding to the given
observations.

Predictor Importance

In predictor (or variable) selection, the goal is to select as few predictors as possible while retaining
as much information (predictive accuracy) about the data as possible. In the creditscorecard
class, the fitmodel function internally selects predictors and returns p-values for each predictor.
The analyst can then, outside the creditscorecard workflow, set a threshold for these p-values and

 Credit Scoring Using Logistic Regression and Decision Trees

3-89

choose the predictors worth keeping and the predictors to discard. This step is useful when the
number of predictors is large.

Typically, training datasets are used to perform predictor selection. The key objective is to find the
best set of predictors for ranking customers based on their likelihood of default and estimating their
PDs.

Using Logistic Regression for Predictor Importance

Predictor importance is related to the notion of predictor weights, since the weight of a predictor
determines how important it is in the assignment of the final score, and therefore, in the PD.
Computing predictor weights is a back-of-the-envelope technique whereby the weights are
determined by dividing the range of points for each predictor by the total range of points for the
entire creditscorecard object. For more information on this workflow, see “Case Study for Credit
Scorecard Analysis”.

For this example, use formatpoints with the option PointsOddsandPDO for scaling. This is not a
necessary step, but it helps ensure that all points fall within a desired range (that is, nonnegative
points). The PointsOddsandPDO scaling means that for a given value of TargetPoints and
TargetOdds (usually 2), the odds are "double", and then formatpoints solves for the scaling
parameters such that PDO points are needed to double the odds.

% Choose target points, target odds, and PDO values
TargetPoints = 500;
TargetOdds = 2;
PDO = 50;

% Format points and compute points range
scl = formatpoints(scl,'PointsOddsAndPDO',[TargetPoints TargetOdds PDO]);
[PointsTable,MinPts,MaxPts] = displaypoints(scl);
PtsRange = MaxPts - MinPts;
disp(PointsTable(1:10,:))

 Predictors Bin Points
 _______________ _____________ ______

 {'CustAge' } {'[-Inf,33)'} 37.008
 {'CustAge' } {'[33,37)' } 38.342
 {'CustAge' } {'[37,40)' } 44.091
 {'CustAge' } {'[40,46)' } 51.757
 {'CustAge' } {'[46,48)' } 63.826
 {'CustAge' } {'[48,58)' } 64.97
 {'CustAge' } {'[58,Inf]' } 82.826
 {'CustAge' } {'<missing>'} NaN
 {'TmAtAddress'} {'[-Inf,23)'} 49.058
 {'TmAtAddress'} {'[23,83)' } 57.325

fprintf('Minimum points: %g, Maximum points: %g\n',MinPts,MaxPts)

Minimum points: 348.705, Maximum points: 683.668

The weights are defined as the range of points, for any given predictor, divided by the range of points
for the entire scorecard.

Predictor = unique(PointsTable.Predictors,'stable');
NumPred = length(Predictor);

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-90

Weight = zeros(NumPred,1);

for ii = 1 : NumPred
 Ind = strcmpi(Predictor{ii},PointsTable.Predictors);
 MaxPtsPred = max(PointsTable.Points(Ind));
 MinPtsPred = min(PointsTable.Points(Ind));
 Weight(ii) = 100*(MaxPtsPred-MinPtsPred)/PtsRange;
end

PredictorWeights = table(Predictor,Weight);
PredictorWeights(end+1,:) = PredictorWeights(end,:);
PredictorWeights.Predictor{end} = 'Total';
PredictorWeights.Weight(end) = sum(Weight);
disp(PredictorWeights)

 Predictor Weight
 _______________ _______

 {'CustAge' } 13.679
 {'TmAtAddress'} 5.1564
 {'ResStatus' } 8.7945
 {'EmpStatus' } 8.519
 {'CustIncome' } 19.259
 {'TmWBank' } 24.557
 {'OtherCC' } 7.3414
 {'AMBalance' } 12.365
 {'UtilRate' } 0.32919
 {'Total' } 100

% Plot a histogram of the weights
figure
bar(PredictorWeights.Weight(1:end-1))
title('Predictor Importance Estimates Using Logit');
ylabel('Estimates (%)');
xlabel('Predictors');
xticklabels(PredictorWeights.Predictor(1:end-1));

 Credit Scoring Using Logistic Regression and Decision Trees

3-91

Using Decision Trees for Predictor Importance

When you use decision trees, you can investigate predictor importance using the
predictorImportance function. On every predictor, the function sums and normalizes changes in
the risks due to splits by using the number of branch nodes. A high value in the output array indicates
a strong predictor.

imp = predictorImportance(dt);

figure;
bar(100*imp/sum(imp)); % to normalize on a 0-100% scale
title('Predictor Importance Estimates Using Decision Trees');
ylabel('Estimates (%)');
xlabel('Predictors');
xticklabels(dt.PredictorNames);

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-92

In this case, 'CustIncome' (parent node) is the most important predictor, followed by 'UtilRate',
where the second split happens, and so on. The predictor importance step can help in predictor
screening for datasets with a large number of predictors.

Notice that not only are the weights across models different, but the selected predictors in each
model also diverge. The predictors 'AMBalance' and 'OtherCC' are missing from the decision tree
model, and 'UtilRate' is missing from the logistic regression model.

Normalize the predictor importance for decision trees using a percent from 0 through 100%, then
compare the two models in a combined histogram.

Ind = ismember(Predictor,dt.PredictorNames);
w = zeros(size(Weight));
w(Ind) = 100*imp'/sum(imp);
figure
bar([Weight,w]);
title('Predictor Importance Estimates');
ylabel('Estimates (%)');
xlabel('Predictors');
h = gca;
xticklabels(Predictor)
legend({'logit','DT'})

 Credit Scoring Using Logistic Regression and Decision Trees

3-93

Note that these results depend on the binning algorithm you choose for the creditscorecard
object and the parameters used in fitctree to build the decision tree.

Model Validation

The creditscorecard function validatemodel attempts to compute scores based on internally
computed points. When you use decision trees, you cannot directly run a validation because the
model coefficients are unknown and cannot be mapped from the PDs.

To validate the creditscorecard object using logistic regression, use the validatemodel
function.

% Model validation for the creditscorecard
[StatsL,tL] = validatemodel(scl);

To validate decision trees, you can directly compute the statistics needed for validation.

% Compute the Area under the ROC
[x,y,t,AUC] = perfcurve(data.status,pdDT,1);
KSValue = max(y - x);
AR = 2 * AUC - 1;

% Create Stats table output
Measure = {'Accuracy Ratio','Area Under ROC Curve','KS Statistic'}';
Value = [AR;AUC;KSValue];

StatsDT = table(Measure,Value);

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-94

ROC Curve

The area under the receiver operating characteristic (AUROC) curve is a performance metric for
classification problems. AUROC measures the degree of separability — that is, how much the model
can distinguish between classes. In this example, the classes to distinguish are defaulters and
nondefaulters. A high AUROC indicates good predictive capability.

The ROC curve is plotted with the true positive rate (also known as the sensitivity or recall) plotted
against the false positive rate (also known as the fallout or specificity). When AUROC = 0.7, the model
has a 70% chance of correctly distinguishing between the classes. When AUROC = 0.5, the model has
no discrimination power.

This plot compares the ROC curves for both models using the same dataset.

figure
plot([0;tL.FalseAlarm],[0;tL.Sensitivity],'s')
hold on
plot(x,y,'-v')
xlabel('Fraction of nondefaulters')
ylabel('Fraction of defaulters')
legend({'logit','DT'},'Location','best')
title('Receiver Operating Characteristic (ROC) Curve')

tValidation = table(Measure,StatsL.Value(1:end-1),StatsDT.Value,'VariableNames',...
 {'Measure','logit','DT'});

disp(tValidation)

 Credit Scoring Using Logistic Regression and Decision Trees

3-95

 Measure logit DT
 ________________________ _______ _______

 {'Accuracy Ratio' } 0.32515 0.38903
 {'Area Under ROC Curve'} 0.66258 0.69451
 {'KS Statistic' } 0.23204 0.29666

As the AUROC values show, given the dataset and selected binning algorithm for the
creditscorecard object, the decision tree model has better predictive power than the logistic
regression model.

Summary

This example compares the logistic regression and decision tree scoring models using the
CreditCardData.mat dataset. A workflow is presented to compute and compare PDs using decision
trees. The decision tree model is validated and contrasted with the logistic regression model.

When reviewing the results, remember that these results depend on the choice of the dataset and the
default binning algorithm (monotone adjacent pooling algorithm) in the logistic regression workflow.

• Whether a logistic regression or decision tree model is a better scoring model depends on the
dataset and the choice of binning algorithm. Although the decision tree model in this example is a
better scoring model, the logistic regression model produces higher accuracy ratio (0.42),
AUROC (0.71), and KS statistic (0.30) values if the binning algorithm for the creditscorecard
object is set as 'Split' with Gini as the split criterion.

• The validatemodel function requires scaled scores to compute validation metrics and values. If
you use a decision tree model, scaled scores are unavailable and you must perform the
computations outside the creditscorecard object.

• To demonstrate the workflow, this example uses the same dataset for training the models and for
testing. However, to validate a model, using a separate testing dataset is ideal.

• Scaling options for decision trees are unavailable. To use scaling, choose a model other than
decision trees.

See Also
creditscorecard | screenpredictors | autobinning | bininfo | predictorinfo |
modifypredictor | modifybins | bindata | plotbins | fitmodel | displaypoints |
formatpoints | score | setmodel | probdefault | validatemodel

Related Examples
• “Common Binning Explorer Tasks” on page 3-4
• “Credit Scorecard Modeling with Missing Values”
• “Feature Screening with screenpredictors” on page 3-64
• “Troubleshooting Credit Scorecard Results”
• “Credit Rating by Bagging Decision Trees”
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page 3-36

More About
• “Overview of Binning Explorer” on page 3-2

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-96

• “About Credit Scorecards”
• “Credit Scorecard Modeling Workflow”
• Monotone Adjacent Pooling Algorithm (MAPA)
• “Credit Scorecard Modeling Using Observation Weights”

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

 Credit Scoring Using Logistic Regression and Decision Trees

3-97

https://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-121587.html

Explore Fairness Metrics for Credit Scoring Model

This example shows how to calculate and display fairness metrics for two sensitive attributes. You can
use these metrics to test data and the model for fairness and then determine the thresholds to apply
for your situation. You can also use the metrics to understand the biases in your model, the levels of
disparity between groups, and how to assess the fairness of the model. This example uses the
fairnessMetrics class in the Statistics and Machine Learning Toolbox™ to compute, display, and
plot the various fairness metrics.

Fairness Metrics Calculations

Fairness metrics are a set of measures that enable you to detect the presence of bias in your data or
model. Bias refers to the preference of one group over another group, implicitly or explicitly. When
you detect bias in your data or model, you can decide to take action to mitigate the bias. Bias
detection is a set of measures that enable you to see the presence of unfairness toward one group or
another. Bias mitigation is a set of tools to reduce the amount of bias that occurs in the data or model
for the current analysis.

A set of metrics exists for the data and a set of metrics also exists for the model. Group metrics
measure information within the group, whereas bias metrics measure differences across groups. The
example calculates two bias metrics (Statistical Parity Difference (SPD) and Disparate Impact (DI))
and a group metric (group count) at the data level. In this example, you calculate four bias metrics
and 17 group metrics at the model level.

Bias metrics:

• Statistical Parity Difference (SPD) measures the difference that the majority and protected classes
receive a favorable outcome. This measure must be equal to 0 to be fair.

SPD = P Y = 1 | A = minority − P Y = 1 | A = majority ,
where Y are the model predictions and A is the group of the sensitive attribute .

• Disparate Impact (DI) compares the proportion of individuals that receive a favorable outcome for
two groups, a majority group and a minority group. This measure must be equal to 1 to be fair.

DI = P Y = 1 | A = minority / P Y = 1 | A = majority ,
where Y are the model predictions and A is the group of the sensitive attribute .

• Equal Opportunity Difference (EOD) measures the deviation from the equality of opportunity,
which means that the same proportion of each population receives the favorable outcome. This
measure must be equal to 0 to be fair.

EOD = P Y = 1 | A = minority, Y = 1 − P Y = 1 | A = majority, Y = 1 ,
where Y are the model predictions, A is the group of the sensitive attribute,
and Y are the true labels .

• Average Absolute Odds Difference (AAOD) measures bias by using the false positive rate and true
positive rate. This measure must be equal to 0 to be fair.

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-98

AAOD = 1
2 |FPRA = minority − FPRA = majority | + |TPRA = minority − TPRA = majority| ,

where A is the group of the sensitive attribute .

Group metrics:

• True Positives (TP) is the total number of outcomes where the model correctly predicts the
positive class.

• True Negatives (TN) is the total number of outcomes where the model correctly predicts the
negative class.

• False Positives (FP) is the total number of outcomes where the model incorrectly predicts the
positive class.

• False Negatives (FN) is the total number of outcomes where the model incorrectly predicts the
negative class.

• True Positive Rate (TPR) is the sensitivity.

TPR = TP
TP + FN

• True Negative Rate (TNR) is the specificity or selectivity.

TNR = TN
TN + FP

• False Positive Rate (FPR) is the Type-I error.

FPR = FP
FP + TN

• False Negative Rate (FNR) is the Type-II error.

FNR = FN
FN + TP

• False Discovery Rate (FDR) is the ratio of the number of false positive results to the number of
total positive test results.

FDR = FP
FP + TP

• False Omission Rate (FOR) is the ratio of the number of individuals with a negative predicted
value for which the true label is positive.

FOR = FN
FN + TN

• Positive Predictive Value (PPV) is the ratio of the number of true positives to the number of true
positives and false positives.

PPV = TP
TP + FP

• Negative Predictive Value (NPV) is the ratio of the number of true negatives to the number of true
positives and false positives.

 Explore Fairness Metrics for Credit Scoring Model

3-99

NPV = TN
TN + FN

• Rate of Positive Predictions (RPP) or Acceptance Rate is the ratio of the number of false and true
positives to the total observations.

RPP = FP + TP
TN + TP + FN + FP

• Rate of Negative Predictions (RNP) is the ratio of the number of false and true negatives to the
total observations.

RNP = FN + TN
TN + TP + FN + FP

• Accuracy (ACC) is the ratio of the number of true negatives and true positives to the total
observations.

ACC = TN + TP
TN + TP + FN + FP

• Group Count is the number of individuals in the group.
• Group Size Ratio is the ratio of the number of individuals in that group to the total number of

individuals.

The example focuses on bias detection in credit card data and explores bias metrics and group
metrics based on the sensitive attributes of customer age (CustAge) and residential status
(ResStatus). The data contains the residential status as a categorical variable and the customer age
as a numeric variable. To create predictions and analyze the data for fairness, you group the
customer age variable into bins.

Visualize Sensitive Attributes in Credit Card Data

Load the credit card data set. Group the customer age into bins. Use the discretize function for a
numeric variable to create groups that identify age groups of interest for comparison on fairness.
Retrieve the counts for both sensitive attributes of customer age and residential status.

load CreditCardData.mat

AgeGroup = discretize(data.CustAge,[min(data.CustAge) 30 45 60 max(data.CustAge)], ...
 'categorical',{'Age < 30','30 <= Age < 45','45 <= Age < 60','Age >= 60'});
data = addvars(data,AgeGroup,'After','CustAge');

gs_data_ResStatus = groupsummary(data,{'ResStatus','status'});
gs_data_AgeGroup = groupsummary(data,{'AgeGroup','status'});

Plot the count of customers who have defaulted on their credit card payments and who have not
defaulted by age.

Attribute = ;
figure
bar(unique(data.(Attribute)), ...
 [eval("gs_data_"+Attribute+".GroupCount(1:2:end)"), ...
 eval("gs_data_"+Attribute+".GroupCount(2:2:end)")]');
title(Attribute +" True Counts");

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-100

ylabel('Counts')
legend({'Nondefaults','Defaults'})

Calculate Fairness Metrics for Data

Calculate fairness metrics for the residential status and customer age data. The fairnessMetrics
class returns a fairnessMetrics object, whichis then passed into the report method to obtain a
table with bias metrics and group metrics. Bias metrics take into account two classes (the majority
and minority) at a time, while group metrics are within the individual group. In the data set, if you
use residential status as the sensitive attribute, then the Home Owner group is the majority class
because this class contains the largest number of individuals. Based on the SPD and DI metrics, the
data set does not show a significant presence of bias for residential status. For the customer age data,
the age group between 45 and 60 is the majority class because this class contains the largest number
of individuals. Compared to the residential status, based on the SPD and DI metrics, the age group
that is greater than 60 shows a slightly larger presence of bias.

dataMetricsObj = fairnessMetrics(data, 'status', 'SensitiveAttributeNames',{'ResStatus','AgeGroup'})

dataMetricsObj =
 fairnessMetrics with properties:

 SensitiveAttributeNames: {'ResStatus' 'AgeGroup'}
 ReferenceGroup: {'Home Owner' '45 <= Age < 60'}
 ResponseName: 'status'
 PositiveClass: 1
 BiasMetrics: [7x4 table]
 GroupMetrics: [7x4 table]

 Explore Fairness Metrics for Credit Scoring Model

3-101

 Properties, Methods

dataMetricsTable = report(dataMetricsObj,'GroupMetrics','GroupCount')

dataMetricsTable=7×5 table
 SensitiveAttributeNames Groups StatisticalParityDifference DisparateImpact GroupCount
 _______________________ ______________ ___________________________ _______________ __________

 ResStatus Home Owner 0 1 542
 ResStatus Tenant 0.025752 1.0789 474
 ResStatus Other -0.038525 0.88203 184
 AgeGroup Age < 30 0.0811 1.2759 64
 AgeGroup 30 <= Age < 45 0.10333 1.3516 506
 AgeGroup 45 <= Age < 60 0 1 541
 AgeGroup Age >= 60 -0.14783 0.497 89

Create Credit Scorecard Model and Generate Predictions

Create a credit scorecard model using the creditscorecard function. Perform automatic binning of
the predictors using the autobinning function. Fit a logistic regression model to the Weight of
Evidence (WOE) data using the fitmodel function. Store the predictor names and corresponding
coefficients in the credit scorecard model.

PredictorVars = setdiff(data.Properties.VariableNames, ...
 {'AgeGroup','CustID','status'});
sc = creditscorecard(data,'IDVar','CustID', ...
 'PredictorVars',PredictorVars);
sc = autobinning(sc);
sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
 logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ______ __________

 (Intercept) 0.70239 0.064001 10.975 5.0538e-28
 CustAge 0.60833 0.24932 2.44 0.014687
 ResStatus 1.377 0.65272 2.1097 0.034888
 EmpStatus 0.88565 0.293 3.0227 0.0025055
 CustIncome 0.70164 0.21844 3.2121 0.0013179
 TmWBank 1.1074 0.23271 4.7589 1.9464e-06
 OtherCC 1.0883 0.52912 2.0569 0.039696
 AMBalance 1.045 0.32214 3.2439 0.0011792

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-102

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Display unscaled points for predictors retained in the model using the displaypoints function.

pointsinfo = displaypoints(sc)

pointsinfo=37×3 table
 Predictors Bin Points
 ______________ ________________ _________

 {'CustAge' } {'[-Inf,33)' } -0.15894
 {'CustAge' } {'[33,37)' } -0.14036
 {'CustAge' } {'[37,40)' } -0.060323
 {'CustAge' } {'[40,46)' } 0.046408
 {'CustAge' } {'[46,48)' } 0.21445
 {'CustAge' } {'[48,58)' } 0.23039
 {'CustAge' } {'[58,Inf]' } 0.479
 {'CustAge' } {'<missing>' } NaN
 {'ResStatus' } {'Tenant' } -0.031252
 {'ResStatus' } {'Home Owner' } 0.12696
 {'ResStatus' } {'Other' } 0.37641
 {'ResStatus' } {'<missing>' } NaN
 {'EmpStatus' } {'Unknown' } -0.076317
 {'EmpStatus' } {'Employed' } 0.31449
 {'EmpStatus' } {'<missing>' } NaN
 {'CustIncome'} {'[-Inf,29000)'} -0.45716
 ⋮

For details about creating a more in depth credit scoring model, see the “Bin Data to Create Credit
Scorecards Using Binning Explorer” on page 3-23.

Calculate the probability of default for the credit scorecard model using the probdefault function.
Define the threshold for the probability of default as 0.35. Create an array of predictions where each
value is greater than the threshold.

pd = probdefault(sc);
threshold = 0.35;
predictions = double(pd>threshold);

Add the resulting predictions to the data output table. To calculate bias metrics, you can set aside a
set of validation data. Retrieve the counts for the residential status and customer age predictions.
Plot the customer age predictions.

data = addvars(data,predictions,'After','status');
gs_predictions_ResStatus = groupsummary(data,{'ResStatus','predictions'}, ...
 'IncludeEmptyGroups',true);
gs_predictions_AgeGroup = groupsummary(data,{'AgeGroup','predictions'}, ...
 'IncludeEmptyGroups',true);

Attribute = ;
figure
bar(unique(data.(Attribute)), ...

 Explore Fairness Metrics for Credit Scoring Model

3-103

 [eval("gs_predictions_"+Attribute+".GroupCount(1:2:end)"), ...
 eval("gs_predictions_"+Attribute+".GroupCount(2:2:end)")]');
title(Attribute +" Prediction Counts");
ylabel('Counts')
legend({'Nondefaults','Defaults'})

Calculate and Visualize Fairness Metrics for Credit Scorecard Model

Calculate model bias and group metrics for residential status and customer age. For the DI model
metric, the commonly used range to assess fairness is between 0.8 and 1.25 [3 on page 3-109]. A
value of less than 0.8 indicates the presence of bias. However, a value greater than 1.25 indicates
that something is incorrect and additional investigation might be required. The model bias metrics in
this example show a greater effect on fairness than the data bias metrics. After the model has been
fitted, the negative SPD and EOD values mean that the Other group shows a slight presence of bias.
In the group metrics, the FPR group metric of 39.7% is higher for tenants than home owners, which
means that tenants are more likely to be falsely labeled as defaults. The FDR, FOR, PPV, and NPV
group metrics show a very minimal presence of bias.

Looking at the model bias metrics SPD, DI, EOD, and AAOD for customer age, the 30 and under
group has the greatest variance from the majority class and might require further investigation.
Further, the age group over 60 shows the presence of bias based on the negative SPD and EOD
values and the very low DI value. Also, based on the DI metrics, additional model bias mitigation
might be required.

In the group metrics, the FPR group metric of 80% is much higher for the 30 and under group than
the majority class, which means that those individuals whose age is 30 and under are more likely to

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-104

be falsely labeled as defaults. The FDR group metric of 83.3% is much higher for the over 60 group
than the majority class, which means that 83.3% of individuals whose age is over 60 and identified as
defaults by the model are false positives. The Accuracy metric shows the highest accuracy for the
over 60 group at 80.9%.

modelMetricsObj = fairnessMetrics(data, 'status', 'SensitiveAttributeNames',{'ResStatus','AgeGroup'},'Predictions',predictions)

modelMetricsObj =
 fairnessMetrics with properties:

 SensitiveAttributeNames: {'ResStatus' 'AgeGroup'}
 ReferenceGroup: {'Home Owner' '45 <= Age < 60'}
 ResponseName: 'status'
 PositiveClass: 1
 BiasMetrics: [7x7 table]
 GroupMetrics: [7x20 table]
 ModelNames: 'Model1'

 Properties, Methods

modelMetricsTable = report(modelMetricsObj,'GroupMetrics','all')

modelMetricsTable=7×24 table
 ModelNames SensitiveAttributeNames Groups StatisticalParityDifference DisparateImpact EqualOpportunityDifference AverageAbsoluteOddsDifference GroupCount GroupSizeRatio TruePositives TrueNegatives FalsePositives FalseNegatives TruePositiveRate TrueNegativeRate FalsePositiveRate FalseNegativeRate FalseDiscoveryRate FalseOmissionRate PositivePredictiveValue NegativePredictiveValue RateOfPositivePredictions RateOfNegativePredictions Accuracy
 __________ _______________________ ______________ ___________________________ _______________ __________________________ _____________________________ __________ ______________ _____________ _____________ ______________ ______________ ________________ ________________ _________________ _________________ __________________ _________________ _______________________ _______________________ _________________________ _________________________ ________

 Model1 ResStatus Home Owner 0 1 0 0 542 0.45167 88 252 113 89 0.49718 0.69041 0.30959 0.50282 0.56219 0.261 0.43781 0.739 0.37085 0.62915 0.62731
 Model1 ResStatus Tenant 0.10173 1.2743 0.1136 0.1007 474 0.395 102 185 122 65 0.61078 0.60261 0.39739 0.38922 0.54464 0.26 0.45536 0.74 0.47257 0.52743 0.60549
 Model1 ResStatus Other -0.11541 0.68878 -0.082081 0.10042 184 0.15333 22 106 25 31 0.41509 0.80916 0.19084 0.58491 0.53191 0.22628 0.46809 0.77372 0.25543 0.74457 0.69565
 Model1 AgeGroup Age < 30 0.55389 3.4362 0.41038 0.51487 64 0.053333 18 8 32 6 0.75 0.2 0.8 0.25 0.64 0.42857 0.36 0.57143 0.78125 0.21875 0.40625
 Model1 AgeGroup 30 <= Age < 45 0.35169 2.5469 0.35192 0.3381 506 0.42167 139 151 154 62 0.69154 0.49508 0.50492 0.30846 0.5256 0.29108 0.4744 0.70892 0.57905 0.42095 0.57312
 Model1 AgeGroup 45 <= Age < 60 0 1 0 0 541 0.45083 54 313 69 105 0.33962 0.81937 0.18063 0.66038 0.56098 0.2512 0.43902 0.7488 0.22736 0.77264 0.67837
 Model1 AgeGroup Age >= 60 -0.15994 0.29652 -0.2627 0.18877 89 0.074167 1 71 5 12 0.076923 0.93421 0.065789 0.92308 0.83333 0.14458 0.16667 0.85542 0.067416 0.93258 0.80899

Choose the bias metric and sensitive attribute and plot it. This code selects AAOD and AgeGroup by
default.

BiasMetric = ;

SensitiveAttribute = ;
plot(modelMetricsObj, BiasMetric, "SensitiveAttributeNames", SensitiveAttribute);

 Explore Fairness Metrics for Credit Scoring Model

3-105

For the same sensitive attribute, choose the group metric and plot it. This code selects the group
count by default. The resulting plots show the metric values for the selected sensitive attribute.

GroupMetric = ;
plot(modelMetricsObj, GroupMetric, "SensitiveAttributeNames", SensitiveAttribute);

Plot the SPD, DI, EOD, and AAOD bias metrics for the two sensitive attributes.

MetricsShort = ["spd" "di" "eod" "aaod"];
tiledlayout(2,4)

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-106

for sa = string(modelMetricsObj.SensitiveAttributeNames)
 for m = MetricsShort
 nexttile
 h = plot(modelMetricsObj,m,'SensitiveAttributeNames',sa);
 title(h.Parent,upper(m));
 h.Parent.XLabel = [];
 if m~=MetricsShort(1)
 h.Parent.YTickLabel = '';
 h.Parent.YLabel = [];
 end
 end
end

 Explore Fairness Metrics for Credit Scoring Model

3-107

Bias preserving metrics seek to keep the historic performance in the outputs of a target model with
equivalent error rates for each group as shown in the training data. These metrics do not alter the
status quo that exists in society. A fairness metric is classified as bias preserving when a perfect
classifier exactly satisfies the metric. In contrast, bias transforming metrics require the explicit
decision regarding which biases the system should exhibit. These metrics do not accept the status
quo and acknowledge that protected groups start from different points that are not equal. The main
difference between these two types of metrics is that most bias transforming metrics are satisfied by
matching decision rates between groups, whereas bias preserving metrics require matching error
rates instead. To assess the fairness of a decision-making system, use both bias preserving and
transforming metrics to create the broadest possible view of the bias in the system.

Evaluating whether a metric is bias preserving is straightforward with a perfect classifier. In the
absence of a perfect classifier, you can substitute the predictions with the classifier response and
observe if the formula is trivially true. EOD and AAOD are bias preserving metrics because they have
no variance; however, SPD and DI are bias transforming metrics as they show a variance from the
majority classes.

biasMetrics_ResStatus1Obj = fairnessMetrics(data, 'status', 'SensitiveAttributeNames' ,'ResStatus', 'Predictions', 'status');
report(biasMetrics_ResStatus1Obj)

ans=3×7 table
 ModelNames SensitiveAttributeNames Groups StatisticalParityDifference DisparateImpact EqualOpportunityDifference AverageAbsoluteOddsDifference
 __________ _______________________ __________ ___________________________ _______________ __________________________ _____________________________

 status ResStatus Home Owner 0 1 0 0
 status ResStatus Tenant 0.025752 1.0789 0 0

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-108

 status ResStatus Other -0.038525 0.88203 0 0

biasMetrics_AgeGroup1Obj = fairnessMetrics(data, 'status', 'SensitiveAttributeNames', 'AgeGroup', 'Predictions', 'status');
report(biasMetrics_AgeGroup1Obj)

ans=4×7 table
 ModelNames SensitiveAttributeNames Groups StatisticalParityDifference DisparateImpact EqualOpportunityDifference AverageAbsoluteOddsDifference
 __________ _______________________ ______________ ___________________________ _______________ __________________________ _____________________________

 status AgeGroup Age < 30 0.0811 1.2759 0 0
 status AgeGroup 30 <= Age < 45 0.10333 1.3516 0 0
 status AgeGroup 45 <= Age < 60 0 1 0 0
 status AgeGroup Age >= 60 -0.14783 0.497 0 0

References

1 Schmidt, Nicolas, Sue Shay, Steve Dickerson, Patrick Haggerty, Arjun R. Kannan, Kostas
Kotsiopoulos, Raghu Kulkarni, Alexey Miroshnikov, Kate Prochaska, Melanie Wiwczaroski,
Benjamin Cox, Patrick Hall, and Josephine Wang. Machine Learning: Considerations for Fairly
and Transparently Expanding Access to Credit. Mountain View, CA: H2O.ai, Inc., July 2020.

2 Mehrabi, Ninareh, et al. “A Survey on Bias and Fairness in Machine Learning.” ArXiv:1908.09635
[Cs], Sept. 2019. arXiv.org, https://arxiv.org/abs/1908.09635.

3 Saleiro, Pedro, et al. “Aequitas: A Bias and Fairness Audit Toolkit.” ArXiv:1811.05577 [Cs], Apr.
2019. arXiv.org, https://arxiv.org/abs/1811.05577.

4 Wachter, Sandra, et al. Bias Preservation in Machine Learning: The Legality of Fairness Metrics
Under EU Non-Discrimination Law. SSRN Scholarly Paper, ID 3792772, Social Science Research
Network, 15 Jan. 2021. papers.ssrn.com, https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=3792772.

See Also
creditscorecard | autobinning | fitmodel | displaypoints | probdefault

Related Examples
• “Bin Data to Create Credit Scorecards Using Binning Explorer” on page 3-23
• “Bias Mitigation in Credit Scoring by Reweighting” on page 3-110
• “Bias Mitigation in Credit Scoring by Disparate Impact Removal” on page 3-119

 Explore Fairness Metrics for Credit Scoring Model

3-109

https://arxiv.org/abs/1908.09635
https://arxiv.org/abs/1811.05577
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3792772
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3792772

Bias Mitigation in Credit Scoring by Reweighting

Bias mitigation is the process of removing bias from a data set or a model in order to make it fair.
Bias mitigation usually follows a bias detection step, where a series of metrics are computed based on
a data set or model predictions. Bias mitigation has three stages: pre-processing, in-processing, and
post-processing. This example demonstates a pre-processing method to mitigate bias in a credit
scoring workflow. The example uses bias detection and bias mitigation functionality from the
Statistics and Machine Learning Toolbox™. For a detailed example on bias detection, see the
following example: “Explore Fairness Metrics for Credit Scoring Model” on page 3-98.

The bias mitigation method in this example is Reweighting which essentially reweights observations
within a data set to guarantee fairness between different subgroups within a sensitive attribute. As a
result of reweighting, the Statistical Parity Difference (SPD) of all subgroups goes to 0 and the
Disparate Impact metric becomes 1. This example demonstrates how reweighting works in a credit
scoring workflow.

Load Data

Load the CreditCardData data set and discretize the 'CustAge' predictor.

load CreditCardData.mat

AgeGroup = discretize(data.CustAge,[min(data.CustAge) 30 45 60 max(data.CustAge)], ...
 'categorical',{'Age < 30','30 <= Age < 45','45 <= Age < 60','Age >= 60'});

data = addvars(data,AgeGroup,'After','CustAge');
head(data)

 CustID CustAge AgeGroup TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status
 ______ _______ ______________ ___________ __________ _________ __________ _______ _______ _________ ________ ______

 1 53 45 <= Age < 60 62 Tenant Unknown 50000 55 Yes 1055.9 0.22 0
 2 61 Age >= 60 22 Home Owner Employed 52000 25 Yes 1161.6 0.24 0
 3 47 45 <= Age < 60 30 Tenant Employed 37000 61 No 877.23 0.29 0
 4 50 45 <= Age < 60 75 Home Owner Employed 53000 20 Yes 157.37 0.08 0
 5 68 Age >= 60 56 Home Owner Employed 53000 14 Yes 561.84 0.11 0
 6 65 Age >= 60 13 Home Owner Employed 48000 59 Yes 968.18 0.15 0
 7 34 30 <= Age < 45 32 Home Owner Unknown 32000 26 Yes 717.82 0.02 1
 8 50 45 <= Age < 60 57 Other Employed 51000 33 No 3041.2 0.13 0

Split the data set into training and testing data. Use the training data to fit the model and the testing
data to predict from the model.

rng('default');
c = cvpartition(size(data,1),'HoldOut',0.3);
data_Train = data(c.training(),:);
data_Test = data(c.test(),:);

Compute Fairness Metrics at Predictor and Model Level

Compute the fairness metrics for the training data by creating a fairnessMetrics object and then
generating a metrics report using report. Since you are only working with data and there is no fitted
model, only two bias metrics are computed for StatisticalParityDifference and
DisparateImpact. The two group metrics computed are GroupCount and GroupSizeRatio. The

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-110

fairness metrics are computed for two sensitive attributes, Age ('AgeGroup') and Residential Status
('ResStatus').

trainingDataMetrics = fairnessMetrics(data_Train, 'status', 'SensitiveAttributeNames',{'AgeGroup', 'ResStatus'});
tdmReport = report(trainingDataMetrics)

tdmReport=7×4 table
 SensitiveAttributeNames Groups StatisticalParityDifference DisparateImpact
 _______________________ ______________ ___________________________ _______________

 AgeGroup Age < 30 0.039827 1.1357
 AgeGroup 30 <= Age < 45 0.096324 1.3282
 AgeGroup 45 <= Age < 60 0 1
 AgeGroup Age >= 60 -0.19181 0.34648
 ResStatus Home Owner 0 1
 ResStatus Tenant 0.01689 1.0529
 ResStatus Other -0.02108 0.93404

figure
tiledlayout(2,1)
nexttile
plot(trainingDataMetrics,'spd')
nexttile
plot(trainingDataMetrics,'di')

Looking at the DisparateImpact bias metric for both AgeGroup and ResStatus, you can see that
there is a much larger variance in the AgeGroup predictor as compared to the ResStatus predictor.

 Bias Mitigation in Credit Scoring by Reweighting

3-111

This suggests that users are treated more unfairly when it comes to their age as compared to their
residential status. This example focuses on the AgeGroup predictor and attempts to reduce bias
among its subgroups.

To begin, fit a credit scoring model and compute the model-level bias metrics. This provides a
baseline for comparison.

Since CustAge and AgeGroup are essentially the same predictor and this is a sensitive attribute, you
can exclude it from the model. Additionally, you can use 'status' as the response variable and
'CustID' as the ID variable.

PredictorVars = setdiff(data_Train.Properties.VariableNames, ...
 {'CustAge','AgeGroup','CustID','FairWeights','status'});
sc1 = creditscorecard(data_Train,'IDVar','CustID', ...
 'PredictorVars',PredictorVars,'ResponseVar','status');
sc1 = autobinning(sc1);
sc1 = fitmodel(sc1,'VariableSelection','fullmodel');

Generalized linear regression model:
 logit(status) ~ 1 + TmAtAddress + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance + UtilRate
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ________ __________

 (Intercept) 0.73924 0.077237 9.5711 1.058e-21
 TmAtAddress 1.2577 0.99118 1.2689 0.20448
 ResStatus 1.755 1.295 1.3552 0.17535
 EmpStatus 0.88652 0.32232 2.7504 0.0059516
 CustIncome 0.95991 0.19645 4.8862 1.0281e-06
 TmWBank 1.132 0.3157 3.5856 0.00033637
 OtherCC 0.85227 2.1198 0.40204 0.68765
 AMBalance 1.0773 0.31969 3.3698 0.00075232
 UtilRate -0.19784 0.59565 -0.33214 0.73978

840 observations, 831 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 66.5, p-value = 2.44e-11

pointsinfo1 = displaypoints(sc1)

pointsinfo1=38×3 table
 Predictors Bin Points
 _______________ _________________ _________

 {'TmAtAddress'} {'[-Inf,9)' } -0.17538
 {'TmAtAddress'} {'[9,16)' } 0.05434
 {'TmAtAddress'} {'[16,23)' } 0.096897
 {'TmAtAddress'} {'[23,Inf]' } 0.13984
 {'TmAtAddress'} {'<missing>' } NaN
 {'ResStatus' } {'Tenant' } -0.017688
 {'ResStatus' } {'Home Owner' } 0.11681
 {'ResStatus' } {'Other' } 0.29011
 {'ResStatus' } {'<missing>' } NaN
 {'EmpStatus' } {'Unknown' } -0.097582
 {'EmpStatus' } {'Employed' } 0.33162

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-112

 {'EmpStatus' } {'<missing>' } NaN
 {'CustIncome' } {'[-Inf,30000)' } -0.61962
 {'CustIncome' } {'[30000,36000)'} -0.10695
 {'CustIncome' } {'[36000,40000)'} 0.0010845
 {'CustIncome' } {'[40000,42000)'} 0.065532
 ⋮

pd1 = probdefault(sc1,data_Test);

Set the threshold value that controls the allocation of "goods" and "bads."

threshold = ;
predictions1 = double(pd1>threshold);

Create a fairnessMetrics object to compute fairness metrics at the model level and then generate
a metrics report using report.

modelMetrics1 = fairnessMetrics(data_Test, 'status', 'Predictions', predictions1, 'SensitiveAttributeNames','AgeGroup');
mmReport1 = report(modelMetrics1)

mmReport1=4×7 table
 ModelNames SensitiveAttributeNames Groups StatisticalParityDifference DisparateImpact EqualOpportunityDifference AverageAbsoluteOddsDifference
 __________ _______________________ ______________ ___________________________ _______________ __________________________ _____________________________

 Model1 AgeGroup Age < 30 0.54312 2.6945 0.47391 0.5362
 Model1 AgeGroup 30 <= Age < 45 0.19922 1.6216 0.35645 0.22138
 Model1 AgeGroup 45 <= Age < 60 0 1 0 0
 Model1 AgeGroup Age >= 60 -0.15385 0.52 -0.18323 0.16375

Measure accuracy of model using validatemodel.

validatemodel(sc1)

ans=4×2 table
 Measure Value
 ________________________ _______

 {'Accuracy Ratio' } 0.33751
 {'Area under ROC curve'} 0.66876
 {'KS statistic' } 0.26418
 {'KS score' } 1.0403

figure
tiledlayout(2,1)
nexttile
plot(modelMetrics1,'spd')
nexttile
plot(modelMetrics1,'di')

 Bias Mitigation in Credit Scoring by Reweighting

3-113

Reweight Data at Predictor and Model Level

Use fairnessWeights to reweight the training data to remove bias for the sensitive attribute
'AgeGroup'.

fairWeights = fairnessWeights(data_Train, 'AgeGroup', 'status');
data_Train.FairWeights = fairWeights;
head(data_Train)

 CustID CustAge AgeGroup TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status FairWeights
 ______ _______ ______________ ___________ __________ _________ __________ _______ _______ _________ ________ ______ ___________

 1 53 45 <= Age < 60 62 Tenant Unknown 50000 55 Yes 1055.9 0.22 0 0.95879
 2 61 Age >= 60 22 Home Owner Employed 52000 25 Yes 1161.6 0.24 0 0.75407
 3 47 45 <= Age < 60 30 Tenant Employed 37000 61 No 877.23 0.29 0 0.95879
 4 50 45 <= Age < 60 75 Home Owner Employed 53000 20 Yes 157.37 0.08 0 0.95879
 7 34 30 <= Age < 45 32 Home Owner Unknown 32000 26 Yes 717.82 0.02 1 0.82759
 8 50 45 <= Age < 60 57 Other Employed 51000 33 No 3041.2 0.13 0 0.95879
 9 50 45 <= Age < 60 10 Tenant Unknown 52000 25 Yes 115.56 0.02 1 1.0992
 10 49 45 <= Age < 60 30 Home Owner Unknown 53000 23 Yes 718.5 0.17 1 1.0992

Use fairnessMetrics to compute fairness metrics for the training data after reweighting and use
report to generate a fairness metrics report..

trainingDataMetrics_AfterReweighting = fairnessMetrics(data_Train, 'status', 'SensitiveAttributeNames','AgeGroup','Weights','FairWeights');
tdmrReport = report(trainingDataMetrics_AfterReweighting)

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-114

tdmrReport=4×4 table
 SensitiveAttributeNames Groups StatisticalParityDifference DisparateImpact
 _______________________ ______________ ___________________________ _______________

 AgeGroup Age < 30 -2.9976e-15 1
 AgeGroup 30 <= Age < 45 -5.5511e-16 1
 AgeGroup 45 <= Age < 60 0 1
 AgeGroup Age >= 60 -2.9421e-15 1

By applying the reweighting algorithm to the AgeGroup predictor, you can completely remove the
disparate impact for AgeGroup. Then use this debiased data to fit a model to produce predictions
with an overall reduced disparate impact at the model level.

Use creditscorecard to fit a new credit scoring model with the new fair weights and compute
model-level bias metrics.

sc2 = creditscorecard(data_Train,'IDVar','CustID', ...
 'PredictorVars',PredictorVars,'WeightsVar','FairWeights','ResponseVar','status');
sc2 = autobinning(sc2);
sc2 = fitmodel(sc2,'VariableSelection','fullmodel');

Generalized linear regression model:
 logit(status) ~ 1 + TmAtAddress + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance + UtilRate
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ________ __________

 (Intercept) 0.74055 0.076222 9.7158 2.5817e-22
 TmAtAddress 1.3416 0.9108 1.473 0.14075
 ResStatus 2.0467 1.7669 1.1584 0.24672
 EmpStatus 0.91879 0.32197 2.8536 0.0043222
 CustIncome 0.91038 0.33216 2.7407 0.00613
 TmWBank 1.1067 0.30826 3.5901 0.0003305
 OtherCC 0.42264 3.5078 0.12049 0.9041
 AMBalance 1.1347 0.3447 3.2919 0.00099504
 UtilRate -0.39861 0.77284 -0.51577 0.60601

840 observations, 831 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 46.6, p-value = 1.85e-07

pointsinfo2 = displaypoints(sc2)

pointsinfo2=34×3 table
 Predictors Bin Points
 _______________ _________________ ________

 {'TmAtAddress'} {'[-Inf,9)' } -0.21328
 {'TmAtAddress'} {'[9,23)' } 0.07168
 {'TmAtAddress'} {'[23,Inf]' } 0.14763
 {'TmAtAddress'} {'<missing>' } NaN
 {'ResStatus' } {'Tenant' } 0.016048
 {'ResStatus' } {'Home Owner' } 0.091092
 {'ResStatus' } {'Other' } 0.28326

 Bias Mitigation in Credit Scoring by Reweighting

3-115

 {'ResStatus' } {'<missing>' } NaN
 {'EmpStatus' } {'Unknown' } -0.10352
 {'EmpStatus' } {'Employed' } 0.33653
 {'EmpStatus' } {'<missing>' } NaN
 {'CustIncome' } {'[-Inf,30000)' } -0.37618
 {'CustIncome' } {'[30000,40000)'} 0.047483
 {'CustIncome' } {'[40000,42000)'} 0.10244
 {'CustIncome' } {'[42000,47000)'} 0.14652
 {'CustIncome' } {'[47000,Inf]' } 0.40015
 ⋮

pd2 = probdefault(sc2,data_Test);
predictions2 = double(pd2>threshold);

Use fairnessMetrics to compute fairness metrics at the model level and report to generate a
fairness metrics report.

modelMetrics2 = fairnessMetrics(data_Test, 'status', 'Predictions', predictions2, 'SensitiveAttributeNames','AgeGroup');
mmReport2 = report(modelMetrics2)

mmReport2=4×7 table
 ModelNames SensitiveAttributeNames Groups StatisticalParityDifference DisparateImpact EqualOpportunityDifference AverageAbsoluteOddsDifference
 __________ _______________________ ______________ ___________________________ _______________ __________________________ _____________________________

 Model1 AgeGroup Age < 30 0.39394 2.1818 0.37391 0.39377
 Model1 AgeGroup 30 <= Age < 45 0.094298 1.2829 0.22947 0.11509
 Model1 AgeGroup 45 <= Age < 60 0 1 0 0
 Model1 AgeGroup Age >= 60 -0.13333 0.6 -0.18323 0.1511

Measure accuracy of model using validatemodel.

validatemodel(sc2)

ans=4×2 table
 Measure Value
 ________________________ _______

 {'Accuracy Ratio' } 0.27735
 {'Area under ROC curve'} 0.63868
 {'KS statistic' } 0.22702
 {'KS score' } 0.90741

figure
tiledlayout(2,1)
nexttile
plot(modelMetrics2,'spd')
nexttile
plot(modelMetrics2,'di')

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-116

The process of reweighting removed all the bias from the training data. When you use the new data
to fit a model, the overall bias in the model is reduced when compared to a model trained with biased
data. As a consequence of this reduction in bias, there is a drop in model accuracy. You can choose to
make tradeoff to improve fairness.

References

[1] Nielsen, Aileen. "Chapter 4. Fairness PreProcessing." Practical Fairness. O'Reilly Media, Inc., Dec.
2020.

[2] Mehrabi, Ninareh, et al. “A Survey on Bias and Fairness in Machine Learning.” ArXiv:1908.09635
[Cs], Sept. 2019. arXiv.org, https://arxiv.org/abs/1908.09635.

[3] Wachter, Sandra, et al. Bias Preservation in Machine Learning: The Legality of Fairness Metrics
Under EU Non-Discrimination Law. SSRN Scholarly Paper, ID 3792772, Social Science Research
Network, 15 Jan. 2021. papers.ssrn.com, https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=3792772.

See Also
creditscorecard | autobinning | fitmodel | displaypoints | probdefault

Related Examples
• “Bin Data to Create Credit Scorecards Using Binning Explorer” on page 3-23

 Bias Mitigation in Credit Scoring by Reweighting

3-117

https://arxiv.org/abs/1908.09635
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3792772
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3792772

• “Explore Fairness Metrics for Credit Scoring Model” on page 3-98
• “Bias Mitigation in Credit Scoring by Disparate Impact Removal” on page 3-119

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-118

Bias Mitigation in Credit Scoring by Disparate Impact Removal

Disparate impact removal is a pre-processing technique in bias mitigation. Using this technique, you
modify the original credit score data to increase group fairness, while still preserving rank ordering
within groups. Using a disparate impact removal technique reduces the bias introduced by the credit
scoring model more than if you use the original data to train the credit scoring model. You perform
the disparate impact removal technique using the disparateImpactRemover class from the
Statistics and Machine Learning Toolbox™. This class returns a remover object along with a table
containing the new predictor values. However, you need to use the transform method with the
remover object on the test data before you can predict using the fitted credit scoring model.

The disparate impact removal technique works only with the distribution of data within a numeric
predictor for each subgroup of a sensitive attribute. The disparateImpactRemover class has no
knowledge of, or relation to, the response variable. In this example, you treat all the numeric
predictors, time at address (TmAtAddress), customer income (CustIncome), time with Bank
(TmWBank), average monthly balance (AMBalance), and utilization rate (UtilRate), with respect to
the sensitive attribute, customer age (AgeGroup).

Original Credit Scoring Model

This example uses a credit scoring workflow. Load the CreditCardData.mat and use the 'data'
data set.

load CreditCardData.mat

AgeGroup = discretize(data.CustAge,[min(data.CustAge) 30 45 60 max(data.CustAge)], ...
 'categorical',{'Age < 30','30 <= Age < 45','45 <= Age < 60','Age >= 60'});
data = addvars(data,AgeGroup,'After','CustAge');
head(data)

 CustID CustAge AgeGroup TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status
 ______ _______ ______________ ___________ __________ _________ __________ _______ _______ _________ ________ ______

 1 53 45 <= Age < 60 62 Tenant Unknown 50000 55 Yes 1055.9 0.22 0
 2 61 Age >= 60 22 Home Owner Employed 52000 25 Yes 1161.6 0.24 0
 3 47 45 <= Age < 60 30 Tenant Employed 37000 61 No 877.23 0.29 0
 4 50 45 <= Age < 60 75 Home Owner Employed 53000 20 Yes 157.37 0.08 0
 5 68 Age >= 60 56 Home Owner Employed 53000 14 Yes 561.84 0.11 0
 6 65 Age >= 60 13 Home Owner Employed 48000 59 Yes 968.18 0.15 0
 7 34 30 <= Age < 45 32 Home Owner Unknown 32000 26 Yes 717.82 0.02 1
 8 50 45 <= Age < 60 57 Other Employed 51000 33 No 3041.2 0.13 0

rng('default')

Split the data set into training and testing data.

c = cvpartition(size(data,1),'HoldOut',0.3);
data_Train = data(c.training(),:);
data_Test = data(c.test(),:);
head(data_Train)

 CustID CustAge AgeGroup TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status
 ______ _______ ______________ ___________ __________ _________ __________ _______ _______ _________ ________ ______

 1 53 45 <= Age < 60 62 Tenant Unknown 50000 55 Yes 1055.9 0.22 0

 Bias Mitigation in Credit Scoring by Disparate Impact Removal

3-119

 2 61 Age >= 60 22 Home Owner Employed 52000 25 Yes 1161.6 0.24 0
 3 47 45 <= Age < 60 30 Tenant Employed 37000 61 No 877.23 0.29 0
 4 50 45 <= Age < 60 75 Home Owner Employed 53000 20 Yes 157.37 0.08 0
 7 34 30 <= Age < 45 32 Home Owner Unknown 32000 26 Yes 717.82 0.02 1
 8 50 45 <= Age < 60 57 Other Employed 51000 33 No 3041.2 0.13 0
 9 50 45 <= Age < 60 10 Tenant Unknown 52000 25 Yes 115.56 0.02 1
 10 49 45 <= Age < 60 30 Home Owner Unknown 53000 23 Yes 718.5 0.17 1

Use creditscorecard to create a creditscorecard object and use fitmodel to fit a credit
scoring model with the the training data (data_Train).

PredictorVars = setdiff(data_Train.Properties.VariableNames, ...
 {'CustAge','AgeGroup','CustID','status'});
sc1 = creditscorecard(data_Train,'IDVar','CustID', ...
 'PredictorVars',PredictorVars,'ResponseVar','status');
sc1 = autobinning(sc1);
sc1 = fitmodel(sc1,'VariableSelection','fullmodel');

Generalized linear regression model:
 logit(status) ~ 1 + TmAtAddress + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance + UtilRate
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ________ __________

 (Intercept) 0.73924 0.077237 9.5711 1.058e-21
 TmAtAddress 1.2577 0.99118 1.2689 0.20448
 ResStatus 1.755 1.295 1.3552 0.17535
 EmpStatus 0.88652 0.32232 2.7504 0.0059516
 CustIncome 0.95991 0.19645 4.8862 1.0281e-06
 TmWBank 1.132 0.3157 3.5856 0.00033637
 OtherCC 0.85227 2.1198 0.40204 0.68765
 AMBalance 1.0773 0.31969 3.3698 0.00075232
 UtilRate -0.19784 0.59565 -0.33214 0.73978

840 observations, 831 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 66.5, p-value = 2.44e-11

Use displaypoints to compute the points per predictor per bin for the creditscorecard model
(sc1).

pointsinfo1 = displaypoints(sc1)

pointsinfo1=38×3 table
 Predictors Bin Points
 _______________ _________________ _________

 {'TmAtAddress'} {'[-Inf,9)' } -0.17538
 {'TmAtAddress'} {'[9,16)' } 0.05434
 {'TmAtAddress'} {'[16,23)' } 0.096897
 {'TmAtAddress'} {'[23,Inf]' } 0.13984
 {'TmAtAddress'} {'<missing>' } NaN
 {'ResStatus' } {'Tenant' } -0.017688
 {'ResStatus' } {'Home Owner' } 0.11681
 {'ResStatus' } {'Other' } 0.29011

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-120

 {'ResStatus' } {'<missing>' } NaN
 {'EmpStatus' } {'Unknown' } -0.097582
 {'EmpStatus' } {'Employed' } 0.33162
 {'EmpStatus' } {'<missing>' } NaN
 {'CustIncome' } {'[-Inf,30000)' } -0.61962
 {'CustIncome' } {'[30000,36000)'} -0.10695
 {'CustIncome' } {'[36000,40000)'} 0.0010845
 {'CustIncome' } {'[40000,42000)'} 0.065532
 ⋮

Use probdefault to determine the likelihood of default for the data_Test data set and the
creditscorecard model (sc1).

pd1 = probdefault(sc1,data_Test);
threshold = 0.35;
predictions1 = double(pd1>threshold);

Use fairnessMetrics to compute fairness metrics at the model level as a baseline. Use report to
generate the fairness metrics report.

modelMetrics1 = fairnessMetrics(data_Test,'status','Predictions',predictions1,'SensitiveAttributeNames','AgeGroup');
mmReport1 = report(modelMetrics1,'GroupMetrics','GroupCount')

mmReport1=4×8 table
 ModelNames SensitiveAttributeNames Groups StatisticalParityDifference DisparateImpact EqualOpportunityDifference AverageAbsoluteOddsDifference GroupCount
 __________ _______________________ ______________ ___________________________ _______________ __________________________ _____________________________ __________

 Model1 AgeGroup Age < 30 0.54312 2.6945 0.47391 0.5362 22
 Model1 AgeGroup 30 <= Age < 45 0.19922 1.6216 0.35645 0.22138 152
 Model1 AgeGroup 45 <= Age < 60 0 1 0 0 156
 Model1 AgeGroup Age >= 60 -0.15385 0.52 -0.18323 0.16375 30

Use plot to visualize the statistical parity difference ('spd') and disparate impact ('di') bias
metrics.

figure
tiledlayout(2,1)
nexttile
plot(modelMetrics1,'spd')
nexttile
plot(modelMetrics1,'di')

 Bias Mitigation in Credit Scoring by Disparate Impact Removal

3-121

Bias Mitigation by Disparate Impact Removal

For each of the five continuous predictors, 'TmAtAddress', 'CustIncome', 'TmWBank',
'AMBalance', and 'UtilRate' plot the original distributions of data within each age group.

Choose a numeric predictor to plot.

predictor = ;
[f1, xi1] = ksdensity(data_Train.(predictor)(data_Train.AgeGroup=='Age < 30'));
[f2, xi2] = ksdensity(data_Train.(predictor)(data_Train.AgeGroup=='30 <= Age < 45'));
[f3, xi3] = ksdensity(data_Train.(predictor)(data_Train.AgeGroup=='45 <= Age < 60'));
[f4, xi4] = ksdensity(data_Train.(predictor)(data_Train.AgeGroup=='Age >= 60'));

Create a disparateImpactRemover object and return the newTrainTbl table with the new
predictor values.

[remover, newTrainTbl] = disparateImpactRemover(data_Train, 'AgeGroup' , 'PredictorNames', {'TmAtAddress','CustIncome','TmWBank','AMBalance','UtilRate'})

remover =
 disparateImpactRemover with properties:

 RepairFraction: 1
 PredictorNames: {'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'}
 SensitiveAttribute: 'AgeGroup'

newTrainTbl=840×12 table
 CustID CustAge AgeGroup TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-122

 ______ _______ ______________ ___________ __________ _________ __________ _______ _______ _________ ________ ______

 1 53 45 <= Age < 60 58.599 Tenant Unknown 47000 51.733 Yes 1009.4 0.20099 0
 2 61 Age >= 60 24 Home Owner Employed 41500 24.5 Yes 1203.9 0.25 0
 3 47 45 <= Age < 60 30.5 Tenant Employed 33500 57.686 No 817.9 0.29 0
 4 50 45 <= Age < 60 68.622 Home Owner Employed 49401 19.07 Yes 120.54 0.077267 0
 7 34 30 <= Age < 45 30.5 Home Owner Unknown 35500 26.657 Yes 638.88 0.02 1
 8 50 45 <= Age < 60 53.39 Other Employed 47000 27.971 No 2172.7 0.12 0
 9 50 45 <= Age < 60 9 Tenant Unknown 49401 22.541 Yes 120.54 0.02 1
 10 49 45 <= Age < 60 30.5 Home Owner Unknown 49401 22 Yes 664.51 0.14715 1
 11 52 45 <= Age < 60 24 Tenant Unknown 30500 38.779 Yes 120.54 0.065 1
 12 48 45 <= Age < 60 77.291 Other Unknown 40500 14.5 Yes 405.81 0.03 0
 14 44 30 <= Age < 45 68.622 Other Unknown 44500 34.791 No 378.88 0.15657 0
 17 39 30 <= Age < 45 9 Tenant Employed 37500 38.779 Yes 664.51 0.25 1
 20 52 45 <= Age < 60 51.442 Other Unknown 38500 12.297 Yes 1157.5 0.19273 0
 21 37 30 <= Age < 45 10.343 Tenant Unknown 36500 23.314 No 732.28 0.065 1
 22 51 45 <= Age < 60 12.087 Home Owner Employed 31500 27.971 Yes 437.95 0.01 0
 24 43 30 <= Age < 45 40 Tenant Employed 33500 11.18 Yes 263.13 0.077267 0
 ⋮

[nf1, nxi1] = ksdensity(newTrainTbl.(predictor)(newTrainTbl.AgeGroup=='Age < 30'));
[nf2, nxi2] = ksdensity(newTrainTbl.(predictor)(newTrainTbl.AgeGroup=='30 <= Age < 45'));
[nf3, nxi3] = ksdensity(newTrainTbl.(predictor)(newTrainTbl.AgeGroup=='45 <= Age < 60'));
[nf4, nxi4] = ksdensity(newTrainTbl.(predictor)(newTrainTbl.AgeGroup=='Age >= 60'));

Plot the original and the repaired distributions.

figure;
tiledlayout(2,1)
ax1 = nexttile;
plot(xi1, f1, 'LineWidth', 1.5)
hold on
plot(xi2, f2, 'LineWidth', 1.5)
plot(xi3, f3, 'LineWidth', 1.5)
plot(xi4, f4, 'LineWidth', 1.5)
legend(["Age < 30"; "30 <= Age < 45"; "45 <= Age < 60"; "Age >= 60"],'Location','northwest')
ax1.Title.String = "Original Distribution of " + predictor;
xlabel(predictor)
ylabel('pdf')
grid on
ax2 = nexttile;
plot(nxi1, nf1, 'LineWidth', 1.5)
hold on
plot(nxi2, nf2, 'LineWidth', 1.5)
plot(nxi3, nf3, 'LineWidth', 1.5)
plot(nxi4, nf4, 'LineWidth', 1.5)
legend(["Age < 30"; "30 <= Age < 45"; "45 <= Age < 60"; "Age >= 60"],'Location','northwest')
ax2.Title.String = "Repaired Distribution of " + predictor;
xlabel(predictor)
ylabel('pdf')
grid on
linkaxes([ax1, ax2], 'xy')

 Bias Mitigation in Credit Scoring by Disparate Impact Removal

3-123

This plot demonstrates that the initial distributions of CustIncome of each group within the
AgeGroup predictor are different. Younger people seem to have a lower income on average and more
variation than older people. This difference introduces bias, which the fitted model then reflects. The
disparateImpactRemover function modifies the data so that the distributions of all the subgroups
are more similar. You see this distribution in the second subplot Repaired Distribution of
CustIncome. Using this new data, you can fit a logistic regression model and then measure the
model-level metrics and compare these with the model-level metrics from the original
creditscorecard model (sc1).

New Credit Scoring Model

Use creditscorecard to create a creditscorecard object and use fitmodel to fit a credit
scoring model with the the new data (newTrainTbl). Then, you can compute model-level bias
metrics using fairnessMetrics.

sc2 = creditscorecard(newTrainTbl,'IDVar','CustID', ...
 'PredictorVars',PredictorVars,'ResponseVar','status');
sc2 = autobinning(sc2);
sc2 = fitmodel(sc2,'VariableSelection','fullmodel');

Generalized linear regression model:
 logit(status) ~ 1 + TmAtAddress + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance + UtilRate
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 _________ _______ _______ __________

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-124

 (Intercept) 0.74041 0.07641 9.6899 3.327e-22
 TmAtAddress 1.1658 0.87564 1.3313 0.18308
 ResStatus 1.8719 1.2848 1.4569 0.14513
 EmpStatus 0.88699 0.31991 2.7727 0.00556
 CustIncome 0.98269 0.28725 3.421 0.00062396
 TmWBank 1.1392 0.30677 3.7135 0.00020442
 OtherCC 0.55005 2.0969 0.26231 0.79308
 AMBalance 1.0478 0.3607 2.9049 0.0036734
 UtilRate -0.071972 0.58704 -0.1226 0.90242

840 observations, 831 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 50.4, p-value = 3.36e-08

Use displaypoints to compute the points per predictor per bin for the creditscorecard model
(sc2).

pointsinfo2 = displaypoints(sc2)

pointsinfo2=35×3 table
 Predictors Bin Points
 _______________ _________________ _________

 {'TmAtAddress'} {'[-Inf,9)' } -0.11003
 {'TmAtAddress'} {'[9,15.1453)' } -0.091424
 {'TmAtAddress'} {'[15.1453,Inf]'} 0.14546
 {'TmAtAddress'} {'<missing>' } NaN
 {'ResStatus' } {'Tenant' } -0.024878
 {'ResStatus' } {'Home Owner' } 0.11858
 {'ResStatus' } {'Other' } 0.30343
 {'ResStatus' } {'<missing>' } NaN
 {'EmpStatus' } {'Unknown' } -0.097539
 {'EmpStatus' } {'Employed' } 0.3319
 {'EmpStatus' } {'<missing>' } NaN
 {'CustIncome' } {'[-Inf,31500)' } -0.30942
 {'CustIncome' } {'[31500,38500)'} -0.09789
 {'CustIncome' } {'[38500,45000)'} 0.21233
 {'CustIncome' } {'[45000,Inf]' } 0.494
 {'CustIncome' } {'<missing>' } NaN
 ⋮

Before computing probabilities of default with the test data, you need to transform the test data using
the same transformation as for the training data. To make this transformation, use the transform
method of the remover object and pass it in the data_Test data set. Then, use probdefault to
compute the likelihood of default of the data_Test data set.

newTestTbl = transform(remover,data_Test);
pd2 = probdefault(sc2,newTestTbl);
predictions2 = double(pd2>threshold);

Use fairnessMetrics to compute fairness metrics at the model level and use report to generate a
fairness metrics report.

modelMetrics2 = fairnessMetrics(newTestTbl,'status','Predictions',predictions2,'SensitiveAttributeNames','AgeGroup');
mmReport2 = report(modelMetrics2,'GroupMetrics','GroupCount')

 Bias Mitigation in Credit Scoring by Disparate Impact Removal

3-125

mmReport2=4×8 table
 ModelNames SensitiveAttributeNames Groups StatisticalParityDifference DisparateImpact EqualOpportunityDifference AverageAbsoluteOddsDifference GroupCount
 __________ _______________________ ______________ ___________________________ _______________ __________________________ _____________________________ __________

 Model1 AgeGroup Age < 30 0.082751 1.2226 0.18696 0.10408 22
 Model1 AgeGroup 30 <= Age < 45 -0.0033738 0.99093 0.07902 0.076333 152
 Model1 AgeGroup 45 <= Age < 60 0 1 0 0 156
 Model1 AgeGroup Age >= 60 0.028205 1.0759 0.015528 0.026143 30

Use plot to visualize the statistical parity difference ('spd') and disparate impact ('di') bias
metrics.

figure
tiledlayout(2,1)
nexttile
plot(modelMetrics2,'spd')
nexttile
plot(modelMetrics2,'di')

Plot Disparate Impact and Accuracy for Different Repair Fraction Values

In this example, the bias mitigation process uses disparateImpactRemover to set
RepairFraction = 1 in order to mitigate bias. However, it is useful to see how the disparate impact
and accuracy varies with a change in the RepairFraction value. For example, use the AgeGroup
predictor and plot the disparate impact and accuracy of the different subgroups for different values of
RepairFraction.

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-126

subgroup = ;
r = 0:0.1:1;
Accuracy = zeros(11,1);
di = zeros(11,1);

for i = 0:1:10
 [rmvr, trainTbl] = disparateImpactRemover(data_Train, 'AgeGroup' , ...
 'PredictorNames', {'TmAtAddress','CustIncome','TmWBank','AMBalance','UtilRate'},'RepairFraction',i/10);
 testTbl = transform(rmvr, data_Test);
 sc = creditscorecard(trainTbl,'IDVar','CustID', ...
 'PredictorVars',PredictorVars,'ResponseVar','status');
 sc = autobinning(sc);
 sc = fitmodel(sc,'VariableSelection','fullmodel','Display','off');
 pd = probdefault(sc,testTbl);
 predictions = double(pd>threshold);
 modelMetrics = fairnessMetrics(newTestTbl, 'status', 'Predictions', predictions, 'SensitiveAttributeNames','AgeGroup');
 mmReport = report(modelMetrics,'BiasMetrics','di','GroupMetrics','accuracy');
 di(i+1) = mmReport.DisparateImpact(subgroup);
 Accuracy(i+1) = mmReport.Accuracy(subgroup);
end

figure
yyaxis left
plot(r, di,'LineWidth', 1.5)
title('Bias Mitigation in AgeGroup ')
xlabel('Repair Fraction')
ylabel('Disparate Impact')
yyaxis right
plot(r, Accuracy,'LineWidth', 1.5)
ylabel('Accuracy')
grid on

 Bias Mitigation in Credit Scoring by Disparate Impact Removal

3-127

If you select the subgroup 'Age < 30' from this plot, you can see that the accuracy increases as the
RepairFraction value increases. Although this seems counterintuitive, looking further at the
GroupCount of that age group in the mmReport2 table, this group has only 22 observations. This
small number of observations explains the anomaly in this plot.

One way to mitigate this issue of not having enough data for a subgroup is to combine all
unprivileged groups and compare them as one group against the privileged group. The following code
shows you how by setting the majority group (45 <= Age < 60) as the privileged group and then by
combining every other group into one and setting that group as the unprivliged group.

privilegedGroup = '45 <= Age < 60';
twoAgeGroups_TrainTbl = data_Train;
twoAgeGroups_TrainTbl.AgeGroup = addcats(twoAgeGroups_TrainTbl.AgeGroup,'Other','After','Age >= 60');
twoAgeGroups_TrainTbl.AgeGroup(twoAgeGroups_TrainTbl.AgeGroup ~= privilegedGroup) = 'Other';
twoAgeGroups_TestTbl = data_Test;
twoAgeGroups_TestTbl.AgeGroup = addcats(twoAgeGroups_TestTbl.AgeGroup,'Other','After','Age >= 60');
twoAgeGroups_TestTbl.AgeGroup(twoAgeGroups_TestTbl.AgeGroup ~= privilegedGroup) = 'Other';

r = 0:0.1:1;
Accuracy = zeros(11,1);
di = zeros(11,1);

for i = 0:1:10
 [rmvr, trainTbl] = disparateImpactRemover(twoAgeGroups_TrainTbl, 'AgeGroup' , ...
 'PredictorNames', {'TmAtAddress','CustIncome','TmWBank','AMBalance','UtilRate'},'RepairFraction',i/10);
 testTbl = transform(rmvr, twoAgeGroups_TestTbl);
 sc = creditscorecard(trainTbl,'IDVar','CustID', ...

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-128

 'PredictorVars',PredictorVars,'ResponseVar','status');
 sc = autobinning(sc);
 sc = fitmodel(sc,'VariableSelection','fullmodel','Display','off');
 pd = probdefault(sc,testTbl);
 predictions = double(pd>threshold);
 modelMetrics = fairnessMetrics(twoAgeGroups_TestTbl, 'status', 'Predictions', predictions, ...
 'SensitiveAttributeNames','AgeGroup','ReferenceGroup','45 <= Age < 60');
 mmReport = report(modelMetrics,'BiasMetrics','di','GroupMetrics','accuracy');
 di(i+1) = mmReport.DisparateImpact(2);
 Accuracy(i+1) = mmReport.Accuracy(2);
end

figure
yyaxis left
plot(r, di,'LineWidth', 1.5)
title('Bias Mitigation in AgeGroup ')
xlabel('Repair Fraction')
ylabel('Disparate Impact')
yyaxis right
plot(r, Accuracy,'LineWidth', 1.5)
ylabel('Accuracy')
grid on

You can use this privileged group and unprivliged group method if the goal is not to measure the bias
of each individual group against the privileged group, but rather to measure the overall fairness of all
customers who are not part of the privileged group.

 Bias Mitigation in Credit Scoring by Disparate Impact Removal

3-129

References

[1] Nielsen, Aileen. "Chapter 4. Fairness PreProcessing." Practical Fairness. O'Reilly Media, Inc., Dec.
2020.

[2] Mehrabi, Ninareh, et al. “A Survey on Bias and Fairness in Machine Learning.” ArXiv:1908.09635
[Cs], Sept. 2019. arXiv.org, https://arxiv.org/abs/1908.09635.

[3] Wachter, Sandra, et al. Bias Preservation in Machine Learning: The Legality of Fairness Metrics
Under EU Non-Discrimination Law. SSRN Scholarly Paper, ID 3792772, Social Science Research
Network, 15 Jan. 2021. papers.ssrn.com, https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=3792772.

See Also
creditscorecard | autobinning | fitmodel | displaypoints | probdefault

Related Examples
• “Bin Data to Create Credit Scorecards Using Binning Explorer” on page 3-23
• “Explore Fairness Metrics for Credit Scoring Model” on page 3-98
• “Bias Mitigation in Credit Scoring by Reweighting” on page 3-110

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-130

https://arxiv.org/abs/1908.09635
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3792772
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3792772

Create Custom Lifetime PD Model for Credit Scorecard Model
with Function Handle

This example shows how to use customLifetimePDModel to create a lifetime model for the
probability of default. Using a retail credit data in panel format, you can create a credit scorecard
model and then use a function handle with customLifetimePDModel to create a lifetime PD model.

Fit Credit Scorecard Model

Load the data set.

load RetailCreditPanelData.mat
data = join(data,dataMacro);

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Use creditscorecard to create a creditscorecard object and then use autobinning to bin the
data. Alternativeliy, you can bin the data using the Binning Explorer. You can fit the model using
fitmodel.

sc = creditscorecard(data(TrainDataInd,:),'IDVar','ID','PredictorVars',{'ScoreGroup' 'YOB' 'GDP' 'Market'},'ResponseVar','Default')

sc =
 creditscorecard with properties:

 GoodLabel: 0
 ResponseVar: 'Default'
 WeightsVar: ''
 VarNames: {'ID' 'ScoreGroup' 'YOB' 'Default' 'Year' 'GDP' 'Market'}
 NumericPredictors: {'YOB' 'GDP' 'Market'}
 CategoricalPredictors: {'ScoreGroup'}
 BinMissingData: 0
 IDVar: 'ID'
 PredictorVars: {'ScoreGroup' 'YOB' 'GDP' 'Market'}
 Data: [388097x7 table]

sc = autobinning(sc);
sc = autobinning(sc,'YOB','Algorithm','Split');
sc = fitmodel(sc);

1. Adding ScoreGroup, Deviance = 42417.8562, Chi2Stat = 986.130141, PValue = 1.85820778e-216
2. Adding YOB, Deviance = 41644.7594, Chi2Stat = 773.096796, PValue = 3.81440566e-170
3. Adding Market, Deviance = 41616.8646, Chi2Stat = 27.8948108, PValue = 1.28092837e-07
4. Adding GDP, Deviance = 41612.2361, Chi2Stat = 4.62852205, PValue = 0.0314446396

 Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle

3-131

Generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ______ ___________

 (Intercept) 4.6006 0.017273 266.35 0
 ScoreGroup 0.98953 0.033117 29.88 3.5837e-196
 YOB 1.0439 0.04216 24.76 2.4054e-135
 GDP 4.5496 2.1012 2.1652 0.03037
 Market 1.6892 0.44761 3.7738 0.00016076

388097 observations, 388092 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.79e+03, p-value = 0

displaypoints(sc)

ans=16×3 table
 Predictors Bin Points
 ______________ _______________ _______

 {'ScoreGroup'} {'High Risk' } 0.61946
 {'ScoreGroup'} {'Medium Risk'} 1.3073
 {'ScoreGroup'} {'Low Risk' } 1.8816
 {'ScoreGroup'} {'<missing>' } NaN
 {'YOB' } {'[-Inf,2)' } 0.56097
 {'YOB' } {'[2,5)' } 1.0021
 {'YOB' } {'[5,7)' } 1.4673
 {'YOB' } {'[7,Inf]' } 2.4996
 {'YOB' } {'<missing>' } NaN
 {'GDP' } {'[-Inf,0.63)'} 1.051
 {'GDP' } {'[0.63,Inf]' } 1.1664
 {'GDP' } {'<missing>' } NaN
 {'Market' } {'[-Inf,2.78)'} 1.0661
 {'Market' } {'[2.78,9.48)'} 1.1262
 {'Market' } {'[9.48,Inf]' } 1.2358
 {'Market' } {'<missing>' } NaN

Validate the creditscorecard model using validatemodel.

figure;
s = validatemodel(sc,data(TestDataInd,:),'Plot','roc');

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-132

disp(s)

 Measure Value
 ________________________ _______

 {'Accuracy Ratio' } 0.39124
 {'Area under ROC curve'} 0.69562
 {'KS statistic' } 0.28409
 {'KS score' } 4.6019

Wrap Credit Scorecard Model as Lifetime PD Model

Create a function handle for the probdefault function of the creditscorecard object. The only
variable in the function handle (predictFcnHandle) is the data. The creditscorecard object (sc)
is a fixed parameter of the probdefault function.

Use customLifetimePDModel to create an instance of a custom lifetime PD model using the
function handle predictFcnHandle. Also, set up variable names for the model. The base class
LifetimePDModel uses those variable names for different validations and computations.

predictFcnHandle = @(data)probdefault(sc,data);
pdModel = customLifetimePDModel(predictFcnHandle,'ModelID','MyScorecardModel','IDVar','ID','AgeVar','YOB','LoanVars','ScoreGroup','MacroVars',{'GDP','Market'},'ResponseVar','Default')

pdModel =
 CustomLifetimePD with properties:

 ModelID: "MyScorecardModel"
 Description: ""

 Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle

3-133

 UnderlyingModel: @(data)probdefault(sc,data)
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

pdModel.UnderlyingModel

ans = function_handle with value:
 @(data)probdefault(sc,data)

Predict and Validate Scores Using Custom Lifetime PD Model

You can use pdModel like any other lifetime PD model. The training and test data sets are in panel
data format and can be passed to either predict or predictLifetime. The predict function
returns the conditional PD, the same prediction as the probdefault function for the credit
scorecard. The predictLifetime function returns the cumulative probability of default for each ID.
Here, the first ID in the test data set spans the first eight rows. The conditional PD can go up or
down, but the cumulative PD always increases from one period to the next.

CondPD = predict(pdModel,data(TestDataInd,:));
LifetimePD = predictLifetime(pdModel,data(TestDataInd,:));
disp([CondPD(1:8) LifetimePD(1:8)])

 0.0154 0.0154
 0.0089 0.0241
 0.0089 0.0328
 0.0099 0.0424
 0.0066 0.0488
 0.0075 0.0559
 0.0022 0.0580
 0.0020 0.0599

By wrapping the credit scorecard as a lifetime PD model object (pdModel), you can use all the
validation capabilities of lifetime PD models are available. Use modelCalibrationPlot to plot
observed default rates compared to the predicted PDs on grouped data.

figure;
modelCalibrationPlot(pdModel,data(TestDataInd,:),'YOB')

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-134

Use modelDiscriminationPlot to plot the ROC curve.

figure;
modelDiscriminationPlot(pdModel,data(TestDataInd,:))

 Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle

3-135

Use modelDiscriminationPlot to plot the ROC curve and segment the data by ScoreGroup.

figure;
modelDiscriminationPlot(pdModel,data(TestDataInd,:),'SegmentBy','ScoreGroup')

3 Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards

3-136

See Also
customLifetimePDModel | fitLifetimePDModel | predict | predictLifetime |
modelDiscrimination | modelDiscriminationPlot | modelCalibration |
modelCalibrationPlot

Related Examples
• “Create Custom Lifetime PD Model for Decision Tree Model with Function Handle” on page 4-

224
• “Credit Scorecard Modeling with Missing Values”

More About
• “Overview of Binning Explorer” on page 3-2
• “About Credit Scorecards”
• “Credit Scorecard Modeling Workflow”

External Websites
• Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

 Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle

3-137

https://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-121587.html

Corporate Credit Risk Simulations for
Portfolios

• “Credit Simulation Using Copulas” on page 4-2
• “creditDefaultCopula Simulation Workflow” on page 4-5
• “creditMigrationCopula Simulation Workflow” on page 4-10
• “Modeling Correlated Defaults with Copulas” on page 4-18
• “Modeling Probabilities of Default with Cox Proportional Hazards” on page 4-28
• “Analyze the Sensitivity of Concentration to a Given Exposure” on page 4-49
• “Compare Concentration Indices for Random Portfolios” on page 4-51
• “Comparison of the Merton Model Single-Point Approach to the Time-Series Approach”

on page 4-54
• “Calculating Regulatory Capital with the ASRF Model” on page 4-59
• “One-Factor Model Calibration” on page 4-64
• “Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models”

on page 4-75
• “Model Loss Given Default” on page 4-90
• “Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
• “Compare Lifetime PD Models Using Cross-Validation” on page 4-121
• “Expected Credit Loss Computation” on page 4-124
• “Basic Lifetime PD Model Validation” on page 4-129
• “Basic Loss Given Default Model Validation” on page 4-131
• “Compare Tobit LGD Model to Benchmark Model” on page 4-133
• “Compare Loss Given Default Models Using Cross-Validation” on page 4-140
• “Compare Model Discrimination and Model Calibration to Validate of Probability of Default ”

on page 4-144
• “Compare Results for Regression and Tobit EAD Models ” on page 4-151
• “Mean Square Error of Prediction for Estimated Ultimate Claims” on page 4-161
• “Bootstrap Using Chain Ladder Method” on page 4-168
• “Interpret and Stress-Test Deep Learning Networks for Probability of Default” on page 4-178
• “Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations”

on page 4-195
• “Create Custom Lifetime PD Model for Decision Tree Model with Function Handle” on page 4-224
• “Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios” on page 4-231
• “Assess Physical and Transition Risk for Mortgages” on page 4-248
• “Analyze Transition Scenarios for Climate-Related Financial Risks” on page 4-267
• “Interpretability and Explainability for Credit Scoring” on page 4-287

4

Credit Simulation Using Copulas
In this section...
“Factor Models” on page 4-2
“Supported Simulations” on page 4-3

Predicting the credit losses for a counterparty depends on three main elements:

• Probability of default (PD)
• Exposure at default (EAD), the value of the instrument at some future time
• Loss given default (LGD), which is defined as 1 − Recovery

If these quantities are known at future time t, then the expected loss is PD × EAD × LGD. In this
case, you can model the expected loss for a single counterparty by using a binomial distribution. The
difficulty arises when you model a portfolio of these counterparties and you want to simulate them
with some default correlation.

To simulate correlated defaults, the copula model associates each counterparty with a random
variable, called a “latent” variable. These latent variables are correlated using some proxy for their
credit worthiness, for example, their stock price. These latent variables are then mapped to default or
nondefault outcomes such that the default occurs with probability PD.

This figure summarizes the copula simulation approach.

The random variable Ai associated to the ith counterparty falls in the default shaded region with
probability PDi. If the simulated value falls in that region, it is interpreted as a default. The jth
counterparty follows a similar pattern. If the Ai and Aj random variables are highly correlated, they
tend to both have high values (no default), or both have low values (fall in the default region).
Therefore, there is a default correlation.

Factor Models
For M issuers, M(M − 1)/2 correlation parameters are required. For M = 1000, this is about half a
million correlations. One practical variation of the approach is the one-factor model, which makes all
the latent variables dependent on a single factor. This factor Z represents the underlying systemic
credit quality in the economy. This model also includes a random idiosyncratic error.

Ai = wiZ + 1−wi
2εi

This significantly reduces the input-data requirements, because now you need only the M
sensitivities, that is, the weights w1,…,wM. If Z and εi are standard normal variables, then Ai is also a
standard normal.

4 Corporate Credit Risk Simulations for Portfolios

4-2

An extension of the one-factor model is a multifactor model.

Ai = wi1Z1 + ... + wiKZK + wiεεi

This model has several factors, each one associated with some underlying credit driver. For example,
you can have factors for different regions or countries, or for different industries. Each latent variable
is now a combination of several random variables plus the idiosyncratic error (epsilon) again.

When the latent variables Ai are normally distributed, there is a Gaussian copula. A common
alternative is to let the latent variables follow a t distribution, which leads to a t copula. t copulas
result in heavier tails than Gaussian copulas. Implied credit correlations are also larger with t
copulas. Switching between these two copula approaches can provide important information on
model risk.

Supported Simulations
Risk Management Toolbox supports simulations for counterparty credit defaults and counterparty
credit rating migrations.

Credit Default Simulation

The creditDefaultCopula object is used to simulate and analyze multifactor credit default
simulations. These simulations assume that you calculated the main inputs to this model on your own.
The main inputs to this model are:

• PD — Probability of default
• EAD — Exposure at default
• LGD — Loss given default (1 − Recovery)
• Weights — Factor and idiosyncratic weights
• FactorCorrelation — An optional factor correlation matrix for multifactor models

The creditDefaultCopula object enables you to simulate defaults using the multifactor copula and
return the results as a distribution of losses on a portfolio and counterparty level. You can also use
the creditDefaultCopula object to calculate several risk measures at the portfolio level and the
risk contributions from individual obligors. The outputs of the creditDefaultCopula model and
the associated functions are:

• The full simulated distribution of portfolio losses across scenarios and the losses on each
counterparty across scenarios. For more information, see creditDefaultCopula object
properties and simulate.

• Risk measures (VaR, CVaR, EL, Std) with confidence intervals. See portfolioRisk.
• Risk contributions per counterparty (for EL and CVaR). See riskContribution.
• Risk measures and associated confidence bands. See confidenceBands.
• Counterparty scenario details for individual losses for each counterparty. See getScenarios.

Credit Rating Migration Simulation

The creditMigrationCopula object enables you to simulate changes in credit rating for each
counterparty.

 Credit Simulation Using Copulas

4-3

The creditMigrationCopula object is used to simulate counterparty credit migrations. These
simulations assume that you calculated the main inputs to this model on your own. The main inputs to
this model are:

• migrationValues — Values of the counterparty positions for each credit rating.
• ratings — Current credit rating for each counterparty.
• transitionMatrix — Matrix of credit rating transition probabilities.
• LGD — Loss given default (1 − Recovery)
• Weights — Factor and idiosyncratic model weights

You can also use the creditMigrationCopula object to calculate several risk measures at the
portfolio level and the risk contributions from individual obligors. The outputs of the
creditMigrationCopula model and the associated functions are:

• The full simulated distribution of portfolio values. For more information, see
creditMigrationCopula object properties and simulate.

• Risk measures (VaR, CVaR, EL, Std) with confidence intervals. See portfolioRisk.
• Risk contributions per counterparty (for EL and CVaR). See riskContribution.
• Risk measures and associated confidence bands. See confidenceBands.
• Counterparty scenario details for each counterparty. See getScenarios.

See Also
creditDefaultCopula | creditMigrationCopula | asrf

Related Examples
• “creditDefaultCopula Simulation Workflow” on page 4-5
• “creditMigrationCopula Simulation Workflow” on page 4-10
• “Modeling Correlated Defaults with Copulas” on page 4-18
• “One-Factor Model Calibration” on page 4-64

More About
• “Corporate Credit Risk” on page 1-3
• “Credit Rating Migration Risk” on page 1-10

4 Corporate Credit Risk Simulations for Portfolios

4-4

creditDefaultCopula Simulation Workflow

This example shows a common workflow for using a creditDefaultCopula object for a portfolio of
credit instruments.

For an example of an advanced workflow using the creditDefaultCopula object, see “Modeling
Correlated Defaults with Copulas” on page 4-18.

Step 1. Create a creditDefaultCopula object with a two-factor model.

Load the saved portfolio data. Create a creditDefaultCopula object with a two-factor model using
with the values EAD, PD, LGD, and Weights2F.

load CreditPortfolioData.mat;
cdc = creditDefaultCopula(EAD, PD, LGD,Weights2F,'FactorCorrelation',FactorCorr2F);
disp(cdc)

 creditDefaultCopula with properties:

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioLosses: []

disp(cdc.Portfolio(1:10:100,:))

 ID EAD PD LGD Weights
 __ ______ __________ ____ __________________________

 1 21.627 0.0050092 0.35 0.35 0 0.65
 11 29.338 0.0050092 0.55 0.35 0 0.65
 21 3.8275 0.0020125 0.25 0.1125 0.3375 0.55
 31 26.286 0.0020125 0.55 0.1125 0.0375 0.85
 41 42.868 0.0050092 0.55 0.25 0 0.75
 51 7.1259 0.00099791 0.25 0 0.25 0.75
 61 10.678 0.0020125 0.35 0 0.15 0.85
 71 2.395 0.00099791 0.55 0 0.15 0.85
 81 26.445 0.060185 0.55 0 0.45 0.55
 91 7.1637 0.11015 0.25 0.35 0 0.65

Step 2. Set the VaRLevel to 99%.

Set the VarLevel property for the creditDefaultCopula object to 99% (the default is 95%).

cdc.VaRLevel = 0.99;

Step 3. Run a simulation.

Use the simulate function to run a simulation on the creditDefaultCopula object for 100,000
scenarios.

 cdc = simulate(cdc,1e5)

cdc =
 creditDefaultCopula with properties:

 creditDefaultCopula Simulation Workflow

4-5

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9900
 UseParallel: 0
 PortfolioLosses: [30.1008 3.6910 3.2895 19.2151 7.5761 44.5088 19.5419 1.7909 72.1443 12.6933 36.0228 1.7909 4.8512 23.0230 54.0877 35.9298 35.3757 26.1678 36.8868 24.6242 2.9770 15.3030 0 0 10.5546 61.2268 32.5802 42.5504 10.2981 4.8318 ...]

Step 4. Generate a report for the portfolio risk.

Use the portfolioRisk function to obtain a report for risk measures and confidence intervals for
EL, Std, VaR, and CVaR.

[portRisk,RiskConfidenceInterval] = portfolioRisk(cdc)

portRisk=1×4 table
 EL Std VaR CVaR
 ______ ______ _____ ______

 24.876 23.778 102.4 121.28

RiskConfidenceInterval=1×4 table
 EL Std VaR CVaR
 ________________ ________________ ________________ ________________

 24.729 25.023 23.674 23.883 101.19 103.5 120.13 122.42

Step 5. Visualize the distribution.

Use the histogram function to display the distribution for EL, VaR, and CVaR.

histogram(cdc.PortfolioLosses);
title('Distribution of Portfolio Losses');

4 Corporate Credit Risk Simulations for Portfolios

4-6

Step 6. Generate a risk contributions report.

Use the riskContribution function to display the risk contribution. The risk contributions, EL and
CVaR, are additive. If you sum each of these two metrics over all the counterparties, you get the
values reported for the entire portfolio in the portfolioRisk table.

rc = riskContribution(cdc);

disp(rc(1:10,:))

 ID EL Std VaR CVaR
 __ __________ __________ _________ __________

 1 0.036031 0.022762 0.083828 0.13625
 2 0.068357 0.039295 0.23373 0.24984
 3 1.2228 0.60699 2.3184 2.3775
 4 0.002877 0.00079014 0.0024248 0.0013137
 5 0.12127 0.037144 0.18474 0.24622
 6 0.12638 0.078506 0.39779 0.48334
 7 0.84284 0.3541 1.6221 1.8183
 8 0.00090088 0.00011379 0.0016463 0.00089197
 9 0.93117 0.87638 3.3868 3.9936
 10 0.26054 0.37918 1.7399 2.3042

Step 7. Simulate the risk exposure with a t copula.

Use the simulate function with optional input arguments for Copula and t. Save the results to a
new creditDefaultCopula object (cct).

 creditDefaultCopula Simulation Workflow

4-7

cdct = simulate(cdc,1e5,'Copula','t','DegreesOfFreedom',10)

cdct =
 creditDefaultCopula with properties:

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9900
 UseParallel: 0
 PortfolioLosses: [3.6910 1.9775 128.4550 2.1852 4.8512 0 26.2682 0 54.8980 24.3618 16.8483 1.9775 26.5877 40.3189 13.0581 26.2682 2.0924 15.4193 25.1406 32.6275 34.6938 1.4985 24.0275 4.8512 228.3562 4.1248 1.4985 34.6339 14.8708 22.7037 ...]

Step 8. Compare confidence bands for different copulas.

Use the confidenceBands function to compare confidence bands for the two different copulas.

confidenceBands(cdc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.90,'NumPoints',10)

ans=10×4 table
 NumScenarios Lower Std Upper
 ____________ ______ ______ ______

 10000 23.525 23.799 24.079
 20000 23.564 23.758 23.955
 30000 23.543 23.701 23.861
 40000 23.621 23.758 23.897
 50000 23.565 23.687 23.811
 60000 23.604 23.716 23.829
 70000 23.688 23.792 23.897
 80000 23.663 23.76 23.858
 90000 23.639 23.73 23.823
 1e+05 23.691 23.778 23.866

confidenceBands(cdct,'RiskMeasure','Std','ConfidenceIntervalLevel',0.90,'NumPoints',10)

ans=10×4 table
 NumScenarios Lower Std Upper
 ____________ ______ ______ ______

 10000 31.923 32.294 32.675
 20000 31.775 32.036 32.302
 30000 31.759 31.972 32.188
 40000 31.922 32.107 32.295
 50000 32.012 32.179 32.347
 60000 31.911 32.062 32.216
 70000 31.879 32.019 32.161
 80000 31.909 32.04 32.173
 90000 31.866 31.99 32.114
 1e+05 31.933 32.05 32.169

See Also
creditDefaultCopula | simulate | portfolioRisk | riskContribution | confidenceBands
| getScenarios | asrf

4 Corporate Credit Risk Simulations for Portfolios

4-8

Related Examples
• “Credit Simulation Using Copulas” on page 4-2
• “creditMigrationCopula Simulation Workflow” on page 4-10
• “Modeling Correlated Defaults with Copulas” on page 4-18
• “One-Factor Model Calibration” on page 4-64

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3

 creditDefaultCopula Simulation Workflow

4-9

creditMigrationCopula Simulation Workflow

This example shows a common workflow for using a creditMigrationCopula object for a portfolio
of counterparty credit ratings.

Step 1. Create a creditMigrationCopula object with a 4-factor model

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a 4-factor model using creditMigrationCopula.

cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc =
 creditMigrationCopula with properties:

 Portfolio: [250x5 table]
 FactorCorrelation: [4x4 double]
 RatingLabels: [8x1 string]
 TransitionMatrix: [8x8 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioValues: []

Step 2. Set the VaRLevel to 99%.

Set the VarLevel property for the creditMigrationCopula object to 99% (the default is 95%).

 cmc.VaRLevel = 0.99;

Step 3. Display the Portfolio property for information about migration values, ratings,
LGDs, and weights.

Display the Portfolio property containing information about migration values, ratings, LGDs, and
weights. The columns in the migration values are in the same order of the ratings, with the default
rating in the last column.

 head(cmc.Portfolio)

 ID MigrationValues Rating LGD Weights
 __ _______________ ______ ______ ___________________________________

 1 1x8 double "A" 0.6509 0 0 0 0.5 0.5
 2 1x8 double "BBB" 0.8283 0 0.55 0 0 0.45
 3 1x8 double "AA" 0.6041 0 0.7 0 0 0.3
 4 1x8 double "BB" 0.6509 0 0.55 0 0 0.45
 5 1x8 double "BBB" 0.4966 0 0 0.75 0 0.25
 6 1x8 double "BB" 0.8283 0 0 0 0.65 0.35

4 Corporate Credit Risk Simulations for Portfolios

4-10

 7 1x8 double "BB" 0.6041 0 0 0 0.65 0.35
 8 1x8 double "BB" 0.4873 0.5 0 0 0 0.5

Step 4. Display migration values for a counterparty.

For example, you can display the migration values for the first counterparty. Note that the value for
default is higher than some of the non-default ratings. This is because the migration value for the
default rating is a reference value (for example, face value, forward value at current rating, or other)
that is multiplied by the recovery rate during the simulation to get the value of the asset in the event
of default. The recovery rate is 1-LGD when the LGD input to creditMigrationCopula is a constant
LGD value (the LGD input has one column). The recovery rate is a random quantity when the LGD
input to creditMigrationCopula is specified as a mean and standard deviation for a beta
distribution (the LGD input has two columns).

bar(cmc.Portfolio.MigrationValues(1,:))
xticklabels(cmc.RatingLabels)
title('Migration Values for First Company')

Step 5. Run a simulation.

Use the simulate function to simulate 100,000 scenarios.

 cmc = simulate(cmc,1e5)

cmc =
 creditMigrationCopula with properties:

 creditMigrationCopula Simulation Workflow

4-11

 Portfolio: [250x5 table]
 FactorCorrelation: [4x4 double]
 RatingLabels: [8x1 string]
 TransitionMatrix: [8x8 double]
 VaRLevel: 0.9900
 UseParallel: 0
 PortfolioValues: [2.0082e+06 1.9950e+06 1.9933e+06 2.0009e+06 1.9819e+06 1.9955e+06 1.9962e+06 1.9966e+06 2.0018e+06 2.0036e+06 1.9873e+06 1.9929e+06 2.0015e+06 1.9875e+06 1.9962e+06 2.0070e+06 2.0054e+06 2.0037e+06 2.0032e+06 1.9990e+06 ...]

Step 6. Generate a report for the portfolio risk.

Use the portfolioRisk function to obtain a report for risk measures and confidence intervals for
EL, Std, VaR, and CVaR.

[portRisk,RiskConfidenceInterval] = portfolioRisk(cmc)

portRisk=1×4 table
 EL Std VaR CVaR
 ______ _____ _____ _____

 4515.9 12963 57176 83975

RiskConfidenceInterval=1×4 table
 EL Std VaR CVaR
 ________________ ______________ ______________ ______________

 4435.6 4596.3 12907 13021 55739 58541 82137 85812

Step 7. Visualize the distribution.

View a histogram of the portfolio values.

figure
h = histogram(cmc.PortfolioValues,125);
title('Distribution of Portfolio Values');

4 Corporate Credit Risk Simulations for Portfolios

4-12

Step 8. Overlay the value if all counterparties maintain current credit ratings.

Overlay the value that the portfolio object (cmc) takes if all counterparties maintain their current
credit ratings.

CurrentRatingValue = portRisk.EL + mean(cmc.PortfolioValues);

hold on
plot([CurrentRatingValue CurrentRatingValue],[0 max(h.Values)],'LineWidth',2);
grid on

 creditMigrationCopula Simulation Workflow

4-13

Step 9. Generate a risk contributions report.

Use the riskContribution function to display the risk contribution. The risk contributions, EL and
CVaR, are additive. If you sum each of these two metrics over all the counterparties, you get the
values reported for the entire portfolio in the portfolioRisk table.

rc = riskContribution(cmc);
disp(rc(1:10,:))

 ID EL Std VaR CVaR
 __ ______ ______ ______ ______

 1 15.521 41.153 238.72 279.18
 2 8.49 18.838 92.074 122.19
 3 6.0937 20.069 113.22 181.53
 4 6.6964 55.885 272.23 313.25
 5 23.583 73.905 360.32 573.39
 6 10.722 114.97 445.94 728.38
 7 1.8393 84.754 262.32 490.39
 8 11.711 39.768 175.84 253.29
 9 2.2154 4.4038 22.797 31.039
 10 1.7453 2.5545 9.8801 17.603

Step 10. Simulate the risk exposure with a t copula.

To use a t copula with 10 degrees of freedom, use the simulate function with optional input
arguments. Save the results to a new creditMigrationCopula object (cmct).

4 Corporate Credit Risk Simulations for Portfolios

4-14

cmct = simulate(cmc,1e5,'Copula','t','DegreesOfFreedom',10)

cmct =
 creditMigrationCopula with properties:

 Portfolio: [250x5 table]
 FactorCorrelation: [4x4 double]
 RatingLabels: [8x1 string]
 TransitionMatrix: [8x8 double]
 VaRLevel: 0.9900
 UseParallel: 0
 PortfolioValues: [2.0021e+06 2.0007e+06 1.9834e+06 2.0025e+06 2.0002e+06 2.0021e+06 2.0039e+06 2.0023e+06 2.0017e+06 2.0101e+06 2.0002e+06 2.0080e+06 2.0007e+06 2.0052e+06 1.9969e+06 2.0071e+06 2.0045e+06 1.9979e+06 2.0021e+06 1.9747e+06 ...]

Step 11. Generate a report for the portfolio risk for the t copula.

Use the portfolioRisk function to obtain a report for risk measures and confidence intervals for
EL, Std, VaR, and CVaR.

[portRisk2,RiskConfidenceInterval2] = portfolioRisk(cmct)

portRisk2=1×4 table
 EL Std VaR CVaR
 ____ _____ _____ __________

 4544 17034 72270 1.2391e+05

RiskConfidenceInterval2=1×4 table
 EL Std VaR CVaR
 ________________ ______________ ______________ ________________________

 4438.5 4649.6 16960 17109 69769 75382 1.1991e+05 1.2791e+05

Step 12. Visualize the distribution for the t copula.

View a histogram of the portfolio values.

figure
h = histogram(cmct.PortfolioValues,125);
title('Distribution of Portfolio Values for t Copula');

 creditMigrationCopula Simulation Workflow

4-15

Step 13. Overlay the value if all counterparties maintain current credit ratings for t copula.

Overlay the value that the portfolio object (cmct) takes if all counterparties maintain their current
credit ratings.

CurrentRatingValue2 = portRisk2.EL + mean(cmct.PortfolioValues);

hold on
plot([CurrentRatingValue2 CurrentRatingValue2],[0 max(h.Values)],'LineWidth',2);
grid on

4 Corporate Credit Risk Simulations for Portfolios

4-16

See Also
creditMigrationCopula | simulate | portfolioRisk | riskContribution |
confidenceBands | getScenarios | asrf

Related Examples
• “Credit Simulation Using Copulas” on page 4-2
• “creditDefaultCopula Simulation Workflow” on page 4-5
• “Modeling Correlated Defaults with Copulas” on page 4-18
• “One-Factor Model Calibration” on page 4-64

More About
• “Credit Rating Migration Risk” on page 1-10

 creditMigrationCopula Simulation Workflow

4-17

Modeling Correlated Defaults with Copulas

This example explores how to simulate correlated counterparty defaults using a multifactor copula
model.

Potential losses are estimated for a portfolio of counterparties, given their exposure at default,
default probability, and loss given default information. A creditDefaultCopula object is used to
model each obligor's credit worthiness with latent variables. Latent variables are composed of a
series of weighted underlying credit factors, as well as, each obligor's idiosyncratic credit factor. The
latent variables are mapped to an obligor's default or nondefault state for each scenario based on
their probability of default. Portfolio risk measures, risk contributions at a counterparty level, and
simulation convergence information are supported in the creditDefaultCopula object.

This example also explores the sensitivity of the risk measures to the type of copula (Gaussian copula
versus t copula) used for the simulation.

Load and Examine Portfolio Data

The portfolio contains 100 counterparties and their associated credit exposures at default (EAD),
probability of default (PD), and loss given default (LGD). Using a creditDefaultCopula object, you
can simulate defaults and losses over some fixed time period (for example, one year). The EAD, PD,
and LGD inputs must be specific to a particular time horizon.

In this example, each counterparty is mapped onto two underlying credit factors with a set of
weights. The Weights2F variable is a NumCounterparties-by-3 matrix, where each row contains
the weights for a single counterparty. The first two columns are the weights for the two credit factors
and the last column is the idiosyncratic weights for each counterparty. A correlation matrix for the
two underlying factors is also provided in this example (FactorCorr2F).

load CreditPortfolioData.mat
whos EAD PD LGD Weights2F FactorCorr2F

 Name Size Bytes Class Attributes

 EAD 100x1 800 double
 FactorCorr2F 2x2 32 double
 LGD 100x1 800 double
 PD 100x1 800 double
 Weights2F 100x3 2400 double

Initialize the creditDefaultCopula object with the portfolio information and the factor correlation.

rng('default');
cc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F);

% Change the VaR level to 99%.
cc.VaRLevel = 0.99;

disp(cc)

 creditDefaultCopula with properties:

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9900

4 Corporate Credit Risk Simulations for Portfolios

4-18

 UseParallel: 0
 PortfolioLosses: []

cc.Portfolio(1:5,:)

ans=5×5 table
 ID EAD PD LGD Weights
 __ ______ _________ ____ ____________________

 1 21.627 0.0050092 0.35 0.35 0 0.65
 2 3.2595 0.060185 0.35 0 0.45 0.55
 3 20.391 0.11015 0.55 0.15 0 0.85
 4 3.7534 0.0020125 0.35 0.25 0 0.75
 5 5.7193 0.060185 0.35 0.35 0 0.65

Simulate the Model and Plot Potential Losses

Simulate the multifactor model using the simulate function. By default, a Gaussian copula is used.
This function internally maps realized latent variables to default states and computes the
corresponding losses. After the simulation, the creditDefaultCopula object populates the
PortfolioLosses and CounterpartyLosses properties with the simulation results.

cc = simulate(cc,1e5);
disp(cc)

 creditDefaultCopula with properties:

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9900
 UseParallel: 0
 PortfolioLosses: [30.1008 3.6910 3.2895 19.2151 7.5761 44.5088 19.5419 1.7909 72.1443 12.6933 36.0228 1.7909 4.8512 23.0230 54.0877 35.9298 35.3757 26.1678 36.8868 24.6242 2.9770 15.3030 0 0 10.5546 61.2268 32.5802 42.5504 10.2981 4.8318 ...]

The portfolioRisk function returns risk measures for the total portfolio loss distribution, and
optionally, their respective confidence intervals. The value-at-risk (VaR) and conditional value-at-risk
(CVaR) are reported at the level set in the VaRLevel property for the creditDefaultCopula
object.

[pr,pr_ci] = portfolioRisk(cc);

fprintf('Portfolio risk measures:\n');

Portfolio risk measures:

disp(pr)

 EL Std VaR CVaR
 ______ ______ _____ ______

 24.876 23.778 102.4 121.28

fprintf('\n\nConfidence intervals for the risk measures:\n');

Confidence intervals for the risk measures:

disp(pr_ci)

 Modeling Correlated Defaults with Copulas

4-19

 EL Std VaR CVaR
 ________________ ________________ ________________ ________________

 24.729 25.023 23.674 23.883 101.19 103.5 120.13 122.42

Look at the distribution of portfolio losses. The expected loss (EL), VaR, and CVaR are marked as the
vertical lines. The economic capital, given by the difference between the VaR and the EL, is shown as
the shaded area between the EL and the VaR.

histogram(cc.PortfolioLosses)
title('Portfolio Losses');
xlabel('Losses ($)')
ylabel('Frequency')
hold on

% Overlay the risk measures on the histogram.
xlim([0 1.1 * pr.CVaR])
plotline = @(x,color) plot([x x],ylim,'LineWidth',2,'Color',color);
plotline(pr.EL,'b');
plotline(pr.VaR,'r');
cvarline = plotline(pr.CVaR,'m');

% Shade the areas of expected loss and economic capital.
plotband = @(x,color) patch([x fliplr(x)],[0 0 repmat(max(ylim),1,2)],...
 color,'FaceAlpha',0.15);
elband = plotband([0 pr.EL],'blue');
ulband = plotband([pr.EL pr.VaR],'red');
legend([elband,ulband,cvarline],...
 {'Expected Loss','Economic Capital','CVaR (99%)'},...
 'Location','north');

4 Corporate Credit Risk Simulations for Portfolios

4-20

Find Concentration Risk for Counterparties

Find the concentration risk in the portfolio using the riskContribution function.
riskContribution returns the contribution of each counterparty to the portfolio EL and CVaR.
These additive contributions sum to the corresponding total portfolio risk measure.

rc = riskContribution(cc);

% Risk contributions are reported for EL and CVaR.
rc(1:5,:)

ans=5×5 table
 ID EL Std VaR CVaR
 __ ________ __________ _________ _________

 1 0.036031 0.022762 0.083828 0.13625
 2 0.068357 0.039295 0.23373 0.24984
 3 1.2228 0.60699 2.3184 2.3775
 4 0.002877 0.00079014 0.0024248 0.0013137
 5 0.12127 0.037144 0.18474 0.24622

Find the riskiest counterparties by their CVaR contributions.

[rc_sorted,idx] = sortrows(rc,'CVaR','descend');
rc_sorted(1:5,:)

 Modeling Correlated Defaults with Copulas

4-21

ans=5×5 table
 ID EL Std VaR CVaR
 __ _______ ______ ______ ______

 89 2.2647 2.2063 8.2676 8.9997
 96 1.3515 1.6514 6.6157 7.7062
 66 0.90459 1.474 6.4168 7.5149
 22 1.5745 1.8663 6.0121 7.3814
 16 1.6352 1.5288 6.3404 7.3462

Plot the counterparty exposures and CVaR contributions. The counterparties with the highest CVaR
contributions are plotted in red and orange.

figure;
pointSize = 50;
colorVector = rc_sorted.CVaR;
scatter(cc.Portfolio(idx,:).EAD, rc_sorted.CVaR,...
 pointSize,colorVector,'filled')
colormap('jet')
title('CVaR Contribution vs. Exposure')
xlabel('Exposure')
ylabel('CVaR Contribution')
grid on

4 Corporate Credit Risk Simulations for Portfolios

4-22

Investigate Simulation Convergence with Confidence Bands

Use the confidenceBands function to investigate the convergence of the simulation. By default, the
CVaR confidence bands are reported, but confidence bands for all risk measures are supported using
the optional RiskMeasure argument.

cb = confidenceBands(cc);

% The confidence bands are stored in a table.
cb(1:5,:)

ans=5×4 table
 NumScenarios Lower CVaR Upper
 ____________ ______ ______ ______

 1000 106.7 121.99 137.28
 2000 109.18 117.28 125.38
 3000 114.68 121.63 128.58
 4000 114.02 120.06 126.11
 5000 114.77 120.36 125.94

Plot the confidence bands to see how quickly the estimates converge.

figure;
plot(...
 cb.NumScenarios,...
 cb{:,{'Upper' 'CVaR' 'Lower'}},...
 'LineWidth',2);

title('CVaR: 95% Confidence Interval vs. # of Scenarios');
xlabel('# of Scenarios');
ylabel('CVaR + 95% CI')
legend('Upper Band','CVaR','Lower Band');
grid on

 Modeling Correlated Defaults with Copulas

4-23

Find the necessary number of scenarios to achieve a particular width of the confidence bands.

width = (cb.Upper - cb.Lower) ./ cb.CVaR;

figure;
plot(cb.NumScenarios,width * 100,'LineWidth',2);
title('CVaR: 95% Confidence Interval Width vs. # of Scenarios');
xlabel('# of Scenarios');
ylabel('Width of CI as %ile of Value')
grid on

% Find point at which the confidence bands are within 1% (two sided) of the
% CVaR.
thresh = 0.02;

scenIdx = find(width <= thresh,1,'first');
scenValue = cb.NumScenarios(scenIdx);
widthValue = width(scenIdx);
hold on
plot(xlim,100 * [widthValue widthValue],...
 [scenValue scenValue], ylim,...
 'LineWidth',2);
title('Scenarios Required for Confidence Interval with 2% Width');

4 Corporate Credit Risk Simulations for Portfolios

4-24

Compare Tail Risk for Gaussian and t Copulas

Switching to a t copula increases the default correlation between counterparties. This results in a
fatter tail distribution of portfolio losses, and in higher potential losses in stressed scenarios.

Rerun the simulation using a t copula and compute the new portfolio risk measures. The default
degrees of freedom (dof) for the t copula is five.

cc_t = simulate(cc,1e5,'Copula','t');
pr_t = portfolioRisk(cc_t);

See how the portfolio risk changes with the t copula.

fprintf('Portfolio risk with Gaussian copula:\n');

Portfolio risk with Gaussian copula:

disp(pr)

 EL Std VaR CVaR
 ______ ______ _____ ______

 24.876 23.778 102.4 121.28

fprintf('\n\nPortfolio risk with t copula (dof = 5):\n');

Portfolio risk with t copula (dof = 5):

 Modeling Correlated Defaults with Copulas

4-25

disp(pr_t)

 EL Std VaR CVaR
 ______ ______ ______ ______

 24.808 38.749 186.08 250.59

Compare the tail losses of each model.

% Plot the Gaussian copula tail.
figure;
subplot(2,1,1)
p1 = histogram(cc.PortfolioLosses);
hold on
plotline(pr.VaR,[1 0.5 0.5])
plotline(pr.CVaR,[1 0 0])
xlim([0.8 * pr.VaR 1.2 * pr_t.CVaR]);
ylim([0 1000]);
grid on
legend('Loss Distribution','VaR','CVaR')
title('Portfolio Losses with Gaussian Copula');
xlabel('Losses ($)');
ylabel('Frequency');

% Plot the t copula tail.
subplot(2,1,2)
p2 = histogram(cc_t.PortfolioLosses);
hold on
plotline(pr_t.VaR,[1 0.5 0.5])
plotline(pr_t.CVaR,[1 0 0])
xlim([0.8 * pr.VaR 1.2 * pr_t.CVaR]);
ylim([0 1000]);
grid on
legend('Loss Distribution','VaR','CVaR');
title('Portfolio Losses with t Copula (dof = 5)');
xlabel('Losses ($)');
ylabel('Frequency');

4 Corporate Credit Risk Simulations for Portfolios

4-26

The tail risk measures VaR and CVaR are significantly higher using the t copula with five degrees of
freedom. The default correlations are higher with t copulas, therefore there are more scenarios
where multiple counterparties default. The number of degrees of freedom plays a significant role. For
very high degrees of freedom, the results with the t copula are similar to the results with the
Gaussian copula. Five is a very low number of degrees of freedom and, consequentially, the results
show striking differences. Furthermore, these results highlight that the potential for extreme losses
are very sensitive to the choice of copula and the number of degrees of freedom.

See Also
creditDefaultCopula | simulate | portfolioRisk | riskContribution | confidenceBands
| getScenarios

Related Examples
• “Credit Simulation Using Copulas” on page 4-2
• “creditDefaultCopula Simulation Workflow” on page 4-5
• “One-Factor Model Calibration” on page 4-64

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3

 Modeling Correlated Defaults with Copulas

4-27

Modeling Probabilities of Default with Cox Proportional
Hazards

This example shows how to work with consumer (retail) credit panel data to visualize observed
probabilities of default (PDs) at different levels. It also shows how to fit a Cox proportional hazards
(PH) model, also known as Cox regression, to predict PDs. In addition, it shows how to perform a
stress-testing analysis, how to model lifetime PDs, and how to calculate the lifetime expected credit
loss (ECL) value using portfolioECL.

This example uses fitLifetimePDModel from Risk Management Toolbox™ to fit the Cox PH model.
Although the same model can be fitted using fitcox, the lifetime probability of default (PD) version
of the Cox model is designed for credit applications, and supports conditional PD prediction, lifetime
PD prediction, and model validation tools, including the discrimination and accuracy plots.

A similar example, “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on
page 3-36, follows the same workflow, but it uses a Logistic regression model instead of a Cox
model. The main differences in the two approaches are:

• Model fit — The Cox PH model has a nonparametric baseline hazard rate that can match patterns
in the PDs more closely than the fully parametric Logistic model.

• Extrapolating beyond the observed ages in the data — The Cox PH model, because it is built on
top of a nonparametric baseline hazard rate, needs additional rules or assumptions to extrapolate
to loan ages that are not observed in the data set. For an example, see “Use Cox Lifetime PD
Model to Predict Conditional PD” on page 6-329. Conversely, the Logistic model treats the age
of the loan as a continuous variable; therefore, a Logistic model can seamlessly extrapolate to
predict PDs for ages not observed in the data set.

Data Exploration with Survival Analysis Tools

Start with some data visualizations, mainly the visualization of PDs as a function of age, which in this
data set is the same as years-on-books (YOB). Because Cox PH is a survival analysis model, this
example discusses some survival analysis tools and concepts and uses the empirical cumulative
distribution function (ecdf) functionality for some of these computations and visualizations.

The main data set (data) contains the following variables:

• ID: Loan identifier.
• ScoreGroup: Credit score at the beginning of the loan, discretized into three groups, High Risk,

Medium Risk, and Low Risk.
• YOB: Years on books.
• Default: Default indicator. This is the response variable.
• Year: Calendar year.

There is also a small data set (dataMacro) with macroeconomic data for the corresponding calendar
years that contains the following variables:

• Year: Calendar year.
• GDP: Gross domestic product growth (year over year).
• Market: Market return (year over year).

4 Corporate Credit Risk Simulations for Portfolios

4-28

The variables YOB, Year, GDP, and Market are observed at the end of the corresponding calendar
year. The ScoreGroup is a discretization of the original credit score when the loan started. A value of
1 for Default means that the loan defaulted in the corresponding calendar year.

A third data set (dataMacroStress) contains baseline, adverse, and severely adverse scenarios for
the macroeconomic variables. The stress-testing analysis on page 4-41 in this example uses this
table.

Load the simulated data.

load RetailCreditPanelData.mat
disp(head(data,10))

 ID ScoreGroup YOB Default Year
 __ ___________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004
 2 Medium Risk 1 0 1997
 2 Medium Risk 2 0 1998

Preprocess the panel data to put it in the format expected by some of the survival analysis tools.

% Use groupsummary to reduce data to one ID per row, and keep track of
% whether the loan defaulted or not.
dataSurvival = groupsummary(data,'ID','sum','Default');
disp(head(dataSurvival,10))

 ID GroupCount sum_Default
 __ __________ ___________

 1 8 0
 2 8 0
 3 8 0
 4 6 0
 5 7 0
 6 7 0
 7 8 0
 8 6 0
 9 7 0
 10 8 0

% You can also get years observed from YOB, though in this example, the YOB always
% starts from 1 in the data, so the GroupCount equals the final YOB.
dataSurvival.Properties.VariableNames{2} = 'YearsObserved';
dataSurvival.Properties.VariableNames{3} = 'Default';
% If there is no default, it is a censored observation.
dataSurvival.Censored = ~dataSurvival.Default;
disp(head(dataSurvival,10))

 ID YearsObserved Default Censored
 __ _____________ _______ ________

 Modeling Probabilities of Default with Cox Proportional Hazards

4-29

 1 8 0 true
 2 8 0 true
 3 8 0 true
 4 6 0 true
 5 7 0 true
 6 7 0 true
 7 8 0 true
 8 6 0 true
 9 7 0 true
 10 8 0 true

The main variable is the amount of time each loan was observed (YearsObserved), which is the final
value of the years-on-books (YOB) variable. This years observed is the number of years until default,
or until the end of the observation period (eight years), or until the loan is removed from the sample
due to prepayment. In this data set, the YOB information is the same as the age of the loan because
all loans start with a YOB of 1. For other data sets, this case might true. For example, in a trading
portfolio, the YOB and age may be different because a loan purchased in the third year of its life
would have an age of 3, but a YOB value of 1.

The second required variable is the censoring variable (Censored). In this analysis, the event of
interest is the loan default. If a loan is observed until default, you have all of the information about
the time until default. Therefore, the lifetime information is uncensored or complete. Alternatively,
the information is considered censored, or incomplete, if at the end of the observation period the loan
has not defaulted. The loan could not default because it was prepaid or the loan had not defaulted by
the end of the eight-year observation period in the sample.

Add the ScoreGroup and Vintage information to the data. The value of these variables remains
constant throughout the life of the loan. The score given at origination determines the ScoreGroup
and the origination year determines the Vintage or cohort.

% You can get ScoreGroup from YOB==1 because, in this data set,
% YOB always starts at 1 and the ID's order is the same in data and
% dataSurvival.
dataSurvival.ScoreGroup = data.ScoreGroup(data.YOB==1);
% Define vintages based on the year the loan started. All loans
% in this data set start in year 1 of their life.
dataSurvival.Vintage = data.Year(data.YOB==1);
disp(head(dataSurvival,10))

 ID YearsObserved Default Censored ScoreGroup Vintage
 __ _____________ _______ ________ ___________ _______

 1 8 0 true Low Risk 1997
 2 8 0 true Medium Risk 1997
 3 8 0 true Medium Risk 1997
 4 6 0 true Medium Risk 1999
 5 7 0 true Medium Risk 1998
 6 7 0 true Medium Risk 1998
 7 8 0 true Medium Risk 1997
 8 6 0 true Medium Risk 1999
 9 7 0 true Low Risk 1998
 10 8 0 true Low Risk 1997

Compare the number of rows in the original data set (in panel data format) and the aggregated data
set (in the more traditional survival format).

4 Corporate Credit Risk Simulations for Portfolios

4-30

fprintf('Number of rows original data: %d\n',height(data));

Number of rows original data: 646724

fprintf('Number of rows survival data: %d\n',height(dataSurvival));

Number of rows survival data: 96820

Plot the cumulative default probability against YOB for the entire portfolio (all score groups and
vintages) using the empirical cumulative distribution function (ecdf).

ecdf(dataSurvival.YearsObserved,'Censoring',dataSurvival.Censored,'Bounds','on')
title('Cumulative Default Probability, All Score Groups')
xlabel('Years on Books')

Plot conditional one-year PDs against YOB. For example, the conditional one-year PD for a YOB of 3 is
the conditional one-year PD for loans that are in their third year of life. In survival analysis, this value
coincides with the discrete hazard rate, denoted by h, since the number of defaults in a particular
year is the number of "failures," and the number of loans still on books at the beginning of that same
year is the same as the "number at risk." To compute h, get the cumulative hazard function output,
denoted by H, and transform it to the hazard function h. For more information, see “Kaplan-Meier
Method”.

[H,x] = ecdf(dataSurvival.YearsObserved,'Censoring',dataSurvival.Censored, ...
 'Function','cumulative hazard');
% Take the diff of H to get the hazard h.
h = diff(H);
x(1) = [];

 Modeling Probabilities of Default with Cox Proportional Hazards

4-31

% In this example, the times observed (stored in variable x) do not change for
% different score groups, or for training vs. test sets. For other data sets,
% you may need to check the x and h variables after every call to the ecdf function before
% plotting or concatenating results. (For example, if data set has no defaults in a
% particular year for the test data.)

plot(x,h,'*')
grid on
title('Conditional One-Year PDs')
ylabel('PD')
xlabel('Years on Books')

You can also compute these probabilities directly with groupsummary using the original panel data
format. For more information, see the companion example, “Stress Testing of Consumer Credit
Default Probabilities Using Panel Data” on page 3-36. Alternatively, you can compute these
probabilities with grpstats using the original panel data format. Either of these approaches gives
the same conditional one-year PDs.

PDvsYOBByGroupsummary = groupsummary(data,'YOB','mean','Default');

PDvsYOBByGrpstats = grpstats(data.Default,data.YOB);

PDvsYOB = table((1:8)',h,PDvsYOBByGroupsummary.mean_Default,PDvsYOBByGrpstats, ...
 'VariableNames',{'YOB','ECDF','Groupsummary','Grpstats'});
disp(PDvsYOB)

4 Corporate Credit Risk Simulations for Portfolios

4-32

 YOB ECDF Groupsummary Grpstats
 ___ _________ ____________ _________

 1 0.017507 0.017507 0.017507
 2 0.012704 0.012704 0.012704
 3 0.011168 0.011168 0.011168
 4 0.010728 0.010728 0.010728
 5 0.0085949 0.0085949 0.0085949
 6 0.006413 0.006413 0.006413
 7 0.0033231 0.0033231 0.0033231
 8 0.0016272 0.0016272 0.0016272

Segment the data by ScoreGroup to get the PDs disaggregated by ScoreGroup.

ScoreGroupLabels = categories(dataSurvival.ScoreGroup);
NumScoreGroups = length(ScoreGroupLabels);
hSG = zeros(length(h),NumScoreGroups);
for ii=1:NumScoreGroups
 Ind = dataSurvival.ScoreGroup==ScoreGroupLabels{ii};
 H = ecdf(dataSurvival.YearsObserved(Ind),'Censoring',dataSurvival.Censored(Ind));
 hSG(:,ii) = diff(H);
end
plot(x,hSG,'*')
grid on
title('Conditional One-Year PDs, By Score Group')
xlabel('Years on Books')
ylabel('PD')
legend(ScoreGroupLabels)

 Modeling Probabilities of Default with Cox Proportional Hazards

4-33

You can also disaggregate PDs by Vintage information and segment the data in a similar way. You
can plot these PDs against YOB or against calendar year. To see these visualizations, refer to “Stress
Testing of Consumer Credit Default Probabilities Using Panel Data” on page 3-36.

Cox PH Model Without Macro Effects

This section shows how to fit a Cox PH model without macro information. The model includes only
the time-independent predictor ScoreGroup at the origination of the loans. Time-independent
predictors contain information that remains constant throughout the life of the loan. This example
uses only ScoreGroup, but other time-independent predictors could be added to the model (for
example, Vintage information).

Cox proportional hazards regression is a semiparametric method for adjusting survival rate estimates
to quantify the effect of predictor variables. The method represents the effects of explanatory
variables as a multiplier of a common baseline hazard function, h0 t . The hazard function is the
nonparametric part of the Cox proportional hazards regression function, whereas the impact of the
predictor variables is a loglinear regression. The Cox PH model is:

h Xi, t = h0 t exp ∑
j = 1

p
xijb j

where:

• Xi = xi1, . . . , xip are the predictor variables for the ith subject.
• b j is the coefficient of the jth predictor variable.
• h Xi, t is the hazard rate at time t for Xi.
• h0 t is the baseline hazard rate function.

For more details, see the Cox and fitcox or “Cox Proportional Hazards Model” and the references
therein.

The basic Cox PH model assumes that the predictor values do not change throughout the life of the
loans. In this example, ScoreGroup does not change because it is the score given to borrowers at the
beginning of the loan. Vintage is also constant throughout the life of the loan.

A Cox model could use time-dependent scores. For example, if the credit score information is updated
every year, you model a time-dependent predictor in the Cox model similar to the way the macro
variables are added to the model later in the Cox PH Model with Macro Effects on page 4-38
section.

To fit a Cox lifetime PD model using fitLifetimePDModel, use the original data table in panel data
format. Although the survival data format in the dataSurvival table can be used with other survival
functions such as ecdf or fitcox, the fitLifetimePDModel function always works with the panel
data format. This simplifies the switch between models with, or without time-dependent models, and
the same panel data format is used for the validation functions such as modelCalibrationPlot.
When fitting Cox models, the fitLifetimePDModel function treats the age variable ('AgeVar'
argument) as the time to event and it uses the response variable ('ResponseVar' argument) binary
values to identify the censored observations.

In the fitted model that follows, the only predictor is the ScoreGroup variable. The
fitLifetimePDModel function checks the periodicity of the data (the most common age

4 Corporate Credit Risk Simulations for Portfolios

4-34

increments) and stores it in the 'TimeInterval' property of the Cox lifetime PD model. The
'TimeInterval' information is important for the prediction of conditional PD using predict.

Split the data into training and testing subsets and then fit the model using the training data.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % For reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

pdModel = fitLifetimePDModel(data(TrainDataInd,:),'cox', ...
 'IDVar','ID','AgeVar','YOB','LoanVars','ScoreGroup','ResponseVar','Default');
disp(pdModel)

 Cox with properties:

 TimeInterval: 1
 ExtrapolationFactor: 1
 ModelID: "Cox"
 Description: ""
 UnderlyingModel: [1x1 CoxModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ""
 ResponseVar: "Default"

pdModel.UnderlyingModel

ans =
Cox Proportional Hazards regression model

 Beta SE zStat pValue
 ________ ________ _______ ___________

 ScoreGroup_Medium Risk -0.67831 0.037029 -18.319 5.8806e-75
 ScoreGroup_Low Risk -1.2453 0.045243 -27.525 8.8419e-167

Log-likelihood: -41783.047

To predict the conditional PDs, use predict. For example, predict the PD for the first ID in the data.

PD_ID1 = predict(pdModel,data(1:8,:))

PD_ID1 = 8×1

 0.0083
 0.0059
 0.0055
 0.0052

 Modeling Probabilities of Default with Cox Proportional Hazards

4-35

 0.0039
 0.0033
 0.0016
 0.0009

To compare the predicted PDs against the observed default rates in the training or test data, use
modelCalibrationPlot. This plot is a visualization of the calibration of the predicted PD values
(also known as predictive ability). A grouping variable is required for the PD model accuracy. By
using YOB as the grouping variable, the observed default rates are the same as the default rates
discussed in the Data Exploration with Survival Analysis Tools on page 4-28 section.

DataSetChoice = ;
if DataSetChoice=="Training"
 Ind = TrainDataInd;
else
 Ind = TestDataInd;
end

modelCalibrationPlot(pdModel,data(Ind,:),'YOB','DataID',DataSetChoice)

The calibration plot accepts a second grouping variable. For example, use ScoreGroup as a second
grouping variable to visualize the PD predictions per ScoreGroup, against the YOB.

modelCalibrationPlot(pdModel,data(Ind,:),{'YOB','ScoreGroup'},'DataID',DataSetChoice)

4 Corporate Credit Risk Simulations for Portfolios

4-36

The modelDiscriminationPlot returns the ROC curve. Use the optional 'SegmentBy' argument
to visualize the ROC for each ScoreGroup.

modelDiscriminationPlot(pdModel,data(Ind,:),'DataID',DataSetChoice,'SegmentBy','ScoreGroup')

 Modeling Probabilities of Default with Cox Proportional Hazards

4-37

The nonparametric part of the Cox model allows it to closely match the training data pattern, even
though only ScoreGroup is included as a predictor in this model. The results on test data show
larger errors than on the training data, but this result is still a good fit.

The addition of macro information is important because both the stress testing and the lifetime PD
projections require an explicit dependency on macro information.

Cox PH Model with Macro Effects

This section shows how to fit a Cox PH model that includes macro information, specifically, gross
domestic product (GDP) growth, and stock market growth. The value of the macro variables changes
every year, so the predictors are time dependent.

The extension of the Cox proportional hazards model to account for time-dependent variables is:

h Xi, t = h0 t exp ∑
j = 1

p1
xijb j + ∑

k = 1

p2
xik t ck

where:

• xij is the predictor variable value for the ith subject and the jth time-independent predictor.
• xik t is the predictor variable value for the ith subject and the kth time-dependent predictor at

time t.
• b j is the coefficient of the jth time-independent predictor variable.

4 Corporate Credit Risk Simulations for Portfolios

4-38

• ck is the coefficient of the kth time-dependent predictor variable.
• h Xi t , t is the hazard rate at time t for Xi t .
• h0 t is the baseline hazard rate function.

For more details, see Cox, fitcox, or “Cox Proportional Hazards Model” and the references therein.

Macro variables are treated as time-dependent variables. If the time-independent information, such
as the initial ScoreGroup, provides a baseline level of risk through the life of the loan, it is
reasonable to expect that changing macro conditions may increase or decrease the risk around that
baseline level. Also, if the macro conditions change, you can expect that these variations in risk will
be different from one year to the next. For example, years with low economic growth should make all
loans more risky, independently of their initial ScoreGroup.

The data input for the Cox lifetime PD model with time-dependent predictors uses the original panel
data with the addition of the macro information.

As mentioned earlier, when fitting Cox models, the fitLifetimePDModel function treats the age
variable ('AgeVar' argument) as the time to event and it uses the response variable
('ResponseVar' argument) binary values to identify the censored observations. In the fitted model
that follows, the predictors are ScoreGroup, GDP, and Market. The fitLifetimePDModel checks
the periodicity of the data (the most common age increments) and stores it in the 'TimeInterval'
property of the Cox lifetime PD model. For time-dependent models, the 'TimeInterval' value is
used to define age intervals for each row where the predictor values are constant. For more
information, see “Time Interval for Cox Models” on page 6-551. The 'TimeInterval' information is
also important for the prediction of conditional PD when using predict.

Internally, the fitLifetimePDModel function uses fitcox. Using fitLifetimePDModel for credit
models offers some advantages over fitcox. For example, when you work directly with fitcox, you
need a survival version of the data for time-independent models and a "counting process" version of
the data (similar to the panel data form, but with additional information) is needed for time-
dependent models. The fitLifetimePDModel function always takes the panel data form as input
and peforms the data preprocessing before calling fitcox. Also, with the lifetime PD version of the
Cox model, you have access to credit-specific prediction and validation functionality not directly
supported in the underlying Cox model.

data = join(data,dataMacro);
head(data)

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

pdModelMacro = fitLifetimePDModel(data(TrainDataInd,:),'cox', ...
 'IDVar','ID','AgeVar','YOB','LoanVars','ScoreGroup', ...
 'MacroVars',{'GDP','Market'},'ResponseVar','Default');
disp(pdModelMacro)

 Modeling Probabilities of Default with Cox Proportional Hazards

4-39

 Cox with properties:

 TimeInterval: 1
 ExtrapolationFactor: 1
 ModelID: "Cox"
 Description: ""
 UnderlyingModel: [1x1 CoxModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

disp(pdModelMacro.UnderlyingModel)

Cox Proportional Hazards regression model

 Beta SE zStat pValue
 __________ _________ _______ ___________

 ScoreGroup_Medium Risk -0.6794 0.037029 -18.348 3.4442e-75
 ScoreGroup_Low Risk -1.2442 0.045244 -27.501 1.7116e-166
 GDP -0.084533 0.043687 -1.935 0.052995
 Market -0.0084411 0.0032221 -2.6198 0.0087991

Log-likelihood: -41742.871

Visualize the model calibration (also known as predictive ability) of the predicted PD values using
modelCalibrationPlot.

DataSetChoice = ;
if DataSetChoice=="Training"
 Ind = TrainDataInd;
else
 Ind = TestDataInd;
end

modelCalibrationPlot(pdModelMacro,data(Ind,:),'YOB','DataID',DataSetChoice)

4 Corporate Credit Risk Simulations for Portfolios

4-40

The macro effects help the model match the observed default rates even closer and the match to the
training data looks like an interpolation for the macro model.

The accuracy plot by ScoreGroup and the ROC curve is created the same way as for the Cox model
without macro variables.

Stress Testing

This section shows how to perform a stress-testing analysis of PDs using the Cox macro model.

Assume that a regulator has provided the following stress scenarios for the macroeconomic variables
GDP and Market.

disp(dataMacroStress)

 GDP Market
 _____ ______

 Baseline 2.27 15.02
 Adverse 1.31 4.56
 Severe -0.22 -5.64

The following code predicts PDs for each ScoreGroup and each macro scenario. For the visualization
of each macro scenario, take the average over the ScoreGroups to aggregate the data into a single
PD by YOB.

dataStress = table;
dataStress.YOB = repmat((1:8)',3,1);

 Modeling Probabilities of Default with Cox Proportional Hazards

4-41

dataStress.ScoreGroup = repmat("",size(dataStress.YOB));
dataStress.ScoreGroup(1:8) = ScoreGroupLabels{1};
dataStress.ScoreGroup(9:16) = ScoreGroupLabels{2};
dataStress.ScoreGroup(17:24) = ScoreGroupLabels{3};
dataStress.GDP = zeros(size(dataStress.YOB));
dataStress.Market = zeros(size(dataStress.YOB));

ScenarioLabels = dataMacroStress.Properties.RowNames;
NumScenarios = length(ScenarioLabels);

PDScenarios = zeros(length(x),NumScenarios);

for jj=1:NumScenarios

 Scenario = ScenarioLabels{jj};

 dataStress.GDP(:) = dataMacroStress.GDP(Scenario);
 dataStress.Market(:) = dataMacroStress.Market(Scenario);

 % Predict PD for each ScoreGroup for the current scenario.
 dataStress.PD = predict(pdModelMacro,dataStress);

 % Average PD over ScoreGroups, by age, to visualize in a single plot.
 PDAvgTable = groupsummary(dataStress,"YOB","mean","PD");
 PDScenarios(:,jj) = PDAvgTable.mean_PD;

end

figure;
bar(x,PDScenarios)
title('Stress Test, Probability of Default')
xlabel('Years on Books')
ylabel('PD')
legend('Baseline','Adverse','Severe')
grid on

4 Corporate Credit Risk Simulations for Portfolios

4-42

Lifetime PD and ECL

This section shows how to compute lifetime PDs using the Cox macro model and how to compute
lifetime expected credit losses (ECL).

For lifetime modeling, the PD model is the same, but it is used differently. You need the predicted PDs
not just one period ahead, but for each year throughout the life of each particular loan. You also need
macro scenarios throughout the life of the loans. This example sets up alternative long-term macro
scenarios, computes lifetime PDs under each scenario, and computes the corresponding one-year
PDs, marginal PDs, and survival probabilities. The lifetime and marginal PDs are visualized for each
year, under each macro scenario. The ECL is then computed for each scenario and the weighted
average lifetime ECL.

For concreteness, this example looks into an eight-year loan at the beginning of its third year and
predicts the one-year PD from years 3 through 8 of the life of this loan. This example also computes
the survival probability over the remaining life of the loan. The relationship between the survival
probability S t and the one-year conditional PDs or hazard rates h t , sometimes also called the
forward PDs, is:

S 0 = 1,
S 1 = 1− PD 1 ,
. . .
S t = S t − 1 1− PD t = 1− PD 1 ⋯ 1− PD t

 Modeling Probabilities of Default with Cox Proportional Hazards

4-43

The lifetime PD (LPD) is the cumulative PD over the life of the loan, given by the complement of the
survival probability:

LPD t = 1− S t

Another quantity of interest is the marginal PD (MPD), which is the increase in the lifetime PD
between two consecutive periods:

MPD t + 1 = LPD t + 1 − LPD t

It follows that the marginal PD is also the decrease in survival probability between consecutive
periods, and also the hazard rate multiplied by the survival probability:

MPD t + 1 = S t − S t + 1 = PD t + 1 S t

For more information, see predictLifetime and “Kaplan-Meier Method”. The predictLifetime
function supports lifetime PD, marginal PD, and survival probability formats.

Specify three macroeconomic scenarios, one baseline projection, and two simple shifts of 20% higher
or 20% lower values for the baseline growth, which are called faster growth and slower growth,
respectively. The scenarios in this example, and the corresponding probabilities, are simple scenarios
for illustration purposes only. A more thorough set of scenarios can be constructed with more
powerful models using Econometrics Toolbox™ or Statistics and Machine Learning Toolbox™; see, for
example, “Model the United States Economy” (Econometrics Toolbox). Automated methods can
usually simulate large numbers of scenarios. In practice, only a small number of scenarios are
required and these scenarios, and their corresponding probabilities, are selected combining
quantitative tools and expert judgment. Also, see the “Incorporate Macroeconomic Scenario
Projections in Loan Portfolio ECL Calculations” on page 4-195 example that shows a detailed
workflow for ECL calculations, including the determination of macro scenarios.

CurrentAge = 3; % Currently starting third year of loan
Maturity = 8; % Loan ends at end of year 8
YOBLifetime = (CurrentAge:Maturity)';
NumYearsRemaining = length(YOBLifetime);

dataLifetime = table;
dataLifetime.ID = ones(NumYearsRemaining,1);
dataLifetime.YOB = YOBLifetime;
dataLifetime.ScoreGroup = repmat("High Risk",size(dataLifetime.YOB)); % High risk
dataLifetime.GDP = zeros(size(dataLifetime.YOB));
dataLifetime.Market = zeros(size(dataLifetime.YOB));

% Macro scenarios for lifetime analysis
GDPPredict = [2.3; 2.2; 2.1; 2.0; 1.9; 1.8];
GDPPredict = [0.8*GDPPredict GDPPredict 1.2*GDPPredict];

MarketPredict = [15; 13; 11; 9; 7; 5];
MarketPredict = [0.8*MarketPredict MarketPredict 1.2*MarketPredict];

ScenLabels = ["Slower growth" "Baseline" "Faster growth"];
NumMacroScen = size(GDPPredict,2);

% Scenario probabilities for the computation of lifetime ECL
PScenario = [0.2; 0.5; 0.3];

PDLifetime = zeros(size(GDPPredict));

4 Corporate Credit Risk Simulations for Portfolios

4-44

PDMarginal = zeros(size(GDPPredict));
for ii = 1:NumMacroScen
 dataLifetime.GDP = GDPPredict(:,ii);
 dataLifetime.Market = MarketPredict(:,ii);
 PDLifetime(:,ii) = predictLifetime(pdModelMacro,dataLifetime); % Returns lifetime PD by default
 PDMarginal(:,ii) = predictLifetime(pdModelMacro,dataLifetime,'ProbabilityType','marginal');
end

% Start lifetime PD at last year with value of 0 for visualization
% purposes.
tLifetime0 = (dataMacro.Year(end):dataMacro.Year(end)+NumYearsRemaining)';
PDLifetime = [zeros(1,NumMacroScen);PDLifetime];
tLifetime = tLifetime0(2:end);

figure;
subplot(2,1,1)
plot(tLifetime0,PDLifetime)
xticks(tLifetime0)
grid on
xlabel('Year')
ylabel('Lifetime PD')
title('Lifetime PD by Scenario')
legend(ScenLabels,'Location','best')
subplot(2,1,2)
bar(tLifetime,PDMarginal)
grid on
xlabel('Year')
ylabel('Marginal PD')
title('Marginal PD by Scenario')
legend(ScenLabels)

 Modeling Probabilities of Default with Cox Proportional Hazards

4-45

These lifetime PDs, by scenario, are one of the inputs for the computation of lifetime expected credit
losses (ECL). ECL also requires lifetime values for loss given default (LGD) and exposure at default
(EAD), for each scenario, and the scenario probabilities. For simplicity, this example assumes a
constant LGD and EAD value, but these parameters for LGD and EAD models could vary by scenario
and by time period. For more information, see fitLGDModel and fitEADModel. Use portfolioECL
to compute the lifetime ECL.

The computation of lifetime ECL also requires the effective interest rate (EIR) for discounting
purposes. In this example, the discount factors are computed at the end of the time periods, but other
discount times may be used. For example, you might use the midpoint in between the time periods;
that is, discount first-year amounts with a 6-month discount factor, discount second-year amounts
with a 1.5-year discount factor, and so on).

With these inputs, the expected credit loss at time t for scenario s is defined as:

ECL t; s = MPD t; s LGD t; s EAD t; s Disc t

where t denotes a time period, s denotes a scenario, and Disc t = 1
1 + EIR t .

For each scenario, a lifetime ECL is computed by adding ECLs across time, from the fist time period
in the analysis, to the expected life of the product denoted by T. In this example, it is five years (this
loan is a simple loan with five years remaining to maturity):

ECL s = ∑t = 1
T ECL t; s

4 Corporate Credit Risk Simulations for Portfolios

4-46

Finally, compute the weighed average of these expected credit losses, across all scenarios, to get a
single lifetime ECL value, where P s denotes the scenario probabilities:

ECL = ∑
s = 1

NumScenarios
ECL s P s

These computations are supported with the portfolioECL function.

LGD = 0.55; % Loss given default
EAD = 100; % Exposure at default
EIR = 0.045; % Effective interest rate

PDMarginalTable = table(dataLifetime.ID, PDMarginal(:,1), PDMarginal(:,2), PDMarginal(:,3),'VariableNames',["ID",ScenLabels]);
LGDTable = table(dataLifetime.ID(1), LGD,'VariableNames',["ID","LGD"]);
EADTable = table(dataLifetime.ID(1), EAD,'VariableNames',["ID","EAD"]);

[totalECL, ECLByID, ECLByPeriod] = portfolioECL(PDMarginalTable, LGDTable, EADTable, 'InterestRate', EIR,...
 'ScenarioNames',ScenLabels, 'ScenarioProbabilities',PScenario, 'IDVar','ID','Periodicity','annual');
disp(ECLByID);

 ID ECL
 __ ______

 1 2.7441

disp(ECLByPeriod);

 ID TimePeriod Slower growth Baseline Faster growth
 __ __________ _____________ ________ _____________

 1 1 0.95927 0.90012 0.8446
 1 2 0.703 0.66366 0.62646
 1 3 0.48217 0.45781 0.43463
 1 4 0.40518 0.38686 0.36931
 1 5 0.22384 0.21488 0.20624
 1 6 0.13866 0.13381 0.1291

fprintf('Lifetime ECL: %g\n',totalECL)

Lifetime ECL: 2.7441

When the LGD and EAD do not depend on the scenarios (even if they change with time), the weighted
average of the lifetime PD curves is taken to get a single, average lifetime PD curve.

MarginalPDLifetimeWeightedAvg = PDMarginal*PScenario;
MarginalPDLifetimeWeightedAvgTable = table(dataLifetime.ID, MarginalPDLifetimeWeightedAvg,'VariableNames',["ID","PD"]);
totalECLByWeightedPD = portfolioECL(MarginalPDLifetimeWeightedAvgTable, LGDTable, EADTable, 'InterestRate', EIR,...
 'IDVar','ID','Periodicity','annual');
fprintf('Lifetime ECL, using weighted lifetime PD: %g, same result because of constant LGD and EAD.\n', ...
 totalECLByWeightedPD)

Lifetime ECL, using weighted lifetime PD: 2.7441, same result because of constant LGD and EAD.

However, when the LGD and EAD values change with the scenarios, pass scenario-dependent inputs
(the PDMarginalTable input) to the portfolioECL function to first compute the ECL values at
scenario level. Then you can find the weighted average of the ECL values. For example, see
“Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations” on page 4-195

 Modeling Probabilities of Default with Cox Proportional Hazards

4-47

where all inputs (marginal PD, LGD and EAD) change period-by-period and are sensitive to the
macroeconomic scenarios.

Conclusion

This example showed how to fit a Cox model for PDs, how to perform stress testing of the PDs, and
how to compute lifetime PDs and ECL. A similar example, “Stress Testing of Consumer Credit Default
Probabilities Using Panel Data” on page 3-36, follows the same workflow but uses logistic regression,
instead of Cox regression. The fitLifetimePDModel function supports Cox, Logistic, and
Probit models. The computation of lifetime PDs and ECL at the end of this example can also be
performed with logistic or probit models. For an example, see “Expected Credit Loss Computation”
on page 4-124.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement
Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Federal Reserve, Comprehensive Capital Analysis and Review (CCAR): https://
www.federalreserve.gov/bankinforeg/ccar.htm

[4] Bank of England, Stress Testing: https://www.bankofengland.co.uk/financial-stability

[5] European Banking Authority, EU-Wide Stress Testing: https://www.eba.europa.eu/risk-analysis-
and-data/eu-wide-stress-testing

See Also
fitLifetimePDModel | predict | predictLifetime | modelDiscrimination |
modelDiscriminationPlot | modelCalibration | modelCalibrationPlot | Logistic |
Probit | Cox

Related Examples
• “Basic Lifetime PD Model Validation” on page 4-129
• “Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
• “Compare Lifetime PD Models Using Cross-Validation” on page 4-121
• “Expected Credit Loss Computation” on page 4-124
• “Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on

page 4-144

More About
• “Overview of Lifetime Probability of Default Models” on page 1-25

4 Corporate Credit Risk Simulations for Portfolios

4-48

https://www.federalreserve.gov/bankinforeg/ccar.htm
https://www.federalreserve.gov/bankinforeg/ccar.htm
https://www.bankofengland.co.uk/financial-stability
https://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing
https://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing

Analyze the Sensitivity of Concentration to a Given Exposure

This example shows how to sweep through a range of values for an existing exposure from 0 to
double the current value and plot the corresponding values. This could be used as one criterion
(among others) for assessing portfolio limits.

Load credit portfolio data and use exposure at default (EAD) as the portfolio values. Compute current
values of concentration indices.

load CreditPortfolioData.mat
P = EAD;
CurrentConcentration = concentrationIndices(P)

CurrentConcentration=1×8 table
 ID CR Deciles Gini HH HK HT TE
 ___________ ________ ___________ _______ ________ ________ ________ _______

 "Portfolio" 0.058745 1x11 double 0.55751 0.023919 0.013363 0.022599 0.53485

Choose an index of interest. For instance, select a loan with maximum exposure.

[~,IndMax] = max(P);
CurrentExposure = P(IndMax);

Sweep through a range of multipliers for the selected exposure and get the corresponding
concentration measures.

Multiplier = 0.0:0.05:2;
% Compute concentration with selected exposure removed from portfolio
P(IndMax) = 0;
ciSensitivity = concentrationIndices(P,'ID','Multiplier 0.0');
ciSensitivity = repmat(ciSensitivity,length(Multiplier),1);
for ii=2:length(Multiplier)
 P(IndMax) = CurrentExposure*Multiplier(ii);
 ci = concentrationIndices(P,'ID',['Multiplier ' num2str(Multiplier(ii))]);
 ciSensitivity(ii,:) = ci;
end
% Display first five rows
disp(ciSensitivity(1:5,:))

 ID CR Deciles Gini HH HK HT TE
 _________________ ________ ___________ _______ ________ ________ ________ _______

 "Multiplier 0.0" 0.059442 1x11 double 0.55051 0.023102 0.013314 0.022248 0.51826
 "Multiplier 0.05" 0.059257 1x11 double 0.5467 0.022968 0.013185 0.022061 0.50991
 "Multiplier 0.1" 0.059074 1x11 double 0.54456 0.022855 0.013156 0.021957 0.5059
 "Multiplier 0.15" 0.058891 1x11 double 0.54355 0.022762 0.013143 0.021908 0.50352
 "Multiplier 0.2" 0.058709 1x11 double 0.54313 0.022688 0.013139 0.021888 0.5022

Plot the sensitivity to changes in exposure for a particular index.

IndexID = 'HH';
figure;
plot(Multiplier',ciSensitivity.(IndexID))
hold on

 Analyze the Sensitivity of Concentration to a Given Exposure

4-49

plot(1,CurrentConcentration.(IndexID),'*')
hold off
title(['Sensitivity of ' IndexID ' Index'])
xlabel('Exposure Multiplier')
ylabel('Concentration Index')
legend(IndexID,'Current')
grid on

See Also
concentrationIndices

Related Examples
• “Compare Concentration Indices for Random Portfolios” on page 4-51

More About
• “Concentration Indices” on page 1-15

4 Corporate Credit Risk Simulations for Portfolios

4-50

Compare Concentration Indices for Random Portfolios

This example shows how to simulate random portfolios with different distributions and compare their
concentration indices. For illustration purposes, a lognormal and Weibull distribution are used. The
distribution parameters are chosen arbitrarily to get a similar range of values for both random
portfolios.

Generate random portfolios with different distributions.

rng('default'); % for reproducibility
PLgn = lognrnd(1,1,1,300);
PWbl = wblrnd(2,0.5,1,300);

Display largest simulated loan value.

fprintf('\nLargest loan Lognormal: %g\n',max(PLgn));

Largest loan Lognormal: 97.3582

fprintf('Largest loan Weibull: %g\n',max(PWbl));

Largest loan Weibull: 91.5866

Plot the portfolio histograms.

figure;
histogram(PLgn,0:5:100)
hold on
histogram(PWbl,0:5:100)
hold off
title('Random Loan Histograms')
xlabel('Loan Amount')
ylabel('Frequency')
legend('Lognormal','Weibull')

 Compare Concentration Indices for Random Portfolios

4-51

Compute and display the concentration measures.

ciLgn = concentrationIndices(PLgn,'ID','Lognormal');
ciWbl = concentrationIndices(PWbl,'ID','Weibull');
disp([ciLgn;ciWbl])

 ID CR Deciles Gini HH HK HT TE
 ___________ ________ ___________ _______ ________ _________ _________ _______

 "Lognormal" 0.066363 1x11 double 0.5686 0.013298 0.0045765 0.0077267 0.66735
 "Weibull" 0.090152 1x11 double 0.72876 0.020197 0.0062594 0.012289 1.0944

ProportionLoans = 0:0.1:1;
figure;
area(ProportionLoans',[ciWbl.Deciles; ciLgn.Deciles-ciWbl.Deciles; ProportionLoans-ciLgn.Deciles]')
axis([0 1 0 1])
legend('Weibull','Lognormal','Diversified','Location','NorthWest')
title('Lorenz Curve (by Deciles)')
xlabel('Proportion of Loans')
ylabel('Proportion of Value')

4 Corporate Credit Risk Simulations for Portfolios

4-52

See Also
concentrationIndices

Related Examples
• “Analyze the Sensitivity of Concentration to a Given Exposure” on page 4-49

More About
• “Concentration Indices” on page 1-15

 Compare Concentration Indices for Random Portfolios

4-53

Comparison of the Merton Model Single-Point Approach to the
Time-Series Approach

This example shows how to compare the Merton model approach, where equity volatility is provided,
to the time series approach.

Load the data from MertonData.mat.

load MertonData.mat
Dates = MertonDataTS.Dates;
Equity = MertonDataTS.Equity;
Liability = MertonDataTS.Liability;
Rate = MertonDataTS.Rate;

For a given data point in the returns, the corresponding equity volatility is computed from the last
preceding 30 days.

Returns = tick2ret(Equity);
DateReturns = Dates(2:end);
SampleSize = length(Returns);

EstimationWindowSize = 30;
TestWindowStart = EstimationWindowSize+1;
TestWindow = (TestWindowStart : SampleSize)';

EquityVol = zeros(length(TestWindow),1);

for i = 1 : length(TestWindow)
 t = TestWindow(i);
 EstimationWindow = t-EstimationWindowSize:t-1;
 EquityVol(i) = sqrt(250)*std(Returns(EstimationWindow));
end

Compare the probabilities of default and the estimated asset and asset volatility values using the test
window only.

[PDTS,DDTS,ATS,SaTS] = mertonByTimeSeries(Equity(TestWindow),Liability(TestWindow),Rate(TestWindow));

[PDh,DDh,Ah,Sah] = mertonmodel(Equity(TestWindow),EquityVol,Liability(TestWindow),Rate(TestWindow));

figure
plot(Dates(TestWindow),PDTS,Dates(TestWindow),PDh)
xlabel('Date')
ylabel('Probability of Default')
legend({'Time Series','With \sigma_E'},'Location','best')

4 Corporate Credit Risk Simulations for Portfolios

4-54

The probabilities of default are essentially zero up to early 2016. At that point, both models start
predicting positive default probabilities, but we observe some differences between the two models.

Both models calibrate asset values and asset volatilities. The asset values for both approaches match.
However, the time-series method, by design, computes a single asset volatility for the entire time
window, and the single-point version of the Merton model computes one volatility for each time
period, as shown in the following figure.

figure
plot(Dates(TestWindow),SaTS*ones(size(TestWindow)),Dates(TestWindow),Sah)
xlabel('Date')
ylabel('Asset Volatility')
legend({'Time Series','With \sigma_E'},'Location','best')

 Comparison of the Merton Model Single-Point Approach to the Time-Series Approach

4-55

Towards the end of the time window, the single-point probability of default is above the time-series
probability of default when the single-point asset volatility is also above the time-series probability
(and vice versa). However, before 2016 the volatility has no effect on the default probability. This
means other factors must influence the sensitivity of the default probability to the asset volatility and
the overall default probability level.

The firm's leverage ratio, defined as the ratio of liabilities to equity, is a key factor in understanding
the default probability values in this example. Earlier in the time window, the leverage ratio is low.
However, in the second half of the time window, the leverage ratio grows significantly as shown in the
following figure.

Leverage = Liability(TestWindow)./Equity(TestWindow);

figure
plot(Dates(TestWindow),Leverage)
xlabel('Date')
ylabel('Leverage Ratio')

4 Corporate Credit Risk Simulations for Portfolios

4-56

The following plot shows the default probability against the asset volatility for low and high leverage
ratios. The leverage ratio is used to divide the points into two groups, depending on whether the
leverage ratio is greater or smaller than a cut off value. In this example, a cut off value of 1 works
well.

For low leverage, the probability of default is essentially zero, independently of the asset volatilities.
For high leverage situations, such as the end of the time window, the probability of default is highly
correlated with the asset volatility.

figure
subplot(2,1,1)
gscatter(Leverage,PDh,Leverage>1,'br','.*')
xlabel('Leverage')
ylabel('Probability of Default')
legend('Low Leverage','High Leverage','Location','northwest')
subplot(2,1,2)
gscatter(Sah,PDh,Leverage>1,'br','.*')
xlabel('Asset Volatility')
ylabel('Probability of Default')
legend('Low Leverage','High Leverage','Location','northwest')

 Comparison of the Merton Model Single-Point Approach to the Time-Series Approach

4-57

See Also
mertonmodel | mertonByTimeSeries

More About
• “Default Probability by Using the Merton Model for Structural Credit Risk” on page 1-13

4 Corporate Credit Risk Simulations for Portfolios

4-58

Calculating Regulatory Capital with the ASRF Model

This example shows how to calculate capital requirements and value-at-risk (VaR) for a credit
sensitive portfolio of exposures using the asymptotic single risk factor (ASRF) model. This example
also shows how to compute Basel capital requirements using an ASRF model.

The ASRF Model

The ASRF model defines capital as the credit value at risk (VaR) in excess of the expected loss (EL).

capital = VaR− EL

where the EL for a given counterparty is the exposure at default (EAD) multiplied by the probability
of default (PD) and the loss given default (LGD).

EL = EAD * PD * LGD

To compute the credit VaR, the ASRF model assumes that obligor credit quality is modeled with a
latent variable (A) using a one factor model where the single common factor (Z) represents systemic
credit risk in the market.

Ai = ρi ⋅ Z + 1− ρi ⋅ ϵ

Under this model, default losses for a particular scenario are calculated as:

L = EAD ⋅ I ⋅ LGD

where I is the default indicator, and has a value of 1 if Ai < ΦA
−1(PDi) (meaning the latent variable has

fallen below the threshold for default), and a value of 0 otherwise. The expected value of the default
indicator conditional on the common factor is given by:

E(Ii |Z) = Φϵ(
ΦA
−1(PDi)− ρiZ

1− ρi
)

For well diversified and perfectly granular portfolios, the expected loss conditional on a value of the
common factor is:

L |Z = ∑
i

EADi ⋅ LGDi ⋅Φϵ(
ΦA
−1(PDi)− ρiZ

1− ρi
)

You can then directly compute particular percentiles of the distribution of losses using the cumulative
distribution function of the common factor. This is the credit VaR, which we compute at the α
confidence level:

creditVaR(α) = ∑
i

EADi ⋅ LGDi ⋅ Φϵ(
ΦA
−1(PDi)− ρiΦZ

−1(1− α)
1− ρi

)

It follows that the capital for a given level of confidence, α, is:

capital(α) = ∑
i

EADi ⋅ LGDi ⋅ [Φϵ(
ΦA
−1(PDi)− ρiΦZ

−1(1− α)
1− ρi

)− PDi]

 Calculating Regulatory Capital with the ASRF Model

4-59

Basic ASRF

The portfolio contains 100 credit sensitive contracts and information about their exposure. This is
simulated data.

load asrfPortfolio.mat
disp(portfolio(1:5,:))

 ID EAD PD LGD AssetClass Sales Maturity
 __ __________ _________ ____ __________ _____ ___________

 1 2.945e+05 0.013644 0.5 "Bank" NaN 02-Jun-2023
 2 1.3349e+05 0.0017519 0.5 "Bank" NaN 05-Jul-2021
 3 3.1723e+05 0.01694 0.4 "Bank" NaN 07-Oct-2018
 4 2.8719e+05 0.013624 0.35 "Bank" NaN 27-Apr-2022
 5 2.9965e+05 0.013191 0.45 "Bank" NaN 07-Dec-2022

The asset correlations (ρ) in the ASRF model define the correlation between similar assets. The
square root of this value, ρ, specifies the correlation between a counterparty's latent variable (A)
and the systemic credit factor (Z). Asset correlations can be calibrated by observing correlations in
the market or from historical default data. Correlations can also be set using regulatory guidelines
(see Basel Capital Requirements section).

Because the ASRF model is a fast, analytical formula, it is convenient to perform sensitivity analysis
for a counterparty by varying the exposure parameters and observing how the capital and VaR
change.

The following plot shows the sensitivity to PD and asset correlation. The LGD and EAD parameters
are scaling factors in the ASRF formula so the sensitivity is straightforward.

% Counterparty ID
id = 1;

% Set the default asset correlation to 0.2 as the baseline.
R = 0.2;

% Compute the baseline capital and VaR.
[capital0, var0] = asrf(portfolio.PD(id),portfolio.LGD(id),R,'EAD',portfolio.EAD(id));
% Stressed PD by 50%
[capital1, var1] = asrf(portfolio.PD(id) * 1.5,portfolio.LGD(id),R,'EAD',portfolio.EAD(id));
% Stressed Correlation by 50%
[capital2, var2] = asrf(portfolio.PD(id),portfolio.LGD(id),R * 1.5,'EAD',portfolio.EAD(id));

c = categorical({'ASRF Capital','VaR'});
bar(c,[capital0 capital1 capital2; var0 var1 var2]);
legend({'baseline','stressed PD','stressed R'},'Location','northwest')
title(sprintf('ID: %d, Baseline vs. Stressed Scenarios',id));
ylabel('USD ($)');

4 Corporate Credit Risk Simulations for Portfolios

4-60

Basel Capital Requirements

When computing regulatory capital, the Basel documents have additional model specifications on top
of the basic ASRF model. In particular, Basel II/III defines specific formulas for computing the asset
correlation for exposures in various asset classes as a function of the default probability.

To set up the vector of correlations according to the definitions established in Basel II/III:

R = zeros(height(portfolio),1);

% Compute the correlations for corporate, sovereign, and bank exposures.
idx = portfolio.AssetClass == "Corporate" |...
 portfolio.AssetClass == "Sovereign" |...
 portfolio.AssetClass == "Bank";

R(idx) = 0.12 * (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50)) +...
 0.24 * (1 - (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50)));

% Compute the correlations for small and medium entities.
idx = portfolio.AssetClass == "Small Entity" |...
 portfolio.AssetClass == "Medium Entity";

R(idx) = 0.12 * (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50)) +...
 0.24 * (1 - (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50))) -...
 0.04 * (1 - (portfolio.Sales(idx)/1e6 - 5) / 45);

% Compute the correlations for unregulated financial institutions.

 Calculating Regulatory Capital with the ASRF Model

4-61

idx = portfolio.AssetClass == "Unregulated Financial";

R(idx) = 1.25 * (0.12 * (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50)) +...
 0.24 * (1 - (1-exp(-50*portfolio.PD(idx))) / (1-exp(-50))));

Find the basic ASRF capital using the Basel-defined asset correlations. The default value for the VaR
level is 99.9%.

asrfCapital = asrf(portfolio.PD,portfolio.LGD,R,'EAD',portfolio.EAD);

Additionally, the Basel documents specify a maturity adjustment to be added to each capital
calculation. Here we compute the maturity adjustment and update the capital requirements.

maturityYears = years(portfolio.Maturity - settle);

b = (0.11852 - 0.05478 * log(portfolio.PD)).^2;
maturityAdj = (1 + (maturityYears - 2.5) .* b) ./ (1 - 1.5 .* b);

regulatoryCapital = asrfCapital .* maturityAdj;

fprintf('Portfolio Regulatory Capital : $%.2f\n',sum(regulatoryCapital));

Portfolio Regulatory Capital : $2371316.24

Risk weighted assets (RWA) are calculated as capital * 12.5.

RWA = regulatoryCapital * 12.5;

results = table(portfolio.ID,portfolio.AssetClass,RWA,regulatoryCapital,'VariableNames',...
 {'ID','AssetClass','RWA','Capital'});

% Results table
disp(results(1:5,:))

 ID AssetClass RWA Capital
 __ __________ __________ _______

 1 "Bank" 4.7766e+05 38213
 2 "Bank" 79985 6398.8
 3 "Bank" 2.6313e+05 21050
 4 "Bank" 2.9449e+05 23560
 5 "Bank" 4.1544e+05 33235

Aggregate the regulatory capital by asset class.

summary = groupsummary(results,"AssetClass","sum","Capital");
pie(summary.sum_Capital,summary.AssetClass)
title('Regulatory Capital by Asset Class');

4 Corporate Credit Risk Simulations for Portfolios

4-62

disp(summary(:,["AssetClass" "sum_Capital"]))

 AssetClass sum_Capital
 _______________________ ___________

 "Bank" 3.6894e+05
 "Corporate" 3.5811e+05
 "Medium Entity" 3.1466e+05
 "Small Entity" 1.693e+05
 "Sovereign" 6.8711e+05
 "Unregulated Financial" 4.732e+05

References

1. Basel Committe on Banking Supervision. "International Convergence of Capital Measurement and
Capital Standards." June 2006 (https://www.bis.org/publ/bcbs128.pdf).

2. Basel Committe on Banking Supervision. "An Explanatory Note on the Basel II IRB Risk Weight
Functions." July 2005 (https://www.bis.org/bcbs/irbriskweight.pdf).

3. Gordy, M.B. "A Risk-Factor Model Foundation for Ratings-Based Bank Capital Rules." Journal of
Financial Intermediation. Vol. 12, pp. 199-232, 2003.

See Also
asrf

 Calculating Regulatory Capital with the ASRF Model

4-63

https://www.bis.org/publ/bcbs128.pdf
https://www.bis.org/bcbs/irbriskweight.pdf

One-Factor Model Calibration

This example demonstrates techniques to calibrate a one-factor model for estimating portfolio credit
losses using the creditDefaultCopula or creditMigrationCopula classes.

This example uses equity return data as a proxy for credit fluctuations. With equity data, sensitivity to
a single factor is estimated as a correlation between a stock and an index. The data set contains daily
return data for a series of equities, but the one-factor model requires calibration on a year-over-year
basis. Assuming that there is no autocorrelation, then the daily cross-correlation between a stock and
the market index is equal to the annual cross-correlation. For stocks exhibiting autocorrelation, this
example shows how to compute implied annual correlations incorporating the effect of
autocorrelation.

Fitting a One-Factor Model

Since corporate defaults are rare, it is common to use a proxy for creditworthiness when calibrating
default models. The one-factor copula models the credit worthiness of a company using a latent
variable, A:

A = wX + 1−w2ϵ

where X is the systemic credit factor, w is the weight that defines the sensitivity of a company to the
one factor, and ϵ is the idiosyncratic factor. w and ϵ have mean of 0 and variance of 1 and typically are
assumed to be either Gaussian or else t distributions.

Compute the correlation between X and A:

Corr(A, X) = Cov(A, X)
σAσX

Since X and A have a variance of 1 by construction and ϵ is uncorrelated with X, then:

Corr(A, X) = Cov(A, X) = Cov(wX + 1−w2ϵ, X)

= wCov(X, X) + 1−w2Cov(X, ϵ) = w

If you use stock returns as a proxy for A and the market index returns are a proxy for X, then the
weight parameter, w, is the correlation between the stock and the index.

Prepare the Data

Use the returns of the Dow Jones Industrial Average (DJIA) as a signal for the overall credit
movement of the market. The returns for the 30 component companies are used to calibrate the
sensitivity of each company to the systemic credit movement. Weights for other companies in the
stock market are estimated in the same way.

% Read one year of DJIA price data.
t = readtable('dowPortfolio.xlsx');

% The table contains dates and the prices for each company at market close
% as well as the DJIA.
disp(head(t(:,1:7)))

 Dates DJI AA AIG AXP BA C
 ___________ _____ _____ _____ _____ _____ _____

4 Corporate Credit Risk Simulations for Portfolios

4-64

 03-Jan-2006 10847 28.72 68.41 51.53 68.63 45.26
 04-Jan-2006 10880 28.89 68.51 51.03 69.34 44.42
 05-Jan-2006 10882 29.12 68.6 51.57 68.53 44.65
 06-Jan-2006 10959 29.02 68.89 51.75 67.57 44.65
 09-Jan-2006 11012 29.37 68.57 53.04 67.01 44.43
 10-Jan-2006 11012 28.44 69.18 52.88 67.33 44.57
 11-Jan-2006 11043 28.05 69.6 52.59 68.3 44.98
 12-Jan-2006 10962 27.68 69.04 52.6 67.9 45.02

% We separate the dates and the index from the table and compute daily returns using
% tick2ret.
dates = t{2:end,1};
index_adj_close = t{:,2};
stocks_adj_close = t{:,3:end};

index_returns = tick2ret(index_adj_close);
stocks_returns = tick2ret(stocks_adj_close);

Compute Single Factor Weights

Compute the single-factor weights from the correlation coefficients between the index returns and
the stock returns for each company.

[C,daily_pval] = corr([index_returns stocks_returns]);
w_daily = C(2:end,1);

These values can be used directly when using a one-factor creditDefaultCopula or
creditMigrationCopula.

Linear regression is often used in the context of factor models. For a one-factor model, a linear
regression of the stock returns on the market returns is used by exploiting the fact that the
correlation coefficient matches the square root of the coefficient of determination (R-squared) of a
linear regression.

w_daily_regress = zeros(30,1);
for i = 1:30
 lm = fitlm(index_returns,stocks_returns(:,i));
 w_daily_regress(i) = sqrt(lm.Rsquared.Ordinary);
end

% The regressed R values are equal to the index cross correlations.
fprintf('Max Abs Diff : %e\n',max(abs(w_daily_regress(:) - w_daily(:))))

Max Abs Diff : 8.326673e-16

This linear regression fits a model of the form A = α + β X + ϵ, which in general does not match the
one-factor model specifications. For example, A and X do not have a zero mean and a standard
deviation of 1. In general, there is no relationship between the coefficient β and the standard
deviation of the error term ϵ. Linear regression is used above only as a tool to get the correlation
coefficient between the variables given by the square root of the R-squared value.

For one-factor model calibration, a useful alternative is to fit a linear regression using the
standardized stock and market return data A∼ and X∼. "Standardize" here means to subtract the mean
and divide by the standard deviation. The model is A∼ = α∼+ β∼ X∼+ ϵ∼. However, because both A∼ and X∼

have a zero mean, the intercept α∼ is always zero, and because both A∼ and X∼ have standard deviation

 One-Factor Model Calibration

4-65

of 1, the standard deviation of the error term satisfies std ϵ∼ = 1− β 2∼ . This exactly matches the
specifications of the coefficients of a one-factor model. The one-factor parameter w is set to the
coefficient β∼, and is the same as the value found directly through correlation earlier.

w_regress_std = zeros(30,1);
index_returns_std = zscore(index_returns);
stocks_returns_std = zscore(stocks_returns);
for i = 1:30
 lm = fitlm(index_returns_std,stocks_returns_std(:,i));
 w_regress_std(i) = lm.Coefficients{'x1','Estimate'};
end

% The regressed R values are equal to the index cross correlations.
fprintf('Max Abs Diff : %e\n',max(abs(w_regress_std(:) - w_daily(:))))

Max Abs Diff : 5.551115e-16

This approach makes it natural to explore the distributional assumptions of the variables. The
creditDefaultCopula and creditMigrationCopula objects support either normal distributions,
or t distributions for the underlying variables. For example, when using normplot the market returns
have heavy tails, therefore a t-copula is more consistent with the data.

normplot(index_returns_std)

4 Corporate Credit Risk Simulations for Portfolios

4-66

Estimating Correlations for Longer Periods

The weights are computed based on the daily correlation between the stocks and the index. However,
the usual goal is to estimate potential losses from credit defaults at some time further in the future,
often one year out.

To that end, it is necessary to calibrate the weights such that they correspond to the one-year
correlations. It is not practical to calibrate directly against historical annual return data since any
reasonable data set does not have enough data to be statistically significant due to the sparsity of the
data points.

You then face the problem of computing annual return correlation from a more frequently sampled
data set, for example, daily returns. One approach to solving this problem is to use an overlapping
window. This way you can consider the set of all overlapping periods of a given length.

% As an example, consider an overlapping 1-week window.
index_overlapping_returns = index_adj_close(6:end) ./ index_adj_close(1:end-5) - 1;
stocks_overlapping_returns = stocks_adj_close(6:end,:) ./ stocks_adj_close(1:end-5,:) - 1;

C = corr([index_overlapping_returns stocks_overlapping_returns]);
w_weekly_overlapping = C(2:end,1);

% Compare the correlation with the daily correlation.
% Show the daily vs. the overlapping weekly correlations.
barh([w_daily w_weekly_overlapping])
yticks(1:30)
yticklabels(t.Properties.VariableNames(3:end))
title('Correlation with the Index');
legend('daily','overlapping weekly');

 One-Factor Model Calibration

4-67

The maximum cross-correlation p-value for daily returns show a strong statistical significance.

maxdailypvalue = max(daily_pval(2:end,1));
disp(table(maxdailypvalue,...
 'VariableNames',{'Daily'},...
 'rownames',{'Maximum p-value'}))

 Daily

 Maximum p-value 1.5383e-08

Moving to an overlapping rolling-window-style weekly correlation gives slightly different correlations.
This is a convenient way to estimate longer period correlations from daily data. However, the returns
of adjacent overlapping windows are correlated so the corresponding p-values for the overlapping
weekly returns are not valid since the p-value calculation in the corr function does not account for
overlapping window data sets. For example, adjacent overlapping window returns are composed of
many of the same datapoints. This tradeoff is necessary since moving to nonoverlapping windows
could result is an unacceptably sparse sample.

% Compare to non-overlapping weekly returns
fridays = weekday(dates) == 6;
index_weekly_close = index_adj_close(fridays);
stocks_weekly_close = stocks_adj_close(fridays,:);

index_weekly_returns = tick2ret(index_weekly_close);
stocks_weekly_returns = tick2ret(stocks_weekly_close);

4 Corporate Credit Risk Simulations for Portfolios

4-68

[C,weekly_pval] = corr([index_weekly_returns stocks_weekly_returns]);
w_weekly_nonoverlapping = C(2:end,1);
maxweeklypvalue = max(weekly_pval(2:end,1));

% Compare the correlation with the daily and overlapping.
barh([w_daily w_weekly_overlapping w_weekly_nonoverlapping])
yticks(1:30)
yticklabels(t.Properties.VariableNames(3:end))
title('Correlation with the Index');
legend('daily','overlapping weekly','non-overlapping weekly');

The p-values for the nonoverlapping weekly correlations are much higher, indicating a loss of
statistical significance.

% Compute the number of samples in each series.
numDaily = numel(index_returns);
numOverlapping = numel(index_overlapping_returns);
numWeekly = numel(index_weekly_returns);

disp(table([maxdailypvalue;numDaily],[NaN;numOverlapping],[maxweeklypvalue;numWeekly],...
 'VariableNames',{'Daily','Overlapping','Non_Overlapping'},...
 'rownames',{'Maximum p-value','Sample Size'}))

 Daily Overlapping Non_Overlapping
 __________ ___________ _______________

 One-Factor Model Calibration

4-69

 Maximum p-value 1.5383e-08 NaN 0.66625
 Sample Size 250 246 50

Extrapolating Annual Correlation

A common assumption with financial data is that asset returns are temporally uncorrelated. That is,
the asset return at time T is uncorrelated to the previous return at time T-1. Under this assumption,
the annual cross-correlation is exactly equal to the daily cross-correlation.

Let Xt be the daily log return of the market index on day t and At be the daily return of a correlated
asset. Using CAPM, the relation is modeled as:

At = α + βXt + ϵt

The one-factor model is a special case of this relationship.

Under the assumption that asset and index returns are each uncorrelated with their respective past,
then:

y, ∀s ≠ t:

cov(Xs, Xt) = 0

cov(ϵs, ϵt) = 0

cov(As, At) = 0

Let the aggregate annual (log) return for each series be

X‾ = ∑
t = 1

T
Xt

A‾ = ∑
t = 1

T
At

where T could be 252 depending on the underlying daily data.

Let σX
2 = var(Xt) and σA

2 = var(At) be the daily variances, which are estimated from the daily return
data.

The daily covariance between Xt and At is:

cov(Xt, At) = cov(Xt, α + βXt + ϵt) = βσX
2

The daily correlation between Xt and At is:

corr(Xt, At) =
cov(Xt, At)

σX
2σA

2 = β
σX
σA

Consider the variances and covariances for the aggregate year of returns. Under the assumption of
no autocorrelation:

4 Corporate Credit Risk Simulations for Portfolios

4-70

var(X‾) = var(∑
t = 1

T
Xt) = TσX

2

var(A‾) = var(∑
t = 1

T
At) = TσA

2

cov(X‾ , A‾) = cov[∑
t = 1

T
Xt, ∑

t = 1

T
(α + βXt + ϵt)] = βcov(X‾ , X‾) = βvar(X‾) = βTσx

2

The annual correlation between the asset and the index is:

corr(X‾ , A‾) = cov(X‾ , A‾)
var(X‾)var(A‾)

=
βTσX

2

TσX
2TσA

2 = β
σX
σA

= w

Under the assumption of no autocorrelation, notice that the daily cross-correlation is in fact equal to
the annual cross-correlation. You can use this assumption directly in the one-factor model by setting
the one-factor weights to the daily cross-correlation.

Handling Autocorrelation

If the assumption that assets have no autocorrelation is loosened, then the transformation from daily
to annual cross-correlation between assets is not as straightforward. The var(X)‾ now has additional
terms.

First consider the simplest case of computing the variance of X‾ when T is equal to 2.

var(X‾) = σ1 σ2
1 ρ12

ρ12 1
σ1
σ2

= σ1
2 + σ2

2 + 2ρ12σ1σ2

Since σ1 = σ2 = σX, then:

var(X‾) = σX
2(2 + 2ρ12)

Consider T = 3. Indicate the correlation between daily returns that are k days apart as ρΔk.

var(X‾) = σ1 σ2 σ3

1 ρΔ1 ρΔ2
ρΔ1 1 ρΔ1
ρΔ2 ρΔ1 1

σ1
σ2
σ3

= σ1
2 + σ2

2 + σ3
2 + 2ρΔ1σ1σ2 + 2ρΔ1σ2σ3 + 2ρΔ2σ1σ3 = σX

2(3

+ 4ρΔ1 + 2ρΔ2)

In the general case, for the variance of an aggregate T-day return with autocorrelation from trailing k
days, there is:

var(X‾) = 2σX
2(T /2 + (T − 1)ρΔ1

X + (T − 2)ρΔ2
X + . . . + (T − k)ρΔk

X)

This is also the same formula for the asset variance:

 One-Factor Model Calibration

4-71

var(A‾) = 2σA
2(T /2 + (T − 1)ρΔ1

A + (T − 2)ρΔ2
A + . . . + (T − k)ρΔk

A)

The covariance between X‾ and A‾ as shown earlier is equal to βvar(X‾).

Therefore, the cross-correlation between the index and the asset with autocorrelation from a trailing
1 through k days is:

corr(X‾ , A‾) = cov(X‾ , A‾)
var(X‾)var(A‾)

= βvar(X‾)
var(X‾)var(A‾)

= β var(X‾)
var(A‾)

= . . .

corr(X‾ , A‾) = β
2σX

2(T /2 + (T − 1)ρΔ1
X + (T − 2)ρΔ2

X + . . . + (T − k)ρΔk
X)

2σA
2(T /2 + (T − 1)ρΔ1

A + (T − 2)ρΔ2
A + . . . + (T − k)ρΔk

A)

corr(X‾ , A‾) = β
σX
σA

T /2 + (T − 1)ρΔ1
X + (T − 2)ρΔ2

X + . . . + (T − k)ρΔk
X

T /2 + (T − 1)ρΔ1
A + (T − 2)ρΔ2

A + . . . + (T − k)ρΔk
A

Note that β
σX
σA

 is the weight under the assumption of no autocorrelation. The square root term

provides the adjustment to account for autocorrelation in the series. The adjustment depends more
on the difference between the index autocorrelation and the stock autocorrelation, rather than the
magnitudes of these autocorrelations. So the annual one-factor weight adjusted for autocorrelation is:

wad justed = w
T /2 + (T − 1)ρΔ1

X + (T − 2)ρΔ2
X + . . . + (T − k)ρΔk

X

T /2 + (T − 1)ρΔ1
A + (T − 2)ρΔ2

A + . . . + (T − k)ρΔk
A

Compute Weights with Autocorrelation

Look for autocorrelation in each of the stocks with the previous day's return, and adjust the weights
to incorporate the effect of a one-day autocorrelation.

corr1 = zeros(30,1);
pv1 = zeros(30,1);
for stockidx = 1:30
 [corr1(stockidx),pv1(stockidx)] = corr(stocks_returns(2:end,stockidx),stocks_returns(1:end-1,stockidx));
end
autocorrIdx = find(pv1 < 0.05)

autocorrIdx = 4×1

 10
 18
 26
 27

There are four stocks with low p-values that may indicate the presence of autocorrelation. Estimate
the annual cross-correlation with the index under this model, considering the one-day
autocorrelation.

% The weights based off of yearly cross correlation are equal to the daily cross
% correlation multiplied by an additional factor.
T = 252;

4 Corporate Credit Risk Simulations for Portfolios

4-72

w_yearly = w_daily;
[rho_index, pval_index] = corr(index_returns(1:end-1),index_returns(2:end));

% Check to see if the index has any significant autocorrelation.
fprintf('One day autocorrelation in the index p-value: %f\n',pval_index);

One day autocorrelation in the index p-value: 0.670196

if pval_index < 0.05
 % If the p-value indicates there is no significant autocorrelation in the index,
 % set its rho to 0.
 rho_index = 0;
end

w_yearly(autocorrIdx) = w_yearly(autocorrIdx) .*...
 sqrt((T/2 + (T-1) .* rho_index) ./ (T/2 + (T-1) .* corr1(autocorrIdx)));

% Compare the adjusted annual cross correlation values to the daily values.
barh([w_daily(autocorrIdx) w_yearly(autocorrIdx)])
yticks(1:4);
allNames = t.Properties.VariableNames(3:end);
yticklabels(allNames(autocorrIdx))
title('Annual One Factor Weights');
legend('No autocorrelation','With autocorrelation','location','southeast');

 One-Factor Model Calibration

4-73

See Also
creditDefaultCopula | simulate | portfolioRisk | riskContribution | confidenceBands
| getScenarios

Related Examples
• “Credit Simulation Using Copulas” on page 4-2
• “creditDefaultCopula Simulation Workflow” on page 4-5

More About
• “Risk Modeling with Risk Management Toolbox” on page 1-3

4 Corporate Credit Risk Simulations for Portfolios

4-74

Compare Probability of Default Using Through-the-Cycle and
Point-in-Time Models

This example shows how to work with consumer credit panel data to create through-the-cycle (TTC)
and point-in-time (PIT) models and compare their respective probabilities of default (PD).

The PD of an obligor is a fundamental risk parameter in credit risk analysis. The PD of an obligor
depends on customer-specific risk factors as well as macroeconomic risk factors. Because they
incorporate macroeconomic conditions differently, TTC and PIT models produce different PD
estimates.

A TTC credit risk measure primarily reflects the credit risk trend of a customer over the long term.
Transient, short-term changes in credit risk that are likely to be reversed with the passage of time get
smoothed out. The predominant features of TTC credit risk measures are their high degree of
stability over the credit cycle and the smoothness of change over time.

A PIT credit risk measure utilizes all available and pertinent information as of a given date to
estimate the PD of a customer over a given time horizon. The information set includes not just
expectations about the credit risk trend of a customer over the long term but also geographic,
macroeconomic, and macro-credit trends.

Previously, according to the Basel II rules, regulators called for the use of TTC PDs, losses given
default (LGDs), and exposures at default (EADs). However, with to the new IFRS9 and proposed
CECL accounting standards, regulators now require institutions to use PIT projections of PDs, LGDs,
and EADs. By accounting for the current state of the credit cycle, PIT measures closely track the
variations in default and loss rates over time.

Load Panel Data

The main data set in this example (data) contains the following variables:

• ID — Loan identifier.
• ScoreGroup — Credit score at the beginning of the loan, discretized into three groups: High

Risk, Medium Risk, and Low Risk.
• YOB — Years on books.
• Default — Default indicator. This is the response variable.
• Year — Calendar year.

The data also includes a small data set (dataMacro) with macroeconomic data for the corresponding
calendar years:

• Year — Calendar year.
• GDP — Gross domestic product growth (year over year).
• Market — Market return (year over year).

The variables YOB, Year, GDP, and Market are observed at the end of the corresponding calendar
year. ScoreGroup is a discretization of the original credit score when the loan started. A value of 1
for Default means that the loan defaulted in the corresponding calendar year.

This example uses simulated data, but you can apply the same approach to real data sets.

 Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models

4-75

Load the data and view the first 10 rows of the table. The panel data is stacked and the observations
for the same ID are stored in contiguous rows, creating a tall, thin table. The panel is unbalanced
because not all IDs have the same number of observations.

load RetailCreditPanelData.mat
disp(head(data,10));

 ID ScoreGroup YOB Default Year
 __ ___________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004
 2 Medium Risk 1 0 1997
 2 Medium Risk 2 0 1998

nRows = height(data);
UniqueIDs = unique(data.ID);
nIDs = length(UniqueIDs);
fprintf('Total number of IDs: %d\n',nIDs)

Total number of IDs: 96820

fprintf('Total number of rows: %d\n',nRows)

Total number of rows: 646724

Default Rates by Year

Use Year as a grouping variable to compute the observed default rate for each year. Use the
groupsummary function to compute the mean of the Default variable, grouping by the Year
variable. Plot the results on a scatter plot which shows that the default rate goes down as the years
increase.

DefaultPerYear = groupsummary(data,'Year','mean','Default');
NumYears = height(DefaultPerYear);
disp(DefaultPerYear)

 Year GroupCount mean_Default
 ____ __________ ____________

 1997 35214 0.018629
 1998 66716 0.013355
 1999 94639 0.012733
 2000 92891 0.011379
 2001 91140 0.010742
 2002 89847 0.010295
 2003 88449 0.0056417
 2004 87828 0.0032905

subplot(2,1,1)
scatter(DefaultPerYear.Year, DefaultPerYear.mean_Default*100,'*');
grid on
xlabel('Year')

4 Corporate Credit Risk Simulations for Portfolios

4-76

ylabel('Default Rate (%)')
title('Default Rate per Year')
% Get IDs of the 1997, 1998, and 1999 cohorts
IDs1997 = data.ID(data.YOB==1&data.Year==1997);
IDs1998 = data.ID(data.YOB==1&data.Year==1998);
IDs1999 = data.ID(data.YOB==1&data.Year==1999);
% Get default rates for each cohort separately
ObsDefRate1997 = groupsummary(data(ismember(data.ID,IDs1997),:),...
 'YOB','mean','Default');

ObsDefRate1998 = groupsummary(data(ismember(data.ID,IDs1998),:),...
 'YOB','mean','Default');

ObsDefRate1999 = groupsummary(data(ismember(data.ID,IDs1999),:),...
 'YOB','mean','Default');
% Plot against the calendar year
Year = unique(data.Year);
subplot(2,1,2)
plot(Year,ObsDefRate1997.mean_Default*100,'-*')
hold on
plot(Year(2:end),ObsDefRate1998.mean_Default*100,'-*')
plot(Year(3:end),ObsDefRate1999.mean_Default*100,'-*')
hold off
title('Default Rate vs. Calendar Year')
xlabel('Calendar Year')
ylabel('Default Rate (%)')
legend('Cohort 97','Cohort 98','Cohort 99')
grid on

 Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models

4-77

The plot shows that the default rate decreases over time. Notice in the plot that loans starting in the
years 1997, 1998, and 1999 form three cohorts. No loan in the panel data starts after 1999. This is
depicted in more detail in the "Years on Books Versus Calendar Years" section of the example on
“Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page 3-36. The
decreasing trend in this plot is explained by the fact that there are only three cohorts in the data and
that the pattern for each cohort is decreasing.

TTC Model Using ScoreGroup and Years on Books

TTC models are largely unaffected by economic conditions. The first TTC model in this example uses
only ScoreGroup and YOB as predictors of the default rate.

Generate training and testing data sets by splitting the existing data into training and testing data
sets that are used for model creation and validation, respectively.

NumTraining = floor(0.6*nIDs);

rng('default');
TrainIDInd = randsample(nIDs,NumTraining);
TrainDataInd = ismember(data.ID,UniqueIDs(TrainIDInd));
TestDataInd = ~TrainDataInd;

Use the fitLifetimePDModel function to fit a Logistic model.

TTCModel = fitLifetimePDModel(data(TrainDataInd,:),'logistic',...
 'ModelID','TTC','IDVar','ID','AgeVar','YOB','LoanVars','ScoreGroup',...

4 Corporate Credit Risk Simulations for Portfolios

4-78

 'ResponseVar','Default');
disp(TTCModel.Model)

Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ ___________

 (Intercept) -3.2453 0.033768 -96.106 0
 ScoreGroup_Medium Risk -0.7058 0.037103 -19.023 1.1014e-80
 ScoreGroup_Low Risk -1.2893 0.045635 -28.253 1.3076e-175
 YOB -0.22693 0.008437 -26.897 2.3578e-159

388018 observations, 388014 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.83e+03, p-value = 0

Predict the PD for the training and testing data sets using predict.

data.TTCPD = zeros(height(data),1);

% Predict the in-sample
data.TTCPD(TrainDataInd) = predict(TTCModel,data(TrainDataInd,:));
% Predict the out-of-sample
data.TTCPD(TestDataInd) = predict(TTCModel,data(TestDataInd,:));

Visualize the in-sample fit and out-of-sample fit using modelCalibrationPlot.

figure;
subplot(2,1,1)
modelCalibrationPlot(TTCModel,data(TrainDataInd,:),'Year','DataID',"Training Data")
subplot(2,1,2)
modelCalibrationPlot(TTCModel,data(TestDataInd,:),'Year','DataID',"Testing Data")

 Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models

4-79

PIT Model Using ScoreGroup, Years on Books, GDP, and Market Returns

PIT models vary with the economic cycle. The PIT model in this example uses ScoreGroup, YOB, GDP,
and Market as predictors of the default rate. Use the fitLifetimePDModel function to fit a
Logistic model.

% Add the GDP and Market returns columns to the original data

data = join(data, dataMacro);
disp(head(data,10))

 ID ScoreGroup YOB Default Year TTCPD GDP Market
 __ ___________ ___ _______ ____ _________ _____ ______

 1 Low Risk 1 0 1997 0.0084797 2.72 7.61
 1 Low Risk 2 0 1998 0.0067697 3.57 26.24
 1 Low Risk 3 0 1999 0.0054027 2.86 18.1
 1 Low Risk 4 0 2000 0.0043105 2.43 3.19
 1 Low Risk 5 0 2001 0.0034384 1.26 -10.51
 1 Low Risk 6 0 2002 0.0027422 -0.59 -22.95
 1 Low Risk 7 0 2003 0.0021867 0.63 2.78
 1 Low Risk 8 0 2004 0.0017435 1.85 9.48
 2 Medium Risk 1 0 1997 0.015097 2.72 7.61
 2 Medium Risk 2 0 1998 0.012069 3.57 26.24

PITModel = fitLifetimePDModel(data(TrainDataInd,:),'logistic',...
 'ModelID','PIT','IDVar','ID','AgeVar','YOB','LoanVars','ScoreGroup',...

4 Corporate Credit Risk Simulations for Portfolios

4-80

 'MacroVars',{'GDP' 'Market'},'ResponseVar','Default');
disp(PITModel.Model)

Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -2.667 0.10146 -26.287 2.6919e-152
 ScoreGroup_Medium Risk -0.70751 0.037108 -19.066 4.8223e-81
 ScoreGroup_Low Risk -1.2895 0.045639 -28.253 1.2892e-175
 YOB -0.32082 0.013636 -23.528 2.0867e-122
 GDP -0.12295 0.039725 -3.095 0.0019681
 Market -0.0071812 0.0028298 -2.5377 0.011159

388018 observations, 388012 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.97e+03, p-value = 0

Predict the PD for training and testing data sets using predict.

data.PITPD = zeros(height(data),1);

% Predict in-sample
data.PITPD(TrainDataInd) = predict(PITModel,data(TrainDataInd,:));
% Predict out-of-sample
data.PITPD(TestDataInd) = predict(PITModel,data(TestDataInd,:));

Visualize the in-sample fit and out-of-sample fit using modelCalibrationPlot.

figure;
subplot(2,1,1)
modelCalibrationPlot(PITModel,data(TrainDataInd,:),'Year','DataID',"Training Data")
subplot(2,1,2)
modelCalibrationPlot(PITModel,data(TestDataInd,:),'Year','DataID',"Testing Data")

 Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models

4-81

In the PIT model, as expected, the predictions match the observed default rates more closely than in
the TTC model. Although this example uses simulated data, qualitatively, the same type of model
improvement is expected when moving from TTC to PIT models for real world data, although the
overall error might be larger than in this example. The PIT model fit is typically better than the TTC
model fit and the predictions typically match the observed rates.

Calculate TTC PD Using the PIT Model

Another approach for calculating TTC PDs is to use the PIT model and then replace the GDP and
Market returns with the respective average values. In this approach, you use the mean values over
an entire economic cycle (or an even longer period) so that only baseline economic conditions
influence the model, and any variability in default rates is due to other risk factors. You can also enter
forecasted baseline values for the economy that are different from the mean observed for the most
recent economic cycle. For example, using the median instead of the mean reduces the error.

You can also use this approach of calculating TTC PDs by using the PIT model as a tool for scenario
analysis, however; this cannot be done in the first version of the TTC model. The added advantage of
this approach is that you can use a single model for both the TTC and PIT predictions. This means
that you need to validate and maintain only one model.

% Modify the data to replace the GDP and Market returns with the corresponding average values
data.GDP(:) = median(data.GDP);
data.Market = repmat(mean(data.Market), height(data), 1);
disp(head(data,10));

 ID ScoreGroup YOB Default Year TTCPD GDP Market PITPD
 __ ___________ ___ _______ ____ _________ ____ ______ _________

4 Corporate Credit Risk Simulations for Portfolios

4-82

 1 Low Risk 1 0 1997 0.0084797 1.85 3.2263 0.0093187
 1 Low Risk 2 0 1998 0.0067697 1.85 3.2263 0.005349
 1 Low Risk 3 0 1999 0.0054027 1.85 3.2263 0.0044938
 1 Low Risk 4 0 2000 0.0043105 1.85 3.2263 0.0038285
 1 Low Risk 5 0 2001 0.0034384 1.85 3.2263 0.0035402
 1 Low Risk 6 0 2002 0.0027422 1.85 3.2263 0.0035259
 1 Low Risk 7 0 2003 0.0021867 1.85 3.2263 0.0018336
 1 Low Risk 8 0 2004 0.0017435 1.85 3.2263 0.0010921
 2 Medium Risk 1 0 1997 0.015097 1.85 3.2263 0.016554
 2 Medium Risk 2 0 1998 0.012069 1.85 3.2263 0.0095319

Predict the PD for training and testing data sets using predict.

data.TTCPD2 = zeros(height(data),1);

% Predict in-sample
data.TTCPD2(TrainDataInd) = predict(PITModel,data(TrainDataInd,:));
% Predict out-of-sample
data.TTCPD2(TestDataInd) = predict(PITModel,data(TestDataInd,:));

Visualize the in-sample fit and out-of-sample fit using modelCalibrationPlot.

f = figure;
subplot(2,1,1)
modelCalibrationPlot(PITModel,data(TrainDataInd,:),'Year','DataID',"Training, Macro Average")
subplot(2,1,2)
modelCalibrationPlot(PITModel,data(TestDataInd,:),'Year','DataID',"Testing, Macro Average")

 Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models

4-83

Reset original values of the GDP and Market variables. The TTC PD values predicted using the PIT
model and median or mean macro values are stored in the TTCPD2 column and that column is used to
compare the predictions against other models below.

data.GDP = [];
data.Market = [];
data = join(data,dataMacro);
disp(head(data,10))

 ID ScoreGroup YOB Default Year TTCPD PITPD TTCPD2 GDP Market
 __ ___________ ___ _______ ____ _________ _________ _________ _____ ______

 1 Low Risk 1 0 1997 0.0084797 0.0093187 0.010688 2.72 7.61
 1 Low Risk 2 0 1998 0.0067697 0.005349 0.0077772 3.57 26.24
 1 Low Risk 3 0 1999 0.0054027 0.0044938 0.0056548 2.86 18.1
 1 Low Risk 4 0 2000 0.0043105 0.0038285 0.0041093 2.43 3.19
 1 Low Risk 5 0 2001 0.0034384 0.0035402 0.0029848 1.26 -10.51
 1 Low Risk 6 0 2002 0.0027422 0.0035259 0.0021674 -0.59 -22.95
 1 Low Risk 7 0 2003 0.0021867 0.0018336 0.0015735 0.63 2.78
 1 Low Risk 8 0 2004 0.0017435 0.0010921 0.0011422 1.85 9.48
 2 Medium Risk 1 0 1997 0.015097 0.016554 0.018966 2.72 7.61
 2 Medium Risk 2 0 1998 0.012069 0.0095319 0.013833 3.57 26.24

Compare the Models

First, compare the two versions of the TTC model.

Compare the model discrimination using modelDiscriminationPlot. The two models have very
similar performance ranking customers, as measured by the receiver operating characteristic (ROC)
curve and the area under the ROC curve (AUROC, or simply AUC) metric.

figure;
modelDiscriminationPlot(TTCModel,data(TestDataInd,:),"DataID",'Testing data',"ReferencePD",data.TTCPD2(TestDataInd),"ReferenceID",'TTC 2, Macro Average')

4 Corporate Credit Risk Simulations for Portfolios

4-84

However, the TTC model is more accurate, the predicted PD values are closer to the observed default
rates. The plot generated using modelCalibrationPlot demonstrates that the root mean squared
error (RMSE) reported in the plot confirms the TTC model is more accurate for this data set.

modelCalibrationPlot(TTCModel,data(TestDataInd,:),'Year',"DataID",'Testing data',"ReferencePD",data.TTCPD2(TestDataInd),"ReferenceID",'TTC 2, Macro Average')

 Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models

4-85

Use modelDiscriminationPlot to compare the TTC model and the PIT model.

The AUROC is only slightly better for the PIT model, showing that both models are comparable
regarding ranking customers by risk.

figure;
modelDiscriminationPlot(TTCModel,data(TestDataInd,:),"DataID",'Testing data',"ReferencePD",data.PITPD(TestDataInd),"ReferenceID",'PIT')

4 Corporate Credit Risk Simulations for Portfolios

4-86

Use modelCalibrationPlot to visualize the model accuracy, or model calibration. The plot shows
that the PIT model performs much better, with predicted PD values much closer to the observed
default rates. This is expected, since the predictions are sensitive to the macro variables, whereas the
TTC model only uses the initial score and the age of the model to make predictions.

modelCalibrationPlot(TTCModel,data(TestDataInd,:),'Year',"DataID",'Testing data',"ReferencePD",data.PITPD(TestDataInd),"ReferenceID",'PIT')

 Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models

4-87

You can use modelDiscrimination to programmatically access the AUROC and the RMSE without
creating a plot.

DiscMeasure = modelDiscrimination(TTCModel,data(TestDataInd,:),"DataID",'Testing data',"ReferencePD",data.PITPD(TestDataInd),"ReferenceID",'PIT');
disp(DiscMeasure)

 AUROC

 TTC, Testing data 0.68662
 PIT, Testing data 0.69341

CalMeasure = modelCalibration(TTCModel,data(TestDataInd,:),'Year',"DataID",'Testing data',"ReferencePD",data.PITPD(TestDataInd),"ReferenceID",'PIT');
disp(CalMeasure)

 RMSE

 TTC, grouped by Year, Testing data 0.0019761
 PIT, grouped by Year, Testing data 0.0006322

Although all models have comparable discrimination power, the accuracy of the PIT model is much
better. However, TTC and PIT models are often used for different purposes, and the TTC model may
be preferred if having more stable predictions over time is important.

4 Corporate Credit Risk Simulations for Portfolios

4-88

References

1 Generalized Linear Models documentation, see “Generalized Linear Models”.
2 Baesens, B., D. Rosch, and H. Scheule. Credit Risk Analytics. Wiley, 2016.

 Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models

4-89

Model Loss Given Default

This example shows how to fit different types of models to loss given default (LGD) data. This
example demonstrates the following approaches:

• Basic nonparametric approach using mean values on page 4-94
• Simple regression model on page 4-96
• Tobit (censored) regression model on page 4-98
• Beta regression model on page 4-100
• Two-stage model on page 4-103

For all of these approaches, this example shows:

• How to fit a model using training data where the LGD is a function of other variables or
predictors.

• How to predict on testing data.

The Model Comparison on page 4-106 section contains a detailed comparison that includes
visualizations and several prediction error metrics for of all models in this example.

The Regression, Tobit, and Beta models are fitted using the fitLGDModel function from Risk
Management Toolbox™. For more information, see “Overview of Loss Given Default Models” on page
1-31.

Introduction

LGD is one of the main parameters for credit risk analysis. Although there are different approaches to
estimate credit loss reserves and credit capital, common methodologies require the estimation of
probabilities of default (PD), loss given default (LGD), and exposure at default (EAD). The reserves
and capital requirements are computed using formulas or simulations that use these parameters. For
example, the loss reserves are usually estimated as the expected loss (EL), given by the following
formula:

EL = PD * LGD * EAD.

Practitioners have decades of experience modeling and forecasting PDs. However, the modeling of
LGD (and also EAD) started much later. One reason is the relative scarcity of LGD data compared to
PD data. Credit default data (for example, missed payments) is easier to collect and more readily
available than are the losses ultimately incurred in the event of a default. When an account is moved
to the recovery stage, the information can be transferred to a different system, loans can get
consolidated, the recovery process may take a long time, and multiple costs are incurred during the
process, some which are hard to track in detail. However, banks have stepped up their efforts to
collect data that can be used for LGD modeling, in part due to regulations that require the estimation
of these risk parameters, and the modeling of LGD (and EAD) is now widespread in industry.

This example uses simulated LGD data, but the workflow has been applied to real data sets to fit LGD
models, predict LGD values, and compare models. The focus of this example is not to suggest a
particular approach, but to show how these different models can be fit, how the models are used to
predict LGD values, and how to compare the models. This example is also a starting point for
variations and extensions of these models; for example, you may want to use more advanced
classification and regression tools as part of a two-stage model.

4 Corporate Credit Risk Simulations for Portfolios

4-90

The three predictors in this example are loan specific. However, you can use the approaches
described in this example with data sets that include multiple predictors and even macroeconomic
variables. Also, you can use models that include macroeconomic predictors for stress testing or
lifetime LGD modeling to support regulatory requirements such as CCAR, IFRS 9, and CECL. For
more information, see “Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL
Calculations” on page 4-195.

LGD Data Exploration

The data set in this example is simulated data that captures common features of LGD data. For
example, a common feature is the distribution of LGD values, which has high frequencies at 0 (full
recovery), and also many observations at 1 (no recovery at all). Another characteristic of LGD data is
a significant amount of "noise" or "unexplained" data. You can visualize this "noise" in scatter plots of
the response against the predictors, where the dots do not seem to follow a clear trend, and yet some
underlying relationships can be detected. Also, it is common to get significant prediction errors for
LGD models. Empirical studies show that LGD models have high prediction errors in general. For
example, in [4 on page 4-112] the authors report R-squared values ranging from 4% to 43% for a
range of models across different portfolios. In this example, all approaches get R-squared values just
under 10%. Moreover, finding useful predictors in practice may require important insights into the
lending environment of a specific portfolio, for example, knowledge of the legal framework and the
collection process [2 on page 4-111]. The simulated data set includes only three predictors and these
are variables frequently found in LGD models, namely, the loan-to-value ratio, the age of the loan, and
whether the borrower lives in the property or if the borrower bought it for investment purposes.

Data preparation for LGD modeling is beyond the scope of this example. This example assumes the
data has been previously prepared, since the focus of the example is on how to fit LGD models and
how to use them for prediction. Data preparation for LGD modeling requires a significant amount of
work in practice. Data preparation requires consolidation of account information, pulling data from
multiple data sources, accounting for different costs and discount rates, and screening predictors [1
on page 4-111] [2 on page 4-111].

Load the data set from the LGDData.mat file. The data set is stored in the data table. It contains the
three predictors and the LGD variable, which is the response variable.

Here is a preview of the data and the descriptions of the data set and the variables.

load('LGDData.mat')
disp(head(data))

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

disp(data.Properties.Description)

Loss given default (LGD) data. This is a simulated data set.

disp([data.Properties.VariableNames' data.Properties.VariableDescriptions'])

 Model Loss Given Default

4-91

 {'LTV' } {'Loan-to-Value (LTV) ratio at the time of default' }
 {'Age' } {'Age of the loan in years at the time of default' }
 {'Type'} {'Type of property, either residential or investment'}
 {'LGD' } {'Loss given default' }

LGD data commonly has values of 0 (no losses, full recovery) or 1 (no recovery at all). The
distribution of values in between 0 and 1 takes different shapes depending on the portfolio type and
other characteristics.

histogram(data.LGD)
title('LGD Distribution')
ylabel('Frequency')
xlabel('Observed LGD')

Explore the relationships between the predictors and the response. The Spearman correlation
between the selected predictor and the LGD is displayed first. The Spearman correlation is one of the
rank order statistics commonly used for LGD modeling [5 on page 4-112].

SelectedPredictor = ;

fprintf('Spearman correlation between %s and LGD: %g',SelectedPredictor,corr(double(data.(SelectedPredictor)),data.LGD,'Type','Spearman'))

Spearman correlation between LTV and LGD: 0.271204

if isnumeric(data.(SelectedPredictor))
 scatter(data.(SelectedPredictor),data.LGD)
 X = [ones(height(data),1) data.(SelectedPredictor)];

4 Corporate Credit Risk Simulations for Portfolios

4-92

 b = X\data.LGD;
 y = X*b;
 hold on
 plot(data.(SelectedPredictor),y)
 ylim([0 1])
 hold off
 xlabel(SelectedPredictor)
 ylabel('LGD')
end

For numeric predictors, there is a scatter plot of the LGD against the selected predictor values, with a
superimposed linear fit. There is a significant amount of noise in the data, with points scattered all
over the plot. This is a common situation for LGD data modeling. The density of the dots is sometimes
different in different areas of the plot, suggesting relationships. The slope of the linear fit and the
Spearman correlation give more information about the relationship between the selected predictor
and the response.

Visually assessing the density of the points in a scatter plot might not be a reliable approach to
understand the distribution of the data. To better understand the distribution of LGD values for
different levels of a selected predictor, create a box plot.

% Choose the number of discretization levels for numeric predictors

NumLevels = ;
if isnumeric(data.(SelectedPredictor))
 PredictorEdges = linspace(min(data.(SelectedPredictor)),max(data.(SelectedPredictor)),NumLevels+1);
 PredictorDiscretized = discretize(data.(SelectedPredictor),PredictorEdges,'Categorical',string(PredictorEdges(2:end)));

 Model Loss Given Default

4-93

 boxplot(data.LGD,PredictorDiscretized)
 xlabel([SelectedPredictor ' Discretized'])
 ylabel('LGD')
else
 boxplot(data.LGD,data.(SelectedPredictor))
 xlabel(SelectedPredictor)
 ylabel('LGD')
end

For categorical data, the box plot is straightforward since a small number of levels are already given.
For numeric data, you can discretize the data first and then generate the box plot. Different box sizes
and heights show that the distribution of LGD values changes for different predictor levels. A
monotonic trend in the median (red horizontal line in the center of the boxes) shows a potential linear
relationship between the predictor and the LGD (though possibly a mild relationship, due to the wide
distributions).

Mean LGD Over Different Groups

The basic approach to predict LGD is to simply use the mean of the LGD data. Although this is a
straightforward approach, easy to understand and use, the downside is that the mean is a constant
value and this approach sheds no light on the sensitivity of LGD to other risk factors. In particular,
the predictors in the data set are ignored.

To introduce sensitivity to predictors, the mean LGD values can be estimated over different groups or
segments of the data, where the groups are defined using ranges of the predictor values. This
approach is still a relatively straightforward approach, yet it can noticeably reduce the prediction
error compared to a single mean LGD value for all observations.

4 Corporate Credit Risk Simulations for Portfolios

4-94

To start, separate the data set into training and testing data. The same training and testing data sets
are used for all approaches in this example.

NumObs = height(data);
% Reset the random stream state, for reproducibility
% Comment this line out to generate different data partitions each time the example is run
rng('default');
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

In this example, the groups are defined using the three predictors. LTV is discretized into low and
high levels. Age is discretized into young and old loans. Type already has two levels, namely,
residential and investment. The groups are all the combinations of these values (for example, low LTV,
young loan, residential, and so on).

The number of levels and the specific cut off points are for illustration purposes only, you can base
other discretizations on different criteria. Also, using all predictors for the discretization may not be
ideal when the data set contains many predictors. In some cases, using a single predictor, or a couple
of predictors, may be enough to find useful groups with distinct mean LGD values. When the data
includes macro information, the grouping may include a macro variable; for example, the mean LGD
value should be different over recessions vs. economic expansions.

Compute the mean LGD over the eight data groups using the training data.

% Discretize LTV
LTVEdges = [0 0.5 max(data.LTV)];
data.LTVDiscretized = discretize(data.LTV,LTVEdges,'Categorical',{'low','high'});
% Discretize Age
AgeEdges = [0 2 max(data.Age)];
data.AgeDiscretized = discretize(data.Age,AgeEdges,'Categorical',{'young','old'});
% Find group means on training data
gs = groupsummary(data(TrainingInd,:),{'LTVDiscretized','AgeDiscretized','Type'},'mean','LGD');
disp(gs)

 LTVDiscretized AgeDiscretized Type GroupCount mean_LGD
 ______________ ______________ ___________ __________ ________

 low young residential 163 0.12166
 low young investment 26 0.087331
 low old residential 175 0.021776
 low old investment 23 0.16379
 high young residential 1134 0.16489
 high young investment 257 0.25977
 high old residential 265 0.066068
 high old investment 50 0.11779

For prediction, the test data is mapped into the eight groups, and then the corresponding group mean
is set as the predicted LGD value.

LGDGroupTest = findgroups(data(TestInd,{'LTVDiscretized' 'AgeDiscretized' 'Type'}));
LGDPredictedByGroupMeans = gs.mean_LGD(LGDGroupTest);

Store the observed LGD and the predicted LGD in a new table dataLGDPredicted. This table stores
predicted LGD values for all other approaches in the example.

dataLGDPredicted = table;
dataLGDPredicted.Observed = data.LGD(TestInd);

 Model Loss Given Default

4-95

dataLGDPredicted.GroupMeans = LGDPredictedByGroupMeans;
disp(head(dataLGDPredicted))

 Observed GroupMeans
 _________ __________

 0.0064766 0.066068
 0.007947 0.12166
 0.063182 0.25977
 0 0.066068
 0.10904 0.16489
 0 0.16489
 0.89463 0.16489
 0 0.021776

The Model Comparison on page 4-106 section has a more detailed comparison of all models that
includes visualizations and prediction error metrics.

Simple Regression Model

A natural approach is to use a regression model to explicitly model a relationship between the LGD
and some predictors. LGD data, however, is bounded in the unit interval, whereas the response
variable for linear regression models is, in theory, unbounded.

To apply simple linear regression approaches, the LGD data can be transformed. A common
transformation is the logit function, which leads to the following regression model:

log LGD
1− LGD = Xβ + ϵ, with ϵ N 0, σ2

LGD values of 0 or 1 cause the logit function to take infinite values, so the LGD data is typically
truncated before applying the transformation.

data.LGDTruncated = data.LGD;
data.LGDTruncated(data.LGD==0) = 0.00001;
data.LGDTruncated(data.LGD==1) = 0.99999;
data.LGDLogit = log(data.LGDTruncated./(1-data.LGDTruncated));

Below is the histogram of the transformed LGD data that uses the logit function. The range of values
spans positive and negative values, which is consistent with the linear regression requirements. The
distribution still shows significant mass probability points at the ends of the distribution.

histogram(data.LGDLogit)
title('Logit Transformation of Truncated LGD Data')

4 Corporate Credit Risk Simulations for Portfolios

4-96

Other transformations are suggested in the literature [1 on page 4-111]. For example, instead of the
logit function, the truncated LGD values can be mapped with the inverse standard normal distribution
(similar to a probit model).

Fit a regression model using the fitLGDModel function from Risk Management Toolbox™ using the
training data. By default, a logit transformation is applied to the LGD response data with a boundary
tolerance of 1e-5. For more information on the supported transformations and optional arguments,
see Regression.

mdlRegression = fitLGDModel(data(TrainingInd,:),'regression','PredictorVars',{'LTV' 'Age' 'Type'},'ResponseVar','LGD');
disp(mdlRegression)

 Regression with properties:

 ResponseTransform: "logit"
 BoundaryTolerance: 1.0000e-05
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

disp(mdlRegression.UnderlyingModel)

Compact linear regression model:
 LGD_logit ~ 1 + LTV + Age + Type

 Model Loss Given Default

4-97

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept) -4.7549 0.36041 -13.193 3.0997e-38
 LTV 2.8565 0.41777 6.8377 1.0531e-11
 Age -1.5397 0.085716 -17.963 3.3172e-67
 Type_investment 1.4358 0.2475 5.8012 7.587e-09

Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value = 2.42e-104

The model coefficients match the findings in the exploratory data analysis, with a positive coefficient
for LTV, a negative coefficient for Age, and a positive coefficient for investment properties in the
Type variable.

The Regression LGD models support prediction and apply the inverse transformation so the
predicted LGD values are in the LGD scale. For example, for the model fitted above that uses the logit
transformation, the inverse logit transformation (also known as the logistic, or sigmoid function) is
applied by the predict function to return an LGD predicted value.

dataLGDPredicted.Regression = predict(mdlRegression,data(TestInd,:));
disp(head(dataLGDPredicted))

 Observed GroupMeans Regression
 _________ __________ __________

 0.0064766 0.066068 0.00091169
 0.007947 0.12166 0.0036758
 0.063182 0.25977 0.18774
 0 0.066068 0.0010877
 0.10904 0.16489 0.011213
 0 0.16489 0.041992
 0.89463 0.16489 0.052947
 0 0.021776 3.7188e-06

The Model Comparison on page 4-106 section at the end of this example has a more detailed
comparison of all models that includes visualizations and prediction error metrics. In particular, the
histogram of the predicted LGD values shows that the regression model predicts many LGD values
near zero, even though the high probability near zero was not explicitly modeled.

Tobit Regression Model

Tobit or censored regression is designed for models where the response is bounded. The idea is that
there is an underlying (latent) linear model but that the observed response values, in this case the
LGD values, are truncated. For this example, use a model censored on both sides with a left limit at 0
and a right limit at 1, corresponding to the following model formula

LGDi = min max 0, Yi* , 1

with:

4 Corporate Credit Risk Simulations for Portfolios

4-98

Yi* = Xiβ + ϵi

= β0 + β1X1
i +⋯+ βkXk

i + ϵi ,

with ϵi N 0, σ2

The model parameters are all the βs and the standard deviation of the error σ.

Fit the Tobit regression model with fitLGDModel using the training data. By default, a model
censored on both sides is fitted with limits at 0 and 1. For more information on Tobit models, see
Tobit.

mdlTobit = fitLGDModel(data(TrainingInd,:),'tobit','CensoringSide','both','PredictorVars',{'LTV' 'Age' 'Type'},'ResponseVar','LGD');
disp(mdlTobit)

 Tobit with properties:

 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

disp(mdlTobit.UnderlyingModel)

Tobit regression model:
 LGD = max(0,min(Y*,1))
 Y* ~ 1 + LTV + Age + Type

Estimated coefficients:
 Estimate SE tStat pValue
 _________ _________ _______ __________

 (Intercept) 0.058257 0.027265 2.1367 0.032737
 LTV 0.20126 0.031354 6.4189 1.6932e-10
 Age -0.095407 0.0072653 -13.132 0
 Type_investment 0.10208 0.018058 5.6531 1.7915e-08
 (Sigma) 0.29288 0.0057036 51.35 0

Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1521
Number of right-censored observations: 25
Log-likelihood: -698.383

Tobit models predict using the unconditional expected value of the response, given the predictor
values. For more information, see “Loss Given Default Tobit Models” on page 6-694.

dataLGDPredicted.Tobit = predict(mdlTobit,data(TestInd,:));
disp(head(dataLGDPredicted))

 Observed GroupMeans Regression Tobit
 _________ __________ __________ ________

 0.0064766 0.066068 0.00091169 0.087889
 0.007947 0.12166 0.0036758 0.12432

 Model Loss Given Default

4-99

 0.063182 0.25977 0.18774 0.32043
 0 0.066068 0.0010877 0.093354
 0.10904 0.16489 0.011213 0.16718
 0 0.16489 0.041992 0.22382
 0.89463 0.16489 0.052947 0.23695
 0 0.021776 3.7188e-06 0.010234

The Model Comparison on page 4-106 section at the end of this example has a more detailed
comparison of all models that includes visualizations and prediction error with different metrics. The
histogram of the predicted LGD values for the Tobit model does not have a U-shaped distribution, but
it ranks well compared to other models.

Beta Regression Model

In a Beta regression model for LGD, the model does not directly predict a single LGD value, it
predicts an entire distribution of LGDs (given the predictor values). From that distribution, a value
must be determined to predict a single LGD value for a loan, typically the mean of that distribution.

Technically, given the predictor values X1, X2, . . . and model coefficients b and c, you can:

• Compute values for the parameters μ (mean) and ϕ (precision, sometimes called the "sample size"
of the beta distribution with the following formulas:

μ = 1
1 + exp −b0− b1X1−⋯

ϕ = exp c0 + c1X1 +⋯

• Compute values for α and β, the typical parameters of the beta distribution, with these formulas:

α = μ ϕ

β = 1− μ ϕ

• Evaluate the density function of the corresponding beta distribution for a given level of LGD,
where Γ is the gamma function; see [1 on page 4-111] for details:

fbeta LGD α , β = Γ α + β
Γ α Γ β LGDα− 1 1− LGD β− 1

For fitting the model, once the density function is evaluated, you can update the likelihood function
and find the optimal coefficients with a maximum likelihood approach.

For prediction, once the model coefficients are fit, a prediction can be made, typically using the mean
of the distribution, that is, the μ parameter, as the predicted LGD value.

Fit a Beta regression model using the fitLGDModel function from Risk Management Toolbox™ using
the training data. By default, a boundary tolerance of 1e-5 is applied for the LGD response data. For
more information on Beta models, see Beta.

mdlBeta = fitLGDModel(data(TrainingInd,:),'beta','PredictorVars',{'LTV' 'Age' 'Type'},'ResponseVar','LGD');
disp(mdlBeta)

 Beta with properties:

 BoundaryTolerance: 1.0000e-05
 ModelID: "Beta"

4 Corporate Credit Risk Simulations for Portfolios

4-100

 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

disp(mdlBeta.UnderlyingModel)

Beta regression model:
 logit(LGD) ~ 1_mu + LTV_mu + Age_mu + Type_mu
 log(LGD) ~ 1_phi + LTV_phi + Age_phi + Type_phi

Estimated coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept)_mu -1.3772 0.13201 -10.433 0
 LTV_mu 0.60269 0.15087 3.9947 6.7023e-05
 Age_mu -0.47464 0.040264 -11.788 0
 Type_investment_mu 0.45372 0.085143 5.3289 1.094e-07
 (Intercept)_phi -0.16337 0.12591 -1.2975 0.19462
 LTV_phi 0.055892 0.14719 0.37973 0.70419
 Age_phi 0.22887 0.040335 5.6743 1.5863e-08
 Type_investment_phi -0.14102 0.078155 -1.8044 0.071311

Number of observations: 2093
Log-likelihood: -5291.04

For prediction, recall that the beta regression links the predictors to an entire beta distribution. For
example, suppose that a loan has an LTV of 0.7 and an Age of 1.1 years, and it is an investment
property. The beta regression model gives us a prediction for the α and β parameters for this loan,
and the model predicts that for this loan the range of possible LGD values follows the corresponding
beta distribution.

Estimate = mdlBeta.UnderlyingModel.Coefficients.Estimate;
NumCols = mdlBeta.UnderlyingModel.NumCoefficients/2;

XExample = [1 0.7 1.1 1];
MuExample = 1/(1+exp(-XExample*Estimate(1:NumCols)));
NuExample = exp(XExample*Estimate(NumCols+1:end));
AlphaExample = MuExample*NuExample;
BetaExample = (1-MuExample)*NuExample;

xDomain = 0.01:0.01:0.99;
pBeta = betapdf(xDomain,AlphaExample,BetaExample);
plot(xDomain,pBeta)
title('Predicted Distribution, Single Loan')
xlabel('Possible LGD')
ylabel('Predicted Density')

 Model Loss Given Default

4-101

The shape of the distribution has the U-shaped pattern of the data. However, this is a predicted
distribution of LGD values for a single loan. This distribution can be very useful for simulation
purposes. However, to predict an LGD value for this loan, a method is required that goes from an
entire distribution to a single value.

One way to predict would be to randomly draw a value from the previous distribution. This would
tend to give predicted values towards the ends of the unit interval, and the overall shape of the
distribution for a data set would match the U-shaped patter of observed LGD values. However, even if
the shape of the distribution looked correct, a random draw from the distribution does not work well
for prediction purposes. Two points with the same predictor values would have two different
predicted LGDs, which is counterintuitive. Moreover, the prediction error at the observation level
could be large, since many loans with small observed LGDs could get random predictions of large
LGDs, and vice versa.

To reduce the prediction error at the individual level, the expected value of the beta distribution is
typically used to predict. The distribution of predicted values with this approach does not have the
expected U-shaped pattern because the mean value tends to be away from the boundaries of the unit
interval. However, by using the mean of the beta distribution, all observations with the same
predictor values get the same predicted LGDs. Moreover, the mean may not be close to values that
are on the ends of the distribution, but the average error might be smaller compared to the random
draws from the previous approach.

Use predict with Beta models to predict using the mean of the beta distribution. Remember that the
expected value of the distribution is the μ parameter, so the mean value prediction is straightforward.

4 Corporate Credit Risk Simulations for Portfolios

4-102

dataLGDPredicted.Beta = predict(mdlBeta,data(TestInd,:));
disp(head(dataLGDPredicted))

 Observed GroupMeans Regression Tobit Beta
 _________ __________ __________ ________ ________

 0.0064766 0.066068 0.00091169 0.087889 0.093695
 0.007947 0.12166 0.0036758 0.12432 0.14915
 0.063182 0.25977 0.18774 0.32043 0.35263
 0 0.066068 0.0010877 0.093354 0.096434
 0.10904 0.16489 0.011213 0.16718 0.18858
 0 0.16489 0.041992 0.22382 0.2595
 0.89463 0.16489 0.052947 0.23695 0.26767
 0 0.021776 3.7188e-06 0.010234 0.021315

The Model Comparison on page 4-106 section at the end of this example has a more detailed
comparison of all models that includes visualizations and prediction error metrics. In particular, the
histogram of the predicted LGD values shows that the beta regression approach does not produce a
U-shaped distribution. However, this approach does have good performance under the other metrics
reported.

Two-Stage Model

Two-stage LGD models separate the case with no losses (LGD equal to 0) from the cases with actual
losses (LGD greater than 0) and build two models. The stage 1 model is a classification model to
predict whether the loan will have positive LGD. The stage 2 model a regression-type model to
predict the actual LGD when the LGD is expected to be positive. The prediction is the expected value
of the two combined models, which is the product of the probability of having a loss (stage 1
prediction) times the expected LGD value (stage 2 prediction).

In this example, a logistic regression model is used for the stage 1. Stage two is a regression on a
logit transformation of the positive LGD data, fitted using fitLGDModel. More sophisticated models
can be used for stage 1 and stage 2 models, see for example [4 on page 4-112] or [6 on page 4-112].
Also, another extension is to explicitly handle the LGD = 1 boundary. The stage 1 model would
produce probabilities of observing an LGD of 0, an LGD of 1, and an LGD value strictly between 0 and
1. The stage 2 model would predict LGD values when the LGD is expected to be strictly between 0
and 1.

Use fitglm to fit the stage 1 model using the training data. The response variable is an indicator
with a value of 1 if the observed LGD is positive, and 0 if the observed LGD is zero.

IndLGDPositive = data.LGD>0;
data.LGDPositive = IndLGDPositive;
disp(head(data))

 LTV Age Type LGD LTVDiscretized AgeDiscretized LGDTruncated LGDLogit LGDPositive
 _______ _______ ___________ _________ ______________ ______________ ____________ ________ ___________

 0.89101 0.39716 residential 0.032659 high young 0.032659 -3.3884 true
 0.70176 2.0939 residential 0.43564 high old 0.43564 -0.25887 true
 0.72078 2.7948 residential 0.0064766 high old 0.0064766 -5.0331 true
 0.37013 1.237 residential 0.007947 low young 0.007947 -4.827 true
 0.36492 2.5818 residential 0 low old 1e-05 -11.513 false
 0.796 1.5957 residential 0.14572 high young 0.14572 -1.7686 true
 0.60203 1.1599 residential 0.025688 high young 0.025688 -3.6357 true
 0.92005 0.50253 investment 0.063182 high young 0.063182 -2.6965 true

 Model Loss Given Default

4-103

mdl1 = fitglm(data(TrainingInd,:),"LGDPositive ~ 1 + LTV + Age + Type",'Distribution',"binomial");
disp(mdl1)

Generalized linear regression model:
 logit(LGDPositive) ~ 1 + LTV + Age + Type
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept) 1.3157 0.21193 6.2083 5.3551e-10
 LTV 1.3159 0.25328 5.1954 2.0433e-07
 Age -0.79597 0.053607 -14.848 7.1323e-50
 Type_investment 0.66784 0.17019 3.9241 8.7051e-05

2093 observations, 2089 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 404, p-value = 2.68e-87

A receiver operating characteristic (ROC) curve plot for the stage 1 model is commonly reported
using test data, as well as the area under the ROC curve (AUROC or simply AUC).

PredictedProbLGDPositive = predict(mdl1,data(TestInd,:));
[x,y,~,AUC] = perfcurve(data.LGDPositive(TestInd),PredictedProbLGDPositive,1);
plot(x,y)
title(sprintf('ROC Stage 1 Model (AUROC: %g)',AUC))

4 Corporate Credit Risk Simulations for Portfolios

4-104

Fit the stage 2 model with fitLGDModel using only the training data with a positive LGD. This is the
same type of model used earlier in the Regression on page 4-100 section, however, this time it is
fitted using only observations from the training data with positive LGDs.

dataLGDPositive = data(TrainingInd&IndLGDPositive,{'LTV','Age','Type','LGD'});
mdl2 = fitLGDModel(dataLGDPositive,'regression');
disp(mdl2.UnderlyingModel)

Compact linear regression model:
 LGD_logit ~ 1 + LTV + Age + Type

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept) -2.9083 0.27538 -10.561 3.2039e-25
 LTV 1.3883 0.31838 4.3604 1.384e-05
 Age -0.46116 0.081939 -5.6281 2.1608e-08
 Type_investment 0.78223 0.18096 4.3226 1.6407e-05

Number of observations: 1546, Error degrees of freedom: 1542
Root Mean Squared Error: 2.8
R-squared: 0.0521, Adjusted R-Squared: 0.0503
F-statistic vs. constant model: 28.3, p-value = 8.73e-18

Perform prediction on the test data using the combined models for stage 1 and stage 2. The predicted
LGD is the product of the probability of observing a positive LGD from the stage 1 model times the
expected LGD value predicted by the stage 2 model. Recall that regression models fitted using
fitLGDModel apply the inverse transformation during prediction, so the predicted value is a valid
LGD value.

PredictedLGDPositive = predict(mdl2,data(TestInd,:));

% PredictedProbLGDPositive is computed before the ROC curve above
% Final LGD prediction is the product of stage 1 and stage 2 predictions
dataLGDPredicted.TwoStage = PredictedProbLGDPositive.*PredictedLGDPositive;

disp(head(dataLGDPredicted))

 Observed GroupMeans Regression Tobit Beta TwoStage
 _________ __________ __________ ________ ________ _________

 0.0064766 0.066068 0.00091169 0.087889 0.093695 0.020038
 0.007947 0.12166 0.0036758 0.12432 0.14915 0.034025
 0.063182 0.25977 0.18774 0.32043 0.35263 0.2388
 0 0.066068 0.0010877 0.093354 0.096434 0.022818
 0.10904 0.16489 0.011213 0.16718 0.18858 0.060072
 0 0.16489 0.041992 0.22382 0.2595 0.097685
 0.89463 0.16489 0.052947 0.23695 0.26767 0.11142
 0 0.021776 3.7188e-06 0.010234 0.021315 0.0003689

The Model Comparison on page 4-106 section at the end of this example has a more detailed
comparison of all models that includes visualizations and prediction error metrics. This approach also
ranks well compared to other models and the histogram of the predicted LGD values shows high
frequencies near 0.

 Model Loss Given Default

4-105

Model Comparison

To evaluate the performance of LGD models, different metrics are commonly used. One metric is the
R-squared of the linear fit regressing the observed LGD values on the predicted values. A second
metric is some correlation or rank order statistic; this example uses the Spearman correlation. For
prediction error, root mean squared error (RMSE) is a common metric. Also, a simple metric
sometimes reported is the difference between the mean LGD value in the data and the mean LGD
value of the predictions.

The Regression, Tobit, and Beta models directly support these metrics with the modelCalibration
function, including comparing against a reference model. For example, here is a report of these
metrics for the regression model, passing the predictions of the simple nonparametric model as
reference.

CalMeasure = modelCalibration(mdlRegression,data(TestInd,:),'DataID','Test','ReferenceLGD',dataLGDPredicted.GroupMeans,'ReferenceID','Group Means','CorrelationType','spearman');
disp(CalMeasure)

 RSquared RMSE Correlation SampleMeanError
 ________ _______ ___________ _______________

 Regression, Test 0.070867 0.25988 0.42152 0.10759
 Group Means, Test 0.041622 0.2406 0.33807 -0.0078124

A visualization is also directly supported with modelCalibrationPlot.

modelCalibrationPlot(mdlRegression,data(TestInd,:),'DataID','Test','ReferenceLGD',dataLGDPredicted.GroupMeans,'ReferenceID','Group Means')

4 Corporate Credit Risk Simulations for Portfolios

4-106

In addition, Regression, Tobit and Beta models support model discrimination tools, with the
modelDiscrimination and modelDiscriminationPlot functions. For model discrimination, the
LGD data is discretized (high LGD vs. low LGD) and the ROC curve and the corresponding AUROC
are computed in a standard way. For more information, see modelDiscrimination and
modelDiscriminationPlot. For example, here is the ROC curve for the regression model, with the
ROC curve of the nonparametric model as reference.

modelDiscriminationPlot(mdlRegression,data(TestInd,:),'DataID','Test','ReferenceLGD',dataLGDPredicted.GroupMeans,'ReferenceID','Group Means')

The rest of this model validation section works with the predicted LGD values from all the models to
compute the metrics mentioned above (R-squared, Spearman correlation, RMSE and sample mean
error). It also shows a scatter plot, a histogram, and a box plot to further analyze the performance of
the models.

The four metrics are reported below, sorted by decreasing R-squared values.

ModelNames = dataLGDPredicted.Properties.VariableNames(2:end); % Remove 'Observed'
NumModels = length(ModelNames);

SampleMeanError = zeros(NumModels,1);
RSquared = zeros(NumModels,1);
Spearman = zeros(NumModels,1);
RMSE = zeros(NumModels,1);
lmAll = struct;

meanLGDTest = mean(dataLGDPredicted.Observed);

 Model Loss Given Default

4-107

for ii=1:NumModels

 % R-squared, and store linear model fit for visualization section
 Formula = ['Observed ~ 1 + ' ModelNames{ii}];
 lmAll.(ModelNames{ii}) = fitlm(dataLGDPredicted,Formula);
 RSquared(ii) = lmAll.(ModelNames{ii}).Rsquared.Ordinary;

 % Spearman correlation
 Spearman(ii) = corr(dataLGDPredicted.Observed,dataLGDPredicted.(ModelNames{ii}),'type','Spearman');

 % Root mean square error
 RMSE(ii) = sqrt(mean((dataLGDPredicted.Observed-dataLGDPredicted.(ModelNames{ii})).^2));

 % Sample mean error
 SampleMeanError(ii) = meanLGDTest-mean(dataLGDPredicted.(ModelNames{ii}));

end

PerformanceMetrics = table(RSquared,Spearman,RMSE,SampleMeanError,'RowNames',ModelNames);
PerformanceMetrics = sortrows(PerformanceMetrics,'RSquared','descend');
disp(PerformanceMetrics)

 RSquared Spearman RMSE SampleMeanError
 ________ ________ _______ _______________

 TwoStage 0.090814 0.41987 0.24197 0.060619
 Tobit 0.08527 0.42217 0.23712 -0.034412
 Beta 0.080804 0.41557 0.24112 -0.052396
 Regression 0.070867 0.42152 0.25988 0.10759
 GroupMeans 0.041622 0.33807 0.2406 -0.0078124

For the particular training vs. test partition used in this example, the two-stage model has the highest
R-squared, although for other partitions, Tobit has the highest R-squared value. Even though the
group means approach does not have a high R-squared value, it typically has the smallest sample
mean error (mean of predicted LGD values minus mean LGD in the test data). The group means are
also competitive for the RMSE metric.

Report the model performance one approach at a time, including visualizations. Display the metrics
for the selected model.

ModelSelected = ;
disp(PerformanceMetrics(ModelSelected,:))

 RSquared Spearman RMSE SampleMeanError
 ________ ________ _______ _______________

 TwoStage 0.090814 0.41987 0.24197 0.060619

Plot the regression fit (observed LGD vs. predicted LGD), which is a common visual tool to assess the
model performance. This is essentially the same visualization as the modelCalibrationPlot
function shown above, but using the plot function of the fitted linear models. The R-squared
reported above is the R-squared of this regression. The plot shows a significant amount of error for
all models. A good predictive model would have the points located mostly along the diagonal, and not
be scattered all over the unit square. However, the metrics above do show some differences in
predictive performance for different models that can be important in practice.

4 Corporate Credit Risk Simulations for Portfolios

4-108

plot(lmAll.(ModelSelected))
xlim([0 1])
ylim([0 1])

Compare the histograms of the predicted and observed LGD values. For some models, the distribution
of predicted values shows high frequencies near zero, similar to the U shape of the observed LGD
distribution. However, matching the shape of the distribution does not mean high accuracy at the
level of individual predictions; some models show better prediction error even though their histogram
does not have a U shape.

LGDEdges = 0:0.1:1; % Ten bins to better show the distribution shape
y1 = histcounts(dataLGDPredicted.(ModelSelected),LGDEdges);
y2 = histcounts(dataLGDPredicted.Observed,LGDEdges);
bar((LGDEdges(1:end-1)+LGDEdges(2:end))/2,[y1; y2])
title(strcat(ModelSelected,' Model'))
ylabel('Frequency')
xlabel('LGD')
legend('Predicted','Observed')
grid on

 Model Loss Given Default

4-109

Show the box plot of the observed LGD values for different ranges of predicted LGD values. A coarser
discretization (five bins only) smooths some noise out and better summarizes the underlying
relationship. Ideally, the median (red horizontal line in the middle) should have a monotonic trend and
be clearly different from one level to the next. Tall boxes also mean that there is a significant amount
of error around the predicted values, which in some cases may be due to very few observations in
that level. For a good predictive model, the boxes should be short and be located near the diagonal as
you move from one level to the next.

LGDEdges = linspace(min(dataLGDPredicted.(ModelSelected)),max(dataLGDPredicted.(ModelSelected)),6); % Five bins
LGDDiscretized = discretize(dataLGDPredicted.(ModelSelected),LGDEdges,'Categorical',string(LGDEdges(2:end)));
boxplot(dataLGDPredicted.Observed,LGDDiscretized)
ylim([0 1])
title(strcat(ModelSelected,' Model'))
xlabel('Predicted LGD, Discretized')
ylabel('Observed LGD')

4 Corporate Credit Risk Simulations for Portfolios

4-110

Summary

This example shows multiple approaches for LGD modeling and prediction. The Regression, Tobit,
and Beta models (including the regression model of the second stage in the two-stage model) are
fitted using the fitLGDModel function from Risk Management Toolbox.

The workflow in this example can be adapted to further analyze the models discussed here or to
implement and validate other modeling approaches. This example can be extended to perform a more
thorough comparison of LGD models (see for example [3 on page 4-112] and [4 on page 4-112]).

The example can also be extended to perform a cross-validation analysis to either benchmark
alternative models or to fine-tune hyperparameters. For example, better cut off points for the group
means could be selected using cross-validation, or alternative transformations of the LGD response
values (logit, probit) could be benchmarked to select the one with the best performance. This
example can also be a starting point to perform a backtesting analysis using out-of-time data; see for
example [5 on page 4-112].

References

[1] Baesens, B., D. Rosch, and H. Scheule. Credit Risk Analytics. Wiley, 2016.

[2] Johnston Ross, E., and L. Shibut. "What Drives Loss Given Default? Evidence from Commercial
Real Estate Loans at Failed Banks." Federal Deposit Insurance Corporation, Center for Financial
Research, Working Paper 2015-03, March 2015.

 Model Loss Given Default

4-111

[3] Li, P., X. Zhang, and X. Zhao. "Modeling Loss Given Default. "Federal Deposit Insurance
Corporation, Center for Financial Research, Working Paper 2018-03, July 2018.

[4] Loterman, G., I. Brown, D. Martens, C. Mues, and B. Baesens. "Benchmarking Regression
Algorithms for Loss Given Default Modeling." International Journal of Forecasting. Vol. 28, No.1, pp.
161–170, 2012.

[5] Loterman, G., M. Debruyne, K. Vanden Branden, T. Van Gestel, and C. Mues. "A Proposed
Framework for Backtesting Loss Given Default Models." Journal of Risk Model Validation. Vol. 8, No.
1, pp. 69-90, March 2014.

[6] Tanoue, Y., and S. Yamashita. "Loss Given Default Estimation: A Two-Stage Model with
Classification Tree-Based Boosting and Support Vector Logistic Regression." Journal of Risk. Vol. 21
No. 4, pp. 19-37, 2019.

4 Corporate Credit Risk Simulations for Portfolios

4-112

Compare Logistic Model for Lifetime PD to Champion Model

This example shows how to compare a new Logistic model for lifetime PD against a "champion"
model.

Load Data

Load the portfolio data, which includes loan and macro information.

load RetailCreditPanelData.mat
data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Fit Logistic Model

For this example, fit a new Logistic model using only score group information but no age
information. First, you can validate this model in a standalone fashion. For more information, see
“Basic Lifetime PD Model Validation” on page 4-129.

Age information is important in this data set. The new model does not perform as well as the
champion model (which includes age, score group, and macro vars).

Fit a new Logistic model using fitLifetimePDModel.

ModelType = "logistic";
pdModel = fitLifetimePDModel(data(TrainDataInd,:),ModelType,...
 'ModelID','LogisticNoAge',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},...
 'ResponseVar','Default');
disp(pdModel)

 Compare Logistic Model for Lifetime PD to Champion Model

4-113

 Logistic with properties:

 ModelID: "LogisticNoAge"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: ""
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

Compare Performance of the Logistic Model to Champion Model

To compare the new Logistic model to a champion model, you need access to the predictions of the
champion model. The champion model might even have different predictors, so the mapping between
the data being used and the exact inputs of the champion model might require an intermediate
preprocessing step. This example assumes that you have a black-box tool to get the predictions from
the champion model.

Compare the model performance for both models using modelDiscrimination.

DataSetChoice = ;
if DataSetChoice=="Training"
 Ind = TrainDataInd;
else
 Ind = TestDataInd;
end

ChampionPD = getChampionModelPDs(data(Ind,:));

[DiscMeasure,DiscData] = modelDiscrimination(pdModel,data(Ind,:),'ShowDetails',true,'DataID',DataSetChoice,...
 'ReferencePD',ChampionPD,'ReferenceID',"Champion");
disp(DiscMeasure)

 AUROC Segment SegmentCount
 _______ __________ ____________

 LogisticNoAge, Testing 0.66503 "all_data" 2.5863e+05
 Champion, Testing 0.70018 "all_data" 2.5863e+05

disp(head(DiscData))

 ModelID X Y T
 _______________ ________ ________ ________

 "LogisticNoAge" 0 0 0.02287
 "LogisticNoAge" 0.04673 0.090978 0.02287
 "LogisticNoAge" 0.064656 0.14922 0.022711
 "LogisticNoAge" 0.10982 0.22764 0.020553
 "LogisticNoAge" 0.14421 0.311 0.018483
 "LogisticNoAge" 0.19237 0.41454 0.01722
 "LogisticNoAge" 0.23558 0.43738 0.014125
 "LogisticNoAge" 0.27979 0.52037 0.012812

disp(tail(DiscData))

 ModelID X Y T
 __________ _______ _______ __________

4 Corporate Credit Risk Simulations for Portfolios

4-114

 "Champion" 0.88743 0.98021 0.0032242
 "Champion" 0.90293 0.98477 0.0025583
 "Champion" 0.91884 0.98896 0.0023801
 "Champion" 0.93303 0.99239 0.0018756
 "Champion" 0.94995 0.99391 0.0017711
 "Champion" 0.96705 0.99695 0.0016436
 "Champion" 0.98295 0.99886 0.0012847
 "Champion" 1 1 0.00086887

Use modelDiscriminationPlot to plot the ROC.

modelDiscriminationPlot(pdModel,data(Ind,:),'DataID',DataSetChoice,...
 'ReferencePD',ChampionPD,'ReferenceID',"Champion");

[DiscMeasure,DiscData] = modelDiscrimination(pdModel,data(Ind,:),'ShowDetails',true,'SegmentBy','YOB','DataID',DataSetChoice,...
 'ReferencePD',ChampionPD,'ReferenceID',"Champion");
disp(DiscMeasure)

 AUROC Segment SegmentCount
 _______ _______ ____________

 LogisticNoAge, YOB=1, Testing 0.64879 1 38728
 Champion, YOB=1, Testing 0.64972 1 38728
 LogisticNoAge, YOB=2, Testing 0.65699 2 37812
 Champion, YOB=2, Testing 0.66496 2 37812
 LogisticNoAge, YOB=3, Testing 0.63508 3 36973
 Champion, YOB=3, Testing 0.64774 3 36973

 Compare Logistic Model for Lifetime PD to Champion Model

4-115

 LogisticNoAge, YOB=4, Testing 0.62656 4 36418
 Champion, YOB=4, Testing 0.66204 4 36418
 LogisticNoAge, YOB=5, Testing 0.6205 5 35818
 Champion, YOB=5, Testing 0.65439 5 35818
 LogisticNoAge, YOB=6, Testing 0.61739 6 35384
 Champion, YOB=6, Testing 0.63156 6 35384
 LogisticNoAge, YOB=7, Testing 0.64016 7 24730
 Champion, YOB=7, Testing 0.63117 7 24730
 LogisticNoAge, YOB=8, Testing 0.63339 8 12764
 Champion, YOB=8, Testing 0.63339 8 12764

disp(head(DiscData))

 ModelID YOB X Y T
 _______________ ___ _______ _______ _________

 "LogisticNoAge" 1 0 0 0.022711
 "LogisticNoAge" 1 0.12062 0.22401 0.022711
 "LogisticNoAge" 1 0.23459 0.41435 0.018483
 "LogisticNoAge" 1 0.33329 0.59151 0.01722
 "LogisticNoAge" 1 0.45578 0.69107 0.01151
 "LogisticNoAge" 1 0.5683 0.77452 0.009347
 "LogisticNoAge" 1 0.67031 0.84919 0.0087028
 "LogisticNoAge" 1 0.78943 0.9063 0.0064814

disp(tail(DiscData))

 ModelID YOB X Y T
 _______________ ___ _______ ______ __________

 "LogisticNoAge" 8 0 0 0.014125
 "LogisticNoAge" 8 0.31762 0.5625 0.014125
 "LogisticNoAge" 8 0.65751 0.8125 0.0071273
 "LogisticNoAge" 8 1 1 0.0040058
 "Champion" 8 0 0 0.0040291
 "Champion" 8 0.31762 0.5625 0.0040291
 "Champion" 8 0.65751 0.8125 0.0017711
 "Champion" 8 1 1 0.00086887

Compare Calibration Against Champion Model

Compare the calibration of the two models with modelCalibration.

GroupingVar = ;
[CalMeasure,CalData] = modelCalibration(pdModel,data(Ind,:),GroupingVar,'DataID',DataSetChoice,...
 'ReferencePD',ChampionPD,'ReferenceID',"Champion");
disp(CalMeasure)

 RMSE

 LogisticNoAge, grouped by YOB, Testing 0.0031021
 Champion, grouped by YOB, Testing 0.00046476

disp(head(CalData))

 ModelID YOB PD GroupCount
 __________ ___ _________ __________

4 Corporate Credit Risk Simulations for Portfolios

4-116

 "Observed" 1 0.017636 38728
 "Observed" 2 0.013303 37812
 "Observed" 3 0.010846 36973
 "Observed" 4 0.010709 36418
 "Observed" 5 0.0093528 35818
 "Observed" 6 0.0060197 35384
 "Observed" 7 0.0034776 24730
 "Observed" 8 0.0012535 12764

disp(tail(CalData))

 ModelID YOB PD GroupCount
 __________ ___ _________ __________

 "Champion" 1 0.017244 38728
 "Champion" 2 0.012999 37812
 "Champion" 3 0.011428 36973
 "Champion" 4 0.010693 36418
 "Champion" 5 0.0085574 35818
 "Champion" 6 0.005937 35384
 "Champion" 7 0.0035193 24730
 "Champion" 8 0.0021802 12764

Use modelCalibrationPlot to visualize the model calibration.

modelCalibrationPlot(pdModel,data(Ind,:),GroupingVar,'DataID',DataSetChoice,...
 'ReferencePD',ChampionPD,'ReferenceID',"Champion");

 Compare Logistic Model for Lifetime PD to Champion Model

4-117

[CalMeasure,CalData] = modelCalibration(pdModel,data(Ind,:),["YOB","ScoreGroup"],'DataID',DataSetChoice,...
 'ReferencePD',ChampionPD,'ReferenceID',"Champion");
disp(CalMeasure)

 RMSE

 LogisticNoAge, grouped by YOB, ScoreGroup, Testing 0.0036974
 Champion, grouped by YOB, ScoreGroup, Testing 0.0010716

disp(head(CalData))

 ModelID YOB ScoreGroup PD GroupCount
 __________ ___ ___________ _________ __________

 "Observed" 1 High Risk 0.030877 13084
 "Observed" 1 Medium Risk 0.013541 12998
 "Observed" 1 Low Risk 0.0081449 12646
 "Observed" 2 High Risk 0.022838 12567
 "Observed" 2 Medium Risk 0.012376 12767
 "Observed" 2 Low Risk 0.0046482 12478
 "Observed" 3 High Risk 0.017651 12067
 "Observed" 3 Medium Risk 0.0092652 12520

unstack(CalData,'PD','ModelID')

ans=24×6 table
 YOB ScoreGroup GroupCount Champion LogisticNoAge Observed
 ___ ___________ __________ _________ _____________ _________

 1 High Risk 13084 0.028165 0.019641 0.030877
 1 Medium Risk 12998 0.014833 0.0099388 0.013541
 1 Low Risk 12646 0.008422 0.0055911 0.0081449
 2 High Risk 12567 0.02167 0.019337 0.022838
 2 Medium Risk 12767 0.011123 0.0098141 0.012376
 2 Low Risk 12478 0.0061856 0.0055194 0.0046482
 3 High Risk 12067 0.019285 0.020139 0.017651
 3 Medium Risk 12520 0.0098085 0.010179 0.0092652
 3 Low Risk 12386 0.0054096 0.0057356 0.005813
 4 High Risk 11798 0.018136 0.019175 0.018562
 4 Medium Risk 12325 0.0091921 0.0096563 0.0094929
 4 Low Risk 12295 0.0050562 0.0054292 0.004392
 5 High Risk 11481 0.014818 0.014806 0.016288
 5 Medium Risk 12120 0.0072853 0.007454 0.0080033
 5 Low Risk 12217 0.0039358 0.0041822 0.0041745
 6 High Risk 11250 0.01049 0.012153 0.0096889
 ⋮

Compare Two Models Under Development

You can also compare two new models under development.

pdModelTTC = fitLifetimePDModel(data(TrainDataInd,:),"probit",...
 'ModelID','ProbitTTC',...
 'AgeVar','YOB',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...

4 Corporate Credit Risk Simulations for Portfolios

4-118

 'ResponseVar','Default',...
 'Description',"TTC model, no macro variables, probit.");
disp(pdModelTTC)

 Probit with properties:

 ModelID: "ProbitTTC"
 Description: "TTC model, no macro variables, probit."
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ""
 ResponseVar: "Default"

pdModelTTC.UnderlyingModel

ans =
Compact generalized linear regression model:
 probit(Default) ~ 1 + ScoreGroup + YOB
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 _________ _________ _______ ___________

 (Intercept) -1.8275 0.013636 -134.02 0
 ScoreGroup_Medium Risk -0.26441 0.014158 -18.676 7.7165e-78
 ScoreGroup_Low Risk -0.46734 0.016327 -28.624 3.371e-180
 YOB -0.081761 0.0031333 -26.094 4.2244e-150

388097 observations, 388093 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.7e+03, p-value = 0

Compare the calibrations.

[CalMeasureTTC,CalDataTTC] = modelCalibration(pdModelTTC,data(Ind,:),["YOB","ScoreGroup"],'DataID',DataSetChoice,...
 'ReferencePD',predict(pdModel,data(Ind,:)),'ReferenceID',pdModel.ModelID);
disp(CalMeasureTTC)

 RMSE

 ProbitTTC, grouped by YOB, ScoreGroup, Testing 0.0016726
 LogisticNoAge, grouped by YOB, ScoreGroup, Testing 0.0036974

unstack(CalDataTTC,'PD','ModelID')

ans=24×6 table
 YOB ScoreGroup GroupCount LogisticNoAge Observed ProbitTTC
 ___ ___________ __________ _____________ _________ _________

 1 High Risk 13084 0.019641 0.030877 0.028114
 1 Medium Risk 12998 0.0099388 0.013541 0.014865
 1 Low Risk 12646 0.0055911 0.0081449 0.0087364
 2 High Risk 12567 0.019337 0.022838 0.023239
 2 Medium Risk 12767 0.0098141 0.012376 0.012053

 Compare Logistic Model for Lifetime PD to Champion Model

4-119

 2 Low Risk 12478 0.0055194 0.0046482 0.0069786
 3 High Risk 12067 0.020139 0.017651 0.019096
 3 Medium Risk 12520 0.010179 0.0092652 0.0097145
 3 Low Risk 12386 0.0057356 0.005813 0.0055406
 4 High Risk 11798 0.019175 0.018562 0.015599
 4 Medium Risk 12325 0.0096563 0.0094929 0.0077825
 4 Low Risk 12295 0.0054292 0.004392 0.0043722
 5 High Risk 11481 0.014806 0.016288 0.012666
 5 Medium Risk 12120 0.007454 0.0080033 0.0061971
 5 Low Risk 12217 0.0041822 0.0041745 0.0034292
 6 High Risk 11250 0.012153 0.0096889 0.010223
 ⋮

Black-Box Champion Prediction Function

function PD = getChampionModelPDs(data)

m = load('LifetimeChampionModel.mat');
PD = predict(m.pdModel,data);

end

See Also
fitLifetimePDModel | predict | predictLifetime | modelDiscrimination |
modelCalibration | modelCalibrationPlot | Logistic | Probit | Cox

Related Examples
• “Basic Lifetime PD Model Validation” on page 4-129
• “Expected Credit Loss Computation” on page 4-124
• “Compare Lifetime PD Models Using Cross-Validation” on page 4-121
• “Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on

page 4-144
• “Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-

75

4 Corporate Credit Risk Simulations for Portfolios

4-120

Compare Lifetime PD Models Using Cross-Validation

This example shows how to compare three lifetime PD models using cross-validation.

Load Data

Load the portfolio data, which includes load and macro information. This is a simulated data set used
for illustration purposes.

load RetailCreditPanelData.mat
data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Cross Validation

Because the data is panel data, there are multiple rows for each customer. You set up cross validation
partitions over the customer IDs, not over the rows of the data set. In this way, a customer can be in
either a training set or a test set, but the rows corresponding to the same customer are not split
between training and testing.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

NumFolds = 5;
rng('default'); % for reproducibility
c = cvpartition(nIDs,'KFold',NumFolds);

Compare Logistic, Probit, Cox lifetime PD models using the same variables.

CVModels = ["logistic";"probit";"cox"];
NumModels = length(CVModels);

AUROC = zeros(NumFolds,NumModels);
RMSE = zeros(NumFolds,NumModels);

for ii=1:NumFolds

 fprintf('Fitting models, fold %d\n',ii);

 % Get indices for ID partition
 TrainIDInd = training(c,ii);
 TestIDInd = test(c,ii);
 % Convert to row indices
 TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));

 Compare Lifetime PD Models Using Cross-Validation

4-121

 TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

 % For each model, fit with training data, measure with test data
 for jj=1:NumModels
 % Fit model with training data
 pdModel = fitLifetimePDModel(data(TrainDataInd,:),CVModels(jj),...
 'IDVar','ID','AgeVar','YOB','LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},'ResponseVar','Default');
 % Measure discrimination on test data
 DiscMeasure = modelDiscrimination(pdModel,data(TestDataInd,:));
 AUROC(ii,jj) = DiscMeasure.AUROC;

 % Measure calibration on test data, grouping by YOB (age) and score group
 CalMeasure = modelCalibration(pdModel,data(TestDataInd,:),["YOB" "ScoreGroup"]);
 RMSE(ii,jj) = CalMeasure.RMSE;
 end
end

Fitting models, fold 1
Fitting models, fold 2
Fitting models, fold 3
Fitting models, fold 4
Fitting models, fold 5

Using the discrimination and accuracy measures for the different folds, you can compare the models.
In this example, the metrics are displayed. You can also compare the mean AUROC or the mean
RMSE by comparing the proportion of times a model is superior regarding discrimination or accuracy.
The three models in this example are very comparable.

AUROCTable = array2table(AUROC,"RowNames",strcat("Fold ",string(1:NumFolds)),"VariableNames",strcat("AUROC_",CVModels))

AUROCTable=5×3 table
 AUROC_logistic AUROC_probit AUROC_cox
 ______________ ____________ _________

 Fold 1 0.69558 0.6957 0.69565
 Fold 2 0.70265 0.70335 0.70366
 Fold 3 0.69055 0.69037 0.69008
 Fold 4 0.70268 0.70232 0.70296
 Fold 5 0.68784 0.68781 0.68811

RMSETable = array2table(RMSE,"RowNames",strcat("Fold ",string(1:NumFolds)),"VariableNames",strcat("RMSE_",CVModels))

RMSETable=5×3 table
 RMSE_logistic RMSE_probit RMSE_cox
 _____________ ___________ __________

 Fold 1 0.0019412 0.0020972 0.0020048
 Fold 2 0.0011167 0.0011644 0.0011612
 Fold 3 0.0011536 0.0011802 0.0012766
 Fold 4 0.0010269 0.00097877 0.00099473
 Fold 5 0.0015965 0.001485 0.0015829

See Also
fitLifetimePDModel | predict | predictLifetime | modelDiscrimination |
modelCalibration | modelCalibrationPlot | Logistic | Probit | Cox

4 Corporate Credit Risk Simulations for Portfolios

4-122

Related Examples
• “Basic Lifetime PD Model Validation” on page 4-129
• “Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
• “Expected Credit Loss Computation” on page 4-124
• “Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on

page 4-144
• “Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-

75

 Compare Lifetime PD Models Using Cross-Validation

4-123

Expected Credit Loss Computation

This example shows how to perform expected credit loss (ECL) computations with portfolioECL
using simulated loan data, macro scenario data, and an existing lifetime probability of default (PD)
model.

Load Data and Model

Load loan data ready for prediction, macro scenario data, and corresponding scenario probabilities.

load DataPredictLifetime.mat
disp(LoanData)

 ID ScoreGroup YOB Year
 ____ _____________ ___ ____

 1304 "Medium Risk" 4 2020
 1304 "Medium Risk" 5 2021
 1304 "Medium Risk" 6 2022
 1304 "Medium Risk" 7 2023
 1304 "Medium Risk" 8 2024
 1304 "Medium Risk" 9 2025
 1304 "Medium Risk" 10 2026
 2067 "Low Risk" 7 2020
 2067 "Low Risk" 8 2021
 2067 "Low Risk" 9 2022
 2067 "Low Risk" 10 2023

disp(head(MultipleScenarios,10))

 ScenarioID Year GDP Market
 __________ ____ ____ ______

 "Severe" 2020 -0.9 -5.5
 "Severe" 2021 -0.5 -6.5
 "Severe" 2022 0.2 -1
 "Severe" 2023 0.8 1.5
 "Severe" 2024 1.4 4
 "Severe" 2025 1.8 6.5
 "Severe" 2026 1.8 6.5
 "Severe" 2027 1.8 6.5
 "Adverse" 2020 0.1 -0.5
 "Adverse" 2021 0.2 -2.5

disp(ScenarioProbabilities)

 Probability

 Severe 0.1
 Adverse 0.2
 Baseline 0.3
 Favorable 0.2
 Excellent 0.2

load LifetimeChampionModel.mat
disp(pdModel)

4 Corporate Credit Risk Simulations for Portfolios

4-124

 Probit with properties:

 ModelID: "Champion"
 Description: "A sample model used as champion model for illustration purposes."
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

Visualize Lifetime PDs

For ECL computations, only the marginal PDs are required. However, first you can visualize the
lifetime PDs.

CompanyIDChoice = ;
CompanyID = str2double(CompanyIDChoice);
IndCompany = LoanData.ID == CompanyID;
Years = LoanData.Year(IndCompany);
NumYears = length(Years);

ScenarioID = unique(MultipleScenarios.ScenarioID,'stable');
NumScenarios = length(ScenarioID);

LifetimePD = zeros(NumYears,NumScenarios);
for ii=1:NumScenarios
 IndScenario = MultipleScenarios.ScenarioID==ScenarioID(ii);
 data = join(LoanData(IndCompany,:),MultipleScenarios(IndScenario,:));
 LifetimePD(:,ii) = predictLifetime(pdModel,data);
end

plot(Years,LifetimePD)
xticks(Years)
grid on
xlabel('Year')
ylabel('Lifetime PD')
title('Lifetime PD By Scenario')
legend(ScenarioID,'Location','best')

 Expected Credit Loss Computation

4-125

Compute ECL

The computation of ECL requires a marginal PD values, LGD values, and EAD values, effective
interest rate, plus the scenarios and scenario probabilities.

Compute the lifetime ECL using the portfolioECL function. The inputs to this function are tables,
where the first column is an ID variable that indicates which rows correspond to which loan. Because
the projections cover multiple periods for each loan, and the remaining life of different loans may be
different, the ID variable is an important input. For each ID, the credit projections must be provided,
period-by-period, until the end of the life of each loan. Typically, the marginal PD has a multi-period
and multi-scenario size. This example assumes constant LGD and EAD values. This means that the
same LGD and EAD is used for all periods, and the LGD and EAD values are not sensitive to the
scenarios. Hence, the marginal PD input has multiple rows and columns per ID, whereas the LGD and
EAD inputs have one scalar value per ID. To offer flexibility for different input dimensions for
marginal PD, LGD, and EAD inputs, these inputs are separated into three separate tables in the
syntax of portfolioECL.

ScenarioID = unique(MultipleScenarios.ScenarioID,'stable');
NumScenarios = length(ScenarioID);

Predict marginal PD for each scenario. The predictLifetime function is called for the entire
portfolio at once, and the marginal PDs for each scenario are stored as columns.

MarginalPD = zeros(height(LoanData),NumScenarios);
for ii=1:NumScenarios
 IndScenario = MultipleScenarios.ScenarioID==ScenarioID(ii);

4 Corporate Credit Risk Simulations for Portfolios

4-126

 data = join(LoanData,MultipleScenarios(IndScenario,:));
 MarginalPD(:,ii) = predictLifetime(pdModel,data,'ProbabilityType','marginal');
end

Convert to the required table input format, with the ID column.

MarginalPDTable = array2table(MarginalPD);
MarginalPDTable.Properties.VariableNames = ScenarioID;
MarginalPDTable = addvars(MarginalPDTable,LoanData.ID,'Before',1,'NewVariableNames','ID');
disp(MarginalPDTable)

 ID Severe Adverse Baseline Favorable Excellent
 ____ __________ __________ __________ __________ __________

 1304 0.011316 0.0096361 0.0081783 0.006918 0.0058324
 1304 0.0078277 0.0069482 0.0061554 0.0054425 0.0048028
 1304 0.0048869 0.0044693 0.0040823 0.0037243 0.0033938
 1304 0.0031017 0.0029321 0.0027698 0.0026147 0.0024668
 1304 0.0019309 0.0018923 0.0018538 0.0018153 0.001777
 1304 0.0012157 0.0012197 0.0012233 0.0012264 0.0012293
 1304 0.00082053 0.00082322 0.00082562 0.00082775 0.00082964
 2067 0.0022199 0.001832 0.0015067 0.001235 0.0010088
 2067 0.0014464 0.0012534 0.0010841 0.00093599 0.00080662
 2067 0.0008343 0.00074897 0.00067168 0.00060175 0.00053857
 2067 0.00049107 0.00045839 0.00042769 0.00039887 0.00037183

The LGD and EAD table inputs are small tables with one row per ID.

UniqueIDs = unique(LoanData.ID,'stable');
NumIDs = length(UniqueIDs);

LGD = 0.55;
LGDTable = table(UniqueIDs, repmat(LGD,NumIDs,1),'VariableNames',{'ID','LGD'});
disp(LGDTable)

 ID LGD
 ____ ____

 1304 0.55
 2067 0.55

EAD = 100000;
EADTable = table(UniqueIDs, repmat(EAD,NumIDs,1),'VariableNames',{'ID','EAD'});
disp(EADTable)

 ID EAD
 ____ _____

 1304 1e+05
 2067 1e+05

For simplicity, assume the same effective interest rate for both loans.

EffRate = 0.045;

Call the portfolioECL function. The first output is the total ECL, or provisions, for the portfolio.

[totalECL, ECLByID, ECLByPeriod] = portfolioECL(MarginalPDTable, LGDTable, EADTable, 'InterestRate', EffRate,...
 'ScenarioNames',ScenarioID, 'ScenarioProbabilities',ScenarioProbabilities.Probability, 'IDVar','ID','Periodicity','annual');

 Expected Credit Loss Computation

4-127

fprintf('Total portfolio lifetime ECL is: %.2f\n',totalECL)

Total portfolio lifetime ECL is: 1401.00

The second output, ECLByID, shows the ECL for each ID. The third output, ECLByPeriod, shows the
ECL for each period, and each scenario. Use the dropdown to select an ID and display the
corresponding ECL information.

CompanyIDChoice = ;
CompanyID = str2double(CompanyIDChoice);

disp(ECLByID(ECLByID.ID==CompanyID,:))

 ID ECL
 ____ ______

 1304 1217.3

disp(ECLByPeriod(ECLByPeriod.ID==CompanyID,:))

 ID TimePeriod Severe Adverse Baseline Favorable Excellent
 ____ __________ ______ _______ ________ _________ _________

 1304 1 595.58 507.16 430.44 364.11 306.97
 1304 2 394.24 349.95 310.02 274.11 241.9
 1304 3 235.53 215.4 196.75 179.5 163.57
 1304 4 143.05 135.23 127.75 120.59 113.77
 1304 5 85.219 83.517 81.816 80.118 78.429
 1304 6 51.346 51.514 51.665 51.798 51.917
 1304 7 33.162 33.271 33.368 33.454 33.531

For more information, see the “Incorporate Macroeconomic Scenario Projections in Loan Portfolio
ECL Calculations” on page 4-195 example that shows a detailed workflow for ECL calculations,
including the determination of macro scenarios, the use of lifetime PD, LGD and EAD models, and a
visualization of credit projections and provisions for each ID to drill down to a loan level.

See Also
fitLifetimePDModel | predict | predictLifetime | modelDiscrimination |
modelCalibration | modelCalibrationPlot | Logistic | Probit | Cox

Related Examples
• “Basic Lifetime PD Model Validation” on page 4-129
• “Compare Lifetime PD Models Using Cross-Validation” on page 4-121
• “Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
• “Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on

page 4-144
• “Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-

75

4 Corporate Credit Risk Simulations for Portfolios

4-128

Basic Lifetime PD Model Validation

This example shows how to perform basic model validation on a lifetime probability of default (PD)
model by viewing the fitted model, estimated coefficients, and p-values. For more information on
model validation, see modelDiscrimination and modelCalibration.

Load Data

Load the portfolio data.

load RetailCreditPanelData.mat
data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Fit Model and Review Model Goodness of Fit

Create training and test datasets to perform a basic model validation.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Fit the model using fitLifetimePDModel for a Logistic, Probit, or Cox model.

ModelType = ;
pdModel = fitLifetimePDModel(data(TrainDataInd,:),ModelType,...
 'AgeVar','YOB',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},...
 'ResponseVar','Default');
disp(pdModel)

 Probit with properties:

 ModelID: "Probit"

 Basic Lifetime PD Model Validation

4-129

 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

Display the PD model and review the fit statistics, such as the p-values.

disp(pdModel.UnderlyingModel)

Compact generalized linear regression model:
 probit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -1.6267 0.03811 -42.685 0
 ScoreGroup_Medium Risk -0.26542 0.01419 -18.704 4.5503e-78
 ScoreGroup_Low Risk -0.46794 0.016364 -28.595 7.775e-180
 YOB -0.11421 0.0049724 -22.969 9.6208e-117
 GDP -0.041537 0.014807 -2.8052 0.0050291
 Market -0.0029609 0.0010618 -2.7885 0.0052954

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0

pdModel.UnderlyingModel.Coefficients

ans=6×4 table
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -1.6267 0.03811 -42.685 0
 ScoreGroup_Medium Risk -0.26542 0.01419 -18.704 4.5503e-78
 ScoreGroup_Low Risk -0.46794 0.016364 -28.595 7.775e-180
 YOB -0.11421 0.0049724 -22.969 9.6208e-117
 GDP -0.041537 0.014807 -2.8052 0.0050291
 Market -0.0029609 0.0010618 -2.7885 0.0052954

See Also
fitLifetimePDModel | predict | predictLifetime | modelDiscrimination |
modelCalibration | modelCalibrationPlot | Logistic | Probit | Cox

Related Examples
• “Compare Lifetime PD Models Using Cross-Validation” on page 4-121
• “Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113

4 Corporate Credit Risk Simulations for Portfolios

4-130

Basic Loss Given Default Model Validation

This example shows how to perform basic model validation on a loss given default (LGD) model by
viewing the fitted model, estimated coefficients, and p-values. For more information on model
validation, see modelDiscrimination and modelCalibration.

Load Data

Load the portfolio data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

Fit Model and Review Model Goodness of Fit

Create training and test datasets to perform a basic model validation.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Fit the model using fitLifetimePDModel.

ModelType = ;
lgdModel = fitLGDModel(data(TrainingInd,:),ModelType,...
 'ModelID','Example',...
 'Description','Example LGD regression model.',...
 'PredictorVars',{'LTV' 'Age' 'Type'},...
 'ResponseVar','LGD');
disp(lgdModel)

 Regression with properties:

 ResponseTransform: "logit"
 BoundaryTolerance: 1.0000e-05
 ModelID: "Example"
 Description: "Example LGD regression model."
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

 Basic Loss Given Default Model Validation

4-131

Display the underlying statistical model. The displayed information contains the coefficient estimates,
as well as their standard errors, t-statistics and p-values. The underlying statistical model also shows
the number of observations and other fit metrics.

lgdModel.UnderlyingModel

ans =
Compact linear regression model:
 LGD_logit ~ 1 + LTV + Age + Type

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept) -4.7549 0.36041 -13.193 3.0997e-38
 LTV 2.8565 0.41777 6.8377 1.0531e-11
 Age -1.5397 0.085716 -17.963 3.3172e-67
 Type_investment 1.4358 0.2475 5.8012 7.587e-09

Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value = 2.42e-104

In the case of the underlying statistical model for a Regression model, the underlying model is
returned as a compact linear model object. The compact version of the underlying Regression
model is an instance of the classreg.regr.CompactLinearModel class. For more information,
see fitlm and CompactLinearModel.

See Also
fitLGDModel | predict | modelDiscrimination | modelDiscriminationPlot |
modelCalibration | modelCalibartionPlot | Regression | Tobit

Related Examples
• “Model Loss Given Default” on page 4-90
• “Compare Tobit LGD Model to Benchmark Model” on page 4-133
• “Compare Loss Given Default Models Using Cross-Validation” on page 4-140

More About
• “Overview of Loss Given Default Models” on page 1-31

4 Corporate Credit Risk Simulations for Portfolios

4-132

Compare Tobit LGD Model to Benchmark Model

This example shows how to compare a Tobit model for loss given default (LGD) against a benchmark
model.

Load Data

Load the LGD data.

load LGDData.mat
disp(head(data))

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

Split the data into training and test sets.

NumObs = height(data);

rng('default'); % For reproducibility
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Fit Tobit Model

Fit a Tobit LGD model with training data. By default, the last column of the data is used as a
response variable and all other columns are used as predictor variables.

lgdModel = fitLGDModel(data(TrainingInd,:),'tobit');
disp(lgdModel)

 Tobit with properties:

 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

disp(lgdModel.UnderlyingModel)

Tobit regression model:
 LGD = max(0,min(Y*,1))
 Y* ~ 1 + LTV + Age + Type

 Compare Tobit LGD Model to Benchmark Model

4-133

Estimated coefficients:
 Estimate SE tStat pValue
 _________ _________ _______ __________

 (Intercept) 0.058257 0.027265 2.1367 0.032737
 LTV 0.20126 0.031354 6.4189 1.6932e-10
 Age -0.095407 0.0072653 -13.132 0
 Type_investment 0.10208 0.018058 5.6531 1.7915e-08
 (Sigma) 0.29288 0.0057036 51.35 0

Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1521
Number of right-censored observations: 25
Log-likelihood: -698.383

You can now use this model for prediction or validation. For example, use predict to predict LGD on
test data and visualize the predictions with a histogram.

lgdPredTobit = predict(lgdModel,data(TestInd,:));
histogram(lgdPredTobit)
title('Predicted LGD, Tobit Model')
xlabel('Predicted LGD')
ylabel('Frequency')

4 Corporate Credit Risk Simulations for Portfolios

4-134

Create Benchmark Model

In this example, the benchmark model is a lookup table model that segments the data into groups and
assigns the mean LGD of the group to all group members. In practice, this common benchmarking
approach is easy to understand and use.

The groups in this example are defined using the three predictors. LTV is discretized into low and
high levels. Age is discretized into young and old loans. Type already has two levels, namely,
residential and investment. The groups are all the combinations of these values (for example, low LTV,
young loan, residential, and so on). The number of levels and the specific cutoff points are only for
illustration purposes. The benchmark model uses the same predictors as the Tobit model in this
example, but you can use other variables to define the groups. In fact, the benchmark model could be
a black-box model as long as the predicted LGD values are available for the same customers as in this
data set.

% Add the discretized variables as new colums in the table.
% Discretize the LTV.
LTVEdges = [0 0.5 max(data.LTV)];
data.LTVDiscretized = discretize(data.LTV,LTVEdges,'Categorical',{'low','high'});
% Discretize the Age.
AgeEdges = [0 2 max(data.Age)];
data.AgeDiscretized = discretize(data.Age,AgeEdges,'Categorical',{'young','old'});
% Type is already a categorical variable with two levels.

Finding the group means on the training data is effectively the fitting of the model. Note that the
group counts are small for some groups. Adding many groups comes with reduced group counts for
some groups and more unstable estimates.

% Find the group means on training data.
gs = groupsummary(data(TrainingInd,:),{'LTVDiscretized','AgeDiscretized','Type'},'mean','LGD');
disp(gs)

 LTVDiscretized AgeDiscretized Type GroupCount mean_LGD
 ______________ ______________ ___________ __________ ________

 low young residential 163 0.12166
 low young investment 26 0.087331
 low old residential 175 0.021776
 low old investment 23 0.16379
 high young residential 1134 0.16489
 high young investment 257 0.25977
 high old residential 265 0.066068
 high old investment 50 0.11779

To predict an LGD for a new observation, you need to find its group and then assign the group mean
as the predicted LGD. Use the findgroups function, which takes the discretized variables as input.
For a completely new data point, the LTV and Age information needs to be discretized first by using
the discretize function before you use the findgroups function.

LGDGroup = findgroups(data(TestInd,{'LTVDiscretized' 'AgeDiscretized' 'Type'}));
lgdPredMeansTest = gs.mean_LGD(LGDGroup);

There are eight unique values in the predictions, as expected, one for each group.

disp(unique(lgdPredMeansTest))

 0.0218
 0.0661

 Compare Tobit LGD Model to Benchmark Model

4-135

 0.0873
 0.1178
 0.1217
 0.1638
 0.1649
 0.2598

The histogram of the predictions also shows the discrete nature of the model.

histogram(lgdPredMeansTest)
title('Predicted LGD, Tobit Model')
xlabel('Predicted LGD')
ylabel('Frequency')

To have all the predictions available for both training and test sets to make comparisons, add a
column with LGD predictions for the entire data set.

LGDGroup = findgroups(data(:,{'LTVDiscretized' 'AgeDiscretized' 'Type'}));
data.lgdPredMeans = gs.mean_LGD(LGDGroup);

Compare Performance

Compare the performance of the Tobit model and the benchmark model using the validation functions
in the Tobit model.

Start with the area under the receiver operating characteristic (ROC) curve, or AUROC metric, using
modelDiscrimination.

4 Corporate Credit Risk Simulations for Portfolios

4-136

DataSetChoice = ;
if DataSetChoice=="Training"
 Ind = TrainingInd;
else
 Ind = TestInd;
end

DiscMeasure = modelDiscrimination(lgdModel,data(Ind,:),'ShowDetails',true,'ReferenceLGD',data.lgdPredMeans(Ind),'ReferenceID','Group Means')

DiscMeasure=2×3 table
 AUROC Segment SegmentCount
 _______ __________ ____________

 Tobit 0.67986 "all_data" 1394
 Group Means 0.61251 "all_data" 1394

Use modelDiscriminationPlot to visualize the ROC curve.

modelDiscriminationPlot(lgdModel,data(Ind,:),'ReferenceLGD',data.lgdPredMeans(Ind),'ReferenceID','Group Means')

Use modelCalibration to compute the calibration metrics.

CalMeasure = modelCalibration(lgdModel,data(Ind,:),'ReferenceLGD',data.lgdPredMeans(Ind),'ReferenceID','Group Means')

CalMeasure=2×4 table
 RSquared RMSE Correlation SampleMeanError

 Compare Tobit LGD Model to Benchmark Model

4-137

 ________ _______ ___________ _______________

 Tobit 0.08527 0.23712 0.29201 -0.034412
 Group Means 0.041622 0.2406 0.20401 -0.0078124

Use modelCalibrationPlot to visualize the scatter plot of the observed LGD values against
predicted LGD values.

modelCalibrationPlot(lgdModel,data(Ind,:),'ReferenceLGD',data.lgdPredMeans(Ind),'ReferenceID','Group Means')

Then you can use modelCalibrationPlot to visualize the scatter plot of the predicted LGD values
against the LTV values.

modelCalibrationPlot(lgdModel,data(Ind,:),'ReferenceLGD',data.lgdPredMeans(Ind),'ReferenceID','Group Means','XData','LTV','YData','predicted')

4 Corporate Credit Risk Simulations for Portfolios

4-138

See Also
fitLGDModel | predict | modelDiscrimination | modelDiscriminationPlot |
modelCalibration | modelCalibartionPlot | Regression | Tobit

Related Examples
• “Model Loss Given Default” on page 4-90
• “Basic Loss Given Default Model Validation” on page 4-131
• “Compare Loss Given Default Models Using Cross-Validation” on page 4-140

More About
• “Overview of Loss Given Default Models” on page 1-31

 Compare Tobit LGD Model to Benchmark Model

4-139

Compare Loss Given Default Models Using Cross-Validation

This example shows how to compare loss given default (LGD) models using cross-validation.

Load Data

Load the LGD data. This data set is simulated for illustration purposes.

load LGDData.mat
disp(head(data))

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

The histogram of LGD values for this data set shows a significant number of values at or near 0 (full
recovery) and only a relatively small fraction of values at or near 1 (total loss).

histogram(data.LGD)
xlabel('LGD')
ylabel('Frequency')
title('LGD Histogram')

4 Corporate Credit Risk Simulations for Portfolios

4-140

Cross-Validate Models

Compare three Tobit LGD models by varying the censoring side choice between the three supported
options ("both", "left", and "right"). For more information, see the 'CensoringSide' name-
value argument for a Tobit object.

Use the cvpartition function to generate random partitions on the data for a k-fold cross-
validation. For each partition, fit a Tobit model on the training data with each of the censoring side
options and then obtain two validation metrics using the test data. This example uses the validation
metrics for area under the receiver operating characteristic curve (AUROC) and the R-squared
metric. For more information, see modelDiscrimination and modelCalibration.

NumFolds = 10;
rng('default'); % For reproducibility
c = cvpartition(height(data),'KFold',NumFolds);

ModelCensoringSide = ["both" "left" "right"];

NumModels = length(ModelCensoringSide);

AUROC = zeros(NumFolds,NumModels);
RSquared = zeros(NumFolds,NumModels);

for ii=1:NumFolds

 fprintf('Fitting models, fold %d\n',ii);

 Compare Loss Given Default Models Using Cross-Validation

4-141

 % Get the partition indices.
 TrainInd = training(c,ii);
 TestInd = test(c,ii);

 % For each model, fit with training data, measure with test data.
 for jj=1:NumModels
 % Fit the model with training data.
 lgdModel = fitLGDModel(data(TrainInd,:),'Tobit','CensoringSide',ModelCensoringSide(jj));

 % Measure the model discrimination on test data.
 DiscMeasure = modelDiscrimination(lgdModel,data(TestInd,:));
 AUROC(ii,jj) = DiscMeasure.AUROC;

 % Measure the model calibration on test data.
 CalMeasure = modelCalibration(lgdModel,data(TestInd,:));
 RSquared(ii,jj) = CalMeasure.RSquared;
 end
end

Fitting models, fold 1
Fitting models, fold 2
Fitting models, fold 3
Fitting models, fold 4
Fitting models, fold 5
Fitting models, fold 6
Fitting models, fold 7
Fitting models, fold 8
Fitting models, fold 9
Fitting models, fold 10

Visualize the results for a selected metric for the three models side-by-side.

SelectedMetric = ;
if SelectedMetric=="AUROC"
 PlotData = AUROC;
else
 PlotData = RSquared;
end

bar(1:NumFolds,PlotData)
xlabel('Fold')
ylabel(SelectedMetric)
title('Validation Metric by Fold')
legend(ModelCensoringSide,'Location','southeast')
grid on

4 Corporate Credit Risk Simulations for Portfolios

4-142

The AUROC values for the three models are comparable across the folds, indicating that the three
versions of the model effectively separate the low LGD and high LGD cases.

Regarding accuracy, the R-squared metric is low for the three models. However, the "right"
censored model shows a lower R-squared metric than the other two models across the folds. The
observed LGD data has many observations at or near 0 (total recovery). To improve the accuracy of
the models, include an explicit limit at 0 when censoring on the "left" and on "both" sides.

See Also
fitLGDModel | predict | modelDiscrimination | modelDiscriminationPlot |
modelCalibration | modelCalibartionPlot | Regression | Tobit

Related Examples
• “Model Loss Given Default” on page 4-90
• “Basic Loss Given Default Model Validation” on page 4-131
• “Compare Tobit LGD Model to Benchmark Model” on page 4-133

More About
• “Overview of Loss Given Default Models” on page 1-31

 Compare Loss Given Default Models Using Cross-Validation

4-143

Compare Model Discrimination and Model Calibration to
Validate of Probability of Default

This example shows some differences between discrimination and calibration metrics for the
validation of probability of default (PD) models.

The lifetime PD models in Risk Management Toolbox™ (see fitLifetimePDModel) support the area
under the receiver operating characteristic curve (AUROC) as a discrimination (rank-ordering
performance) metric and the root mean squared error (RMSE) as a calibration (predictive ability)
metric. The AUROC metric measures ranking, whereas the RMSE measures the precision of the
predicted values. The example shows that it is possible to have:

• Same discrimination, different calibration
• Same calibration, different discrimination

Therefore, it is important to look at both discrimination and calibration as part of a model validation
framework.

There are several different metrics for PD model discrimination and model calibration. For more
information, see References on page 4-149. Different metrics may have different characteristics and
the behavior demonstrated in this example does not necessarily generalize to other discrimination
and calibration metrics. The goal of this example is to emphasize the importance of using both
discrimination and calibration metrics to assess model predictions.

Load and Fit Data

Load credit data and fit a Logistic lifetime PD model using fitLifetimePDModel.

load RetailCreditPanelData.mat
data = join(data,dataMacro);
pdModel = fitLifetimePDModel(data,"logistic",...
 'AgeVar','YOB',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},...
 'ResponseVar','Default');
disp(pdModel)

 Logistic with properties:

 ModelID: "Logistic"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

disp(pdModel.UnderlyingModel)

Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial

4 Corporate Credit Risk Simulations for Portfolios

4-144

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -2.6799 0.078374 -34.193 3.0262e-256
 ScoreGroup_Medium Risk -0.69409 0.028701 -24.184 3.2931e-129
 ScoreGroup_Low Risk -1.2979 0.035548 -36.511 7.4134e-292
 YOB -0.31534 0.010529 -29.949 4.5479e-197
 GDP -0.128 0.03068 -4.1723 3.0157e-05
 Market -0.0073407 0.0021916 -3.3496 0.00080942

646724 observations, 646718 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 3.2e+03, p-value = 0

Same Discrimination, Different Calibration

Discrimination measures only ranking of customers, that is, whether riskier customers get assigned
higher PDs than less risky customers. Therefore, if you scale the probabilities or apply another
monotonic transformation that results in valid probabilities, the AUROC measure does not change.

For example, multiply the predicted PDs by a factor of 2, which preserves the ranking (where the
worse customers have higher PDs). To compare the results, pass the modified PDs as reference PDs.

PD0 = predict(pdModel,data);
PD1 = 2*PD0;

disp([PD0(1:10) PD1(1:10)])

 0.0090 0.0181
 0.0052 0.0104
 0.0044 0.0088
 0.0038 0.0076
 0.0035 0.0071
 0.0036 0.0072
 0.0019 0.0037
 0.0011 0.0022
 0.0164 0.0328
 0.0094 0.0189

Verify that the discrimination measure is not affected using modelDiscriminationPlot.

modelDiscriminationPlot(pdModel,data,'DataID','in-sample','ReferencePD',PD1,'ReferenceID','Scaled')

 Compare Model Discrimination and Model Calibration to Validate of Probability of Default

4-145

Use modelCalibrationPlot to visualize the observed default rates compared to the predicted
probabilities of default (PD). The calibration, however, is severely affected by the change. The
modified PDs are far away from the observed default rates and the RMSE for the modified PDs is
orders of magnitude higher than the RMSE of the original PDs.

modelCalibrationPlot(pdModel,data,'Year',"DataID",'in-sample','ReferencePD',PD1,"ReferenceID",'Scaled')

4 Corporate Credit Risk Simulations for Portfolios

4-146

Same Calibration, Different Discrimination

On the other hand, you can also modify the predicted PDs to keep the calibration metric unchanged
and worsen the discrimination metric.

One way to do this is to permute the PDs within a group. By doing this, the ranking within each group
is affected, but the average PD for the group is unchanged.

rng('default'); % for reproducibility
PD1 = PD0;
for Year=1997:2004
 Ind = data.Year==Year;
 PDYear = PD0(Ind);
 PD1(Ind) = PDYear(randperm(length(PDYear)));
end

Verify that the discrimination measure is worse for the modified PDs using
modelDiscriminationPlot.

modelDiscriminationPlot(pdModel,data,'DataID','in-sample','ReferencePD',PD1,'ReferenceID','Permutation')

 Compare Model Discrimination and Model Calibration to Validate of Probability of Default

4-147

The modelCalibrationPlot function measures model calibration for PDs on grouped data. As long
as the average PD for the group is unchanged, the reported calibration using the same grouping
variable does not change.

modelCalibrationPlot(pdModel,data,'Year',"DataID",'in-sample','ReferencePD',PD1,"ReferenceID",'Permutation')

4 Corporate Credit Risk Simulations for Portfolios

4-148

This example shows that discrimination and calibration metrics do not necessarily go hand in hand.
Different predictions may have similar RMSE but much different AUROC, or similar AUROC but much
different RMSE. Therefore, it is important to look at both discrimination and calibration as part of a
model validation framework.

References

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement
Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Basel Committee on Banking Supervision, "Studies on the Validation of Internal Rating Systems",
Working Paper No. 14, 2005.

See Also
Probit | Logistic | Cox | modelCalibration | modelCalibrationPlot |
modelDiscriminationPlot | modelDiscrimination | predictLifetime | predict |
fitLifetimePDModel

Related Examples
• “Basic Lifetime PD Model Validation” on page 4-129
• “Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
• “Compare Lifetime PD Models Using Cross-Validation” on page 4-121

 Compare Model Discrimination and Model Calibration to Validate of Probability of Default

4-149

• “Expected Credit Loss Computation” on page 4-124
• “Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-

75

More About
• “Overview of Lifetime Probability of Default Models” on page 1-25

4 Corporate Credit Risk Simulations for Portfolios

4-150

Compare Results for Regression and Tobit EAD Models

This example shows how to use fitEADModel to create a Regression model and a Tobit model for
exposure at default (EAD) and then compare the results.

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Select Model Type

Select a Regression and a Tobit model type.

ModelTypeR = ;

ModelTypeT = ;

Select Conversion Measure

Select the conversion measure for the EAD response values.

ConversionMeasure = ;

Create Regression EAD Model

Use fitEADModel to create a Regression model using the EADData.

eadModelRegression = fitEADModel(EADData,ModelTypeR,'PredictorVars',{'UtilizationRate','Age','Marriage'}, ...
 'ConversionMeasure',ConversionMeasure,'DrawnVar','Drawn','LimitVar','Limit','ResponseVar','EAD');
disp(eadModelRegression);

 Regression with properties:

 ConversionTransform: "logit"
 BoundaryTolerance: 1.0000e-07

 Compare Results for Regression and Tobit EAD Models

4-151

 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"

Display the underlying model. The underlying Regression model's response variable is the logit
transformation of the EAD response data. Use the 'BoundaryTolerance', 'LimitVar', and
'DrawnVar' name-value arguments to modify the transformation.

disp(eadModelRegression.UnderlyingModel);

Compact linear regression model:
 EAD_lcf_logit ~ 1 + UtilizationRate + Age + Marriage

Estimated Coefficients:
 Estimate SE tStat pValue
 _________ _________ _______ __________

 (Intercept) -2.4745 0.29892 -8.2781 1.6448e-16
 UtilizationRate 6.0045 0.19901 30.172 7.703e-182
 Age -0.020095 0.0073019 -2.752 0.0059471
 Marriage_not married -0.03509 0.13935 -0.2518 0.8012

Number of observations: 4378, Error degrees of freedom: 4374
Root Mean Squared Error: 4.48
R-squared: 0.173, Adjusted R-Squared: 0.173
F-statistic vs. constant model: 305, p-value = 5.7e-180

Create Tobit EAD Model

Use fitEADModel to create a Tobit model using the EADData.

eadModelTobit = fitEADModel(EADData,ModelTypeT,'PredictorVars',{'UtilizationRate','Age','Marriage'}, ...
 'ConversionMeasure',ConversionMeasure,'DrawnVar','Drawn','LimitVar','Limit','ResponseVar','EAD','CensoringSide',"right",'LeftLimit',0.4,'RightLimit',0.5);
disp(eadModelTobit);

 Tobit with properties:

 CensoringSide: "right"
 LeftLimit: 0.4000
 RightLimit: 0.5000
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"

Display the underlying model. The underlying Tobit model's response variable is the complog
transformation of the EAD response data. Use the 'LimitVar', 'DrawnVar', 'CensoringSide',
'RightLimit', 'LeftLimit', and 'SolverOptions' name-value arguments to modify the
transformation.

4 Corporate Credit Risk Simulations for Portfolios

4-152

disp(eadModelTobit.UnderlyingModel);

Tobit regression model, right-censored:
 EAD_lcf = min(Y*,0.5)
 Y* ~ 1 + UtilizationRate + Age + Marriage

Estimated coefficients:
 Estimate SE tStat pValue
 __________ __________ ________ ________

 (Intercept) 0.18088 0.021124 8.5628 0
 UtilizationRate 0.42381 0.013869 30.558 0
 Age -0.0014564 0.00052238 -2.788 0.005326
 Marriage_not married -0.0040197 0.0096584 -0.41619 0.67729
 (Sigma) 0.27917 0.0043245 64.555 0

Number of observations: 4378
Number of left-censored observations: 0
Number of uncensored observations: 2802
Number of right-censored observations: 1576
Log-likelihood: -1756.98

Predict EAD for Regression Model

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-vale argument.

predictedEADRegression = predict(eadModelRegression,EADData(TestInd,:),'ModelLevel','ead');
predictedConversionRegression = predict(eadModelRegression,EADData(TestInd,:),'ModelLevel','ConversionMeasure');

Predict EAD for Tobit Model

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-vale argument.

predictedEADTobit = predict(eadModelTobit,EADData(TestInd,:),'ModelLevel','ead');
predictedConversionTobit = predict(eadModelTobit,EADData(TestInd,:),'ModelLevel','ConversionMeasure');

Validate EAD Regression Model

For model validation of the Regression model, use modelDiscrimination,
modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

ModelLevel = ;
[DiscMeasureRegression, DiscDataRegression] = modelDiscrimination(eadModelRegression,EADData(TestInd,:),'ShowDetails',true,'ModelLevel',ModelLevel)

DiscMeasureRegression=1×3 table
 AUROC Segment SegmentCount
 _______ __________ ____________

 Regression 0.70898 "all_data" 1751

DiscDataRegression=1534×3 table
 X Y T

 Compare Results for Regression and Tobit EAD Models

4-153

 __________ _________ _______

 0 0 0.95722
 0 0.0027778 0.95722
 0 0.0041667 0.9566
 0 0.0055556 0.95639
 0 0.0083333 0.95576
 0.00096993 0.0097222 0.95555
 0.00096993 0.016667 0.9549
 0.0019399 0.016667 0.95474
 0.0019399 0.018056 0.95468
 0.0038797 0.018056 0.95403
 0.0048497 0.019444 0.95381
 0.0058196 0.019444 0.95314
 0.0067895 0.020833 0.95291
 0.0067895 0.022222 0.95233
 0.0087294 0.026389 0.95224
 0.0087294 0.031944 0.952
 ⋮

modelDiscriminationPlot(eadModelRegression,EADData(TestInd, :),'ModelLevel',ModelLevel,'SegmentBy','Marriage');

Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the
predictions.

4 Corporate Credit Risk Simulations for Portfolios

4-154

YData = ;

[CalMeasureRegression,CalDataRegression] = modelCalibration(eadModelRegression,EADData(TestInd,:),'ModelLevel',ModelLevel)

CalMeasureRegression=1×4 table
 RSquared RMSE Correlation SampleMeanError
 ________ _______ ___________ _______________

 Regression 0.16148 0.41023 0.40184 -0.025994

CalDataRegression=1751×3 table
 Observed Predicted_Regression Residuals_Regression
 __________ ____________________ ____________________

 0.99919 0.17519 0.824
 0.0020632 0.17343 -0.17137
 0.03741 0.7527 -0.71529
 0.75518 0.89867 -0.14349
 0.00076139 0.042389 -0.041628
 0.9998 0.95153 0.048274
 0.0056134 0.1338 -0.12819
 0.048451 0.043424 0.0050276
 0.01448 0.059339 -0.044858
 0.95329 0.67009 0.2832
 0.97847 0.939 0.03947
 0.71895 0.80122 -0.082271
 0.79096 0.3791 0.41186
 0.042816 0.52542 -0.4826
 0.97169 0.2119 0.75979
 0.99182 0.62543 0.36639
 ⋮

modelCalibrationPlot(eadModelRegression, EADData(TestInd,:), 'ModelLevel', ModelLevel, 'YData', YData);

 Compare Results for Regression and Tobit EAD Models

4-155

Validate EAD Tobit Model

For model validation of the Tobit model, use modelDiscrimination,
modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

ModelLevel = ;
[DiscMeasureTobit,DiscDataTobit] = modelDiscrimination(eadModelTobit,EADData(TestInd,:),'ShowDetails',true,'ModelLevel',ModelLevel)

DiscMeasureTobit=1×3 table
 AUROC Segment SegmentCount
 _______ __________ ____________

 Tobit 0.70909 "all_data" 1751

DiscDataTobit=1534×3 table
 X Y T
 __________ _________ _______

 0 0 0.42178
 0 0.0027778 0.42178
 0 0.0041667 0.4212
 0 0.0055556 0.42076
 0.00096993 0.0069444 0.42062
 0.00096993 0.0097222 0.42018

4 Corporate Credit Risk Simulations for Portfolios

4-156

 0.00096993 0.011111 0.42004
 0.00096993 0.018056 0.4196
 0.0019399 0.018056 0.4195
 0.0029098 0.019444 0.41945
 0.0048497 0.019444 0.41901
 0.0058196 0.020833 0.41887
 0.0058196 0.022222 0.41854
 0.0067895 0.022222 0.41842
 0.0067895 0.023611 0.41827
 0.0067895 0.029167 0.41827
 ⋮

modelDiscriminationPlot(eadModelTobit,EADData(TestInd, :),'ModelLevel',ModelLevel,'SegmentBy','Marriage');

UsemodelCalibration and then modelCalibrationPlot. to show a scatter plot of the
predictions.

YData = ;

[CalMeasureTobit,CalDataTobit] = modelCalibration(eadModelTobit,EADData(TestInd,:),'ModelLevel',ModelLevel)

CalMeasureTobit=1×4 table
 RSquared RMSE Correlation SampleMeanError
 ________ _______ ___________ _______________

 Compare Results for Regression and Tobit EAD Models

4-157

 Tobit 0.15929 0.39572 0.39911 0.13366

CalDataTobit=1751×3 table
 Observed Predicted_Tobit Residuals_Tobit
 __________ _______________ _______________

 0.99919 0.21657 0.78261
 0.0020632 0.21571 -0.21365
 0.03741 0.35115 -0.31374
 0.75518 0.39272 0.36245
 0.00076139 0.12184 -0.12107
 0.9998 0.41744 0.58237
 0.0056134 0.19913 -0.19351
 0.048451 0.12215 -0.073701
 0.01448 0.14323 -0.12875
 0.95329 0.33415 0.61914
 0.97847 0.41069 0.56778
 0.71895 0.3627 0.35624
 0.79096 0.27467 0.51629
 0.042816 0.30579 -0.26297
 0.97169 0.23025 0.74144
 0.99182 0.32461 0.66721
 ⋮

modelCalibrationPlot(eadModelTobit,EADData(TestInd,:),'ModelLevel',ModelLevel,'YData',YData);

4 Corporate Credit Risk Simulations for Portfolios

4-158

Plot Histograms of Observed with Respect to Predicted EAD

Plot a histogram of observed with respect to the predicted EAD for the Regression model.

figure;
histogram(CalDataRegression.Observed);
hold on;
histogram(CalDataRegression.(('Predicted_' + ModelTypeR)));
legend('Observed','Predicted');

Plot a histogram of observed with respect to the predicted EAD for the Tobit model.

figure;
histogram(CalDataTobit.Observed);
hold on;
histogram(CalDataTobit.(('Predicted_' + ModelTypeT)));
legend('Observed','Predicted');

 Compare Results for Regression and Tobit EAD Models

4-159

For both the Tobit and Regression models, the Age and UtilizationRate predictors are
statistically significant, while the Marriage predictor is not statistically significant. Also, the Tobit
and Regression models have different R-square values.

See Also
Regression | Tobit | fitEADModel | predict | modelDiscrimination |
modelDiscriminationPlot | modelCalibration | modelCalibrationPlot

More About
• “Overview of Exposure at Default Models” on page 1-34

4 Corporate Credit Risk Simulations for Portfolios

4-160

Mean Square Error of Prediction for Estimated Ultimate Claims

This example shows a workflow for estimating ultimate claims using a developmentTriangle
object with simulated reported claims and then calculating the corresponding mean square error of
prediction (MSEP).

Actuaries use different techniques to estimate the ultimate claims for different years. In addition to
the claim values, an actuary needs to know how well the estimates predict the outcomes of random
variables and the uncertainties in the estimates for the ultimate claims. To measure the quality of the
estimated ultimate claims, you can calculate the MSEP.

Load Data

load('InsuranceClaimsData.mat');
disp(head(data));

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Create developmentTriangle

Create a developmentTriangle object and use claimsPlot to visualize the
developmentTriangle. For more information on unpaid claims estimation, see “Overview of Claims
Estimation Methods for Non-Life Insurance” on page 1-16

dTriangle = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims');
dTriangleTable = view(dTriangle);
% Visualize the development triangle
claimsPlot(dTriangle);

 Mean Square Error of Prediction for Estimated Ultimate Claims

4-161

Analyze developmentTriangle

Use linkRatios to calculate the age-to-age factors.

factorsTable = linkRatios(dTriangle);

Use linkRatioAverages to calculate the averages of the age-to-age factors.

averageFactorsTable = linkRatioAverages(dTriangle);
dTriangle.SelectedLinkRatio = averageFactorsTable{'Volume-weighted Average',:};
dTriangle.TailFactor = 1;
selectedFactorsTable = cdfSummary(dTriangle);

Display the full development triangle using the fullTriangle function.

fullTriangleTable = fullTriangle(dTriangle);
disp(fullTriangleTable);

 12 24 36 48 60 72 84 96 108 120 Ultimate
 ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ________

 2010 3995.7 4635 4866.8 4964.1 5013.7 5038.8 5059 5074.1 5084.3 5089.4 5089.4
 2011 3968 4682.3 4963.2 5062.5 5113.1 5138.7 5154.1 5169.6 5179.9 5185.1 5185.1
 2012 4217 5060.4 5364 5508.9 5558.4 5586.2 5608.6 5625.4 5636.7 5642.3 5642.3
 2013 4374.2 5205.3 5517.7 5661.1 5740.4 5780.6 5803.7 5821.1 5832.7 5838.6 5838.6
 2014 4499.7 5309.6 5628.2 5785.8 5849.4 5878.7 5900.8 5918.5 5930.3 5936.3 5936.3
 2015 4530.2 5300.4 5565.4 5715.7 5772.8 5804.1 5825.9 5843.4 5855.1 5861 5861
 2016 4572.6 5304.2 5569.5 5714.3 5775.4 5806.7 5828.6 5846.1 5857.7 5863.6 5863.6

4 Corporate Credit Risk Simulations for Portfolios

4-162

 2017 4680.6 5523.1 5854.4 6000.9 6065.1 6098 6120.9 6139.3 6151.6 6157.7 6157.7
 2018 4696.7 5495.1 5804.4 5949.6 6013.3 6045.9 6068.6 6086.8 6099 6105.1 6105.1
 2019 4945.9 5819.2 6146.7 6300.5 6367.9 6402.4 6426.5 6445.8 6458.7 6465.2 6465.2

Compute the total reserves using ultimateClaims.

IBNR = ultimateClaims(dTriangle) - dTriangle.LatestDiagonal;
IBNR = array2table(IBNR, 'RowNames', dTriangleTable.Properties.RowNames, 'VariableNames', {'IBNR'});
IBNR{'Total',1} = sum(IBNR{:,:});
disp(IBNR);

 IBNR

 2010 0
 2011 5.1857
 2012 16.89
 2013 34.886
 2014 57.583
 2015 88.148
 2016 149.34
 2017 303.29
 2018 609.99
 2019 1519.3
 Total 2784.6

Calculate Estimated Standard Deviations

The developmentTriange link ratios are estimated using the formula:

f j =
∑i = 0

I − j− 1Ci, j + 1

∑i = 0
I − j− 1Ci, j

Along, with the link ratios, the variance parameters are estimated as:

σ j
2 = 1

I − j− 1 ∑
i = 0

I − j− 1
Ci, j

Ci, j + 1
Ci, j

− f j
2

Since the last variance parameter σ J − 1
2 cannot be estimated with the estimator σ J − 1

2 , the Mack
extrapolation method is used to estimate of σ J − 1

2 :

σ J − 1
2 = min

σ J − 2
4

σ J − 3
2 ; σ J − 3

2 ; σ J − 2
2

Using this formula, you can compute the estimated conditional process standard deviations.

currentSelectedFactors = dTriangle.SelectedLinkRatio;
estimatedStandardDeviations = currentSelectedFactors;
for i=1:width(estimatedStandardDeviations)-1
 estimatedStandardDeviations(1,i) = sqrt(sum(((factorsTable{1:end-i,i} - currentSelectedFactors(:,i)).^2).*dTriangleTable{1:end-i,i}) / (height(dTriangleTable)-i-1));
end
estimatedStandardDeviations(1,end) = sqrt(min([estimatedStandardDeviations(1,end-1)^4 / estimatedStandardDeviations(1,end-2)^2, estimatedStandardDeviations(1,end-2)^2, estimatedStandardDeviations(1,end-1)^2]));

 Mean Square Error of Prediction for Estimated Ultimate Claims

4-163

Calculate Reserves and Estimated Conditional Process Standard Deviations

Using the latest developmentTriange diagonal information and projected ultimate claims from the
developmentTriangle object, the ReservesTable is calculated.

h = height(dTriangleTable);
ReservesTable = array2table(NaN(h, 9));
ReservesTable.Properties.RowNames = dTriangleTable.Properties.RowNames;
ReservesTable.Properties.VariableNames = {'Latest Diagonal','Projected Ultimate Claims','Reserves','Estimated conditional process standard deviation','Estimated conditional variational coefficient','Conditional Var_hat','variation for Var_hat','MSEP','MSEP Uncertainty'};
ReservesTable.("Latest Diagonal") = dTriangle.LatestDiagonal;
ReservesTable.("Projected Ultimate Claims") = ultimateClaims(dTriangle);
ReservesTable.("Reserves") = IBNR.IBNR(1:end-1,:);

Estimate the conditional process variance for the ultimate claim of a single accident year as:

Var Ci, J DI = Ci, J
CL 2 ∑

j = I − i

J − 1 σ j
2 / f j

2

Ci, j
CL

and estimate the conditional process variance for aggregated accident years as:

Var ∑i = 1
I Ci, J DI = ∑i = 1

I Var Ci, J DI

Calculate the estimated conditional variational coefficient for origin year i relative to the estimated
reserves as:

VCOi = VCO Ci, J − Ci, I − i DI =
Var Ci, J DI

1
2

Ci, J
CL− Ci, I − i

summationFactors = zeros(1,h);
for i=length(summationFactors)-1:-1:1
 summationFactors(i) = (estimatedStandardDeviations(1,i)^2 / currentSelectedFactors(1,i)^2) / dTriangle.LatestDiagonal(h-i+1) + summationFactors(i+1);
end
summationFactors = fliplr(summationFactors)';
ReservesTable.("Estimated conditional process standard deviation") = sqrt(ReservesTable.("Projected Ultimate Claims").^2 .* summationFactors);
ReservesTable.("Estimated conditional variational coefficient") = ReservesTable.("Estimated conditional process standard deviation") ./ ReservesTable.("Reserves") * 100;
ReservesTable('Total',:) = array2table([NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN]);
ReservesTable{"Total","Reserves"} = sum(ReservesTable.("Reserves")(1:end-1));
ReservesTable{"Total","Estimated conditional process standard deviation"} = sqrt(sum(ReservesTable.("Estimated conditional process standard deviation")(1:end-1).^2));
ReservesTable{"Total","Estimated conditional variational coefficient"} = ReservesTable{"Total","Estimated conditional process standard deviation"} / ReservesTable{"Total","Reserves"} * 100;
disp(ReservesTable(:,(2:5)));

 Projected Ultimate Claims Reserves Estimated conditional process standard deviation Estimated conditional variational coefficient
 _________________________ ________ __ ___

 2010 5089.4 0 0 NaN
 2011 5185.1 5.1857 0.0072309 0.13944
 2012 5642.3 16.89 0.011214 0.066397
 2013 5838.6 34.886 0.014452 0.041426
 2014 5936.3 57.583 2.7832 4.8333
 2015 5861 88.148 5.8489 6.6353
 2016 5863.6 149.34 11.634 7.7906
 2017 6157.7 303.29 22.586 7.4472
 2018 6105.1 609.99 36.512 5.9856
 2019 6465.2 1519.3 77.982 5.1329
 Total NaN 2784.6 90.01 3.2324

4 Corporate Credit Risk Simulations for Portfolios

4-164

In addition to these claculated estimates, you can obtain the estimator for the conditional estimation
error for origin year i as:

Var Ci, J
CL DI = Ci, I − i

2 ∏
j = I − i

J − 1
f j

2 +
σ j

2

S j
I − j− 1 − ∏

j = I − i

J − 1
f j

2

where

S j
I − j− 1 = ∑

i = 0

I − j− 1
Ci, j

factor1 = zeros(h,1);
factor2 = zeros(h,1);
factor1(2) = currentSelectedFactors(1,h-1)^2 + estimatedStandardDeviations(1,h-1)^2/sum(dTriangleTable{1,h-1});
factor2(2) = currentSelectedFactors(1,h-1)^2;
for i = 3:length(factor1)
 factor1(i) = (currentSelectedFactors(1,h-i+1)^2 + estimatedStandardDeviations(1,h-i+1)^2/sum(dTriangleTable{1:i-1,h-i+1})) * factor1(i-1);
 factor2(i) = currentSelectedFactors(1,h-i+1)^2 * factor2(i-1);
end
Var_hat = sqrt(dTriangle.LatestDiagonal.^2 .* (factor1 - factor2));

ReservesTable.("Conditional Var_hat")(1:end-1) = Var_hat;
ReservesTable.("variation for Var_hat")(1:end-1) = ReservesTable.("Conditional Var_hat")(1:end-1) ./ ReservesTable.("Reserves")(1:end-1) * 100;

Using the previous formulas, the estimator for the conditional MSEP of the ultimate claim for a single
origin year i is:

msepCi, J DI Ci, J
CL = Ci, J

CL 2
∑ j = I − i

J − 1 σ j
2

f j
2

1

Ci, j
CL + 1

Sj
I − j− 1

And the estimator for the conditional MSEP of the ultimate claim for aggregated origin years is:

msep∑iCi, J DI ∑i = 1
I Ci, J

CL = ∑i = 1
I msepCi, J DI Ci, J

CL

+ 2∑1 ≤ i < k ≤ ICi, J
CLCk, J

CL∑ j = I − i
J − 1 σ j

2/ f j
2

Sj
I − j− 1

summationFactorsMSEP = zeros(h,1);
for i=2:length(summationFactorsMSEP)
 summationFactorsMSEP(i) = (((estimatedStandardDeviations(1,h-i+1)^2 / currentSelectedFactors(1,h-i+1)^2)) * (inv(dTriangle.LatestDiagonal(i)) + inv(sum(dTriangleTable{1:i-1,h-i+1})))) + summationFactorsMSEP(i-1);
end
msep = sqrt(ReservesTable.("Projected Ultimate Claims")(1:end-1).^2 .* summationFactorsMSEP);
ReservesTable.MSEP(1:end-1) = msep;
ReservesTable.("MSEP Uncertainty")(1:end-1) = ReservesTable.MSEP(1:end-1) ./ ReservesTable.("Reserves")(1:end-1) * 100;

ReservesTable{'Total','Conditional Var_hat'} = sqrt(sum(ReservesTable.("Conditional Var_hat")(1:end-1).^2));
ReservesTable{'Total','variation for Var_hat'} = ReservesTable{'Total','Conditional Var_hat'} / ReservesTable{'Total','Reserves'} * 100;

disp(ReservesTable(:,[2,3,6,7]));

 Projected Ultimate Claims Reserves Conditional Var_hat variation for Var_hat
 _________________________ ________ ___________________ _____________________

 Mean Square Error of Prediction for Estimated Ultimate Claims

4-165

 2010 5089.4 0 0 NaN
 2011 5185.1 5.1857 0.0072985 0.14074
 2012 5642.3 16.89 0.0099066 0.058655
 2013 5838.6 34.886 0.011503 0.032972
 2014 5936.3 57.583 1.4539 2.5248
 2015 5861 88.148 2.7754 3.1486
 2016 5863.6 149.34 5.0379 3.3735
 2017 6157.7 303.29 9.1852 3.0285
 2018 6105.1 609.99 13.941 2.2854
 2019 6465.2 1519.3 28.137 1.852
 Total NaN 2784.6 33.25 1.1941

Calculate MSEP

Measure the quality of the estimated ultimate claims by calculating the MSEP and MSEP
Uncertainty.

summationFactorsCovarianceTerm = zeros(h,1);
for i=2:length(summationFactorsCovarianceTerm)
 summationFactorsCovarianceTerm(i) = ((estimatedStandardDeviations(1,h-i+1)^2 / currentSelectedFactors(1,h-i+1)^2) / sum(dTriangleTable{1:i-1,h-i+1})) + summationFactorsCovarianceTerm(i-1);
end

totalSum = 0;
for i = 2:h
totalSum = totalSum + sum(dTriangle.LatestDiagonal(i,1) * fullTriangleTable{i+1:end, h-i+1} * summationFactorsCovarianceTerm(i));
end

covarianceTerm = 2 * totalSum;
totalMSEP = sqrt(sum(ReservesTable.MSEP(1:end-1) .^ 2) + covarianceTerm);

ReservesTable{'Total','MSEP'} = totalMSEP;
ReservesTable{'Total','MSEP Uncertainty'} = ReservesTable{'Total','MSEP'} / ReservesTable{'Total','Reserves'} * 100;
disp(ReservesTable(:,[1,2,3,8,9]));

 Latest Diagonal Projected Ultimate Claims Reserves MSEP MSEP Uncertainty
 _______________ _________________________ ________ ________ ________________

 2010 5089.4 5089.4 0 0 NaN
 2011 5179.9 5185.1 5.1857 0.010274 0.19812
 2012 5625.4 5642.3 16.89 0.014963 0.088593
 2013 5803.7 5838.6 34.886 0.018471 0.052945
 2014 5878.7 5936.3 57.583 3.14 5.453
 2015 5772.8 5861 88.148 6.474 7.3445
 2016 5714.3 5863.6 149.34 12.678 8.4897
 2017 5854.4 6157.7 303.29 24.383 8.0394
 2018 5495.1 6105.1 609.99 39.083 6.4071
 2019 4945.9 6465.2 1519.3 82.903 5.4568
 Total NaN NaN 2784.6 100.45 3.6074

References

1 Wüthrich, Mario, and Michael Merz. Stochastic Claims Reserving Methods in Insurance.
Hoboken, NJ: Wiley, 2008.

4 Corporate Credit Risk Simulations for Portfolios

4-166

2 Friedland, Jacqueline. "Estimating Unpaid Claims Using Basic Techniques." Arlington, VA:
Casualty Actuarial Society, 2010.

See Also
developmentTriangle | view | linkRatios | linkRatiosPlot | linkRatioAverages |
cdfSummary | ultimateClaims | claimsPlot | fullTriangle | chainLadder |
expectedClaims | bornhuetterFerguson | capeCod

More About
• “Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 Mean Square Error of Prediction for Estimated Ultimate Claims

4-167

Bootstrap Using Chain Ladder Method

This example shows how to apply a chain ladder bootstrap method to generate several
developmentTriangle objects to estimate the ultimate claims.

Deterministic claim estimation methods produce point estimates of reserve values with no
information about the uncertainty of these estimates. The goal of a stochastic claim estimation
method is to assess the variability of estimated reserve values. The chain ladder bootstrapping
approach is a simulation-based method to randomly modify the developmentTriangle data and
produce a distribution of estimated reserves that represents the variability of the estimated reserve
values. This example is based on the work of Wüthrich and Merz [1 on page 4-177].

Load Data

load('InsuranceClaimsData.mat');
disp(head(data));

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Create developmentTriangle

Create a developmentTriangle object and use claimsPlot to visualize the
developmentTriangle. For more information on unpaid claims estimation, see “Overview of Claims
Estimation Methods for Non-Life Insurance” on page 1-16.

dTriangle = developmentTriangle(data);
dTriangleTable = view(dTriangle);
% visualize the development triangle
claimsPlot(dTriangle)

4 Corporate Credit Risk Simulations for Portfolios

4-168

Analyze the developmentTriangle

The developmentTriangle link ratios are estimated using the formula:

f j =
∑i = 0

I − j− 1Ci, j + 1

∑i = 0
I − j− 1Ci, j

Use linkRatios to calculate the age-to-age factors.

factorsTable = linkRatios(dTriangle);

Use linkRatioAverages to calculate the averages of the age-to-age factors.

averageFactorsTable = linkRatioAverages(dTriangle);
disp(averageFactorsTable);

 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120
 ______ ______ ______ ______ ______ ______ _____ ______ _______

 Simple Average 1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.003 1.002 1.001
 Simple Average - Latest 5 1.172 1.056 1.0268 1.0108 1.0054 1.0038 1.003 1.002 1.001
 Simple Average - Latest 3 1.17 1.0533 1.027 1.0117 1.0057 1.0037 1.003 1.002 1.001
 Medial Average - Latest 5x1 1.1733 1.0567 1.0267 1.0103 1.005 1.004 1.003 1.002 1.001
 Volume-weighted Average 1.1766 1.0563 1.025 1.0107 1.0054 1.0038 1.003 1.002 1.001
 Volume-weighted Average - Latest 5 1.172 1.056 1.0268 1.0108 1.0054 1.0038 1.003 1.002 1.001
 Volume-weighted Average - Latest 3 1.1701 1.0534 1.027 1.0117 1.0057 1.0037 1.003 1.002 1.001
 Geometric Average - Latest 4 1.17 1.055 1.0267 1.011 1.0055 1.0037 1.003 1.002 1.001

 Bootstrap Using Chain Ladder Method

4-169

Display the selected age-to-age factors table and calculate the cumulative development factor (CDF)
using cdfSummary.

dTriangle.SelectedLinkRatio = averageFactorsTable{'Volume-weighted Average',:};
currentSelectedFactors = dTriangle.SelectedLinkRatio;
dTriangle.TailFactor = 1;
selectedFactorsTable = cdfSummary(dTriangle);
disp(selectedFactorsTable);

 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 Ultimate
 _______ _______ _______ _______ _______ ______ _______ _______ _______ ________

 Selected 1.1766 1.0563 1.025 1.0107 1.0054 1.0038 1.003 1.002 1.001 1
 CDF to Ultimate 1.3072 1.111 1.0518 1.0261 1.0153 1.0098 1.006 1.003 1.001 1
 Percent of Total Claims 0.76501 0.90008 0.95075 0.97453 0.98496 0.9903 0.99402 0.99701 0.999 1

DIsplay the latest diagonal.

latestDiagonal = dTriangle.LatestDiagonal;

Compute the projected ultimate claims using ultimateClaims.

projectedUltimateClaims = ultimateClaims(dTriangle);

Display the full development triangle using fullTriangle.

fullTriangleTable = fullTriangle(dTriangle);
disp(fullTriangleTable);

 12 24 36 48 60 72 84 96 108 120 Ultimate
 ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ________

 2010 3995.7 4635 4866.8 4964.1 5013.7 5038.8 5059 5074.1 5084.3 5089.4 5089.4
 2011 3968 4682.3 4963.2 5062.5 5113.1 5138.7 5154.1 5169.6 5179.9 5185.1 5185.1
 2012 4217 5060.4 5364 5508.9 5558.4 5586.2 5608.6 5625.4 5636.7 5642.3 5642.3
 2013 4374.2 5205.3 5517.7 5661.1 5740.4 5780.6 5803.7 5821.1 5832.7 5838.6 5838.6
 2014 4499.7 5309.6 5628.2 5785.8 5849.4 5878.7 5900.8 5918.5 5930.3 5936.3 5936.3
 2015 4530.2 5300.4 5565.4 5715.7 5772.8 5804.1 5825.9 5843.4 5855.1 5861 5861
 2016 4572.6 5304.2 5569.5 5714.3 5775.4 5806.7 5828.6 5846.1 5857.7 5863.6 5863.6
 2017 4680.6 5523.1 5854.4 6000.9 6065.1 6098 6120.9 6139.3 6151.6 6157.7 6157.7
 2018 4696.7 5495.1 5804.4 5949.6 6013.3 6045.9 6068.6 6086.8 6099 6105.1 6105.1
 2019 4945.9 5819.2 6146.7 6300.5 6367.9 6402.4 6426.5 6445.8 6458.7 6465.2 6465.2

Compute the total reserves using ultimateClaims.

IBNR = ultimateClaims(dTriangle) - dTriangle.LatestDiagonal;
IBNR = array2table(IBNR, 'RowNames', dTriangleTable.Properties.RowNames, 'VariableNames', {'IBNR'});
IBNR{'Total',1} = sum(IBNR{:,:});
disp(IBNR);

 IBNR

 2010 0
 2011 5.1857
 2012 16.89
 2013 34.886
 2014 57.583
 2015 88.148

4 Corporate Credit Risk Simulations for Portfolios

4-170

 2016 149.34
 2017 303.29
 2018 609.99
 2019 1519.3
 Total 2784.6

Bootstrap Chain Ladder

To derive the resampling approaches, the Time Series Model of the distribution-free chain ladder (CL)
model is defined as:

Ci, j + 1 = f jCi, j + σ j Ci, jϵi, j + 1

For the link ratio selected above, Wüthrich [1 on page 4-177] and Mack [2 on page 4-177] show that
the standard deviation is estimated as:

σ j
2 = 1

I − j− 1 ∑
i = 0

I − j− 1
Ci, j

Ci, j + 1
Ci, j

− f j
2

σ J − 1
2 = min

σ J − 2
4

σ J − 3
3 ; σ J − 3

2 ; σ J − 2
2

estimatedStandardDeviations = currentSelectedFactors;
for i=1:width(estimatedStandardDeviations)-1
 estimatedStandardDeviations(1,i) = sqrt(sum(((factorsTable{1:end-i,i} - currentSelectedFactors(:,i)).^2).*dTriangleTable{1:end-i,i}) / (height(dTriangleTable)-i-1));
end
estimatedStandardDeviations(1,end) = sqrt(min([estimatedStandardDeviations(1,end-1)^4 / estimatedStandardDeviations(1,end-2)^2, estimatedStandardDeviations(1,end-2)^2, estimatedStandardDeviations(1,end-1)^2]));

disp(estimatedStandardDeviations);

 0.8667 0.3699 0.2420 0.1310 0.0673 0.0361 0.0001 0.0001 0.0001

To apply the bootstrap method, you need to find the appropriate residuals that allow for the
construction of the empirical distribution Fn to construct the bootstrap observations.

Consider the following residuals for i + j ≤ I, j ≥ 1.

ϵi, j
∼ =

Fi, j− f j− 1
σ j− 1Ci, j− 1

−1/2 where Fi, j =
Ci, j

Ci, j− 1

Following Wüthrich [1 on page 4-177], you can scale the residuals to adjust their variance upwards.
Unscaled residuals tend to result in lighter tails in the simulated distribution.

Adjust the residuals such that the bootstrap distribution has an adjusted variance function.

Zi, j = 1−
Ci, j− 1

∑i = 0
I − j Ci, j− 1

−1
2 Fi, j− f j− 1

σ j− 1Ci, j− 1
−1

2

You can apply the bootstrap algorithm using three different versions:

• Efron's nonparametric bootstrap for residuals ϵi, j
∼

 Bootstrap Using Chain Ladder Method

4-171

• Efron's nonparametric bootstrap for scaled residuals Zi, j

• Parametric bootstrap under the assumption that the residuals have a standard Gaussian
distribution, that is Zi, j* is resampled from N 0, 1

This example uses the second version (Efron's nonparametric bootstrap for scaled residuals) to
calculate Zi, j.

% Create a copy of the factors table and modify it to create the
% residuals table
residuals = factorsTable.Variables;

colSums = sum(dTriangle.Claims,'omitnan');
for i=1:height(residuals)
 for j=1:width(residuals)
 residuals(i,j) = (1 - (dTriangleTable{i,j}/colSums(j)))^-0.5 * (factorsTable{i,j} - currentSelectedFactors(1,j)) / (estimatedStandardDeviations(1,j)*(dTriangleTable{i,j}^-0.5));
 end
end

The residuals Zi, j, i + j ≤ I define a bootstrap distribution.

residualsVector = residuals(:);
residualsVector(isnan(residualsVector)) = [];
histogram(residualsVector,10)
title('Scaled Residuals')
xlabel('Residual Value')
ylabel('Frequency')

4 Corporate Credit Risk Simulations for Portfolios

4-172

To simulate a new reserves scenario with the bootstrap method, follow these steps.

Step 1: Resample a triangle of residuals from the bootstrap distribution.

Resample the independent and identically distributed (i.i.d.) residuals Z*i, j, i + j ≤ I from the
bootstrap distribution.

resampledResiduals = residuals;

rng('default');
rng(1);

for i = 1:height(residuals)-1
 for j = 1:width(residuals)-i+1
 resampledResiduals(i,j) = datasample(residuals(~isnan(residuals)), 1);
 end
end

disp(resampledResiduals);

 -1.5522 -0.5120 -1.2668 0.7776 -1.3649 0.2799 -0.5495 -1.3146 -1.5364
 -0.4041 -1.5522 -0.4784 -1.2189 -0.7591 0.2610 -0.4784 -1.5522 NaN
 -0.4091 -1.3649 -0.5495 -1.6767 -0.8571 -1.3143 -0.4879 NaN NaN
 -0.7591 1.3226 1.0791 0.2610 0.2861 -0.7591 NaN NaN NaN
 0.2799 -1.5522 -0.8571 0.3243 -0.4879 NaN NaN NaN NaN
 -1.3143 -0.4784 0.5556 -1.2668 NaN NaN NaN NaN NaN
 1.9550 0 1.9550 NaN NaN NaN NaN NaN NaN
 0.7693 0.5169 NaN NaN NaN NaN NaN NaN NaN
 0.2799 NaN NaN NaN NaN NaN NaN NaN NaN
 NaN NaN NaN NaN NaN NaN NaN NaN NaN

Step 2: Compute bootstrapped claims.

Define Ci, 0* = Ci, 0 and, for j ≥ 1, assume that:

Ci, j* = f j− 1Ci, j− 1* + σ j− 1 Ci, j− 1* Zi, j*

This expression represents the new simulated claim values. Using the simulated claim values, you can
create a new developmentTriangle to estimate new reserve values.

bootstrappedClaims = dTriangleTable.Variables;

for j = 2:width(bootstrappedClaims)
 bootstrappedClaims(:,j) = currentSelectedFactors(1,j-1).*bootstrappedClaims(:,j-1) + estimatedStandardDeviations(1,j-1).*sqrt(bootstrappedClaims(:,j-1)).*resampledResiduals(:,j-1);
end

stackedClaims = reshape(bootstrappedClaims',100,1);
stackedClaims = stackedClaims(~isnan(stackedClaims));
newData = data;
newData.values = stackedClaims;
bootstrappedDevelopmentTriangle = developmentTriangle(newData,'Claims','values');

Step 3: Select a link ratio consistent with the model.

The volume-weighted average is the link ratio that is consistent with the model used in this bootstrap
approach.

 Bootstrap Using Chain Ladder Method

4-173

bootstrappedAverageFactorsTable = linkRatioAverages(bootstrappedDevelopmentTriangle);
bootstrappedDevelopmentTriangle.SelectedLinkRatio = bootstrappedAverageFactorsTable{'Volume-weighted Average',:};
bootstrappedDevelopmentTriangle.TailFactor = 1;
bootstrappedSelectedFactorsTable = cdfSummary(bootstrappedDevelopmentTriangle);
disp(bootstrappedSelectedFactorsTable);

 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 Ultimate
 _______ _______ ______ _______ _______ ______ _______ _______ _______ ________

 Selected 1.1751 1.054 1.0253 1.0099 1.0048 1.0036 1.003 1.002 1.001 1
 CDF to Ultimate 1.301 1.1072 1.0504 1.0245 1.0145 1.0096 1.006 1.003 1.001 1
 Percent of Total Claims 0.76861 0.90321 0.952 0.97609 0.98572 0.9905 0.99403 0.99701 0.999 1

Use fullTriangle to display the full development triangle corresponding to the selected link ratio.

bootstrappedFullTriangle = fullTriangle(bootstrappedDevelopmentTriangle);
disp(bootstrappedFullTriangle);

 12 24 36 48 60 72 84 96 108 120 Ultimate
 ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ________

 2010 3995.7 4616.2 4863.2 4963.4 5023.7 5044.5 5064.1 5079.3 5089.5 5094.6 5094.6
 2011 3968 4646.6 4869 4982.8 5024.8 5048.4 5068.1 5083.3 5093.4 5098.5 5098.5
 2012 4217 4938.6 5181.1 5301.1 5341.9 5366.6 5383.3 5399.5 5410.2 5415.6 5415.6
 2013 4374.2 5103.1 5425.3 5580.2 5642.5 5674.5 5693.8 5710.9 5722.3 5728 5728
 2014 4499.7 5310.5 5567.5 5691.3 5755.4 5784.2 5804.8 5822.2 5833.8 5839.6 5839.6
 2015 4530.2 5253.5 5536.3 5684.8 5733.2 5761 5781.5 5798.8 5810.4 5816.2 5816.2
 2016 4572.6 5494.6 5803.9 5985.1 6044.2 6073.5 6095.1 6113.4 6125.6 6131.7 6131.7
 2017 4680.6 5552.6 5879.4 6028.2 6087.7 6117.2 6139 6157.4 6169.7 6175.9 6175.9
 2018 4696.7 5542.6 5842 5989.8 6048.9 6078.2 6099.9 6118.2 6130.4 6136.5 6136.5
 2019 4945.9 5812 6126 6281 6343 6373.7 6396.4 6415.6 6428.4 6434.8 6434.8

Step 4: Compute the total reserves.

Compute the total reserves from the simulated developmentTriangle.

bootstrappedDevelopmentTriangleTable = view(bootstrappedDevelopmentTriangle);
bootstrappedIBNR = ultimateClaims(bootstrappedDevelopmentTriangle) - bootstrappedDevelopmentTriangle.LatestDiagonal;
bootstrappedIBNR = array2table(bootstrappedIBNR, 'RowNames', bootstrappedDevelopmentTriangleTable.Properties.RowNames, 'VariableNames', {'IBNR'});
bootstrappedIBNR{'Total',1} = sum(bootstrappedIBNR{:,:});
disp(bootstrappedIBNR);

 IBNR

 2010 0
 2011 5.0881
 2012 16.188
 2013 34.197
 2014 55.485
 2015 83.048
 2016 146.61
 2017 296.45
 2018 593.94
 2019 1489
 Total 2720

You can repeat the previous steps many times to genreate a full, simulated, distribution of reserves.
The simulation produces reserves for each year and for the total reserves.

4 Corporate Credit Risk Simulations for Portfolios

4-174

Simulate Multiple Bootstrapped Scenarios

Create 1000 bootstrapped development triangles and calculate the incurred-but-not-reported (IBNR)
for each developmentTriangle.

n = 1000;

simulatedIBNR = zeros(10,n);
for i = 1:n
 simulatedResiduals = residuals;

 for j = 1:height(residuals)-1
 for k = 1:width(residuals)-j+1
 simulatedResiduals(j,k) = datasample(residuals(~isnan(residuals)),1);
 end
 end

 simulatedClaims = dTriangleTable.Variables;

 for j = 2:width(simulatedClaims)
 simulatedClaims(:,j) = currentSelectedFactors(1,j-1).*simulatedClaims(:,j-1) + estimatedStandardDeviations(1,j-1).*sqrt(simulatedClaims(:,j-1)).*simulatedResiduals(:,j-1);
 end

 simulatedClaims = reshape(simulatedClaims',100,1);
 simulatedClaims = simulatedClaims(~isnan(simulatedClaims));
 simulatedData = data;
 simulatedData.ReportedClaims = simulatedClaims;
 simulatedDevelopmentTriangle = developmentTriangle(simulatedData);

 simulatedAverageFactorsTable = linkRatioAverages(simulatedDevelopmentTriangle);
 simulatedDevelopmentTriangle.SelectedLinkRatio = simulatedAverageFactorsTable{'Volume-weighted Average',:};
 simulatedDevelopmentTriangle.TailFactor = 1;
 simulatedLatestDiagonal = simulatedDevelopmentTriangle.LatestDiagonal;
 simulatedProjectedUltimateClaims = ultimateClaims(simulatedDevelopmentTriangle);

 simulatedIBNR(:,i) = simulatedProjectedUltimateClaims - simulatedLatestDiagonal;

end

simulatedIBNR(end+1,:) = sum(simulatedIBNR);

Select a year to plot the distribution of the IBNR, calculate the mean, and compare that mean to a
calculated deterministic value.

originYear = ;
histogram(simulatedIBNR(originYear+1,:));
hold on;
plot(mean(simulatedIBNR(originYear+1,:)),0,'O','LineWidth',2)
plot(IBNR{originYear+1,1},0,'X','LineWidth',2);
legend('Simulated IBNR',['Simulated mean : ' num2str(round(mean(simulatedIBNR(originYear+1,:)),2))],['Deterministic IBNR : ' num2str(round(IBNR{originYear+1,1},2))]);
hold off;

 Bootstrap Using Chain Ladder Method

4-175

Plot a histogram of the totals for IBNRs, simulated means, and deterministic values.

histogram(simulatedIBNR(11,:));
hold on;
plot(mean(simulatedIBNR(11,:)),0,'O','LineWidth',2)
plot(IBNR{11,1},0,'X','LineWidth',2);
legend('Simulated Total IBNR',['Simulated mean : ' num2str(round(mean(simulatedIBNR(11,:)),2))],['Deterministic Total IBNR : ' num2str(round(IBNR{11,1},2))]);
hold off;

4 Corporate Credit Risk Simulations for Portfolios

4-176

References

1 Wüthrich, Mario, and Michael Merz. Stochastic Claims Reserving Methods in Insurance.
Hoboken, NJ: Wiley, 2008

2 Mack, Thomas. "Distribution-Free Calculation of the Standard Error of Chain Ladder Reserve
Estimates." Astin Bulletin. Vol. 23, No. 2, 1993.

See Also
developmentTriangle | view | linkRatios | linkRatiosPlot | linkRatioAverages |
cdfSummary | ultimateClaims | claimsPlot | fullTriangle | chainLadder |
expectedClaims | bornhuetterFerguson | capeCod

More About
• “Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 Bootstrap Using Chain Ladder Method

4-177

Interpret and Stress-Test Deep Learning Networks for
Probability of Default

Train a credit risk for probability of default (PD) prediction using a deep neural network. The example
also shows how to use the locally interpretable model-agnostic explanations (LIME) and Shapley
values interpretability techniques to understand the predictions of the model. In addition, the
example analyzes model predictions for out-of-sample values and performs a stress-testing analysis.

The “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page 3-36
example presents a similar workflow but uses a logistic model. The “Modeling Probabilities of Default
with Cox Proportional Hazards” on page 4-28 example uses a Cox regression, or Cox proportional
hazards model. However, interpretability techniques are not discussed in either of these examples
because the models are simpler and interpretable. The “Compare Deep Learning Networks for Credit
Default Prediction” (Deep Learning Toolbox) example focuses on alternative network designs and fits
simpler models without the macroeconomic variables.

While you can use these alternative, simpler models successfully to model credit risk, this example
introduces explainability tools for exploring complex-modeling techniques in credit applications. To
visualize and interpret the model predictions, you use Deep Learning Toolbox™ and the lime and
shapley functions. To run this example, you:

1 Load and prepare credit data, reformat predictors, and split the data into training, validation,
and testing sets.

2 Define a network architecture, select training options, and train the network. (A saved version of
the trained network residualTrainedNetworkMacro is available for convenience.)

3 Apply the LIME and Shapley interpretability techniques on observations of interest (or "query
points") to determine if the importance of predictors in the model is as expected.

4 Explore extreme predictor out-of-sample values to investigate the behavior of the model for new,
extreme data.

5 Use the model to perform a stress-testing analysis of the predicted PD values.

Load Credit Default Data

Load the retail credit panel data set including its macroeconomic variables. The main data set (data)
contains the following variables:

• ID: Loan identifier
• ScoreGroup: Credit score at the beginning of the loan, discretized into three groups, High Risk,

Medium Risk, and Low Risk
• YOB: Years on books
• Default: Default indicator; the response variable
• Year: Calendar year

The small data set (dataMacro) contains macroeconomic data for the corresponding calendar years:

• Year: Calendar year
• GDP: Gross domestic product growth (year over year)
• Market: Market return (year over year)

4 Corporate Credit Risk Simulations for Portfolios

4-178

The variables YOB, Year, GDP, and Market are observed at the end of the corresponding calendar
year. The score group is a discretization of the original credit score when the loan started. A value of
1 for Default means that the loan defaulted in the corresponding calendar year.

The third data set (dataMacroStress) contains baseline, adverse, and severely adverse scenarios
for the macroeconomic variables. This table is for the stress-testing analysis.

This example uses simulated data, but the same approach has been successfully applied to real data
sets.

load RetailCreditPanelData.mat
data = join(data,dataMacro);
head(data)

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Encode Categorical Variables

To train a deep learning network, you must first encode the categorical ScoreGroup variable to one-
hot encoded vectors.

View the order of the ScoreGroup categories.

categories(data.ScoreGroup)'

ans = 1×3 cell
 {'High Risk'} {'Medium Risk'} {'Low Risk'}

ans = 1×3 cell

{'High Risk'} {'Medium Risk'} {'Low Risk'}

One-hot encode the ScoreGroup variable.

riskGroup = onehotencode(data.ScoreGroup,2);

Add the one-hot vectors to the table.

data.HighRisk = riskGroup(:,1);
data.MediumRisk = riskGroup(:,2);
data.LowRisk = riskGroup(:,3);

Remove the original ScoreGroup variable from the table using removevars.

data = removevars(data,{'ScoreGroup'});

Move the Default variable to the end of the table, as this variable is the response you want to
predict.

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

4-179

data = movevars(data,'Default','After','LowRisk');

View the first few rows of the table. The ScoreGroup variable is split into multiple columns with the
categorical values as the variable names.

head(data)

 ID YOB Year GDP Market HighRisk MediumRisk LowRisk Default
 __ ___ ____ _____ ______ ________ __________ _______ _______

 1 1 1997 2.72 7.61 0 0 1 0
 1 2 1998 3.57 26.24 0 0 1 0
 1 3 1999 2.86 18.1 0 0 1 0
 1 4 2000 2.43 3.19 0 0 1 0
 1 5 2001 1.26 -10.51 0 0 1 0
 1 6 2002 -0.59 -22.95 0 0 1 0
 1 7 2003 0.63 2.78 0 0 1 0
 1 8 2004 1.85 9.48 0 0 1 0

Split Data

Partition the data set into training, validation, and test partitions using the unique loan ID numbers.
Set aside 60% of the data for training, 20% for validation, and 20% for testing.

Find the unique loan IDs.

idx = unique(data.ID);
numObservations = length(idx);

Determine the number of observations for each partition.

numObservationsTrain = floor(0.6*numObservations);
numObservationsValidation = floor(0.2*numObservations);
numObservationsTest = numObservations - numObservationsTrain - numObservationsValidation;

Create an array of random indices corresponding to the observations and partition it using the
partition sizes.

rng('default'); % for reproducibility
idxShuffle = idx(randperm(numObservations));

idxTrain = idxShuffle(1:numObservationsTrain);
idxValidation = idxShuffle(numObservationsTrain+1:numObservationsTrain+numObservationsValidation);
idxTest = idxShuffle(numObservationsTrain+numObservationsValidation+1:end);

Find the table entries corresponding to the data set partitions.

idxTrainTbl = ismember(data.ID,idxTrain);
idxValidationTbl = ismember(data.ID,idxValidation);
idxTestTbl = ismember(data.ID,idxTest);

Keep the variables of interest for the task (YOB, Default, and ScoreGroup) and remove all other
variables from the table.

data = removevars(data,{'ID','Year'});
head(data)

 YOB GDP Market HighRisk MediumRisk LowRisk Default
 ___ _____ ______ ________ __________ _______ _______

4 Corporate Credit Risk Simulations for Portfolios

4-180

 1 2.72 7.61 0 0 1 0
 2 3.57 26.24 0 0 1 0
 3 2.86 18.1 0 0 1 0
 4 2.43 3.19 0 0 1 0
 5 1.26 -10.51 0 0 1 0
 6 -0.59 -22.95 0 0 1 0
 7 0.63 2.78 0 0 1 0
 8 1.85 9.48 0 0 1 0

Partition the table of data into training, validation, and testing partitions using the indices.

tblTrain = data(idxTrainTbl,:);
tblValidation = data(idxValidationTbl,:);
tblTest = data(idxTestTbl,:);

Define Network Architecture

You can use different deep learning architectures for the task of predicting credit default
probabilities. Smaller networks are quick to train, but deeper networks can learn more abstract
features. Choosing a neural network architecture requires balancing computation time against
accuracy. This example uses a residual architecture. For an example of other networks, see the
“Compare Deep Learning Networks for Credit Default Prediction” (Deep Learning Toolbox) example.

Create a residual architecture (ResNet) from multiple stacks of fully connected layers and ReLU
activations. ResNet architectures are state of the art in deep learning applications and popular in
deep learning literature. Originally developed for image classification, ResNets have proven
successful across many domains [1 on page 4-193].

residualLayers = [
 featureInputLayer(6, 'Normalization', 'zscore', 'Name', 'input')
 fullyConnectedLayer(16, 'Name', 'fc1','WeightsInitializer','he')
 batchNormalizationLayer('Name', 'bn1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(32, 'Name', 'resblock1-fc1','WeightsInitializer','he')
 batchNormalizationLayer('Name', 'resblock1-bn1')
 reluLayer('Name', 'resblock1-relu1')
 fullyConnectedLayer(32, 'Name', 'resblock1-fc2','WeightsInitializer','he')
 additionLayer(2, 'Name', 'resblock1-add')
 batchNormalizationLayer('Name', 'resblock1-bn2')
 reluLayer('Name', 'resblock1-relu2')
 fullyConnectedLayer(64, 'Name', 'resblock2-fc1','WeightsInitializer','he')
 batchNormalizationLayer('Name', 'resblock2-bn1')
 reluLayer('Name', 'resblock2-relu1')
 fullyConnectedLayer(64, 'Name', 'resblock2-fc2','WeightsInitializer','he')
 additionLayer(2, 'Name', 'resblock2-add')
 batchNormalizationLayer('Name', 'resblock2-bn2')
 reluLayer('Name', 'resblock2-relu2')
 fullyConnectedLayer(1, 'Name', 'fc2','WeightsInitializer','he')
 sigmoidLayer('Name', 'sigmoid')
 BinaryCrossEntropyLossLayer('output')];

residualLayers = layerGraph(residualLayers);
residualLayers = addLayers(residualLayers,fullyConnectedLayer(32, 'Name', 'resblock1-fc-shortcut'));
residualLayers = addLayers(residualLayers,fullyConnectedLayer(64, 'Name', 'resblock2-fc-shortcut'));

residualLayers = connectLayers(residualLayers, 'relu1', 'resblock1-fc-shortcut');
residualLayers = connectLayers(residualLayers, 'resblock1-fc-shortcut', 'resblock1-add/in2');

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

4-181

residualLayers = connectLayers(residualLayers, 'resblock1-relu2', 'resblock2-fc-shortcut');
residualLayers = connectLayers(residualLayers, 'resblock2-fc-shortcut', 'resblock2-add/in2');

You can visualize the network using Deep Network Designer (Deep Learning Toolbox) or the
analyzeNetwork (Deep Learning Toolbox) function.

deepNetworkDesigner(residualLayers)

Specify Training Options

In this example, train each network with these training options:

• Train using the Adam optimizer.
• Set the initial learning rate to 0.001.
• Set the mini-batch size to 512.

4 Corporate Credit Risk Simulations for Portfolios

4-182

• Train for 75 epochs.
• Turn on the training progress plot and turn off the command window output.
• Shuffle the data at the beginning of each epoch.
• Monitor the network accuracy during training by specifying validation data and using it to validate

the network every 1000 iterations.

options = trainingOptions('adam', ...
 'InitialLearnRate',0.001, ...
 'MiniBatchSize',512, ...
 'MaxEpochs',75, ...
 'Plots','training-progress', ...
 'Verbose',false, ...
 'Shuffle','every-epoch', ...
 'ValidationData',tblValidation, ...
 'ValidationFrequency',1000);

The “Compare Deep Learning Networks for Credit Default Prediction” (Deep Learning Toolbox)
example fits the same type of network, but it excludes the macroeconomic predictors. In that
example, if you increase the number of epochs from 50 to 75, you can improve accuracy without
overfitting concerns.

You can perform optimization programmatically or interactively using Experiment Manager (Deep
Learning Toolbox). For an example showing how to perform a hyperparameter sweep of the training
options, see “Create a Deep Learning Experiment for Classification” (Deep Learning Toolbox).

Train Network

Train the network using the architecture that you defined, the training data, and the training options.
By default, trainNetwork (Deep Learning Toolbox) uses a GPU if one is available; otherwise, it uses
a CPU. Training on a GPU requires Parallel Computing Toolbox™ and a supported GPU device. For
information, see “Deep Learning with MATLAB on Multiple GPUs” (Deep Learning Toolbox). You can
also specify the execution environment by using the 'ExecutionEnvironment' name-value
argument of trainingOptions (Deep Learning Toolbox).

To avoid waiting for the training, load pretrained networks by setting the doTrain flag to false. To
train the networks using analyzeNetwork (Deep Learning Toolbox), set the doTrain flag to true.
The Training Progress window displays progress. The training time using an NVIDIA® GeForce®
RTX 2080 is about 35 minutes for 75 epochs.

doTrain = false;

if doTrain
 residualNetMacro = trainNetwork(tblTrain,'Default',residualLayers,options);
else
 load residualTrainedNetworkMacro.mat
end

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

4-183

Test Network

Use the predict (Deep Learning Toolbox) function to predict the default probability of the test data
using the trained networks.

tblTest.residualPred = predict(residualNetMacro,tblTest(:,1:end-1));

Plot Default Rates by Year on Books

To assess the performance of the network, use the groupsummary function to group the true default
rates and corresponding predictions by years on the books (represented by the YOB variable) and
calculate the mean value.

summaryYOB = groupsummary(tblTest,'YOB','mean',{'Default','residualPred'});
head(summaryYOB)

 YOB GroupCount mean_Default mean_residualPred
 ___ __________ ____________ _________________

 1 19364 0.017352 0.017688
 2 18917 0.012158 0.013354
 3 18526 0.011875 0.011522
 4 18232 0.011683 0.010485
 5 17925 0.0082008 0.0090247
 6 17727 0.0066565 0.0066525

4 Corporate Credit Risk Simulations for Portfolios

4-184

 7 12294 0.0030909 0.0034051
 8 6361 0.0017293 0.0018151

Plot the true average default rate against the average predictions by YOB.

figure
scatter(summaryYOB.YOB,summaryYOB.mean_Default*100,'*');
hold on
plot(summaryYOB.YOB,summaryYOB.mean_residualPred*100);
hold off
title('Residual Network')
xlabel('Years on Books')
ylabel('Default Rate (%)')
legend('Observed','Predicted')

The plot shows a good fit on the test data. The model seems to capture the overall trend as the age of
the loan (YOB value) increases, as well as changes in the steepness of the trend.

The rest of this example shows some ways to better understand the model. First, it reviews standard
explainability techniques that you can apply to this model, specifically, the lime and shapley
functions. Then, it explores the behavior of the model in new (out-of-sample) data values. Finally, the
example uses the model to predict PD values under stressed macroeconomic conditions, also known
as stress testing.

Explain Model with LIME and Shapley

The local interpretable model-agnostic explanations (LIME) method and the Shapley method both aim
to explain the behavior of the model at a particular observation of interest or "query point." More

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

4-185

specifically, these techniques help you to understand the importance of each variable in the
prediction made for a particular observation. For more information, see lime and shapley.

For illustration purposes, choose two observations from the data to better interpret the model
predictions. The response values (last column) are not needed.

The first observation is a seasoned, low-risk loan. In other words, it has an initial score of LowRisk
and eight years on the books.

obs1 = data(8,1:end-1);
disp(obs1)

 YOB GDP Market HighRisk MediumRisk LowRisk
 ___ ____ ______ ________ __________ _______

 8 1.85 9.48 0 0 1

The second observation is a new, high-risk loan. That is, the score is HighRisk and it is in its first
year on the books.

obs2 = data(88,1:end-1);
disp(obs2)

 YOB GDP Market HighRisk MediumRisk LowRisk
 ___ ____ ______ ________ __________ _______

 1 2.72 7.61 1 0 0

Both lime and shapley require a reference data set with predictor values. This reference data can
be the training data itself, or any other reference data where the model can be evaluated to explore
the behavior of the model. More data points allow the explainability methods to understand the
behavior of the model in more regions. However, a large data set can also slow down the
computations, especially for shapley. For illustration purposes, use the first 1000 rows from the
training data set. The response values (last column) are not needed.

predictorData = data(1:1000,1:end-1);

lime and shapley also require a function handle to the predict (Deep Learning Toolbox) function.
Treat predict (Deep Learning Toolbox) like a black-box model and call it multiple times to make
predictions on data and gather information on the behavior of the model.

blackboxFcn = @(x)predict(residualNetMacro,x);

Create lime Object

Create a lime object by passing the black-box function handle and the selected predictor data.

Randomly generated synthetic data underlying lime can affect the importance. The report may
change depending on the synthetic data generated. It can also change due to optional arguments,
such as the 'KernelWidth' parameter that controls the area around the observation of interest
("query point") while you fit the local model.

explainerLIME = lime(blackboxFcn,predictorData,'Type','regression');

Choose a number of important predictors of interest and fit a local model around the selected
observations. For illustration purposes, the model contains all of the predictors.

4 Corporate Credit Risk Simulations for Portfolios

4-186

numImportantPredictors = 6;
explainerObs1 = fit(explainerLIME,obs1,numImportantPredictors);
explainerObs2 = fit(explainerLIME,obs2,numImportantPredictors);

Plot the importance for each predictor.

figure
subplot(2,1,1)
plot(explainerObs1);
subplot(2,1,2)
plot(explainerObs2);

The lime results are quite similar for both observations. The information in the plots show that the
most important variables are the High Risk and Medium Risk variables. High Risk and Medium
Risk contribute positively to higher probabilities of default. On the other hand, YOB, LowRisk, GDP,
and Market have a negative contribution to the default probability. The Market variable does not
seem to contribute as much as the other variables. The values in the plots are coefficients of a simple
model fitted around the point of interest, so the values can be interpreted as sensitivities of the PD to
the different predictors, and these results seem to align with expectations. For example, PD
predictions decrease as the YOB value (age of the loan) increases, consistent with the downward
trend observed in the model fit plot in the Test Network on page 4-184 section.

Create shapley Object

The steps for creating a shapley object are the same as for lime. Create a shapley object by
passing the black-box function handle and the predictor data selected previously.

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

4-187

The shapley analysis can also be affected by randomly generated data, and it requires different
methods to control the simulations required for the analysis. For illustration purposes, create the
shapley object with default settings.

explainerShapley = shapley(blackboxFcn,predictorData);

Find and plot the importance of predictors for each query point. shapley is more computationally
intensive than lime. As the number of rows in the predictor data increases, the computational time
for the shapley results increases. For large data sets, using parallel computing is recommended (see
the 'UseParallel' option in shapley).

explainerShapleyObs1 = fit(explainerShapley, obs1);
explainerShapleyObs2 = fit(explainerShapley, obs2);
figure;
subplot(2,1,1)
plot(explainerShapleyObs1)
subplot(2,1,2)
plot(explainerShapleyObs2)

In this case, the results look different for the two observations. The shapley results explain the
deviations from the average PD prediction. For the first observation, which is a very low risk
observation, the predicted value is well below the average PD Therefore, all shapley values are
negative, with YOB being the most important variable in this case, followed by LowRisk. For the
second observation, which is a very high risk observation, most shapley values are positive, with
YOB and HighRisk as the main contributors to a predicted PD well above average.

4 Corporate Credit Risk Simulations for Portfolios

4-188

Explore Out-of-Sample Model Predictions

Splitting the original data set into training, validation, and testing helps prevent overfitting. However,
the validation and test data sets share similar characteristics with the training data, for example, the
range of values for YOB, or the observed values for the macroeconomic variables.

rangeYOB = [min(data.YOB) max(data.YOB)]

rangeYOB = 1×2

 1 8

rangeGDP = [min(data.GDP) max(data.GDP)]

rangeGDP = 1×2

 -0.5900 3.5700

rangeMarket = [min(data.Market) max(data.Market)]

rangeMarket = 1×2

 -22.9500 26.2400

You can explore the behavior of the out-of-sample (OOS) model in two different ways. First, you can
predict for age values (YOB variable) larger than the maximum age value observed in the data. You
can predict YOB values up to 15. Second, you can predict for economic conditions not observed in the
data either. This example uses two extremely severe macroeconomic situations, where both the GDP
and Market values are very negative and outside the range of values in the data.

Start by setting up a baseline scenario where the last macroeconomic data in the sample is used as
reference. The YOB values go out of sample for all scenarios.

dataBaseline = table;
dataBaseline.YOB = repmat((1:15)',3,1);
dataBaseline.GDP = zeros(size(dataBaseline.YOB));
dataBaseline.Market = zeros(size(dataBaseline.YOB));
dataBaseline.HighRisk = zeros(size(dataBaseline.YOB));
dataBaseline.MediumRisk = zeros(size(dataBaseline.YOB));
dataBaseline.LowRisk = zeros(size(dataBaseline.YOB));

dataBaseline.GDP(:) = data.GDP(8);
dataBaseline.Market(:) = data.Market(8);
dataBaseline.HighRisk(1:15) = 1;
dataBaseline.MediumRisk(16:30) = 1;
dataBaseline.LowRisk(31:45) = 1;

disp(head(dataBaseline))

 YOB GDP Market HighRisk MediumRisk LowRisk
 ___ ____ ______ ________ __________ _______

 1 1.85 9.48 1 0 0
 2 1.85 9.48 1 0 0
 3 1.85 9.48 1 0 0

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

4-189

 4 1.85 9.48 1 0 0
 5 1.85 9.48 1 0 0
 6 1.85 9.48 1 0 0
 7 1.85 9.48 1 0 0
 8 1.85 9.48 1 0 0

Create two new extreme scenarios that include out-of-sample values not only for YOB, but also for the
macroeconomic variables. This example uses pessimistic scenarios, but you could repeat the analysis
for optimistic situations to explore the behavior of the model in either kind of extreme situation.

dataExtremeS1 = dataBaseline;
dataExtremeS1.GDP(:) = -1;
dataExtremeS1.Market(:) = -25;
dataExtremeS2 = dataBaseline;
dataExtremeS2.GDP(:) = -2;
dataExtremeS2.Market(:) = -40;

Predict PD values for all scenarios using predict (Deep Learning Toolbox).

dataBaseline.PD = predict(residualNetMacro,dataBaseline);
dataExtremeS1.PD = predict(residualNetMacro,dataExtremeS1);
dataExtremeS2.PD = predict(residualNetMacro,dataExtremeS2);

Visualize the results for a selected score. For convenience, the average of the PD values over the
three scores is visualized as a summary.

ScoreSelected = ;
switch ScoreSelected
 case 'High'
 ScoreInd = dataBaseline.HighRisk==1;
 PredPDYOB = [dataBaseline.PD(ScoreInd) dataExtremeS1.PD(ScoreInd) dataExtremeS2.PD(ScoreInd)];
 case 'Medium'
 ScoreInd = dataBaseline.MediumRisk==1;
 PredPDYOB = [dataBaseline.PD(ScoreInd) dataExtremeS1.PD(ScoreInd) dataExtremeS2.PD(ScoreInd)];
 case 'Low'
 ScoreInd = dataBaseline.LowRisk==1;
 PredPDYOB = [dataBaseline.PD(ScoreInd) dataExtremeS1.PD(ScoreInd) dataExtremeS2.PD(ScoreInd)];
 case 'Average'
 PredPDYOBBase = groupsummary(dataBaseline,'YOB','mean','PD');
 PredPDYOBS1 = groupsummary(dataExtremeS1,'YOB','mean','PD');
 PredPDYOBS2 = groupsummary(dataExtremeS2,'YOB','mean','PD');
 PredPDYOB = [PredPDYOBBase.mean_PD PredPDYOBS1.mean_PD PredPDYOBS2.mean_PD];
end

figure;
bar(PredPDYOB*100);
xlabel('Years on Books')
ylabel('Probability of Default (%)')
legend('Baseline','Scenario 1','Scenario 2')
title(strcat("Out-of-Sample Scenarios, ",ScoreSelected," Score"))
grid on

4 Corporate Credit Risk Simulations for Portfolios

4-190

The overall results are in line with expectations, since the PD values decrease as the YOB value
increases, and worse economic conditions result in higher PD values. However, the relative increase
of the predicted PD values shows an interesting result. For Low and Medium scores, there is a
significant increase for the first year on books (YOB = 1). In contrast, for High scores, the relative
increase from baseline, to the first extreme scenario, then to the second extreme case, is small. This
result suggests an implicit upper limit in the predicted values in the structure of the model. The
extreme scenarios in this exercise seem unlikely to occur, however, for extreme but plausible
scenarios, this behavior would require investigation with stress testing.

Stress-Test Predicted Probabilities of Default (PD)

Because the model includes macroeconomic variables, it can be used to perform a stress-testing
analysis (see for example [2 on page 4-193], [3 on page 4-193] on page 4-193, [4 on page 4-193]). The
steps are similar to the previous section except that the scenarios are plausible scenarios set
periodically at an institution level, or set by regulators to be used by all institutions.

The dataMacroStress data set contains three scenarios for the stress testing of the model, namely,
baseline, adverse, and severely adverse scenarios. The adverse and severe scenarios are relative to
the baseline scenario, and the macroeconomic conditions are plausible given the baseline. These
scenarios fall within the range of values observed in the data used for training and validation. The
stress testing of the PD values for given macroeconomic scenarios is conceptually different from the
exercise in the previous section, where the focus is on exploring the behavior of the model on out-of-
sample data, regardless of how plausible those extreme scenarios are from an economic point of view.

Following the prior steps, you generate PD predictions for each score level and each scenario.

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

4-191

dataBaselineStress = dataBaseline(:,1:end-1);
dataAdverse = dataBaselineStress;
dataSevere = dataBaselineStress;

dataBaselineStress.GDP(:) = dataMacroStress{'Baseline','GDP'};
dataBaselineStress.Market(:) = dataMacroStress{'Baseline','Market'};

dataAdverse.GDP(:) = dataMacroStress{'Adverse','GDP'};
dataAdverse.Market(:) = dataMacroStress{'Adverse','Market'};

dataSevere.GDP(:) = dataMacroStress{'Severe','GDP'};
dataSevere.Market(:) = dataMacroStress{'Severe','Market'};

Use the predict (Deep Learning Toolbox) function to predict PD values for all scenarios. Visualize
the results for a selected score.

dataBaselineStress.PD = predict(residualNetMacro,dataBaselineStress);
dataAdverse.PD = predict(residualNetMacro,dataAdverse);
dataSevere.PD = predict(residualNetMacro,dataSevere);

ScoreSelected = ;
switch ScoreSelected
 case 'High'
 ScoreInd = dataBaselineStress.HighRisk==1;
 PredPDYOBStress = [dataBaselineStress.PD(ScoreInd) dataAdverse.PD(ScoreInd) dataSevere.PD(ScoreInd)];
 case 'Medium'
 ScoreInd = dataBaselineStress.MediumRisk==1;
 PredPDYOBStress = [dataBaselineStress.PD(ScoreInd) dataAdverse.PD(ScoreInd) dataSevere.PD(ScoreInd)];
 case 'Low'
 ScoreInd = dataBaselineStress.LowRisk==1;
 PredPDYOBStress = [dataBaselineStress.PD(ScoreInd) dataAdverse.PD(ScoreInd) dataSevere.PD(ScoreInd)];
 case 'Average'
 PredPDYOBBaseStress = groupsummary(dataBaselineStress,'YOB','mean','PD');
 PredPDYOBAdverse = groupsummary(dataAdverse,'YOB','mean','PD');
 PredPDYOBSevere = groupsummary(dataSevere,'YOB','mean','PD');
 PredPDYOBStress = [PredPDYOBBaseStress.mean_PD PredPDYOBAdverse.mean_PD PredPDYOBSevere.mean_PD];
end

figure;
bar(PredPDYOBStress*100);
xlabel('Years on Books')
ylabel('Probability of Default (%)')
legend('Baseline','Adverse','Severe')
title(strcat("PD Stress Testing, ",ScoreSelected," Score"))
grid on

4 Corporate Credit Risk Simulations for Portfolios

4-192

The overall results are in line with expectations. As in the Explore Out-of-Sample Model Predictions
on page 4-189section, the predictions for the High score in the first year on books (YOB = 1) needs to
be reviewed, since the relative increase in the predicted PD from one scenario to the next seems
smaller than for other scores and loan ages. All other predictions show a reasonable pattern that are
consistent with expectations.

References

[1] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image
recognition." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 770–778, 2016.

[2] Federal Reserve, Comprehensive Capital Analysis and Review (CCAR): https://
www.federalreserve.gov/bankinforeg/ccar.htm

[3] Bank of England, Stress Testing: https://www.bankofengland.co.uk/financial-stability

 Interpret and Stress-Test Deep Learning Networks for Probability of Default

4-193

https://www.federalreserve.gov/bankinforeg/ccar.htm
https://www.federalreserve.gov/bankinforeg/ccar.htm
https://www.bankofengland.co.uk/financial-stability

[4] European Banking Authority, EU-Wide Stress Testing: https://www.eba.europa.eu/risk-analysis-
and-data/eu-wide-stress-testing

See Also

More About
• “Get Started with Deep Network Designer” (Deep Learning Toolbox)

4 Corporate Credit Risk Simulations for Portfolios

4-194

https://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing
https://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing

Incorporate Macroeconomic Scenario Projections in Loan
Portfolio ECL Calculations

This example shows how to generate macroeconomic scenarios and perform expected credit loss
(ECL) calculations for a portfolio of loans. The workflow in this example shows important
computational steps required to estimate provisions for credit losses following regulations such as
IFRS 9 on page 4-222 or CECL on page 4-222. In practice, the determination of loan provisions is a
much more involved operational program requiring the collaboration of multiple departments in an
institution. The goal of this example is to show useful computational tools that can support this
process.

This example includes two parts:

• Part 1 on page 4-196 produces macroeconomic scenarios for the credit analysis and fits a vector
autoregression (VAR) model to macroeconomic data. The workflow describes three qualitative
scenario narratives with selected macro projections covering a few quarters ahead. It uses the
conditional forecasting capabilities of the fitted VAR model to generate longer term projections for
the macroeconomic variables.

• Part 2 on page 4-208 focuses on the credit analysis of an existing portfolio of loans. It uses three
existing credit models are used, namely, a lifetime probability of default (PD) model, a loss given
default (LGD) model, and an exposure at default (EAD) model. These models predict lifetime PD,
LGD, and EAD values several periods ahead, given projections on loan-specific predictor variables
and the macroeconomic scenarios from Part 1. The workflow estimates the loan loss provisions
using the portfolioECL function, given the marginal PD, LGD, and EAD projections for different
scenarios.

The following diagram summarizes the workflow in this example.

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-195

Part 1: Macroeconomic Scenarios

This part of the example shows how to fit an econometric model and how to use the fitted model with
hypothesized conditions to produce macroeconomic scenarios.

In practice, the determination and approval of macroeconomic scenarios is an involved process.
Institutions source macroeconomic scenarios from external vendors or they maintain internal
macroeconomic models and produce scenarios. An institution can have existing models to generate
scenarios, which are reviewed and updated infrequently. Some macroeconomic model developers use
econometric models, while others prefer to explore alternative statistical models, such as machine
learning or deep learning models. For more details, see “Sequence and Numeric Feature Data
Workflows” (Deep Learning Toolbox).

4 Corporate Credit Risk Simulations for Portfolios

4-196

For concreteness, the example fits a vector autoregressive (VAR) econometric model. For alternative
econometric models, such as “Vector Error-Correction Models” (Econometrics Toolbox), see the
example, “Model the United States Economy” (Econometrics Toolbox). Also, the Econometric Modeler
(Econometrics Toolbox) enables you to interactively fit and analyze econometric models, including
VAR and VEC models. For alternative time series modeling techniques, see Statistical and Machine
Learning Toolbox™ and Deep Learning Toolbox™.

Part 1 describes the following workflow:

1 Visualize and transform data on page 4-197.
2 Conduct stationarity tests and select model lags on page 4-199.
3 Fit a VAR model on page 4-201.
4 Define macro scenarios on page 4-203.

This example uses the Data_USEconModel.mat data set included with Econometrics Toolbox. The
data set includes several macroeconomic variables measured quarterly from March, 1947, through
March, 2009 (near the start of the global financial crisis). For more details on the series, inspect the
Description variable in the data file.

The measurements help emphasize the sensitivity of the credit projections to stressed
macroeconomic conditions. You can apply the steps in this example to fit macroeconomic models
using recent data.

Visualize and Transform Data

This example includes the following variables in the model:

• GDP: Gross domestic product
• UNRATE: Unemployment rate
• TB3MS: Three-month treasury bill yield

The variables sufficiently determine scenarios for the credit models in Part 2 of this example.
However, the model can include additional variables, for example, variables that can explain the
dynamics of the economy enough to improve model predictions.

Load the data. Visualize the raw macroeconomic time series.

load Data_USEconModel
varnames = ["GDP" "UNRATE" "TB3MS"];
DataMacro = rmmissing(DataTimeTable(:,varnames)); % Remove initial rows with UNRATE = NaN
DataMacro.Time.Format = "default";

figure
t = tiledlayout(3,1);
nexttile
plot(DataMacro.Time,DataMacro.GDP)
title("GDP")
nexttile
plot(DataMacro.Time,DataMacro.UNRATE)
title("UNRATE")
nexttile
plot(DataMacro.Time,DataMacro.TB3MS)
title("TB3MS")
title(t,"Macroeconomic Time Series")

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-197

All series appear nonstationary and have different scales. Because model estimation with
nonstationary variables is problematic (see “Time Series Regression IV: Spurious Regression”
(Econometrics Toolbox)), transform each series appropriately.

• The GDP series shows exponential growth and has a larger scale than the other variables. Because
GDP percent growth from quarter to quarter is common to report, is close in scale to the other
variables, and is required by the credit models in Part 2, try to stabilize the series by computing
its percent returns.

• The unemployment and interest rate series do not show exponential growth, but they appear to
have a stochastic trend. You can stabilize the series by applying the first difference to each. The
credit models in Part 2 use the original units of these series; you can back-transform the series to
their original units for the credit analysis.

Transform each series, and plot the results. Include the transformed variables in the timetable,
prepad each transformation with NaN to synchronize the series (the first difference operation of a
series results in one less observation).

DataMacro.GDPGROWTH = 100*[NaN; price2ret(DataMacro.GDP)]; % Growth rate in percent
DataMacro.UNRATEDIFF = [NaN; diff(DataMacro.UNRATE)];
DataMacro.TB3MSDIFF = [NaN; diff(DataMacro.TB3MS)];
DataMacro = rmmissing(DataMacro); % Remove initial missing values
numObs = height(DataMacro);

figure
t = tiledlayout(3,1);
nexttile

4 Corporate Credit Risk Simulations for Portfolios

4-198

plot(DataMacro.Time,DataMacro.GDPGROWTH)
yline(0)
title("GDPGROWTH")
nexttile
plot(DataMacro.Time,DataMacro.UNRATEDIFF)
yline(0)
title("UNRATEDIFF")
nexttile
plot(DataMacro.Time,DataMacro.TB3MSDIFF)
yline(0)
title("TB3MSDIFF")
title(t,"Transformed Macroeconomic Series")

The series appear stable. To confirm the visual conclusions, conduct stationarity tests on each series.

Conduct Stationarity Tests and Select Model Lags

To fit a VAR model, all variables must be stationarity. Econometrics Toolbox includes several tests for
stationarity; see “Unit Root Tests” (Econometrics Toolbox).

This example uses the augmented Dickey-Fuller (ADF) test for unit root nonstationarity (see adftest
(Econometrics Toolbox)). The null hypothesis of the test is that the input series is unit root
nonstationary. Specified options determine the alternative hypothesis. The Model option of the ADF
test specifies the dynamic structure of the alternative model for the test variable, specifically,
autoregressive AR, autoregressive with drift ARD, or trend-stationary TS. The Lags option specifies
the number of AR lags in the alternative model, specifically, the number p where yt − p (the value of
the series p periods back) influences the evolution of the series to the current step yt. The ADF test

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-199

results give information on whether the series is stationarity and on the structure of the
autoregressive model that is appropriate for the series.

Use the ADF test to assess whether each series is stationary and to determine the appropriate
dynamic model with number of lags for each series. The drop-down controls enable you to set model
choices and variables for the ADF test. The adftest call runs separate tests from lags 0 through 4.
The current settings in the code assesses whether TB3MSDIFF is stationary, assuming an ARD model.

ADFModelChoice = ;

DataVariableChoice = ;
ADFTbl = adftest(DataMacro,'model',ADFModelChoice,'Lags',0:4,'DataVariable',DataVariableChoice)

ADFTbl=5×8 table
 h pValue stat cValue Lags Alpha Model Test
 _____ ______ _______ _______ ____ _____ _______ ______

 Test 1 true 0.001 -17.668 -2.8738 0 0.05 {'ARD'} {'T1'}
 Test 2 true 0.001 -14.8 -2.8738 1 0.05 {'ARD'} {'T1'}
 Test 3 true 0.001 -8.3548 -2.8739 2 0.05 {'ARD'} {'T1'}
 Test 4 true 0.001 -7.6124 -2.8739 3 0.05 {'ARD'} {'T1'}
 Test 5 true 0.001 -6.0646 -2.874 4 0.05 {'ARD'} {'T1'}

ADFTbl is a table containing the results of all conducted tests for assessing whether TB3MSDIFF is
stationary. Each row is a separate test for each lag in the Lags variable. Values of h indicate whether
to reject the null hypothesis at Alpha level of significance. Small enough p-values in the pValue
variable suggest whether to reject the null hypothesis. h = 1 suggests to reject the null hypothesis in
favor of the alternative, and h = 0 suggests failure to reject the null hypothesis. In this case, h = 1 for
all lags, so there is evidence that the TB3MSDIFF series is a stationary, autoregressive process with
drift among all lags.

For each untransformed and transformed series in this example, use the drop-down controls to assess
whether the series is unit root nonstationary against each alternative model including the AR lags 1
through 4.

The results are as follows:

• GDP: The ADF test fails to reject the null hypothesis for all settings. Exclude this series from the
VAR model.

• GDPGROWTH: The ADF test rejects the null hypothesis for all settings. Include this series in the VAR
model.

• UNRATE: The tests return mixed results. The tests that use an ARD alternative model with lags 1
through 3 reject the null hypothesis. Therefore, the unemployment rate does not require
transforming because it has a deterministic trend. Include the raw series in the VAR model with a
drift term. Also, use of the raw series is convenient because the series does not need to be back-
transformed; it simplifies the scenario determination.

• TB3MS: The ADF test fails to reject the null hypothesis for all settings. Exclude this series from the
VAR model.

• TB3MSDIFF: The ADF test rejects the null hypothesis for all settings. Include this series in the VAR
model.

In addition to using ADF test results, you can determine the number of lags by using Akaike
information criterion (AIC), Bayesian information criterion (BIC), and likelihood ratio tests. For an

4 Corporate Credit Risk Simulations for Portfolios

4-200

example, see “Select Appropriate Lag Order” (Econometrics Toolbox). These approaches are useful,
but they have caveats (for example, they are sensitive to the scaling of the series).

This example proceeds using two lags, which is reasonable from an application standpoint (it
specifies to include information up to two quarters back). It leads to a less complex model, which is
easier to analyze.

Fit VAR Model

Fit a VAR model that includes the GDP growth, unemployment rate, and the first difference of the
interest rate time series as endogenous variables. Include two AR lags in the model. For details, see
varm (Econometrics Toolbox) and estimate (Econometrics Toolbox).

varnames = ["GDPGROWTH" "UNRATE" "TB3MSDIFF"];
numVars = length(varnames);
numLags = 2;

% 3-D VAR(2) model template
Mdl = varm(numVars,numLags);
Mdl.SeriesNames = varnames;

% Fit the model
[MacroVARModel,~,~,Residuals] = estimate(Mdl,DataMacro{:,varnames});

Visualize the fitted values for each series by using the drop-down control.

numRes = size(Residuals,1);
DataMacro.GDPGROWTH_Predicted = NaN(numObs,1);
DataMacro.GDPGROWTH_Predicted(end-numRes+1:end) = DataMacro.GDPGROWTH(end-numRes+1:end) - Residuals(:,1);
DataMacro.UNRATE_Predicted = NaN(numObs,1);
DataMacro.UNRATE_Predicted(end-numRes+1:end) = DataMacro.UNRATE(end-numRes+1:end) - Residuals(:,2);
DataMacro.TB3MSDIFF_Predicted = NaN(numObs,1);
DataMacro.TB3MSDIFF_Predicted(end-numRes+1:end) = DataMacro.TB3MSDIFF(end-numRes+1:end) - Residuals(:,3);

PlotVariableChoice = ;

figure
plot(DataMacro.Time,DataMacro.(PlotVariableChoice))
hold on
plot(DataMacro.Time,DataMacro.(strcat(PlotVariableChoice,"_Predicted")),"-.")
hold off
title(strcat("Model Fit ",PlotVariableChoice))
ylabel(PlotVariableChoice)
legend("Observed","Predicted")
grid on

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-201

The model seems to have less variability than the actual data; the fitted values do not seem to go as
high or as low as the most extreme values in the data. This result suggests the model error is smaller
for small to medium GDP changes, but the errors are larger for more extreme GDP changes.
Therefore, you can expect the model residuals to show heavy tails. A thorough analysis of residuals
and autocorrelation is out of the scope of this example. For more details, see “Time Series Regression
VI: Residual Diagnostics” (Econometrics Toolbox). This observation means the model seems more
reliable for forecasts, which work with expected values (central tendencies around current levels),
and less reliable for analyses of tail behavior (very extreme shocks away from current levels).

A review of model coefficients is an important model validation step. The way the series and their
lagged information influence the latest values of the series should have a reasonable explanation.

Display the estimated coefficients and inferences.

summarize(MacroVARModel)

 AR-Stationary 3-Dimensional VAR(2) Model

 Effective Sample Size: 242
 Number of Estimated Parameters: 21
 LogLikelihood: -681.275
 AIC: 1404.55
 BIC: 1477.82

 Value StandardError TStatistic PValue
 _________ _____________ __________ __________

4 Corporate Credit Risk Simulations for Portfolios

4-202

 Constant(1) -0.010079 0.26158 -0.03853 0.96926
 Constant(2) 0.3433 0.099669 3.4444 0.00057241
 Constant(3) 0.11773 0.25581 0.46024 0.64535
 AR{1}(1,1) 0.32725 0.073009 4.4823 7.3852e-06
 AR{1}(2,1) -0.071852 0.027819 -2.5829 0.0097982
 AR{1}(3,1) 0.098221 0.0714 1.3756 0.16893
 AR{1}(1,2) -0.22429 0.19147 -1.1714 0.24145
 AR{1}(2,2) 1.4205 0.072958 19.47 1.9537e-84
 AR{1}(3,2) -0.50519 0.18725 -2.6979 0.0069782
 AR{1}(1,3) 0.092278 0.067309 1.371 0.17039
 AR{1}(2,3) 0.040064 0.025647 1.5621 0.11825
 AR{1}(3,3) -0.30309 0.065826 -4.6045 4.1352e-06
 AR{2}(1,1) 0.15851 0.063174 2.509 0.012107
 AR{2}(2,1) 0.016333 0.024071 0.67854 0.49743
 AR{2}(3,1) 0.10361 0.061782 1.6771 0.093525
 AR{2}(1,2) 0.37458 0.19298 1.941 0.052255
 AR{2}(2,2) -0.4632 0.073531 -6.2994 2.9882e-10
 AR{2}(3,2) 0.42524 0.18873 2.2532 0.024246
 AR{2}(1,3) -0.15819 0.0655 -2.4152 0.015728
 AR{2}(2,3) 0.03071 0.024957 1.2305 0.21851
 AR{2}(3,3) -0.3519 0.064056 -5.4936 3.939e-08

 Innovations Covariance Matrix:
 0.8575 -0.1668 0.2065
 -0.1668 0.1245 -0.1156
 0.2065 -0.1156 0.8201

 Innovations Correlation Matrix:
 1.0000 -0.5103 0.2463
 -0.5103 1.0000 -0.3616
 0.2463 -0.3616 1.0000

For example, for GDP growth, the diagonal coefficients are positive, with the first lag coefficient
about twice as large as the second lag coefficient. This result means there is some inertia in the GDP
series, some positive memory, and the more recent quarter has more influence than the growth two
periods ago. For unemployment, the first lag diagonal coefficient is positive (and relatively large), but
the second lag coefficient is negative. This result suggests that there is strong inertia for
unemployment with respect to the previous quarter, but that there is a rebound effect with respect to
two quarters before. Expert judgment is required to analyze model coefficients and raise flags in
unexpected situations (a thorough analysis of the model coefficients and their especially statistical
significance are beyond the scope of this example).

Define Macroeconomic Scenarios

Econometric model forecasts use the model parameters and recent observations of the time series to
make predictions. The model forecast is a natural candidate for a macroeconomic scenario. However,
the data and the model fully determine the forecasts, without qualitative views.

Forecast the estimated VAR model into a 30-period horizon by using forecast (Econometrics
Toolbox). Initialize the forecasts by specifying the estimation data as a presample.

NumPeriods = 30;
ModelForecast = forecast(MacroVARModel,NumPeriods,DataMacro{:,varnames});

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-203

For later use by models and visualizations, append the latest observed quarter.

ModelForecast = [DataMacro{end,varnames}; ModelForecast];
fhTime = dateshift(DataMacro.Time(end),"end","quarter",0:NumPeriods)

fhTime = 1x31 datetime
 31-Mar-2009 30-Jun-2009 30-Sep-2009 31-Dec-2009 31-Mar-2010 30-Jun-2010 30-Sep-2010 31-Dec-2010 31-Mar-2011 30-Jun-2011 30-Sep-2011 31-Dec-2011 31-Mar-2012 30-Jun-2012 30-Sep-2012 31-Dec-2012 31-Mar-2013 30-Jun-2013 30-Sep-2013 31-Dec-2013 31-Mar-2014 30-Jun-2014 30-Sep-2014 31-Dec-2014 31-Mar-2015 30-Jun-2015 30-Sep-2015 31-Dec-2015 31-Mar-2016 30-Jun-2016 30-Sep-2016

TTForecast = array2timetable(ModelForecast,RowTimes=fhTime,VariableNames=varnames);

The model forecasts interest rate changes to TB3MSDIFF. Postprocess the forecast to recover the
predicted values for the interest rate in TB3MS.

TTForecast.TB3MS = TTForecast.TB3MSDIFF;
TTForecast.TB3MS(1) = DataMacro.TB3MS(end);
TTForecast.TB3MS = cumsum(TTForecast.TB3MS)

TTForecast=31×4 timetable
 Time GDPGROWTH UNRATE TB3MSDIFF TB3MS
 ___________ _________ ______ _________ ________

 31-Mar-2009 -0.78191 8.5 0.18 0.21
 30-Jun-2009 0.47974 9.088 -1.0128 -0.80284
 30-Sep-2009 1.0466 9.2336 -0.64918 -1.452
 31-Dec-2009 1.842 9.1257 0.023293 -1.4287
 31-Mar-2010 2.2753 8.8953 -0.055275 -1.484
 30-Jun-2010 2.4409 8.6173 -0.072599 -1.5566
 30-Sep-2010 2.5506 8.3213 0.063912 -1.4927
 31-Dec-2010 2.5904 8.0292 0.087927 -1.4048
 31-Mar-2011 2.556 7.7556 0.069531 -1.3352
 30-Jun-2011 2.4975 7.5053 0.081449 -1.2538
 30-Sep-2011 2.4306 7.28 0.085102 -1.1687
 31-Dec-2011 2.3547 7.0803 0.074533 -1.0942
 31-Mar-2012 2.2781 6.9051 0.067146 -1.027
 30-Jun-2012 2.2065 6.7522 0.061337 -0.96567
 30-Sep-2012 2.1401 6.6197 0.053405 -0.91227
 31-Dec-2012 2.0797 6.5054 0.045859 -0.86641
 ⋮

Visualize each model forecast by using the drop-down control.

VarToPlot = ;
figure
plot(DataMacro.Time,DataMacro{:,VarToPlot})
hold on
plot(TTForecast.Time,TTForecast{:,VarToPlot},"--")
yline(0)
hold off
title(VarToPlot)
legend("Data","Forecast")

4 Corporate Credit Risk Simulations for Portfolios

4-204

• The GDP growth reverts quickly to the average levels, with one more quarter of economic
contraction, and growth rates over 1% by the third quarter.

• The unemployment rate peaks at just over 9% and then goes back to average levels, at a slower
pace than the GDP.

• The model forecast predicts significantly negative interest rates going forward for a long period of
time.

To define the scenarios for the credit analysis in Part 2, this example uses scenario narratives with
qualitative views up to a few quarters ahead. This example combines the scenario narratives with
conditional forecasting of the model to extend the predictions to several years ahead, where the
predicted values revert to long-term levels. This approach can determine values for variables not
described in the narrative, but are included in the macroeconomic model. For example, if only the
GDP growth and unemployment rate are in the narrative, the corresponding interest rate scenario
can be determined with conditional forecasting.

This example explores three scenarios: slow recovery, baseline, and fast recovery.

Slow Recovery Scenario

In this scenario, the GDP contracts for four more quarters, with a maximum contraction of 1.5% one
quarter ahead. The unemployment rate peaks at 11% three quarters ahead. The interest rate remains
negative for four quarters.

Forecast the model under this scenario. Preprocess the raw interest rate series of the estimated
model, then postprocess their forecasts to the original units.

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-205

TTSlow = TTForecast; % Initialize forecast variables

TTSlow.GDPGROWTH(2:7) = [-1.5; -1.2; -0.8; -0.3; 0.1; 0.5];
TTSlow.GDPGROWTH(8:end) = NaN;

TTSlow.UNRATE(2:7) = [9.3; 10.1; 11.0; 10.5; 9.9; 9.1];
TTSlow.UNRATE(8:end) = NaN;

TTSlow.TB3MS(2:7) = [-0.5; -0.25; -0.15; -0.05; 0.0; 0.05];
TTSlow.TB3MS(8:end) = NaN;

TTSlow.TB3MSDIFF(2:end) = diff(TTSlow.TB3MS);
TTSlow{2:end,varnames} = forecast(MacroVARModel,NumPeriods,DataMacro{:,varnames},YF=TTSlow{2:end,varnames});
TTSlow.TB3MS(8:end) = TTSlow.TB3MS(7) + cumsum(TTSlow.TB3MSDIFF(8:end));

Baseline Scenario

In this scenario, the GDP contracts for three more quarters, with a maximum contraction of 1% one
quarter ahead. The unemployment rate peaks at 10% three quarters ahead. The interest rate remains
negative for 2 quarters.

Forecast the model under this scenario. Preprocess the raw interest rate series using the estimated
model, then postprocess their forecasts to the original units.

TTBaseline = TTForecast;

TTBaseline.GDPGROWTH(2:6) = [-1.0; -0.5; -0.25; 0.2; 0.6];
TTBaseline.GDPGROWTH(7:end) = NaN;

TTBaseline.UNRATE(2:6) = [9.0; 9.5; 10.0; 9.5; 9.0];
TTBaseline.UNRATE(7:end) = NaN;

TTBaseline.TB3MS(2:7) = [-0.25; -0.05; 0.01; 0.1; 0.15; 0.20];
TTBaseline.TB3MS(8:end) = NaN;

TTBaseline.TB3MSDIFF(2:end) = diff(TTBaseline.TB3MS);
TTBaseline{2:end,varnames} = forecast(MacroVARModel,NumPeriods,DataMacro{:,varnames},YF=TTBaseline{2:end,varnames});
TTBaseline.TB3MS(8:end) = TTBaseline.TB3MS(7) + cumsum(TTBaseline.TB3MSDIFF(8:end));

Fast Recovery Scenario

In this scenario, the GDP contracts for one more quarter only, with a contraction of 0.5%. The
unemployment rate peaks at 9% three quarters ahead. The interest rate is zero in the next quarter
and remains positive after that. The fast recovery scenario is similar to the model forecast, but in the
forecast the GDP grows faster and the interest rate is negative for a long period of time.

Forecast the model under this scenario. Preprocess the raw interest rate series using the estimated
model, then postprocess their forecasts to the original units.

TTFast = TTForecast;

TTFast.GDPGROWTH(2:5) = [-0.5; 0.05; 0.5; 0.9];
TTFast.GDPGROWTH(6:end) = NaN;

TTFast.UNRATE(2:5) = [8.8; 8.9; 9.0; 8.7];
TTFast.UNRATE(6:end) = NaN;

TTFast.TB3MS(2:7) = [0; 0.1; 0.15; 0.25; 0.25; 0.30];

4 Corporate Credit Risk Simulations for Portfolios

4-206

TTFast.TB3MS(8:end) = NaN;

TTFast.TB3MSDIFF(2:end) = diff(TTFast.TB3MS);
TTFast{2:end,varnames} = forecast(MacroVARModel,NumPeriods,DataMacro{:,varnames},YF=TTFast{2:end,varnames});
TTFast.TB3MS(8:end) = TTFast.TB3MS(7) + cumsum(TTFast.TB3MSDIFF(8:end));

Assign a probability of 0.30 to the slow recovery scenario, 0.60 to the baseline scenario, and 0.10 to
the fast recovery.

scenarioProb = [0.30; 0.60; 0.10];

Visualize the scenarios. Use the drop-down and slide controls to fine-tune the selected values that
support the narratives. Visualize the long-term levels for different scenarios.

VarToPlot = ;

StartYearPlot = ;

EndYearPlot = ;

figure
DataPlotInd = (year(DataMacro.Time) >= StartYearPlot) & (year(DataMacro.Time) <= EndYearPlot);
ScenarioPlotInd = year(TTSlow.Time) <= EndYearPlot;
plot(DataMacro.Time(DataPlotInd),DataMacro{DataPlotInd,VarToPlot})
hold on
plot(TTSlow.Time(ScenarioPlotInd),TTSlow{ScenarioPlotInd,VarToPlot},"-.")
plot(TTBaseline.Time(ScenarioPlotInd),TTBaseline{ScenarioPlotInd,VarToPlot},"--")
plot(TTFast.Time(ScenarioPlotInd),TTFast{ScenarioPlotInd,VarToPlot},":")
yline(0)
hold off
title(strcat("Scenarios ",VarToPlot))
legend("Data","Slow","Baseline","Fast",Location="best")

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-207

The extended forecasts cross paths in some cases. For example, for GDP, the speed-up of the economy
after the crisis occurs sooner in the fast recovery scenario, and then it starts settling down towards a
long-term mean level while the economy is just speeding up for other scenarios.

The macroeconomic scenarios are defined. This example proceeds to the credit analysis, specifically,
the computation of expected credit losses (ECL).

Part 2: ECL Calculations

The second part of this example focuses on the workflow for computing the lifetime expected credit
loss (ECL). ECL is the amount of provisions required for loan losses.

Part 2 works with an existing portfolio of loans for which there are three existing credit models: a
lifetime probability of default (PD) model, a loss given default (LGD) model, and an exposure at
default (EAD) model. These models predict lifetime PD, LGD, and EAD values several periods ahead,
given projections on loan-specific predictor variables and the macroeconomic scenarios produced in
Part 1 on page 4-196.

Given the marginal PD, LGD, and EAD projections for different scenarios, you can use the
portfolioECL function to estimate the lifetime loan loss provisions. This example presents a
comparison of 1-year ECL vs. lifetime ECL and this corresponds to stage 1 vs. stage 2 of the IFRS 9
regulation. In this example, the estimated provisions for the lifetime ECL and 1-year ECL are very
high because the three macroeconomic scenarios correspond to challenging economic conditions. For
reference, this example also estimates 1-year provisions using an average macroeconomic scenario.
This approach is similar to a through-the-cycle (TTC) method that shows in normal times the same

4 Corporate Credit Risk Simulations for Portfolios

4-208

models produce significantly lower provisions. You can use a visualization of credit projections and
provisions for each ID to drill down to a loan level.

Part 2 describes the following workflow:

1 Prepare loan data for macroeconomic scenarios on page 4-209.
2 Predict lifetime PD, LGD. and EAD on page 4-211.
3 Compute lifetime ECL on page 4-213.
4 Compute 1-year ECL on page 4-215.
5 Compute 1-year ECL with average macroeconomic levels on page 4-217.
6 Visualize loan-level results on page 4-219.

Both the portfolio data and the models are simulated to capture characteristics that may be found in
practice and are intended only for illustration purposes.

Prepare for Loan Data for Macroeconomic Scenarios

The ECLPortfolioMacroExample.mat file contains loan portfolio data. This data is a simulated
existing portfolio of loans. The ECLPortfolioSnapshot table indicates which loans are in the
portfolio.

load ECLPortfolioMacroExample.mat

head(ECLPortfolioSnapshot,5)

 ID Time Age ScoreGroupOrig Balance Limit EffIntRate
 __ ___________ ___ ______________ _______ _____ __________

 1 31-Mar-2009 12 LowRisk 3474 9000 5.04
 2 31-Mar-2009 5 LowRisk 6232.7 9100 1.51
 3 31-Mar-2009 3 HighRisk 2420.6 6000 3.13
 4 31-Mar-2009 2 LowRisk 7274.2 10100 0.28
 5 31-Mar-2009 1 MediumRisk 3611.8 5800 0.96

The ECLPortfolioProjections table contains portfolio projections. These values are projected for
the remaining life of each loan and for each of the loan variables. For example, the age (measured in
quarters) is required for the lifetime PD and LGD models. Because the first loan is 12 quarters old,
the projected age for the remaining periods starts at 13 and goes up by one all the way to the end of
the loan, at 20 quarters (5 years). All models use the score group at origination and that is a constant
value. The loan-to-value (LTV) ratio included in this simulated data set and models is the LTV at
origination, which is constant. In practice, if the most recent LTV were included, it would have to be
projected all the way through the end of the life of each loan.

head(ECLPortfolioProjections,10)

 ID Age ScoreGroupOrig LTVOrig Limit Time
 __ ___ ______________ _______ _____ ___________

 1 13 LowRisk 0.81866 9000 30-Jun-2009
 1 14 LowRisk 0.81866 9000 30-Sep-2009
 1 15 LowRisk 0.81866 9000 31-Dec-2009
 1 16 LowRisk 0.81866 9000 31-Mar-2010
 1 17 LowRisk 0.81866 9000 30-Jun-2010
 1 18 LowRisk 0.81866 9000 30-Sep-2010
 1 19 LowRisk 0.81866 9000 31-Dec-2010

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-209

 1 20 LowRisk 0.81866 9000 31-Mar-2011
 2 6 LowRisk 0.79881 9100 30-Jun-2009
 2 7 LowRisk 0.79881 9100 30-Sep-2009

The credit models need projected values of GDP growth, unemployment rate, and interest rate, all
lagged by one period. First, store the macroeconomic information in the MacroScenarios table,
where the macroeconomic scenarios are stacked.

ScenarioIDs = ["SlowRecovery";"Baseline";"FastRecovery"];
NumScenarios = length(ScenarioIDs);

MacroScenarios = table;
NumForecastPeriods = height(TTForecast)-1; % Remove initial period, keep future periods only
MacroScenarios.ScenarioID = repelem(ScenarioIDs,NumForecastPeriods);
MacroScenarios.Time = repmat(TTForecast.Time(2:end),NumScenarios,1);

MacroScenarios.GDPGROWTHLAG = NaN(height(MacroScenarios),1);
MacroScenarios.GDPGROWTHLAG(MacroScenarios.ScenarioID=="SlowRecovery") = TTSlow.GDPGROWTH(1:end-1);
MacroScenarios.GDPGROWTHLAG(MacroScenarios.ScenarioID=="Baseline") = TTBaseline.GDPGROWTH(1:end-1);
MacroScenarios.GDPGROWTHLAG(MacroScenarios.ScenarioID=="FastRecovery") = TTFast.GDPGROWTH(1:end-1);

MacroScenarios.UNRATELAG = NaN(height(MacroScenarios),1);
MacroScenarios.UNRATELAG(MacroScenarios.ScenarioID=="SlowRecovery") = TTSlow.UNRATE(1:end-1);
MacroScenarios.UNRATELAG(MacroScenarios.ScenarioID=="Baseline") = TTBaseline.UNRATE(1:end-1);
MacroScenarios.UNRATELAG(MacroScenarios.ScenarioID=="FastRecovery") = TTFast.UNRATE(1:end-1);

MacroScenarios.TB3MSLAG = NaN(height(MacroScenarios),1);
MacroScenarios.TB3MSLAG(MacroScenarios.ScenarioID=="SlowRecovery") = TTSlow.TB3MS(1:end-1);
MacroScenarios.TB3MSLAG(MacroScenarios.ScenarioID=="Baseline") = TTBaseline.TB3MS(1:end-1);
MacroScenarios.TB3MSLAG(MacroScenarios.ScenarioID=="FastRecovery") = TTFast.TB3MS(1:end-1);

head(MacroScenarios)

 ScenarioID Time GDPGROWTHLAG UNRATELAG TB3MSLAG
 ______________ ___________ ____________ _________ ________

 "SlowRecovery" 30-Jun-2009 -0.78191 8.5 0.21
 "SlowRecovery" 30-Sep-2009 -1.5 9.3 -0.5
 "SlowRecovery" 31-Dec-2009 -1.2 10.1 -0.25
 "SlowRecovery" 31-Mar-2010 -0.8 11 -0.15
 "SlowRecovery" 30-Jun-2010 -0.3 10.5 -0.05
 "SlowRecovery" 30-Sep-2010 0.1 9.9 0
 "SlowRecovery" 31-Dec-2010 0.5 9.1 0.05
 "SlowRecovery" 31-Mar-2011 1.8334 8.6536 -0.19292

To make predictions with the credit models, use the macroeconomic scenarios together with the loan
data containing all the loan projection periods correctly aligned in time with the macroeconomic
projected values. There are different ways to implement this. In this example, you can stack the
portfolio projections three times, one for each scenario, and then join the stacked projections with the
macro scenarios. Although this stacking method uses more memory, you can easily drill down to the
loan level for different scenarios (see Loan-Level Results on page 4-219).

Stack portfolio projections by scenario in the ECLProjectionsByScenario table, and apply a join
operation with the MacroScenarios table. The result is to add the macro variables to the larger
table, using the Time and ScenarioID variables as keys for the join.

ECLProjectionsByScenario = repmat(ECLPortfolioProjections,NumScenarios,1);
ECLProjectionsByScenario = addvars(ECLProjectionsByScenario,repelem(ScenarioIDs,height(ECLPortfolioProjections)),'Before','ID','NewVariableName','ScenarioID');

4 Corporate Credit Risk Simulations for Portfolios

4-210

ECLProjectionsByScenario = join(ECLProjectionsByScenario,MacroScenarios);
head(ECLProjectionsByScenario,10)

 ScenarioID ID Age ScoreGroupOrig LTVOrig Limit Time GDPGROWTHLAG UNRATELAG TB3MSLAG
 ______________ __ ___ ______________ _______ _____ ___________ ____________ _________ ________

 "SlowRecovery" 1 13 LowRisk 0.81866 9000 30-Jun-2009 -0.78191 8.5 0.21
 "SlowRecovery" 1 14 LowRisk 0.81866 9000 30-Sep-2009 -1.5 9.3 -0.5
 "SlowRecovery" 1 15 LowRisk 0.81866 9000 31-Dec-2009 -1.2 10.1 -0.25
 "SlowRecovery" 1 16 LowRisk 0.81866 9000 31-Mar-2010 -0.8 11 -0.15
 "SlowRecovery" 1 17 LowRisk 0.81866 9000 30-Jun-2010 -0.3 10.5 -0.05
 "SlowRecovery" 1 18 LowRisk 0.81866 9000 30-Sep-2010 0.1 9.9 0
 "SlowRecovery" 1 19 LowRisk 0.81866 9000 31-Dec-2010 0.5 9.1 0.05
 "SlowRecovery" 1 20 LowRisk 0.81866 9000 31-Mar-2011 1.8334 8.6536 -0.19292
 "SlowRecovery" 2 6 LowRisk 0.79881 9100 30-Jun-2009 -0.78191 8.5 0.21
 "SlowRecovery" 2 7 LowRisk 0.79881 9100 30-Sep-2009 -1.5 9.3 -0.5

Predict Lifetime PD, LGD, and EAD

Load the existing credit models and use them to make predictions using the prepared data. In this
workflow, new credit models for PD, LGD, and EAD are not fit; the assumption is that these credit
models were previously fit and reviewed and are ready to use for ECL calculations. The credit models
are all instances of models created with Risk Management Toolbox™ using fitLifetimePDModel,
fitLGDModel, and fitEADModel.

load ECLCreditModelsMacroExample.mat

The lifetime PD model is a Probit model with the predictors: age of the loan, score group at
origination, LTV ratio at origination, and the lagged GDP growth and unemployment rate values.

disp(pdECLModel)

 Probit with properties:

 ModelID: "PD-ECL-Probit"
 Description: "Lifetime PD model example fitted to simulated data."
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "Age"
 LoanVars: ["ScoreGroupOrig" "LTVOrig"]
 MacroVars: ["GDPGROWTHLAG" "UNRATELAG"]
 ResponseVar: "Default"

The LGD model is a Tobit model with the predictors: age of the loan, score group at origination, LTV
ratio at origination, and the lagged GDP growth.

disp(lgdECLModel)

 Tobit with properties:

 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "LGD-ECL-Tobit"
 Description: "LGD model example fitted to simulated data."
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["Age" "ScoreGroupOrig" "LTVOrig" "GDPGROWTHLAG"]
 ResponseVar: "LGD"

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-211

The EAD model is a Regression model, based on the limit conversion factor (LCF) conversion
measure, with the predictors: score group at origination, LTV ratio at origination, and the lagged
unemployment rate and interest rate values. Because the underlying model predicts LCF, the EAD
model requires the credit limit variable to make EAD predictions, even though the credit limit is not a
predictor of the underlying LCF model.

disp(eadECLModel)

 Regression with properties:

 ConversionTransform: "logit"
 BoundaryTolerance: 1.0000e-07
 ModelID: "EAD-ECL-Regression"
 Description: "EAD model example fitted to simulated data."
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["ScoreGroupOrig" "LTVOrig" "UNRATELAG" "TB3MSLAG"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: ""
 ConversionMeasure: "lcf"

Store the predictions in the ECLProjectionsByScenario table. The predictions can also be stored
in separate tables and used directly as inputs for the portfolioECL function. For an example of
using separate tables, see “Calculate ECL Based on Marginal PD, LGD, and EAD Predictions” on page
6-497. Storing predictions in the ECLProjectionsByScenario table with scenarios stacked allows
you to review prediction details at a very granular level because the predictions are stored side by
side with projected predictor values in each row.

Store the lifetime (cumulative) PD and the marginal PD. Typically, the cumulative PD is used for
reporting purposes and the marginal PD is used as an input for ECL computations with the
portfolioECL function.

ECLProjectionsByScenario.PDLifetime = zeros(height(ECLProjectionsByScenario),1);
ECLProjectionsByScenario.PDMarginal = zeros(height(ECLProjectionsByScenario),1);
ECLProjectionsByScenario.LGD = zeros(height(ECLProjectionsByScenario),1);
ECLProjectionsByScenario.EAD = zeros(height(ECLProjectionsByScenario),1);

for ii=1:NumScenarios

 ScenIndECLData = ECLProjectionsByScenario.ScenarioID==ScenarioIDs(ii);

 ECLProjectionsByScenario.PDLifetime(ScenIndECLData) = predictLifetime(pdECLModel,ECLProjectionsByScenario(ScenIndECLData,:)); % cumulative
 ECLProjectionsByScenario.PDMarginal(ScenIndECLData) = predictLifetime(pdECLModel,ECLProjectionsByScenario(ScenIndECLData,:),ProbabilityType="marginal");
 ECLProjectionsByScenario.LGD(ScenIndECLData) = predict(lgdECLModel,ECLProjectionsByScenario(ScenIndECLData,:));
 ECLProjectionsByScenario.EAD(ScenIndECLData) = predict(eadECLModel,ECLProjectionsByScenario(ScenIndECLData,:));

end
head(ECLProjectionsByScenario,10)

 ScenarioID ID Age ScoreGroupOrig LTVOrig Limit Time GDPGROWTHLAG UNRATELAG TB3MSLAG PDLifetime PDMarginal LGD EAD
 ______________ __ ___ ______________ _______ _____ ___________ ____________ _________ ________ __________ __________ _______ ______

 "SlowRecovery" 1 13 LowRisk 0.81866 9000 30-Jun-2009 -0.78191 8.5 0.21 0.0092969 0.0092969 0.29862 4730.2
 "SlowRecovery" 1 14 LowRisk 0.81866 9000 30-Sep-2009 -1.5 9.3 -0.5 0.020034 0.010737 0.33245 5111.1
 "SlowRecovery" 1 15 LowRisk 0.81866 9000 31-Dec-2009 -1.2 10.1 -0.25 0.030184 0.01015 0.31095 6185
 "SlowRecovery" 1 16 LowRisk 0.81866 9000 31-Mar-2010 -0.8 11 -0.15 0.039815 0.0096304 0.28469 7073.3
 "SlowRecovery" 1 17 LowRisk 0.81866 9000 30-Jun-2010 -0.3 10.5 -0.05 0.046246 0.0064312 0.2543 6703

4 Corporate Credit Risk Simulations for Portfolios

4-212

 "SlowRecovery" 1 18 LowRisk 0.81866 9000 30-Sep-2010 0.1 9.9 0 0.050458 0.0042121 0.23014 6152.4
 "SlowRecovery" 1 19 LowRisk 0.81866 9000 31-Dec-2010 0.5 9.1 0.05 0.05303 0.0025718 0.20708 5309.3
 "SlowRecovery" 1 20 LowRisk 0.81866 9000 31-Mar-2011 1.8334 8.6536 -0.19292 0.054387 0.0013569 0.14745 4589.9
 "SlowRecovery" 2 6 LowRisk 0.79881 9100 30-Jun-2009 -0.78191 8.5 0.21 0.02793 0.02793 0.3326 4763.5
 "SlowRecovery" 2 7 LowRisk 0.79881 9100 30-Sep-2009 -1.5 9.3 -0.5 0.058871 0.030942 0.36752 5148.9

Compute Lifetime ECL

Compute the lifetime ECL using the portfolioECL function. The inputs to this function are tables,
where the first column is an ID variable that indicates which rows correspond to which loan. Because
the projections cover multiple periods for each loan, and the remaining life of different loans may be
different, the ID variable is an important input. Then, for each ID, the credit projections must be
provided, period by period, until the end of the life of each loan. Typically, the marginal PD has a
multi-period and multi-scenario size. However, in some situations, more commonly for LGD or EAD
inputs, the credit projections may not have values for each period, or may not be sensitive to the
scenarios. A typical case for this situation is a loan that repays the principal at maturity, where the
exposure is considered constant for each period and independent of the macroeconomic scenarios. In
this case, the EAD table input has one scalar value per ID that applies for all periods and all
scenarios. To offer flexibility for different input dimensions for marginal PD, LGD, and EAD inputs,
these inputs are separated into three separate tables in the syntax of portfolioECL.

Reformat the credit projections stored in the ECLProjectionsByScenario table into an
intermediate table that includes the Time variable. You can use these intermediate tables to look at
the detailed predictions period-by-period with different scenarios side-by-side. Also, these tables with
a Time variable are useful for logical indexing to extract the predictions for only the first year.

PDMarginalUnstacked = ECLProjectionsByScenario(:,["ScenarioID" "ID" "Time" "PDMarginal"]);
PDMarginalUnstacked = unstack(PDMarginalUnstacked,"PDMarginal","ScenarioID");
PDMarginalUnstacked = movevars(PDMarginalUnstacked,"SlowRecovery","Before","Baseline");
disp(head(PDMarginalUnstacked))

 ID Time SlowRecovery Baseline FastRecovery
 __ ___________ ____________ _________ ____________

 1 30-Jun-2009 0.0092969 0.0092969 0.0092969
 1 30-Sep-2009 0.010737 0.0090867 0.0078466
 1 31-Dec-2009 0.01015 0.0076948 0.005958
 1 31-Mar-2010 0.0096304 0.006847 0.0045918
 1 30-Jun-2010 0.0064312 0.0045587 0.0032064
 1 30-Sep-2010 0.0042121 0.0030213 0.0019542
 1 31-Dec-2010 0.0025718 0.0016771 0.0013505
 1 31-Mar-2011 0.0013569 0.0011649 0.00096951

LGDUnstacked = ECLProjectionsByScenario(:,["ScenarioID" "ID" "Time" "LGD"]);
LGDUnstacked = unstack(LGDUnstacked,"LGD","ScenarioID");
LGDUnstacked = movevars(LGDUnstacked,"SlowRecovery","Before","Baseline");

EADUnstacked = ECLProjectionsByScenario(:,["ScenarioID" "ID" "Time" "EAD"]);
EADUnstacked = unstack(EADUnstacked,"EAD","ScenarioID");
EADUnstacked = movevars(EADUnstacked,"SlowRecovery","Before","Baseline");

The final step to preparing the inputs for portfolioECL is to remove the Time column. There are
other ways to prepare these inputs, for example, you can store the columns side-by-side directly
during prediction. In this example, the extra steps for preparation are illustrated so that you can use
the ECLProjectionsByScenario table for detailed analysis at a loan level (see Loan-Level Results
on page 4-219).

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-213

PDMarginalLifetimeInput = PDMarginalUnstacked(:,[1 3:end]);
disp(head(PDMarginalLifetimeInput))

 ID SlowRecovery Baseline FastRecovery
 __ ____________ _________ ____________

 1 0.0092969 0.0092969 0.0092969
 1 0.010737 0.0090867 0.0078466
 1 0.01015 0.0076948 0.005958
 1 0.0096304 0.006847 0.0045918
 1 0.0064312 0.0045587 0.0032064
 1 0.0042121 0.0030213 0.0019542
 1 0.0025718 0.0016771 0.0013505
 1 0.0013569 0.0011649 0.00096951

LGDLifetimeInput = LGDUnstacked(:,[1 3:end]);
EADLifetimeInput = EADUnstacked(:,[1 3:end]);

Each loan has an effective interest rate for discounting that is determined at loan recognition.

EIRInput = ECLPortfolioSnapshot(:,["ID" "EffIntRate"]);
EIRInput.EffIntRate = EIRInput.EffIntRate/100; % Convert to decimal

Use the portfolioECL function.

[totalECL,idECL,periodECL] = portfolioECL(PDMarginalLifetimeInput,LGDLifetimeInput,EADLifetimeInput,...
 ScenarioNames=ScenarioIDs,ScenarioProbabilities=scenarioProb,InterestRate=EIRInput);

The totalECL output is the lifetime ECL of the portfolio which is the total provisions amount
required by the portfolio.

fprintf('Total Portfolio Lifetime ECL: %s',cur2str(totalECL))

Total Portfolio Lifetime ECL: $67701.21

The idECL output is the lifetime ECL at a loan level. Join the idECL output with the score group and
the balance information from the ECL portfolio snapshot table. With this data, you can compute the
lifetime ECL as a percent of the loan balance. You can also aggregate by score group. The
TotalsByScore table shows that the lifetime ECL is significantly higher for lower quality score
groups.

idECL = join(idECL,ECLPortfolioSnapshot(:,["ID" "ScoreGroupOrig" "Balance"]));
idECL.ECLPercent = 100*idECL.ECL./idECL.Balance;
TotalsByScore = groupsummary(idECL,"ScoreGroupOrig","sum",["ECL" "Balance"]);
TotalsByScore.ECLPercent = 100*TotalsByScore.sum_ECL./TotalsByScore.sum_Balance

TotalsByScore=3×5 table
 ScoreGroupOrig GroupCount sum_ECL sum_Balance ECLPercent
 ______________ __________ _______ ___________ __________

 HighRisk 76 22027 1.828e+05 12.05
 MediumRisk 121 23921 3.312e+05 7.2225
 LowRisk 130 21753 5.9629e+05 3.6481

The provisions in TotalsByScore table are very high. These results are explored in the Compute 1-
Year ECL on page 4-215 and Compute 1-Year ECL with Average Macroeconomic Levels on page 4-217
sections.

4 Corporate Credit Risk Simulations for Portfolios

4-214

Visualize the distribution of the portfolio balance and the distribution of provisions by score group.
Only about 1/6 of the assets are allocated to high-risk loans, yet the provisions for high risk make up
about 1/3 of the total provisions. On the other end, more than half of the assets are allocated to low-
risk loans, yet the provisions for low risk are less than 1/3 of the total provisions.

figure
tiledlayout(1,2)
nexttile
pie(TotalsByScore.sum_Balance)
title('Balance by Score Group')
nexttile
pie(TotalsByScore.sum_ECL)
title('Provisions by Score Group')
leg = legend(TotalsByScore.ScoreGroupOrig,'Location','south','Orientation','horizontal');
leg.Layout.Tile = 'south';

Compute 1-Year ECL

As noted in Compute Lifetime ECL on page 4-213, the lifetime provisions in TotalsByScore table
are very high. To better understand why, you can compute 1-year provisions to understand the impact
of the lifetime part of the ECL beyond the first year.

The difference between lifetime ECL and 1-year ECL is important for the IFRS 9 regulation where
stage 1 loans (performing loans) use 1-year ECL for provisioning, whereas stage 2 loans (increased
credit risk) and stage 3 loans (credit impaired) use lifetime ECL. [1 on page 4-222]

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-215

To obtain a 1-year ECL, prepare the marginal PD, LGD, and EAD input tables so that they cover one
year ahead. You can leverage the unstacked tables created in Compute Lifetime ECL on page 4-213.
These unstacked tables contain a Time variable to do logical indexing and obtain the inputs for a 1-
year ECL. In the new inputs, each ID has only four periods and any loan with a remaining life of less
than four quarters has fewer periods.

FourthQuarterAhead = ECLPortfolioProjections.Time(4);
PDMarginal1YearInput = PDMarginalUnstacked(PDMarginalUnstacked.Time<=FourthQuarterAhead,[1 3:end]);
disp(head(PDMarginal1YearInput))

 ID SlowRecovery Baseline FastRecovery
 __ ____________ _________ ____________

 1 0.0092969 0.0092969 0.0092969
 1 0.010737 0.0090867 0.0078466
 1 0.01015 0.0076948 0.005958
 1 0.0096304 0.006847 0.0045918
 2 0.02793 0.02793 0.02793
 2 0.030942 0.026838 0.023675
 2 0.028822 0.022818 0.018364
 2 0.026954 0.020285 0.014466

LGD1YearInput = LGDUnstacked(LGDUnstacked.Time<=FourthQuarterAhead,[1 3:end]);
EAD1YearInput = EADUnstacked(EADUnstacked.Time<=FourthQuarterAhead,[1 3:end]);

Use portfolioECL with the new inputs.

[totalECL1Year,idECL1Year,periodECL1Year] = portfolioECL(PDMarginal1YearInput,LGD1YearInput,EAD1YearInput,...
 ScenarioNames=ScenarioIDs,ScenarioProbabilities=scenarioProb,InterestRate=EIRInput);

Expand the ID level ECL table with the score group and balance information.

idECL1Year.ScoreGroupOrig = idECL.ScoreGroupOrig;
idECL1Year.Balance = idECL.Balance;
idECL1Year.ECLPercent = 100*idECL1Year.ECL./idECL1Year.Balance;

TotalsByScore1Year = groupsummary(idECL1Year,"ScoreGroupOrig","sum",["ECL" "Balance"]);
TotalsByScore1Year.ECLPercent = 100*TotalsByScore1Year.sum_ECL./TotalsByScore1Year.sum_Balance;

Compare the 1-year ECL with the lifetime ECL by plotting the lifetime and 1-year ECL values as a
proportion of balance for each score group.

figure;
bar([TotalsByScore.ECLPercent TotalsByScore1Year.ECLPercent])
xticklabels(TotalsByScore.ScoreGroupOrig)
ylabel('ECL as % of Balance')
legend('Lifetime ECL','1-Year ECL')
title('ECL, Lifetime vs. 1 Year')
grid on

4 Corporate Credit Risk Simulations for Portfolios

4-216

The lifetime ECL shows an important increase with respect to the 1-year ECL. However, the 1-year
ECL values are high. In general, the increment from 1-year ECL to lifetime ECL is not expected to be
large because marginal PD values tend to decrease as loans age, and in some cases, the risk implied
by LGD and EAD projections can also decrease with time. An example of this behavior is an
amortizing loan.

The macroeconomic scenarios in this example are extremely adverse and the provisions are
conditional on the macroeconomic scenarios. Compute 1-Year ECL with Average Macroeconomic
Levels on page 4-217 explores the impact of these adverse scenarios on the ECL estimates.

Compute 1-Year ECL with Average Macroeconomic Levels

To compare the 1-year ECL with more normal macroeconomic conditions, the macroeconomic
scenarios from Define Macroeconomic Scenarios on page 4-203 are replaced with a long-term
average of the macroeconomic variables. To simplify, use the long-term average of the
macroeconomic variables to make predictions only four quarters ahead. This approach is similar to a
through-the-cycle (TTC) reserving approach because the credit projections reflect average
macroeconomic conditions.

Use the mean macroeconomic levels over the entire sample.

MeanGDPGROWTH = mean(DataMacro.GDPGROWTH);
MeanUNRATE = mean(DataMacro.UNRATE);
MeanTB3MS = mean(DataMacro.TB3MS);

To make predictions, you need the projected predictors values and data only one year ahead.

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-217

ECLPortfolio1YearMacroAverage = ECLPortfolioProjections(ECLPortfolioProjections.Time<=FourthQuarterAhead,:);
ECLPortfolio1YearMacroAverage.GDPGROWTHLAG = zeros(height(ECLPortfolio1YearMacroAverage),1);
ECLPortfolio1YearMacroAverage.UNRATELAG = zeros(height(ECLPortfolio1YearMacroAverage),1);
ECLPortfolio1YearMacroAverage.TB3MSLAG = zeros(height(ECLPortfolio1YearMacroAverage),1);

Append the macroeconomic average values and use the same average value for all periods going
forward.

ECLPortfolio1YearMacroAverage.GDPGROWTHLAG(:) = MeanGDPGROWTH;
ECLPortfolio1YearMacroAverage.UNRATELAG(:) = MeanUNRATE;
ECLPortfolio1YearMacroAverage.TB3MSLAG(:) = MeanTB3MS;

Predict credit values. You need only the marginal PD values for ECL calculations, but you can also
store the lifetime PD values for the analysis in the Loan-Level Results on page 4-219 section.

ECLPortfolio1YearMacroAverage.PDLifetime = predictLifetime(pdECLModel,ECLPortfolio1YearMacroAverage);
ECLPortfolio1YearMacroAverage.PDMarginal = predictLifetime(pdECLModel,ECLPortfolio1YearMacroAverage,ProbabilityType="marginal");
ECLPortfolio1YearMacroAverage.LGD = predict(lgdECLModel,ECLPortfolio1YearMacroAverage);
ECLPortfolio1YearMacroAverage.EAD = predict(eadECLModel,ECLPortfolio1YearMacroAverage);

In this case, the inputs for the portfolioECL function have only one scenario.

PDMarginal1YearMacroAverageInput = ECLPortfolio1YearMacroAverage(:,["ID" "PDMarginal"]);
LGD1YearMacroAverageInput = ECLPortfolio1YearMacroAverage(:,["ID" "LGD"]);
EAD1YearMacroAverageInput = ECLPortfolio1YearMacroAverage(:,["ID" "EAD"]);

Obtain the 1-year ECL and expand the loan-level results table.

[totalECL1YearMacroAverage,idECL1YearMacroAverage,periodECL1YearMacroAverage] = portfolioECL(PDMarginal1YearMacroAverageInput,LGD1YearMacroAverageInput,EAD1YearMacroAverageInput,InterestRate=EIRInput);

idECL1YearMacroAverage.ScoreGroupOrig = idECL.ScoreGroupOrig;
idECL1YearMacroAverage.Balance = idECL.Balance;
idECL1YearMacroAverage.ECLPercent = 100*idECL1YearMacroAverage.ECL./idECL1YearMacroAverage.Balance;

TotalsByScore1YearMacroAverage = groupsummary(idECL1YearMacroAverage,"ScoreGroupOrig","sum",["ECL" "Balance"]);
TotalsByScore1YearMacroAverage.ECLPercent = 100*TotalsByScore1YearMacroAverage.sum_ECL./TotalsByScore1YearMacroAverage.sum_Balance;

Compare the 1-year ECL with average macroeconomic values to the 1-year ECL and lifetime ECL
approach using the initial macroeconomic scenarios.

figure;
bar([TotalsByScore.ECLPercent TotalsByScore1Year.ECLPercent TotalsByScore1YearMacroAverage.ECLPercent])
xticklabels(TotalsByScore.ScoreGroupOrig)
ylabel('ECL as % of Balance')
legend('Lifetime ECL','1-Year ECL','1-Year ECL, Macro Average')
title('ECL, Lifetime vs. 1 Year vs. 1 Year Macro Average')
grid on

4 Corporate Credit Risk Simulations for Portfolios

4-218

These results show that the severely adverse macroeconomic scenarios defined in Define
Macroeconomic Scenarios on page 4-203 drive the high provisions. The 1-year ECL values with
average macroeconomic levels are much lower with the low-risk 1-year ECL at 0.5% of the current
provisions balance. The medium-risk 1-year ECL is at 1% of the current provisions balance and the
high-risk 1-year ECL is 2% of the current provisions balance.

Visualize Loan-Level Results

You can explore the ECL predictions and the results at a loan level. Use SelectedID to enter any
loan ID in the portfolio. The resulting visualizations show the predicted lifetime PD, marginal PD,
LGD, and EAD over the remaining life of the loan. The plot shows the predictions for each
macroeconomic scenario defined in Define Macroeconomic Scenarios on page 4-203 as well as the
macroeconomic average scenario (1-year predictions only).

SelectedID = ;
IDDataLifetime = ECLProjectionsByScenario(ECLProjectionsByScenario.ID==SelectedID,:);
IDData1YearMacroAverage = ECLPortfolio1YearMacroAverage(ECLPortfolio1YearMacroAverage.ID==SelectedID,:);

figure;
t = tiledlayout(4,1);
nexttile
hold on
for ii=1:NumScenarios
 ScenPlotInd = IDDataLifetime.ScenarioID==ScenarioIDs(ii);
 plot(IDDataLifetime.Time(ScenPlotInd),IDDataLifetime.PDLifetime(ScenPlotInd))
end

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-219

plot(IDData1YearMacroAverage.Time,IDData1YearMacroAverage.PDLifetime,'--')
hold off
ylabel('PD Lifetine')
title('PD Lifetime')
grid on

nexttile
hold on
for ii=1:NumScenarios
 ScenPlotInd = IDDataLifetime.ScenarioID==ScenarioIDs(ii);
 plot(IDDataLifetime.Time(ScenPlotInd),IDDataLifetime.PDMarginal(ScenPlotInd))
end
plot(IDData1YearMacroAverage.Time,IDData1YearMacroAverage.PDMarginal,'--')
hold off
ylabel('PD Marginal')
title('PD Marginal')
grid on

nexttile
hold on
for ii=1:NumScenarios
 ScenPlotInd = IDDataLifetime.ScenarioID==ScenarioIDs(ii);
 plot(IDDataLifetime.Time(ScenPlotInd),IDDataLifetime.LGD(ScenPlotInd))
end
plot(IDData1YearMacroAverage.Time,IDData1YearMacroAverage.LGD,'--')
hold off
ylabel('LGD')
title('LGD')
grid on

nexttile
hold on
for ii=1:NumScenarios
 ScenPlotInd = IDDataLifetime.ScenarioID==ScenarioIDs(ii);
 plot(IDDataLifetime.Time(ScenPlotInd),IDDataLifetime.EAD(ScenPlotInd))
end
plot(IDData1YearMacroAverage.Time,IDData1YearMacroAverage.EAD,'--')
hold off
ylabel('EAD')
title('EAD')
grid on

leg = legend("Slow recovery","Baseline","Fast recovery","Macro Average","Orientation","horizontal");
leg.Layout.Tile = 'south';

4 Corporate Credit Risk Simulations for Portfolios

4-220

The following plot shows the ECL for the loan, the ECL for the lifetime case, the 1-year ECL case, and
the 1-year ECL using average macroeconomic values.

figure;
IDECLInd = idECL.ID == SelectedID;
bar(categorical("Provisions"),[idECL.ECLPercent(IDECLInd) idECL1Year.ECLPercent(IDECLInd) idECL1YearMacroAverage.ECLPercent(IDECLInd)])
legend('Lifetime','1 Year','1 Year Macro Average')
ylabel('ECL as % of Balance')
TitleStr = sprintf('ID: %g, Score Group: %s',SelectedID,idECL.ScoreGroupOrig(IDECLInd));
title(TitleStr)
grid on

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-221

Conclusion

This example covers an entire workflow, including the determination of macroeconomic scenarios and
the estimation of provisions using lifetime ECL computations. The example also shows some tools and
visualizations to analyze the results at a portfolio level, score-group level, and loan level.

The example demonstrates tools from the Econometrics Toolbox™ and Risk Management Toolbox™
that support this workflow, including macroeconomic modeling tools such as vector autoregressive
(VAR) models, and credit risk tools such as the lifetime probability of default (PD) models
(fitLifetimePDModel), loss given default (LGD) models (fitLGDModel), exposure at default (EAD)
models (fitEADModel), and the portfolioECL function.

References

[1] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. Elsevier, 2019.

[2] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Prescient Models LLC, 2018.

4 Corporate Credit Risk Simulations for Portfolios

4-222

[3] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python.
Independently published, 2020.

See Also
fitLifetimePDModel | fitEADModel | fitLGDModel | portfolioECL

Related Examples
• “Expected Credit Loss Computation” on page 4-124
• “Modeling Probabilities of Default with Cox Proportional Hazards” on page 4-28

 Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations

4-223

Create Custom Lifetime PD Model for Decision Tree Model with
Function Handle

This example shows how to fit a decision tree model for credit scoring and then use the
customLifetimePDModel object to create a lifetime model for probability of default.

Fit a Decision Tree Model for Credit Scoring

Load the credit scorecard data using a data set from Refaat [1 on page 4-230]. The data set in this
example contains one row per loan.

load CreditCardData.mat
disp(head(data))

 CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status
 ______ _______ ___________ __________ _________ __________ _______ _______ _________ ________ ______

 1 53 62 Tenant Unknown 50000 55 Yes 1055.9 0.22 0
 2 61 22 Home Owner Employed 52000 25 Yes 1161.6 0.24 0
 3 47 30 Tenant Employed 37000 61 No 877.23 0.29 0
 4 50 75 Home Owner Employed 53000 20 Yes 157.37 0.08 0
 5 68 56 Home Owner Employed 53000 14 Yes 561.84 0.11 0
 6 65 13 Home Owner Employed 48000 59 Yes 968.18 0.15 0
 7 34 32 Home Owner Unknown 32000 26 Yes 717.82 0.02 1
 8 50 57 Other Employed 51000 33 No 3041.2 0.13 0

Fit a decision tree model using fitctree from Statistics and Machine Learning Toolbox™. The data
set in this example contains 1200 observations, which is not a large number. This example uses the
data to train the model, but you can split larger data sets into training and testing sets.

CategoricalPreds = {'ResStatus','EmpStatus','OtherCC'};
dt = fitctree(data,'status~CustAge+TmAtAddress+ResStatus+EmpStatus+CustIncome+TmWBank+OtherCC+UtilRate', ...
 'MaxNumSplits',30,'CategoricalPredictors',CategoricalPreds);
disp(dt)

 ClassificationTree
 PredictorNames: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'UtilRate'}
 ResponseName: 'status'
 CategoricalPredictors: [3 4 7]
 ClassNames: [0 1]
 ScoreTransform: 'none'
 NumObservations: 1200

view(dt)

Decision tree for classification
 1 if CustIncome<30500 then node 2 elseif CustIncome>=30500 then node 3 else 0
 2 if TmWBank<60 then node 4 elseif TmWBank>=60 then node 5 else 1
 3 if TmWBank<32.5 then node 6 elseif TmWBank>=32.5 then node 7 else 0
 4 if TmAtAddress<13.5 then node 8 elseif TmAtAddress>=13.5 then node 9 else 1
 5 if UtilRate<0.255 then node 10 elseif UtilRate>=0.255 then node 11 else 0
 6 if CustAge<60.5 then node 12 elseif CustAge>=60.5 then node 13 else 0
 7 if CustAge<46.5 then node 14 elseif CustAge>=46.5 then node 15 else 0
 8 if CustIncome<24500 then node 16 elseif CustIncome>=24500 then node 17 else 1
 9 if TmWBank<56.5 then node 18 elseif TmWBank>=56.5 then node 19 else 1
10 if CustAge<21.5 then node 20 elseif CustAge>=21.5 then node 21 else 0

4 Corporate Credit Risk Simulations for Portfolios

4-224

11 class = 1
12 if EmpStatus=Employed then node 22 elseif EmpStatus=Unknown then node 23 else 0
13 if TmAtAddress<131 then node 24 elseif TmAtAddress>=131 then node 25 else 0
14 if TmAtAddress<97.5 then node 26 elseif TmAtAddress>=97.5 then node 27 else 0
15 class = 0
16 class = 0
17 if ResStatus in {Home Owner Tenant} then node 28 elseif ResStatus=Other then node 29 else 1
18 if TmWBank<52.5 then node 30 elseif TmWBank>=52.5 then node 31 else 0
19 class = 1
20 class = 1
21 class = 0
22 if UtilRate<0.375 then node 32 elseif UtilRate>=0.375 then node 33 else 0
23 if UtilRate<0.005 then node 34 elseif UtilRate>=0.005 then node 35 else 0
24 if CustIncome<39500 then node 36 elseif CustIncome>=39500 then node 37 else 0
25 class = 1
26 if UtilRate<0.595 then node 38 elseif UtilRate>=0.595 then node 39 else 0
27 class = 1
28 class = 1
29 class = 0
30 class = 1
31 class = 0
32 class = 0
33 if UtilRate<0.635 then node 40 elseif UtilRate>=0.635 then node 41 else 0
34 if CustAge<49 then node 42 elseif CustAge>=49 then node 43 else 1
35 if CustIncome<57000 then node 44 elseif CustIncome>=57000 then node 45 else 0
36 class = 1
37 class = 0
38 class = 0
39 if CustIncome<34500 then node 46 elseif CustIncome>=34500 then node 47 else 1
40 class = 1
41 class = 0
42 class = 1
43 class = 0
44 class = 0
45 class = 1
46 class = 0
47 class = 1

The decision tree predict function returns a predicted class in the first output, where class = 0
means no-default, and class = 1 means default (same as the response data that you used to train the
model). The predict function also returns the corresponding prediction scores or class
probabilities as the second output.

In this example, you are interested in the probability of default, which is the class probability for
class = 1 (the second column of the class probability output).

[~,ObservationClassProb] = predict(dt,data);
pdDT = ObservationClassProb(:,2);

Wrap Decision Tree Model as Lifetime PD Model

To wrap the decision tree model as a lifetime PD model, a function handle to a PD prediction function
is required. For the decision tree in this example, the predict method of the decision tree does not
return the PD values directly. Therefore, first create a helper function that takes the decision tree
model and the data as inputs and returns the PD predictions. This helper function is implemented as
myDTPredictFcn in Local Functions on page 4-230. Then define a function handle to this function,
predictFcnHandle, that takes data as input and returns the PD.

 Create Custom Lifetime PD Model for Decision Tree Model with Function Handle

4-225

predictFcnHandle = @(data)myDTPredictFcn(dt,data);

Create an instance of a custom lifetime PD model by passing the function handle to
customLifetimePDModel. You need to specify variable names using name-value arguments because
these variable names are used by the base class LifetimePDModel.

pdModel = customLifetimePDModel(predictFcnHandle,'ModelID','MyDTModel','IDVar','CustID','LoanVars',dt.PredictorNames,'ResponseVar',dt.ResponseName)

pdModel =
 CustomLifetimePD with properties:

 ModelID: "MyDTModel"
 Description: ""
 UnderlyingModel: @(data)myDTPredictFcn(dt,data)
 IDVar: "CustID"
 AgeVar: ""
 LoanVars: ["CustAge" "TmAtAddress" "ResStatus" "EmpStatus" "CustIncome" "TmWBank" "OtherCC" "UtilRate"]
 MacroVars: ""
 ResponseVar: "status"

Predict and Validate Scores Using the Custom Lifetime PD Model

Use the predict function of the lifetime PD model to make PD predictions.

CondPD = predict(pdModel,data);

The predictions are the same as predicting directly with the original decision tree model.

CondPDOriginal = myDTPredictFcn(dt,data);
isequal(CondPD,CondPDOriginal)

ans = logical
 1

By wrapping the decision tree as a lifetime PD model, all the validation capabilities of lifetime PD
models are available.

For example, use modelDiscriminationPlot to plot the ROC curve. The next plot shows the ROC
curve for each of the residential status levels. All of the residential status levels show good
discrimination in the training data.

modelDiscriminationPlot(pdModel,data,'SegmentBy','ResStatus')

4 Corporate Credit Risk Simulations for Portfolios

4-226

Also, you can use modelCalibrationPlot to visualize the calibration of the model. A grouping
variable is required to compare the average PD for the group against the default rate in the group.
For illustration purposes, define an AgeGroup variable. You can also use other variables, including
model predictors, as grouping variables.

AgeGroupEdges = [0,20:5:65,100];
AgeGroupLabels = strcat(string(AgeGroupEdges(1:end-1))," - ",string(AgeGroupEdges(2:end)));
data.AgeGroup = discretize(data.CustAge,AgeGroupEdges,'categorical',AgeGroupLabels);
modelCalibrationPlot(pdModel,data,'AgeGroup')

 Create Custom Lifetime PD Model for Decision Tree Model with Function Handle

4-227

The default rates are high in this data set. The safest (60—65 and 65—100) age groups default at a
rate higher than 10% and the 0—20 age group has a default rate of almost 50%. However, the
predicted PDs are close to the observed default rates for most age groups. In other words, the model
has good calibration in the training data.

Predict Lifetime PD

Lifetime PD is the cumulative probability of default over multiple periods. Therefore, the input for the
predictLifetime function should contain multiple rows per ID. In this example, the data you use
for training and validation contains only one observation per ID. If you pass it to predictLifetime,
the output would be the same as the output of the predict function. For more information, see
“Lifetime PD” on page 6-347 and “Data Input for Lifetime Prediction” on page 6-348.

The predictLifetime function is typically used for predictions on outstanding loans, where the
predictor variable values must be projected, period-by-period, for several periods into the future. To
project predictor values to prepare data for lifetime prediction, suppose you have an existing
customer with ID 1234, 35 years old, with 36 months in the current address, owns her house, is
employed with an income of $75,000, a bank customer for 50 months, average monthly balance in the
account is $895 dollars with a utilization rate of 27%, and does not have another credit card with the
bank.

% Use first row as a template,
% removing response and age group.
dataLifetime = data(1,1:end-2);
dataLifetime.CustID = 1234;
dataLifetime.CustAge = 35;

4 Corporate Credit Risk Simulations for Portfolios

4-228

dataLifetime.TmAtAddress = 36;
dataLifetime.ResStatus = 'Home Owner';
dataLifetime.EmpStatus = 'Employed';
dataLifetime.CustIncome = 75000;
dataLifetime.TmWBank = 50;
dataLifetime.OtherCC = 'No';
dataLifetime.AMBalance = 895;
dataLifetime.UtilRate = 0.27;
disp(dataLifetime)

 CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate
 ______ _______ ___________ __________ _________ __________ _______ _______ _________ ________

 1234 35 36 Home Owner Employed 75000 50 No 895 0.27

To make projections for three periods ahead, you need projections for each variable. It is important to
know what time interval is implicit in the underlying model because each PD model has a time
interval. For more information, see “Time Interval for Logistic Models” on page 6-623 and “Time
Interval and Data Input for Lifetime Prediction” on page 6-348.

In this example, use the time interval of 1 year, in other words, assume that the decision tree model
predicts 1-year PDs. In this case, age is easy to project because the customer is one year older on
each subsequent time period, that is, on each subsequent row in the data. Other time variables, such
as time at address and time with bank, are easily projected if you assume there will be no change in
address and that the customer will continue with the bank. You can project other variables as well
with assumptions for each of them. For example, for CustIncome, you can keep it constant, as in this
example, where your assumption might be that the customer does not update their income
information. Or, you could assume some income growth instead. In this example, for simplicity, all
variables other than time variables, are kept constant.

dataLifetime = repmat(dataLifetime,3,1);
% No changes to the ID value, same customer
dataLifetime.CustAge(2:3) = dataLifetime.CustAge(1)+[1;2]; % one year older each year
dataLifetime.TmAtAddress(2:3) = dataLifetime.TmAtAddress(1)+[12; 24]; % 12 extra months each year
% No changes to ResStatus, EmpStatus or CustIncome
dataLifetime.TmWBank(2:3) = dataLifetime.TmWBank(1)+[12; 24]; % 12 extra months each year
% No changes to OtherCC, AMBalance or UtilRate
disp(dataLifetime)

 CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate
 ______ _______ ___________ __________ _________ __________ _______ _______ _________ ________

 1234 35 36 Home Owner Employed 75000 50 No 895 0.27
 1234 36 48 Home Owner Employed 75000 62 No 895 0.27
 1234 37 60 Home Owner Employed 75000 74 No 895 0.27

Use predictLifetime to make a lifetime prediction.

pdLifetime = predictLifetime(pdModel,dataLifetime)

pdLifetime = 3×1

 0.2527
 0.4415
 0.5826

 Create Custom Lifetime PD Model for Decision Tree Model with Function Handle

4-229

References

[1] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

Local Functions

function CondPD = myDTPredictFcn(DTmodel,data)
%myDTPredictFcn Predict conditional PD with Decision Tree model.

[~,ObservationClassProb] = predict(DTmodel,data);
CondPD = ObservationClassProb(:,2);

end

See Also
customLifetimePDModel | fitLifetimePDModel | fitEADModel | fitLGDModel |
portfolioECL

Related Examples
• “Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle” on page

3-131
• “Expected Credit Loss Computation” on page 4-124
• “Modeling Probabilities of Default with Cox Proportional Hazards” on page 4-28

4 Corporate Credit Risk Simulations for Portfolios

4-230

Measure Transition Risk for Loan Portfolios with Respect to
Climate Scenarios

This example shows the effect of transition risk on portfolios of loans from two banks given three
different climate scenarios. Potentially, climate change is a large structural change affecting the
economy and the financial system. Clear physical risks are associated with climate change, including
increases in the global average temperature and an increased frequency and severity of extreme
weather events. These events could result in significant macroeconomic and financial system impacts.
In addition to physical risk, another type of risk called transition risk arises from changes in policy
and new technologies, such as the growth of renewable energy.

Several countries around the globe are working on projects to understand and model different
climate policies. For example, these climate initiatives are examples of projects investigating
economic risk:

• LIMITS (Low climate IMpact scenarios and the Implications of required Tight emission control
Strategies) was a research effort that included twelve partners from Europe, China, India, Japan,
and the United States. The main objectives of the project were: (a) to provide an assessment of the
emissions reductions strategies at a world level for the major global economies, and (b) to
disseminate scientific knowledge for climate and energy policy. [4 on page 4-246]

• The Bank of Canada launched a pilot project with the Office of the Superintendent of Financial
Institutions.The goal of the pilot project was to understand risks to the economy and the financial
system related to climate change. This work included developing a set of climate transition
scenarios relevant to Canada that explore pathways consistent with achieving certain climate
targets. [1 on page 4-246]

• The Massachusetts Institute of Technology (MIT) developed the Economic Projection and Policy
Analysis (EPPA) model that is part of the MIT Integrated Global Systems Model (IGSM) that
represents the human systems. EPPA is a recursive-dynamic multi-regional general equilibrium
model of the world economy, which is built on the Global Trade Analysis Project (GTAP) data set
and additional data for the greenhouse gas and urban gas emissions. IGSM is designed to develop
projections of economic growth and anthropogenic emissions of greenhouse related gases and
aerosols. [3 on page 4-246]

• The Climate Integrated Assessment Models Explorer repository contains a set of tools to explore
different data sets hosted by the IIASA Energy program (ENE). This repositiory contains an
example that computes changes to multiple bank loan portfolios as a result of climate shocks. [2
on page 4-246]

This example follows an approach of Monsaterolo [5 on page 4-247] to develop a novel climate stress-
test methodology for portfolios of loans to energy infrastructure projects and follows the workflow:

1 Obtain the climate scenario data on page 4-231.
2 Compute the market share shocks on page 4-232.
3 Obtain the loan portfolio data on page 4-235.
4 Create a valuation framework for loan contracts subject to climate policy shocks on page 4-237.
5 Compute the distribution of changes in the loan portfolio values on page 4-240.

Obtain Climate Scenario Data

This example uses climate scenarios developed by MIT in collaboration with the Bank of Canada. The
scenarios are described as:

 Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios

4-231

https://github.com/mathworks/Climate-IAM-Explorer/tree/master/examples/Loan%20Portfolio%20Climate%20Stress%20Test

• Baseline (2019 policies) — baseline scenario consistent with climate policies in place at the end of
2019

• Below 2°C Immediate — immediate policy action scenario to limit average global warming to
below 2°C

• Below 2°C Delayed — delayed policy action scenario to limit average global warming to below 2°C
• Net-Zero 2050 (1.5°C) — more ambitious immediate policy action scenario to limit average global

warming to 1.5°C that includes current net-zero commitments by some countries

The Climate Transition Scenario data is provided by the Bank of Canada and is available free of
charge at www.bankofcanada.ca. [1 on page 4-246]

The data is converted to a MAT file and is loaded from BankOfCanadaClimateScenarioData.mat.

Compute Market Share Shocks

Load the data file for the Climate Transition Scenario provided by the Bank of Canada. This data set
contains energy information of different sectors for various geographies around the world. The
CL_VARIABLE column in the data set contains both input information used to model the different
climate scenarios, as well as, output information of energy usage. This example focuses on the
different forms of primary energy, that is: bioenergy, coal, gas, hydro, nuclear, oil, and renewables
(wind and solar). The example computes the market shares for each of the different energy forms and
uses this information to calculate climate shocks. The different geographies in the data set are Africa,
Canada, China, Europe, India, Japan, the United States, and the rest of the world.

load BankOfCanadaClimateScenarioData.mat
head(ClimateTransitionScenarioData)

 k CL_GEOGRAPHY CL_SECTOR CL_VARIABLE CL_UNIT CL_SCENARIO CL_YEAR CL_VALUE
 _ ____________ _________ _______________________________ ___________________ ________________________ _______ ________

 1 Canada National Carbon price US$2014/tCO2e Baseline (2019 policies) 2020 12.106
 2 Canada National Carbon price US$2014/tCO2e Below 2°C immediate 2020 12.106
 3 Canada National Emissions | total GHG (scope 1) Million tonnes CO2e Baseline (2019 policies) 2020 781.04
 4 Canada National Emissions | total GHG (scope 1) Million tonnes CO2e Below 2°C immediate 2020 781.04
 5 Canada National Input price | Coal Index (2014 = 1) Baseline (2019 policies) 2020 1.2875
 6 Canada National Input price | Coal Index (2014 = 1) Below 2°C immediate 2020 1.2875
 7 Canada National Input price | Crops Index (2014 = 1) Baseline (2019 policies) 2020 1.0031
 8 Canada National Input price | Crops Index (2014 = 1) Below 2°C immediate 2020 1.0031

Trim and preprocess the original data set for what is required for this example.

% This example uses only the Primary Energy variables to compute market
% shares for different geographies.
VariableSubset = {'Primary Energy | Bioenergy', 'Primary Energy | Coal', 'Primary Energy | Gas', ...
'Primary Energy | Hydro', 'Primary Energy | Nuclear', 'Primary Energy | Oil', ...
'Primary Energy | Renewables (wind&solar)', 'Primary Energy | Total'};
ClimateTransitionScenarioData = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_VARIABLE, VariableSubset),:);

% Remove columns 'k','CL_SECTOR' and 'CL_UNIT' and then sort the rows.
ClimateTransitionScenarioData = removevars(ClimateTransitionScenarioData,{'k','CL_SECTOR','CL_UNIT'});
ClimateTransitionScenarioData = sortrows(ClimateTransitionScenarioData);

% Pull market share data out according to climate scenario.
baseline = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_SCENARIO, 'Baseline (2019 policies)'),:);
b2delayed = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_SCENARIO, 'Below 2°C delayed'),:);
b2immediate = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_SCENARIO, 'Below 2°C immediate'),:);

4 Corporate Credit Risk Simulations for Portfolios

4-232

https://www.bankofcanada.ca

netzero2050 = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_SCENARIO, 'Net-zero 2050 (1.5°C)'),:);

% Compile all the scenarios into one data set.
MarketShareData = baseline;
MarketShareData = removevars(MarketShareData, "CL_SCENARIO");
MarketShareData.Properties.VariableNames(4) = "BASELINE";
MarketShareData.BELOW_2C_IMMEDIATE = b2immediate.CL_VALUE;
MarketShareData.BELOW_2C_DELAYED = b2delayed.CL_VALUE;
MarketShareData.NETZERO_2050 = netzero2050.CL_VALUE;
head(MarketShareData)

 CL_GEOGRAPHY CL_VARIABLE CL_YEAR BASELINE BELOW_2C_IMMEDIATE BELOW_2C_DELAYED NETZERO_2050
 ____________ __________________________ _______ ________ __________________ ________________ ____________

 Africa Primary Energy | Bioenergy 2020 15.502 15.502 15.502 15.502
 Africa Primary Energy | Bioenergy 2025 15.302 15.302 15.302 15.302
 Africa Primary Energy | Bioenergy 2030 15.221 15.203 15.221 15.292
 Africa Primary Energy | Bioenergy 2035 15.072 15.042 15.084 15.218
 Africa Primary Energy | Bioenergy 2040 15.016 15.055 15.23 15.631
 Africa Primary Energy | Bioenergy 2045 14.249 14.273 14.652 14.993
 Africa Primary Energy | Bioenergy 2050 13.591 14 14.645 14.607
 Africa Primary Energy | Coal 2020 4.5909 4.5909 4.5909 4.5909

Select the geography and subsector, and then compute the market share. By default, in this example,
a coal project in China is selected.

Geography = ;

Sector = ;
SectorFullName = "Primary Energy | " + Sector;
BaseSector = "Primary Energy | Total";

Years = (2020:5:2050)';
GeographyData = MarketShareData(MarketShareData.CL_GEOGRAPHY == Geography, :);
MarketShare = GeographyData{GeographyData.CL_VARIABLE == SectorFullName, 4:7} ./ GeographyData{GeographyData.CL_VARIABLE == BaseSector, 4:7} * 100;

Plot the market shares for different climate scenarios. For the coal sector in China, the baseline
scenario shows a drop in market share. However, this drop is accelerates in each of the three climate
scenarios. The Below 2C Delayed scenario coincides with the baseline up until 2030, after which
there is a sudden fall in market share, whereas the other two scenarios (Below 2C Immediate and
Net-Zero 2050) lose market share more gradually until 2050.

figure;
msPlot = plot(Years, MarketShare, 'LineWidth',2);
grid on
set(msPlot, {'LineStyle'}, {'-';'--';':';'-.'})
legend("Baseline", "Below 2C Immediate", "Below 2C Delayed", "Net-Zero 2050 (1.5C)", 'Location','best');
xlim([2020 2050])
ylabel('Market Share (%)')
xlabel('Year')
title(Sector + " Market Share in " + Geography)

 Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios

4-233

Compute shocks for all climate scenarios.

Shocks = (MarketShare(:,2:4) - MarketShare(:,1))./MarketShare(:,1)*100;

Plot the shocks for different scenarios. For the default coal sector in China, the Below 2C Immediate
and the Net-Zero 2050 scenarios have a gradual negative market share shock over time. However,
the Below 2C Delayed scenario shows no market share shock until 2030, and then there is a sudden
drop until 2050.

figure;
shp = plot(Years, Shocks, 'LineWidth',2);
grid on
set(shp, {'LineStyle'}, {'--';':';'-.'})
xlabel('Year')
ylabel('Market Share Shocks (%)')
xlim([2020 2050])
legend("Below 2C Immediate", "Below 2C Delayed", "Net-Zero 2050 (1.5C)", 'Location','best');
title(Sector + " Market Share Shocks in " + Geography);

4 Corporate Credit Risk Simulations for Portfolios

4-234

Obtain Loan Portfolio Data

This example uses a second data set (ClimateLoanPortfolioData.mat) for a loan portfolio. This
data set contains simulated loan data of two fictitious banks: Bank 1 and Bank 2. The portfolio of
loans are from different geographies and sectors. The example uses the face value of the loans to
compute the change in reserves that a bank has to allocate when a climate shock occurs.

The distribution of loans for the two banks, by energy sector, is:

Generate histograms to show the distribution of loans, by region and sector, for the two simulated
banks.

load ClimateLoanPortfolioData
LoanPortfolioDataBank1 = ClimateLoanPortfolioData(ClimateLoanPortfolioData.Bank=='Bank1',:);

 Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios

4-235

LoanPortfolioDataBank2 = ClimateLoanPortfolioData(ClimateLoanPortfolioData.Bank=='Bank2',:);

[CountsRegion1, BinsRegion1] = histcounts(LoanPortfolioDataBank1.BorrowerRegion);
[CountsSector1, BinsSector1] = histcounts(LoanPortfolioDataBank1.BorrowerSector);
[CountsRegion2, BinsRegion2] = histcounts(LoanPortfolioDataBank2.BorrowerRegion);
[CountsSector2, BinsSector2] = histcounts(LoanPortfolioDataBank2.BorrowerSector);

figure
tiledlayout(2,1)
nexttile
barh(categorical(BinsRegion1), [CountsRegion1; CountsRegion2]);
xlabel('Loans')
ylabel('Regions')
title('Distribution of Regions')
legend({'Bank 1', 'Bank 2'},'Location','best')
nexttile
barh(categorical(BinsSector1), [CountsSector1; CountsSector2]);
xlabel('Loans')
ylabel('Sectors')
title('Distribution of Sectors')
legend({'Bank 1', 'Bank 2'},'Location','best')

Bank 1 is heavily invested in fossil fuel projects (primarily oil) and Bank 2 is invested in green energy
projects (primarily hydro). Regarding the distribution of projects across geographies, both banks are
similar, with a larger number of projects in developing regions like China, India, and Africa.

4 Corporate Credit Risk Simulations for Portfolios

4-236

Create Valuation Framework for Loan Contracts Subject to Climate Policy Shocks

Using the same notation as in Monsaterolo [5 on page 4-247], consider a bank i endowed with a
portfolio of investments in a set of projects through loan contracts. Each loan is represented by a
distinct value j. The goal is to carry out a valuation of this loan portfolio that accounts for climate
policy shocks. The methodology assumes an underlying structural model that is similar to the Merton
model (see mertonmodel). The valuation model includes three time steps:
t0, t*, and T j , with t0 < t* < T j . Time step t0 denotes the time at which the valuation is carried out, t*
denotes the time at which the climate policy shock potentially occurs, and T j denotes the maturity of
the loan j.

The valuation of bank i's loan portfolio is written as

Ai t0 = ∑
j

Ai, j t0, T j .

Consider an approach based on the expected value of the loan

Ai, j t0, T j = p j t0, T j r jFi, j + 1− p j t0, T j Fi, j = Fi, j− Fi, j 1− r j p j t0, T j ,

where Fi, j is the face value of the loan, r j is the recovery rate on the loan contract, and p j t0, T j is the
probability, based on the information available at time t0 that the borrower, j, defaults on the loan at
maturity T j.

Therefore, the expected value of the loan is the face value of the loan Fi, j minus the reserves or
provisions that need to be set aside by the bank for that loan Fi, j 1− r j p j t0, T j .

At time t* the occurrence of a climate policy shock implies that the economy switches from a
business-as-usual scenario characterized by no climate policy (B) to scenario P, where the market
shares of some economic sectors are affected. This change in default probability implies a
proportional change in the expected value of the loan

ΔAi, j t0, T j, P = − Fi, j 1− r j Δp j P ,

where Δp j P denotes the difference of the default probability going from scenario B to P.

This change is the negative of the change in provisions for the loan. That is, if the value goes down, it
is due to an increase in provisions driven by the change in probability.

Assume that the policy shock impacts the borrower's balance sheet, and thus the expected value of
the loan. We define a market share shock, uS, R P, M, t* , as

uS, R P, M, t* =
mS, R P, M, t* −mS, R B, M, t*

mS, R B, M, t* .

Assume that a relative change in the market share of borrower j's sector S within the geographic
region R, denoted by uS, R P, M, t* , implies a proportional relative change in j's profitability. Also,
because the net worth is the integral of profits over one period of time, the relative change in net
worth and profit coincide. Therefore, it is equivalent to assume that a relative change in net worth is
proportional to the relative shock in market share

ΔE j
E j

= χuS, R P, M, t* ,

 Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios

4-237

where χ denotes the elasticity of profitability with respect to market share. Monsaterolo [5 on page 4-
247] assumes a value of χconstant and equal to 1 (typical empirical values range from 0.2 and 0.6).

Another assumption by Monsaterolo [5 on page 4-247] is that the probability distribution p η j of the
shocks on the borrower's asset side follows a uniform distribution with support δand mean μ, for a
given model M, region, and sector. Therefore, the change in default probability is expressed as

ΔP =
θ j P − θ j B

δ = −
E j
δ χuS, R P, M, t* .

The change in expected value of the loan, conditional to a change from scenario B to scenario P
becomes:

ΔAi, j = Fi, j 1− r j
E j
δ χuS, R P, M, t* .

Summing the projects j in the portfolio, you obtain the total change in loan value:

∑
j

ΔAi, j t0, T j, P = ∑
j

Fi, j 1− r j
E j
δ χuS, R P, M, t* .

This example computes the change in value for one loan. By default, the 12th row of the data set is
selected, which is an oil project in the United States for Bank 1. you can choose another loan by using
the Loan slider. You can also select a different ClimateScenario from the three available scenarios.
By default, the Below 2°C Delayed scenario is selected.

Loan = ;

ClimateScenario = ;
Geography = string(ClimateLoanPortfolioData{Loan,'BorrowerRegion'});
Sector = string(ClimateLoanPortfolioData{Loan,'BorrowerSector'});
LoanID = ClimateLoanPortfolioData{Loan,'LoanID'};
FaceValueOfLoan = ClimateLoanPortfolioData{Loan,"FaceValue"};
SectorFullName = "Primary Energy | " + Sector;

Compute the value of the selected Loan.

disp(ClimateLoanPortfolioData(Loan,:));

 LoanID BorrowerCreditRating LoanType Bank InterestRate InterestType BorrowerID BorrowerRegion BorrowerSector OriginationDate MaturityDate FaceValue FairValue
 ___________ ____________________ ________ _____ ____________ ____________ ______________ ______________ ______________ _______________ ____________ _________ __________

 "786801JSP" A2 Term Bank1 0.028 Fixed "SI14476197XI" United States Oil 31-Oct-2019 30-Nov-2031 6e+06 5.7948e+06

You can modify the recovery rate r j, as well as, χ. By default, r j = 0 . 4 and χ = 0 . 3. A normal range
of χ is from 0.2 to 0.6.

Following the Monsaterolo [5 on page 4-247] discussion in appendix I, set
Ej
δ = 1 to correspond to the

assumption that the magnitude of the initial net worth and width of the distribution of the
idiosyncratic shocks are comparable. You can adjust the EjDeltaRatio value using the slider.

RecoveryRate = ;

Chi = ;

4 Corporate Credit Risk Simulations for Portfolios

4-238

EjDeltaRatio = ;

TargetYear = ;

GeographyData = MarketShareData(MarketShareData.CL_GEOGRAPHY == Geography, :);
MarketShare = GeographyData{GeographyData.CL_VARIABLE == SectorFullName, 4:7} ./ GeographyData{GeographyData.CL_VARIABLE == BaseSector, 4:7} * 100;
Shocks = (MarketShare(:,2:4) - MarketShare(:,1))./MarketShare(:,1)*100;

ChangeInDefaultProbability = -EjDeltaRatio.*Chi.*(Shocks(:,ClimateScenario)/100);
ChangeInValue = -FaceValueOfLoan.*(1-RecoveryRate).*ChangeInDefaultProbability;

The change in value of a loan is directly translated into a change in the reserves that need to be
allocated by the bank for that particular loan.

disp("The change in value of the loan in the selected climate scenario and target year = $" + num2str(ChangeInValue(TargetYear)));

The change in value of the loan in the selected climate scenario and target year = $-155161.6488

% Plot change in value of loan over time superimposed over corresponding
% shock.
f = figure;
ax = axes(f);
yyaxis(ax, 'left')
plot(Years, ChangeInValue, 'LineWidth', 2)
xlabel('Years');
ylabel('US Dollars ($)')
yyaxis(ax, 'right')
plot(Years, Shocks(:, ClimateScenario), 'LineWidth', 2);
ylabel('Market Share Shocks (%)');
title('Change in Loan Value');
grid on

 Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios

4-239

Compute Change in Value of Entire Portfolio of Loans

For each of the two banks, Bank 1 and Bank 2, compute the total change in loan value of the entire
portfolio of loans for each climate scenario. You can do this by summing up the changes in values of
each individual loan.

% For each of the region and sector pairs, compute the market shocks for
% all scenarios and store these values.
MarketShocks = struct();

Bank1Combos = unique(table(LoanPortfolioDataBank1.BorrowerRegion, LoanPortfolioDataBank1.BorrowerSector,'VariableNames',{'Region','Sector'}),'rows');
Bank2Combos = unique(table(LoanPortfolioDataBank2.BorrowerRegion, LoanPortfolioDataBank2.BorrowerSector,'VariableNames',{'Region','Sector'}),'rows');
TotalCombos = union(Bank1Combos, Bank2Combos);

for i = 1:height(TotalCombos)
 Region = string(TotalCombos.Region(i));
 Sector = string(TotalCombos.Sector(i));
 SectorFullName = "Primary Energy | " + Sector;
 GeographyData = MarketShareData(MarketShareData.CL_GEOGRAPHY == Region, :);
 MarketShare = GeographyData{GeographyData.CL_VARIABLE == SectorFullName, 4:7} ./ GeographyData{GeographyData.CL_VARIABLE == BaseSector, 4:7} * 100;
 Shocks = (MarketShare(:,2:4) - MarketShare(:,1))./MarketShare(:,1)*100;
 if Sector == "Renewables (wind&solar)"
 SectorSplit = strsplit(Sector);
 Sector = SectorSplit(1);
 end
 MarketShocks.(strrep(Region,' ','')).(strrep(Sector,' ','')) = Shocks;
end

4 Corporate Credit Risk Simulations for Portfolios

4-240

Create a table containing the values of each loan, for each bank, for each climate scenario, and for
each target year. Use the same model parameter values for simplicity. However, you can change these
parameters for different issuers.

RecoveryRate = ;

Chi = ;

EjDeltaRatio = ;

LoanValues = ClimateLoanPortfolioData;
LoanValues = removevars(LoanValues,{'LoanType','BorrowerCreditRating','InterestRate','InterestType','BorrowerID','OriginationDate','MaturityDate','FairValue'});
LoanValues = repelem(LoanValues, 7, 1);
LoanValues.Year = repmat([2020; 2025; 2030; 2035; 2040; 2045; 2050], 1000, 1);
LoanValues.Below2CImmediate = zeros(7000, 1);
LoanValues.Below2CDelayed = zeros(7000, 1);
LoanValues.NetZero2050 = zeros(7000, 1);

for i = 1:7:height(LoanValues)
 Region = string(LoanValues.BorrowerRegion(i));
 Sector = string(LoanValues.BorrowerSector(i));
 if Sector == "Renewables (wind&solar)"
 SectorSplit = strsplit(Sector);
 Sector = SectorSplit(1);
 end
 Value = LoanValues.FaceValue(i);
 ChangeInValue = Value.*(1-RecoveryRate).*EjDeltaRatio.*Chi.*(MarketShocks.(strrep(Region,' ','')).(strrep(Sector,' ',''))/100);
 LoanValues{i:i+6, {'Below2CImmediate','Below2CDelayed','NetZero2050'}} = ChangeInValue;
end

Compare the change in portfolio values of the two banks, for each climate scenario, and for all target
years.

TPVBank1 = zeros(length(Years),3);
TPVBank2 = zeros(length(Years),3);
for i = 1:length(Years)
 TBank1 = LoanValues((LoanValues.Bank == "Bank1") & (LoanValues.Year == Years(i)), :);
 TBank2 = LoanValues((LoanValues.Bank == "Bank2") & (LoanValues.Year == Years(i)), :);
 TPVBank1(i,:) = sum(TBank1{:,7:9});
 TPVBank2(i,:) = sum(TBank2{:,7:9});
end

figure;
t = tiledlayout(3,1);
nexttile
plot(Years, [TPVBank1(:,1),TPVBank2(:,1)], 'LineWidth', 2)
xlabel('Year');
ylabel('US Dollar ($)')
title('Below 2C Immediate')
grid on
nexttile
plot(Years, [TPVBank1(:,2),TPVBank2(:,2)], 'LineWidth', 2)
xlabel('Year');
ylabel('US Dollar ($)')
title('Below 2C Delayed')
grid on
nexttile

 Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios

4-241

plot(Years, [TPVBank1(:,3),TPVBank2(:,3)], 'LineWidth', 2)
xlabel('Year');
ylabel('US Dollar ($)')
title('Net-Zero 2050')
leg = legend({'Bank1','Bank2'});
leg.Layout.Tile = 'south';
grid on
title(t,'Change in Portfolio Value');

Considering that Bank 1 is weighted towards fossil fuels and Bank 2 is weighted toward green energy,
the portfolio value of Bank 1 decreases over time, while the portfolio value of Bank 2 increases over
time for each climate scenario.

From a reserves standpoint, the provisions of Bank 2 steadily increase over time and those of Bank 1
decrease over time.

Compute Distribution of Changes in Loan Portfolio Values

The Compute Change in Value of Entire Portfolio of Loans on page 4-240 section illustrated the
aggregate changes to the portfolio value. This section focuses on the entire distribution of value
changes for particular climate scenarios.

Select the bank, climate scenario, and target year to compute the quartiles of the change in portfolio
values.

4 Corporate Credit Risk Simulations for Portfolios

4-242

Bank = ;

ClimateScenario = ;

TargetYear = ;

NewTable = LoanValues((LoanValues.Bank == Bank) & (LoanValues.Year == str2double(TargetYear)), :);

Plot the histogram of the change in loan values for the selected bank and climate scenario. Based on
the default selection of Bank 1 under the Below 2C Delayed climate scenario for the target year 2050,
you see that the distribution of the change in loan values has a long right tail and most of the
frequency is below zero. This change occurs because Bank 1 has more projects focusing on fossil
fuels, which lose market share, and thus value over time under the Below 2C Delayed climate
scenario.

f = figure;
h = histogram(NewTable{:,6+ClimateScenario});
h.Parent.XLabel.String = 'Change in Loan Value';
h.Parent.YLabel.String = 'Counts';
h.Parent.Title.String = 'Histogram of Change in Loan Values';

Compute and plot the quartiles of the changes in portfolio values over time for the selected bank.

PLV = zeros(length(Years),3);
for i = 1:length(Years)
 t = LoanValues((LoanValues.Bank == Bank) & (LoanValues.Year == Years(i)), :);
 PLV(i,1) = prctile(t{:,6+ClimateScenario}, 25);

 Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios

4-243

 PLV(i,2) = prctile(t{:,6+ClimateScenario}, 50);
 PLV(i,3) = prctile(t{:,6+ClimateScenario}, 75);
end

figure;
plot(Years, PLV, 'LineWidth', 2)
xlabel('Years');
ylabel('Change in Portfolio Value ($)')
title('Quartiles of Change in Portfolio Value')
legend({'c = 25%','c = 50%','c = 75%'})
grid on

To compute some standard metrics of risk such as the Value-at-Risk (VaR) of the portfolio, you need to
know the joint probaility distribution of the idiosyncratic shocks and the probability of occurrence of
climate policy shocks. In the absence of these estimations, Monsaterolo [5 on page 4-247] defines a
project-level climate VaR as the value such that, conditional to the same climate policy shock for all n
loans, the fraction of loans leading to losses higher than the VaR equals the confidence level c

| j |ΔAi, j t0, T j, P, B ≥ VaR | / n = c.

This project-level climate VaR metric is a percentile of the distribution of value changes for the
portfolio.

ConfidenceLevel = ;
ProjVaR = -prctile(NewTable{:,6+ClimateScenario}, ConfidenceLevel);
disp("The project-level climate VaR at the " + ConfidenceLevel + "% confidence level = $" + num2str(ProjVaR));

4 Corporate Credit Risk Simulations for Portfolios

4-244

The project-level climate VaR at the 1% confidence level = $1453621.915

Plot a graph of distributions of changes in loan values for each target year and for a given scenario
and bank. Use the kernel smoothing function estimate for univariate data. The estimate is based on a
normal kernel function and is evaluated at equally spaced points that cover the range of the data.

[F1Bank1, Xi1Bank1] = ksdensity(TBank1.Below2CImmediate);
[F1Bank2, Xi1Bank2] = ksdensity(TBank2.Below2CImmediate);

[F2Bank1, Xi2Bank1] = ksdensity(TBank1.Below2CDelayed);
[F2Bank2, Xi2Bank2] = ksdensity(TBank2.Below2CDelayed);

[F3Bank1, Xi3Bank1] = ksdensity(TBank1.NetZero2050);
[F3Bank2, Xi3Bank2] = ksdensity(TBank2.NetZero2050);

figure;
t = tiledlayout(3,1);
ax1 = nexttile;
plot(Xi1Bank1, F1Bank1, 'LineWidth', 1.5)
hold on
plot(Xi1Bank2, F1Bank2, 'LineWidth', 1.5)
ax1.Title.String = "Below 2C Immediate";
xlabel('US Dollar ($)')
ylabel('pdf')
grid on
ax2 = nexttile;
plot(Xi2Bank1, F2Bank1, 'LineWidth', 1.5)
hold on
plot(Xi2Bank2, F2Bank2, 'LineWidth', 1.5)
ax2.Title.String = "Below 2C Delayed";
xlabel('US Dollar ($)')
ylabel('pdf')
grid on
ax3 = nexttile;
plot(Xi3Bank1, F3Bank1, 'LineWidth', 1.5)
hold on
plot(Xi3Bank2, F3Bank2, 'LineWidth', 1.5)
leg = legend("Bank 1","Bank 2");
leg.Layout.Tile = 'south';
ax3.Title.String = "Net-Zero 2050";
xlabel('US Dollar ($)')
ylabel('pdf')
grid on
title(t,'Distribution of Changes in Loan Values');

 Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios

4-245

Conclusion

Following the work Monsaterolo [5 on page 4-247], this example demonstrates how the market shares
of different energy sectors in different geographies change under specific climate scenarios. The
market share changes are converted into market share shocks and you can use these shocks to
compute the change in value of a portfolio of loans. Using this approach, you can model additional
climate scenarios and then apply the Monsaterolo [5 on page 4-247] methodology. In addition, you
can use this approach to value a portfolio of other assets such as bonds.

References

[1] Bank of Canada Climate Transition Scenario Data and pilot project available at https://
www.bankofcanada.ca/2022/01/climate-transition-scenario-data/ and https://
www.bankofcanada.ca/wp-content/uploads/2021/11/BoC-OSFI-Using-Scenario-Analysis-to-Assess-
Climate-Transition-Risk.pdf.

[2] Climate IAM Explorer available at https://github.com/mathworks/Climate-IAM-Explorer.

[3] EPPA Model Structure available at https://globalchange.mit.edu/research/research-tools/eppa and
https://globalchange.mit.edu/research/research-tools/human-system-model.

4 Corporate Credit Risk Simulations for Portfolios

4-246

https://www.bankofcanada.ca/2022/01/climate-transition-scenario-data/
https://www.bankofcanada.ca/2022/01/climate-transition-scenario-data/
https://www.bankofcanada.ca/wp-content/uploads/2021/11/BoC-OSFI-Using-Scenario-Analysis-to-Assess-Climate-Transition-Risk.pdf
https://www.bankofcanada.ca/wp-content/uploads/2021/11/BoC-OSFI-Using-Scenario-Analysis-to-Assess-Climate-Transition-Risk.pdf
https://www.bankofcanada.ca/wp-content/uploads/2021/11/BoC-OSFI-Using-Scenario-Analysis-to-Assess-Climate-Transition-Risk.pdf
https://github.com/mathworks/Climate-IAM-Explorer
https://globalchange.mit.edu/research/research-tools/eppa
https://globalchange.mit.edu/research/research-tools/human-system-model

[4] LIMITS information available at https://tntcat.iiasa.ac.at/LIMITSDB/dsd?
Action=htmlpage&page=about.

[5] Monasterolo, I., Zheng, Jiani I., and S. Battiston. "Climate Transition Risk and Development
Finance: An Assessment of China's Overseas Energy Investments Portfolio." China and the World
Economy. 26, 6(116–142), 2018. Available at https://doi.org/10.1111/cwe.12264.

See Also

Related Examples
• “Assess Physical and Transition Risk for Mortgages” on page 4-248

 Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios

4-247

https://tntcat.iiasa.ac.at/LIMITSDB/dsd?Action=htmlpage&page=about.
https://tntcat.iiasa.ac.at/LIMITSDB/dsd?Action=htmlpage&page=about.
https://doi.org/10.1111/cwe.12264

Assess Physical and Transition Risk for Mortgages

This example shows an approach to assess physical and transition risks for mortgages. Physical and
transition risks are the two main categories of climate change risks. Physical risks for mortgages
relate to natural events such as flooding and wildfires. Transition risks for mortgages derive from
policy changes related to the transition away from fossil fuels. For example, a mortgage transition
risk is a change in energy-efficiency standards for buildings.

Multiple institutions, including central banks, offer climate scenarios that include projections on
emissions and economic variables. The economic variables include unemployment rate and gross
domestic product (GDP) [1 on page 4-264], [2 on page 4-265], [4 on page 4-265]. Projections of
physical variables are also available from meteorological agencies about changes in precipitation or
sea-level rise [7 on page 4-265], [8 on page 4-265]. In some countries, central bank estimates project
energy-efficiency upgrade costs [9 on page 4-265]. This example brings together economic variables,
physical variables, and transition costs to assess the impact of physical and transition risk on
mortgage loan provisions and capital requirements.

The workflow in this example is:

1 “”Define climate scenarios on page 4-249: In this example, the data is simulated, but captures
trends similar to those in real climate scenario data sets. The economic variables in this example
are residential and commercial real estate price indices. The only physical variable is
precipitation change. There are three climate scenarios: "Early Action," "Delayed Action," and
"No Action."

2 “”Compute baseline loan-to-value (LTV) ratio projections on page 4-252: The loan balance
projections are straightforward for mortgages. To project the property value, this example uses
the real estate price indices. This example uses the resulting loan-to-value (LTV) ratio as a
reference to compare against the LTV ratio adjusted for physical and transition risk.

3 “”Specfiy physical risk on page 4-253: This example proposes a simple adjustment to the baseline
house price index (HPI) scenario using physical variables and precipitation changes to adust the
property value for flood risk.

4 “”Specify transition risk on page 4-255: This example makes adjustments to the property value
based on its current energy efficiency rating and the estimated energy-efficiency transition costs
necessary to reach a higher rating.

5 Adjust LTV ratio projections on page 4-257: With the property value adjusted for physical and
transition risk, an adjusted LTV ratio is projected.

6 Estimate provisions and capital on page 4-258: This example assumes a probability of default
(PD) model is available that includes LTV as a predictor. This model is the basis for the provisions
and capital requirements computations. Use the PD model to compute the lifetime PD and the
lifetime ECL, or provisions. Also use the PD model for capital requirements calculations in the
form of risk-weighted assets (RWA).

Computational approaches to measure mortgage physical and transition risks require a combination
of data from multiple sources, qualitative assessments, and expert judgement. The time horizon for
this type of analysis is decades. There is no data to assess sensitivities to risk drivers because the
climate scenarios have not yet been realized and not all the feedback loops and impacts are
understood. Multiple models and assumptions must be brought together with qualitative adjustments
and simplifications, and interdisciplinary collaboration is important. This example points out the
places where different data sources, models, and qualitative adjustments intersect.

4 Corporate Credit Risk Simulations for Portfolios

4-248

This example is extensible. You can apply additional economic variables to the analysis, such as
unemployment rate, as long as the PD model also includes these variables. You can also add an LGD
model to the analysis, as long as it is sensitive to the variables used in this analysis (for example, age
of the loan, LTV ratio, and the economic variables). Multiple risks are explicitly excluded from this
example, for example, exposure to wild fires or coastal flooding due to sea-level rise. You can use a
similar approach to incorporate these physical risks into an analysis. Also, this example analyzes only
an existing mortgage, and the effects of climate impact towards the end of the loan are not large
because the credit risk is much smaller in the late years of the loan. You can complement this loan
analysis with hypothetical new loans starting in the future. The loan analysis of this example focuses
only on property value, yet additional risk considerations can include insurance considerations. For
example, insurance considerations might be the rising costs of insurance due to more severe climate
events or the fact that a property may become uninsurable. Therefore, the results of this example are
limited and do not show a comprehensive assessment of the impact of climate change on mortgage
loans.

Define Climate Scenarios

This example uses simulated data with the following three different climate scenarios:

• "Early Action" — The world takes immediate action and climate policies are put into effect. There
may be an initial impact on the economy, but this scenario leads to the best conditions in the long
run.

• "Delayed Action" — No significant policy changes take place until 2030. The climate policies at
that point are more aggressive, hence initially there is a more important impact on the economy,
but the economic conditions improve later on.

• "No Action" — The assumption is that no climate policies are in effect. Initially, there are less
economic disruptions because there are no policy changes, but the effects of climate change have
an impact on the economy in the long run. Also, the overall state of the economy is worse in this
scenario than the other two scenarios by the end of the simulated time horizon. Arguably, the
worst conditions in the "No Action" scenario would take place after year 2050 when the simulated
scenarios end. These trends are similar to those in real climate scenario data sets.

The economic variables in this example are residential and commercial real estate price indices.
These variables are available in some real climate scenario data sets. An alternative for the economic
variables is a general price index, which is commonly available in climate scenario data.

Load the simulated data and generate plots for the residential and commercial price indices. These
projected indices already incorporate climate impact in the aggregate level, showing overall trends in
the average market value of the properties. Because the mortgage physical and transition risks are
incorporated in the Compute LTV Projections Adjusted for Physical and Transition Risk on page 4-257
section, there are property-specific adjustmets to these property value projections.

load SimulatedClimateScenarioData.mat
ScenarioLabels = ["Early Action" "Delayed Action" "No Action"];

figure
t = tiledlayout(2,1);

nexttile
PropertyType = "Residential";
VarName = strcat("RealEstate",PropertyType);
hold on
for s = ScenarioLabels
 Ind = EconomicVariables.Scenario == s;

 Assess Physical and Transition Risk for Mortgages

4-249

 plot(EconomicVariables.Year(Ind),EconomicVariables.(VarName)(Ind))
end
hold off
title(PropertyType)
xlabel('Year')
ylabel('Index')
legend(ScenarioLabels,'Location','northwest')
grid on

nexttile
PropertyType = "Commercial";
VarName = strcat("RealEstate",PropertyType);
hold on
for s = ScenarioLabels
 Ind = EconomicVariables.Scenario == s;
 plot(EconomicVariables.Year(Ind),EconomicVariables.(VarName)(Ind))
end
hold off
title(PropertyType)
xlabel('Year')
ylabel('Index')
legend(ScenarioLabels,'Location','northwest')
grid on

title(t,"Real Estate Price Indices")

4 Corporate Credit Risk Simulations for Portfolios

4-250

The simulated data also includes physical variables. In this example, there is information on
precipitation change. The periodicity of these projections is not the same as the economic variables,
so you must interpolate the data.

The increase in precipitation is worse for the "No Action" scenario. Properties with higher flood risk
are affected by the precipitation changes more than properties with low flood risk. You can use this
data for the physical risk adjustments to the property value projections.

PhysicalVariablesYearly = EconomicVariables(:,["Year" "Scenario"]);
PhysicalVariablesYearly.PrecipitationChange = zeros(height(PhysicalVariablesYearly),1);
for s = ScenarioLabels
 IndYearly = PhysicalVariablesYearly.Scenario == s;
 IndOrig = PhysicalVariables.Scenario == s;
 PhysicalVariablesYearly.PrecipitationChange(IndYearly) = interp1(PhysicalVariables.Year(IndOrig),PhysicalVariables.PrecipitationChange(IndOrig),PhysicalVariablesYearly.Year(IndYearly));
end

figure;
hold on
for s = ScenarioLabels
 Ind = PhysicalVariablesYearly.Scenario == s;
 plot(PhysicalVariablesYearly.Year(Ind),PhysicalVariablesYearly.PrecipitationChange(Ind))
end
hold off
title('Precipitation Change')
xlabel('Year')
ylabel('Change (mm/day)')
legend(ScenarioLabels,'Location','northwest')
grid on

 Assess Physical and Transition Risk for Mortgages

4-251

Compute Baseline Loan-to-Value Projections

The loan-to-value (LTV) ratio is the main link between the scenario variables and the credit analysis.
You can compare a baseline projection against projections that include the effects of the physical and
transition risk.

Start by choosing a climate scenario.

ScenarioChoice = ;
ScenarioInd = EconomicVariables.Scenario == ScenarioChoice;

For the LTV projections, project the mortgage balance and the property value separately, and then
work with yearly projections using 2020 as the current year.

To project the mortgage balance, start from the current loan balance and use the age, term, and
loan's interest rate to project the balance forward, using standard annuity techniques. Define the
exposure at the end of the year as the scheduled payment amount plus the remaining balance after
the payment.

CurrentYear = 2020; % Assume end of year
Age = 12; % Assume loan is already this age, next end of year will be age + 1
Term = 30; % Original mortgage term
Rate = 0.0575; % Assume fixed rate
CurrentBalance = 90000; % Current mortgage balance at end of current year

[PrincipalPayment,InterestPayment,RemainingBalance] = amortize(Rate,(Term-Age),CurrentBalance);

4 Corporate Credit Risk Simulations for Portfolios

4-252

Projections = table;
Projections.Year = (CurrentYear+1:CurrentYear+(Term-Age))';
Projections.Age = (Age+1:Term)';
% Exposure at the end of next year is the expected payment amount plus remaining
% balance after the payment
Projections.LoanBalance = PrincipalPayment'+InterestPayment'+RemainingBalance';

For the property value, start out with the current property value and use the corresponding real
estate price index (either residential or commercial) to project the value into the future. Different
climate scenarios lead to different projected values.

You can compute the LTV ratio projections from the loan balance and the property values in each time
period.

CurrentValue = 150000;

PropertyType = ;

PropertyTypeVarName = strcat("RealEstate",PropertyType);
Projections = join(Projections,EconomicVariables(ScenarioInd,["Year" PropertyTypeVarName]));
Projections.Properties.VariableNames{end} = 'PriceIndex';
Projections.ValueReference = CurrentValue*Projections.PriceIndex/100;
Projections.LTVReference = Projections.LoanBalance./Projections.ValueReference;
disp(Projections)

 Year Age LoanBalance PriceIndex ValueReference LTVReference
 ____ ___ ___________ __________ ______________ ____________

 2021 13 95175 101.2 1.518e+05 0.62698
 2022 14 92022 102.4 1.536e+05 0.5991
 2023 15 88687 103.6 1.554e+05 0.5707
 2024 16 85161 104.8 1.572e+05 0.54174
 2025 17 81432 106 1.59e+05 0.51215
 2026 18 77489 107.8 1.617e+05 0.47921
 2027 19 73319 109.6 1.644e+05 0.44598
 2028 20 68909 111.4 1.671e+05 0.41238
 2029 21 64245 113.2 1.698e+05 0.37836
 2030 22 59313 115 1.725e+05 0.34385
 2031 23 54098 116.8 1.752e+05 0.30878
 2032 24 48583 118.6 1.779e+05 0.27309
 2033 25 42751 120.4 1.806e+05 0.23672
 2034 26 36583 122.2 1.833e+05 0.19958
 2035 27 30061 124 1.86e+05 0.16162
 2036 28 23164 126.2 1.893e+05 0.12237
 2037 29 15870 128.4 1.926e+05 0.082399
 2038 30 8156.7 130.6 1.959e+05 0.041637

This result is a reference LTV ratio for the loan, for the selected climate scenario. The Physical Risk
for Floods on page 4-253 and Transition Risk for Energy Efficiency Upgrades on page 4-255 sections
describe the additional impact on the property value, specific to each mortgage.

Specify Physical Risk for Floods

To incorporate risk of flooding, adjust the price index using property-specific flood risk information
from the property with a sensitivity parameter for precipitation change. Assume there are known
flood risk ratings for the properties. For properties in a flood area, reduce the baseline property value
projections as the projected precipitation increases.

 Assess Physical and Transition Risk for Mortgages

4-253

This simple approach that requires qualitative views to determine the sensitivity parameters. You
could incorpoate a more sophisticated model where the projected drop in property value includes
additional information from the property. You might distinguish additional types of flood risk. For
example, precipitation changes are significant for flash-flooding risk. However, the value of coastal
properties is sensitive to sea-level rise, which is a physical variable often projected with climate
scenario data. Interdisciplinary collaboration can greatly enhance the granularity and quality of these
adjustments.

Calibrate the sensitivity parameters. Then, display the impact of the flood risk adjustment on the
property value at the end of the mortgage term.

Projections = join(Projections,PhysicalVariablesYearly(ScenarioInd,["Year" "PrecipitationChange"]));

FloodRisk = ;
switch FloodRisk
 case "High"
 PrecipitationSens = -100;
 case "Medium"
 PrecipitationSens = -50;
 case "Low"
 PrecipitationSens = 25;
end

Projections.PriceIndexPhysical = Projections.PriceIndex + PrecipitationSens*Projections.PrecipitationChange;
Projections.ValuePhysical = CurrentValue*Projections.PriceIndexPhysical/100;
Projections.LTVPhysical = Projections.LoanBalance./Projections.ValuePhysical;

figure
t = tiledlayout(2,1);
nexttile
plot(Projections.Year,Projections.ValuePhysical,'-',Projections.Year,Projections.ValueReference,':')
title('Property Value')
legend('Adjusted','Reference','Location','northwest')
nexttile
plot(Projections.Year,Projections.LTVPhysical,'-',Projections.Year,Projections.LTVReference,':')
title('LTV')
legend('Adjusted','Reference','Location','southwest')
title(t,strcat("Adjustment for Physical Risk, ",ScenarioChoice))

4 Corporate Credit Risk Simulations for Portfolios

4-254

fprintf('Value adjustment due to physical risk in the last year of the mortgage (%d): %4.2f%%',Projections.Year(end),100*(Projections.ValuePhysical(end)/Projections.ValueReference(end)-1))

Value adjustment due to physical risk in the last year of the mortgage (2038): -4.13%

Even though the property value drop is noticeable at the end of the mortgage term, the effect on the
LTV ratio is small. This effect is because mortgages are amortizing loans and the balance and the
corresponding LTV ratio are small toward the maturity of the loan. However, if a future loan is
assessed, the impact on LTV ratio would be more significant near the origination of the loan, resulting
in a different impact on the credit analysis.

Specify Transition Risk for Energy Efficiency Upgrades

Changing regulations for energy efficiency of properties represent a transition risk. For example, new
regulations may require a minimum energy efficiency rating to rent a property. An energy efficiency
rating itself may be required to sell a property in order to inform prospective buyers and lenders
about potential maintenance and upgrade costs. New energy efficiency regulations affect the market
value of a property.

This example assumes there are known energy efficiency ratings for the properties. Examples of
these efficiency ratings are Energy Perfomance Certificates [9 on page 4-265] or Energy Star [10 on
page 4-265]. This example uses a simulated scale with five levels: "Low", "Medium Low", "Medium",
"Medium High", and "High":

EnergyRatingScale = string(EnergyEfficiencyUpgradeCost.Properties.VariableNames);
disp(EnergyRatingScale)

 "High" "Medium High" "Medium" "Medium Low" "Low"

 Assess Physical and Transition Risk for Mortgages

4-255

Assume that there are estimates of the cost to upgrade to a higher rating. The estimates in this
example are simulated, but an example of these kinds of estimates can be found in the CBES
Guidance document [3 on page 4-265].

disp(EnergyEfficiencyUpgradeCost)

 High Medium High Medium Medium Low Low
 _____ ___________ ______ __________ ___

 High 0 NaN NaN NaN NaN
 Medium High 30000 0 NaN NaN NaN
 Medium 40000 20000 0 NaN NaN
 Medium Low 50000 30000 12000 0 NaN
 Low 70000 50000 35000 25000 0

To enhance this example, you could replace these estimates with a more granular model, where
different characteristics of the property can help predict the upgrade costs.

Assume each property has a current rating and that there is a maximum attainable rating.

CurrentEER = ;

MaxEER = ; % Cannot be worse than current rating

TotalEnergyUpgradeCost = EnergyEfficiencyUpgradeCost{CurrentEER,MaxEER}

TotalEnergyUpgradeCost = 30000

The estimated cost is an estimated amount as of the current year. In the "Early Action" climate
scenario, deduct this cost from the property value immediately, where the rationale is that this cost
would be deducted from the property price when the property is sold. Then assume improvements
are made in the following years until the property reaches its maximum energy efficiency rating. The
initial drop in value gradually disappears and the adjusted projected property value matches the
baseline value at the end of the loan. For the "Delayed Action" climate scenario, the same approach
applies except the drop in value occurs in 2030 and the subsequent investments occur in a shorter
time span. The yearly costs are adjusted by the price index of the corresponding scenario. In the "No
Action" climate scenario, the upgrades never take place and, therefore, there is no transition risk
impact.

Projections.ValueTransition = adjustValueProjections(Projections.PriceIndex,CurrentValue,TotalEnergyUpgradeCost,ScenarioChoice);
Projections.LTVTransition = Projections.LoanBalance./Projections.ValueTransition;

figure
t = tiledlayout(2,1);
nexttile
plot(Projections.Year,Projections.ValueTransition,'-',Projections.Year,Projections.ValueReference,':')
title('Property Value')
legend('Adjusted','Reference','Location','northwest')
nexttile
plot(Projections.Year,Projections.LTVTransition,'-',Projections.Year,Projections.LTVReference,':')
title('LTV')
legend('Adjusted','Reference','Location','southwest')
title(t,strcat("Adjustment for Transition Risk, ",ScenarioChoice))

4 Corporate Credit Risk Simulations for Portfolios

4-256

Different implementations are possible to adjust the property value with the transition costs. It is also
possible to include disposable income in the analysis to adjust the disposable income by the
investments required each year to enhance the efficiency of the property. In that case, the credit
models in this analysis would need to include disposable income as a predictor to capture the effect of
the projections for provisions or capital. You can add other types of transition risk to this approach as
long as the impact of these risks can be captured in the projected values of the variables included in
the credit models.

Compute LTV Projections Adjusted for Physical and Transition Risk

To adjust LTV projections for both physical and transition risks, combine physical and transition risk
adjustments from the Physical Risk for Floods on page 4-253 and Transition Risk for Energy
Efficiency Upgrades on page 4-255 sections.

Projections.ValuePhysicalTransition = adjustValueProjections(Projections.PriceIndexPhysical,CurrentValue,TotalEnergyUpgradeCost,ScenarioChoice);
Projections.LTVPhysicalTransition = Projections.LoanBalance./Projections.ValuePhysicalTransition;

figure
t = tiledlayout(2,1);
nexttile
plot(Projections.Year,Projections.ValuePhysicalTransition,'-',Projections.Year,Projections.ValueReference,':')
title('Property Value')
legend('Adjusted','Reference','Location','northwest')
nexttile
plot(Projections.Year,Projections.LTVPhysicalTransition,'-',Projections.Year,Projections.LTVReference,':')
title('LTV')

 Assess Physical and Transition Risk for Mortgages

4-257

legend('Adjusted','Reference','Location','southwest')
title(t,strcat("Adjustment for Physical and Transition Risk, ",ScenarioChoice))

Estimate Provisions and Capital

To assess the impact of the physical and transition risk adjustments, use credit models that include
the LTV ratio as a predictor and then estimate the provisions and capital with and without the
adjustments.

This example uses a lifetime probability of default (PD) model (see fitLifetimePDModel) that
includes the LTV ratio and the age of the mortgage as predictors.

load SimulatedClimatePDModel.mat
disp(ClimatePDModel)

 Probit with properties:

 ModelID: "Probit"
 Description: "Simulated ad-hoc lifetime PD model for climate risk analysis of mortgages."
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "Age"
 LoanVars: "LTV"
 MacroVars: ""
 ResponseVar: "Default"

An ad-hoc model is fitted for this analysis, including the projected variables of interest, in this case
the LTV ratio. The training data is a historical data set that is representative of the current mortgage

4 Corporate Credit Risk Simulations for Portfolios

4-258

loan portfolio. Alternatively, you could use an existing PD model for a mortgage loan portfolio if it
includes the projected variables as predictors. You can create this type of PD model using
customLifetimePDModel. In this example, age is included because it is a common predictor
variable for credit models, especially for lifetime PD models in the context of lifetime expected credit
losses. You can compute lifetime expected credit loses (ECL) using portfolioECL. For more
information, see “Overview of Lifetime Probability of Default Models” on page 1-25.

You can also include other economic variables in this analysis. Climate scenarios typically include
other economic variables commonly included in risk models, such as the unemployment rate. You can
add these additional variables as long as the credit model uses these as predictors.

You can also include a loss given default (LGD) model (see fitLGDModel) in this analysis, provided it
includes some or all of the projected loan variables and economic variables as predictors. An
exposure-at-default (EAD) model (see fitEADModel) is not as relevant for mortgages because they
use a standard payment schedule.

Reformat the adjusted projections to use these projections with the predict function for the credit
model.

dataPredictAdjusted = Projections(:,{'Year' 'Age' 'LTVPhysicalTransition'});
dataPredictAdjusted.Properties.VariableNames{3} = 'LTV';
dataPredictAdjusted = addvars(dataPredictAdjusted,ones(height(dataPredictAdjusted),1),'NewVariableNames','ID','Before','Year');

dataPredictReference = dataPredictAdjusted;
dataPredictReference.LTV = Projections.LTVReference;

Calculate the yearly, conditional PD using predict.

PDAdjusted = predict(ClimatePDModel,dataPredictAdjusted);
PDReference = predict(ClimatePDModel,dataPredictReference);

figure;
bar(dataPredictAdjusted.Year,[PDAdjusted,PDReference])
title(strcat("Yearly (Conditional) PD, ",ScenarioChoice))
xlabel('Year')
ylabel('PD')
legend('Adjusted','Reference')
grid on

 Assess Physical and Transition Risk for Mortgages

4-259

The PD values decrease with age. In the early years (2022 to 2024), the difference between the
reference and adjusted projections are noticeable because they have an impact on the early PD
values. For climate risk, more adjustments to projections happen many years into the future, where
the PD values are smaller and have a decreasing the impact on downstream credit computations. One
such downstream computation is the yearly risk-weighted assets (RWA) value, which is equivalent to
the capital requirements. The computation of RWA follows Basel II and uses the asymptotic single
risk factor (ASRF) model (see asrf). In this example, the asrf function uses the conditional yearly
PD, LGD, and EAD values. If an LGD model is available, you can use its predictions here. For EAD, use
the projected loan balances.

LGD = 0.50;
EAD = Projections.LoanBalance;
MortgageAssetCorrelation = 0.15;

CapAdjusted = asrf(PDAdjusted,LGD,MortgageAssetCorrelation,'EAD',EAD);
RWAAdjusted = 12.5*CapAdjusted;

CapReference = asrf(PDReference,LGD,MortgageAssetCorrelation,'EAD',EAD);
RWAReference = 12.5 * CapReference;

figure;
bar(dataPredictAdjusted.Year,[RWAAdjusted,RWAReference])
title(strcat("Yearly Risk-Weighted Assets (RWA), ",ScenarioChoice))
xlabel('Year')
ylabel('RWA')
legend('Adjusted','Reference')
grid on

4 Corporate Credit Risk Simulations for Portfolios

4-260

The RWA value decreases with time because mortgages are amortizing loans and the decreasing PD
values also contribute to this pattern.

To compute provisions, use a lifetime credit analysis. Start by comparing the cumulative lifetime PD
values using predictLifetime.

LPDAdjusted = predictLifetime(ClimatePDModel,dataPredictAdjusted); % With adjusted LTV
LPDReference = predictLifetime(ClimatePDModel,dataPredictReference); % With reference LTV

figure;
plot(dataPredictAdjusted.Year,LPDAdjusted,'-',dataPredictReference.Year,LPDReference,':')
title(strcat("Cumulative Lifetime PD, ",ScenarioChoice))
xlabel('Year')
ylabel('Lifetime PD')
legend('Adjusted','Reference','Location','southeast')
grid on

 Assess Physical and Transition Risk for Mortgages

4-261

Use the portfolioECL function to get the lifetime ECL, or lifetime provisions. To get this projection,
you need the marginal version of the lifetime PD values, the LGD and EAD values, and an effective
interest rate for the loan.

NumRemainingYears = height(Projections);
MPDTable = table;
MPDTable.ID = ones(NumRemainingYears,1);
% Marginal PDs for adjusted
MPDTable.MPD = predictLifetime(ClimatePDModel,dataPredictAdjusted,'ProbabilityType','marginal');

LGDTable = table;
LGDTable.ID = 1;
LGDTable.LGD = 0.50;

EADTable = table;
EADTable.ID = ones(NumRemainingYears,1);
EADTable.EAD = Projections.LoanBalance;

EIR = 0.045; % Effective interest rate

[LifetimeECLAdjusted,~,ECLAdjustedPerPeriod] = portfolioECL(MPDTable,LGDTable,EADTable,Periodicity="annual",InterestRate=EIR);

% Marginal PDs for reference
MPDTable.MPD = predictLifetime(ClimatePDModel,dataPredictReference,'ProbabilityType','marginal');
[LifetimeECLReference,~,ECLReferencePerPeriod] = portfolioECL(MPDTable,LGDTable,EADTable,Periodicity="annual",InterestRate=EIR);

4 Corporate Credit Risk Simulations for Portfolios

4-262

The following plot shows how the discounted yearly provisions accumulate during the remaining life
of the loan.

CumulECLAdjusted = cumsum(ECLAdjustedPerPeriod.Scenario1);
CumulECLReference = cumsum(ECLReferencePerPeriod.Scenario1);
figure;
plot(dataPredictAdjusted.Year,CumulECLAdjusted,'-',dataPredictReference.Year,CumulECLReference,':')
xlabel('Year')
ylabel('Provisions')
title(strcat("Cumulative Provisions, ",ScenarioChoice))
grid on
legend('Adjusted','Reference','Location','southeast')

The following plot shows the total impact that the physical and transition risk adjustments have on
lifetime provisions.

figure;
bar(categorical({'Lifetime ECL'}),[LifetimeECLAdjusted LifetimeECLReference])
title(strcat("Total Lifetime Provisions, ",ScenarioChoice))
ylabel('Provisions')
legend('Adjusted','Reference')
grid on

 Assess Physical and Transition Risk for Mortgages

4-263

fprintf('Lifetime provisions, percent increase / decrease relative to reference: %4.2f%%',100*(LifetimeECLAdjusted./LifetimeECLReference-1))

Lifetime provisions, percent increase / decrease relative to reference: 1.67%

The "Early Action" climate scenario shows a larger increase with respect to the baseline. However,
this increase may be because the shocks occur early, where the exposure and PD values are larger. A
hypothetical loan starting in the future may lead to different impacts. A more comprehensive analysis
may better capture the impact of future shocks.

Conclusion

This example shows a workflow to incorporate some physical and transition risks into a climate-
related credit analysis for mortgages. The methodology in this example is a simple approach to bring
together existing information and models to assess the impact of climate change on provisions.

Climate risk is a complex developing area and this example is a starting point that you can extend in
different directions. You might add more variables (such as rate of unemployment or sea-level rise)
and other models (such as LGD, flood, or cost models) to the analysis. Bringing an entire portfolio of
mortgages could also shed light on portfolio composition or potentially a dynamic balance sheet
analysis. You might also explore debt serviceability to analyze the disposable income projections in
the analysis. Another area of investigation could be additional insurance considerations, such as
projections on the cost of insurance or whether a property is no longer insurable.

References

4 Corporate Credit Risk Simulations for Portfolios

4-264

[1] Bank of Canada, Climate Transition Scenario Data, https://www.bankofcanada.ca/2022/01/climate-
transition-scenario-data/.

[2] Bank of England, Key elements of the 2021 Biennial Exploratory Scenario: Financial risks from
climate change, June 2021, https://www.bankofengland.co.uk/stress-testing/2021/key-elements-2021-
biennial-exploratory-scenario-financial-risks-climate-change.

[3] Bank of England, Guidance for participants of the 2021 Biennial Exploratory Scenario: Financial
risks from climate change, June 2021, https://www.bankofengland.co.uk/-/media/boe/files/stress-
testing/2021/the-2021-biennial-exploratory-scenario-on-the-financial-risks-from-climate-change.pdf.

[4] European Central Bank, Banking Supervision, Climate Risk Stress Test, January 2022, https://
www.bankingsupervision.europa.eu/ecb/pub/pdf/
ssm.macrofinancialscenariosclimateriskstresstest2022~bcac934986.en.pdf.

[5] U.S. Federal Government, 2022: U.S. Climate Resilience Toolkit. [Online] http://toolkit.climate.gov.
Climate Explorer: https://toolkit.climate.gov/tool/climate-explorer-0. Accessed June, 2022.

[6] Intergovernmental Panel on Climate Change (IPCC), https://www.ipcc.ch/.

[7] National Oceanic and Atmospheric Administration (NOAA), https://www.noaa.gov/.

[8] Met Office, https://www.metoffice.gov.uk/.

[9] Energy Performance Certificate Wiki: https://en.wikipedia.org/wiki/
Energy_performance_certificate.

[10] Energy Star Wiki: https://en.wikipedia.org/wiki/Energy_Star.

Local Functions

function ValueAdjusted = adjustValueProjections(PriceIndex,CurrentValue,TotalCost,ScenarioChoice)

NumRemainingYears = length(PriceIndex);
ValueAdjusted = zeros(NumRemainingYears,1);
PriceIndexPrevious = [100;PriceIndex(1:end-1)];
PriceIndexRate = (PriceIndex-PriceIndexPrevious)./PriceIndexPrevious;

switch ScenarioChoice
 case "Early Action"
 CostPerYear = TotalCost/NumRemainingYears;
 TransitionCost = CostPerYear*PriceIndex/100;
 ValueAdjusted(1) = (CurrentValue-TotalCost)*(1+PriceIndexRate(1)) + TransitionCost(1);
 for ii=2:NumRemainingYears
 ValueAdjusted(ii) = ValueAdjusted(ii-1)*(1+PriceIndexRate(ii)) + TransitionCost(ii);
 end
 case "Delayed Action"
 TransitionCost = zeros(NumRemainingYears,1);
 ValueAdjusted = CurrentValue*PriceIndex/100; % Initialize

 Assess Physical and Transition Risk for Mortgages

4-265

https://www.bankofcanada.ca/2022/01/climate-transition-scenario-data/
https://www.bankofcanada.ca/2022/01/climate-transition-scenario-data/
https://www.bankofengland.co.uk/stress-testing/2021/key-elements-2021-biennial-exploratory-scenario-financial-risks-climate-change
https://www.bankofengland.co.uk/stress-testing/2021/key-elements-2021-biennial-exploratory-scenario-financial-risks-climate-change
https://www.bankofengland.co.uk/-/media/boe/files/stress-testing/2021/the-2021-biennial-exploratory-scenario-on-the-financial-risks-from-climate-change.pdf
https://www.bankofengland.co.uk/-/media/boe/files/stress-testing/2021/the-2021-biennial-exploratory-scenario-on-the-financial-risks-from-climate-change.pdf
https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.macrofinancialscenariosclimateriskstresstest2022~bcac934986.en.pdf
https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.macrofinancialscenariosclimateriskstresstest2022~bcac934986.en.pdf
https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.macrofinancialscenariosclimateriskstresstest2022~bcac934986.en.pdf
http://toolkit.climate.gov/
https://toolkit.climate.gov/tool/climate-explorer-0
https://www.ipcc.ch/
https://www.noaa.gov
https://www.metoffice.gov.uk/
https://en.wikipedia.org/wiki/Energy_performance_certificate
https://en.wikipedia.org/wiki/Energy_performance_certificate
https://en.wikipedia.org/wiki/Energy_Star

 if NumRemainingYears>=10
 % TotalCost = TotalCost*PriceIndex(9)/100; % Adjust by price index
 CostPerYear = TotalCost/(NumRemainingYears-9); % Make upgrades in remaining years
 TransitionCost(10:end) = CostPerYear*PriceIndex(10:end)/100;
 ValueAdjusted(10) = (ValueAdjusted(9)-TotalCost*PriceIndex(9)/100)*(1+PriceIndexRate(10)) + TransitionCost(10);
 for ii=11:NumRemainingYears
 ValueAdjusted(ii) = ValueAdjusted(ii-1)*(1+PriceIndexRate(ii)) + TransitionCost(ii);
 end

 end
 case "No Action"
 ValueAdjusted = CurrentValue*PriceIndex/100; % No upgrades
end

end

See Also

Related Examples
• “Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios” on page 4-231

More About
• “Overview of Lifetime Probability of Default Models” on page 1-25

External Websites
• Modeling the Impact of Transition and Physical Climate Risks on a Portfolio of Mortgages (13

min 52 sec)

4 Corporate Credit Risk Simulations for Portfolios

4-266

https://www.mathworks.com/videos/modeling-the-impact-of-transition-and-physical-climate-risks-on-a-portfolio-of-mortgages-1633579102333.html
https://www.mathworks.com/videos/modeling-the-impact-of-transition-and-physical-climate-risks-on-a-portfolio-of-mortgages-1633579102333.html

Analyze Transition Scenarios for Climate-Related Financial
Risks

This example shows how to visualize transition scenarios to understand climate-related risks to the
economy and financial systems.

Background

In late 2020, the Bank of Canada initiated a project to understand the climate impact on financial
systems of Canada and the United States. The resulting data set [1] on page 4-278 is the basis of the
Bank of Canada report "Transition Scenarios for Analyzing Climate-Related Financial Risk" [2] on
page 4-278. From this project, data for three climate scenarios captures the evolution of the global
economy. These three climate scenarios are in the BankOfCanadaClimateScenarioData.mat file.
The Bank of Canada report summarizes the global economy by ten emission-intensive sectors across
eight global regions from 2020 to 2050. A fourth scenario is the benchmark scenario and reflects the
climate policies of 2019., which mitigates effects due to the COVID-19 pandemic that started in 2020.

This example consists of two parts that relate to section 2 and section 4 of the Bank of Canada report.

Climate Impact of Green House Gas Emissions on page 4-267, uses MATLAB® code to re-create
the graphs for each scenario that show the progress in the mitigation of greenhouse gas emissions to
2050 and the impact of natural-based solutions such us forests.

Impact of Climate Policies on page 4-271, uses MATLAB® code to re-create the graphs that
demonstrate how the scenario policies affect economies at a global, regional, and sectoral level with
the focus on Canada and the United States. Graphs in this example provide the following information:

• Impacts in greenhouse gas emissions due to the increase in shadow carbon price
• Financial impacts in terms of net income
• Macroeconomic impacts in terms of gross domestic product (GDP)

For information on the climate impact of different transition scenarios on loan default probabilities,
see “Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios” on page 4-231.

Impact of Green House Gas Emissions

Climate Scenario Data

The data for this example includes these climate scenarios developed by MIT using the Economic
Projection and Policy Analysis (EPPA) Mode in collaboration with the Bank of Canada [3 on page 4-
278].

• Baseline (2019 Policies) — Baseline scenario consistent with climate policies in place at the end of
2019

• Below 2°C Immediate — Immediate policy action scenario to limit average global warming to
below 2°C by 2100

• Below 2°C Delayed — Delayed policy action scenario to limit average global warming to below 2°C
by 2100

• Net-Zero 2050 (1.5°C) — More ambitious immediate policy action scenario to limit average global
warming to 1.5°C by 2050 that includes current net-zero commitments by some countries

 Analyze Transition Scenarios for Climate-Related Financial Risks

4-267

The climate transition scenario data is provided by the Bank of Canada and is available free of charge
at www.bankofcanada.ca. [1 on page 4-278] on page 4-278

Load this data, converted to a MAT-file from BankOfCanadaClimateScenarioData.mat.

load BankOfCanadaClimateScenarioData.mat;
head(ClimateTransitionScenarioData);

 k CL_GEOGRAPHY CL_SECTOR CL_VARIABLE CL_UNIT CL_SCENARIO CL_YEAR CL_VALUE
 _ ____________ _________ _______________________________ ___________________ ________________________ _______ ________

 1 Canada National Carbon price US$2014/tCO2e Baseline (2019 policies) 2020 12.106
 2 Canada National Carbon price US$2014/tCO2e Below 2°C immediate 2020 12.106
 3 Canada National Emissions | total GHG (scope 1) Million tonnes CO2e Baseline (2019 policies) 2020 781.04
 4 Canada National Emissions | total GHG (scope 1) Million tonnes CO2e Below 2°C immediate 2020 781.04
 5 Canada National Input price | Coal Index (2014 = 1) Baseline (2019 policies) 2020 1.2875
 6 Canada National Input price | Coal Index (2014 = 1) Below 2°C immediate 2020 1.2875
 7 Canada National Input price | Crops Index (2014 = 1) Baseline (2019 policies) 2020 1.0031
 8 Canada National Input price | Crops Index (2014 = 1) Below 2°C immediate 2020 1.0031

Use the preprocessBankOfCanadaData on page 4-285 helper function to keep only the variables that
this example uses for analysis.

 [ClimateTransitionScenarioData, options] = preprocessBankOfCanadaData(ClimateTransitionScenarioData);
 regions = options.regions;

Global Carbon Dioxide Emissions

The following plot shows the impact of each climate scenario in terms of carbon dioxide (CO2)
emissions. To understand the various scenarios and their effect on the economy, first you need to
explore how each scenario affects the total emissions of carbon dioxide globaly and for each
geographic region. The contribution of the forests is important in this analysis because forests can
act as both carbon dioxide emmiters and carbon dioxide sinks.

Use the plotVariableByCountry on page 4-279 function to plot the global greenhouse gas (GHG)
emissions.

options = updateOptions(options,1e-3,"Global GHG Emissions","GigaTons/Year of CO_2 Emissions");
plotVariableByCountry('Global',{'Emissions | total GHG (scope 1)'},'Global', options);

4 Corporate Credit Risk Simulations for Portfolios

4-268

https://www.bankofcanada.ca

As expected, the global GHG emissions for the Baseline (2019 Policies) are increasing. The GHG
emissions for the Below 2°C Delayed scenario are increasing in the same manner until 2030, when a
reduction in carbon dioxde emmissions begins, and then shows a sharp reduction in emmisions until
2050. The two other scenarios, Below 2°C Immediate and Net-Zero 2050 (1.5°C) show sharper
decreases as the actions for emission mitigation start on 2020. The Net-Zero 2050 (1.5°C) scenario
shows a faster decrease in carbon dioxied emissions because the target is an average decrease in
global temperature of abour 1.5 degrees by 2050. This target is a more aggressive assumption than
the Below 2°C Delayed scenario, which aims to acheive an average decrease in global temperature of
about 2 degrees by 2100.

Forestry Carbon Dioxide Emissions and Removal

The global forests, a nature-based solution to cardon dioxide emissions, have a modest but not
negligible contribution to the climate scenarios. Observe the impact of removing carbon dioxide
emissions from forestry.

% C02 emmissions and removal from forestry
baseline_C02FOR = options.baseline(ismember(options.baseline.CL_VARIABLE,'Emissions/removals from forestry'),:);
b2delayed_C02FOR = options.b2delayed(ismember(options.b2delayed.CL_VARIABLE,'Emissions/removals from forestry'),:);
b2immediate_C02FOR = options.b2immediate(ismember(options.b2immediate.CL_VARIABLE,'Emissions/removals from forestry'),:);
netzero2050_C02FOR = options.netzero2050(ismember(options.netzero2050.CL_VARIABLE,'Emissions/removals from forestry'),:);

% Global C02 emmissions and removal from forestry
baseline_C02FOR_GLOBAL = sortrows(baseline_C02FOR(ismember(baseline_C02FOR.CL_GEOGRAPHY,'Global'),:),"CL_YEAR","ascend");
b2delayed_C02FOR_GLOBAL = sortrows(b2delayed_C02FOR(ismember(b2delayed_C02FOR.CL_GEOGRAPHY,'Global'),:),"CL_YEAR","ascend");
b2immediate_C02FOR_GLOBAL = sortrows(b2immediate_C02FOR(ismember(b2immediate_C02FOR.CL_GEOGRAPHY,'Global'),:),"CL_YEAR","ascend");

 Analyze Transition Scenarios for Climate-Related Financial Risks

4-269

netzero2050_C02FOR_GLOBAL = sortrows(netzero2050_C02FOR(ismember(netzero2050_C02FOR.CL_GEOGRAPHY,'Global'),:),"CL_YEAR","ascend");

figure
x_value = [baseline_C02FOR_GLOBAL.CL_VALUE(1);baseline_C02FOR_GLOBAL.CL_VALUE(end);b2delayed_C02FOR_GLOBAL.CL_VALUE(end);b2immediate_C02FOR_GLOBAL.CL_VALUE(end);netzero2050_C02FOR_GLOBAL.CL_VALUE(end)];
y_value = categorical(["Baseline (2019 Policies) 2020";strcat(["Baseline (2019 Policies)"; "Below 2^oC Delayed"; "Below 2^oC Immediate";"Net-Zero 2050 (1.5^oC)"]," 2050")]);
b = barh(y_value, x_value*1e-3,0.2,'BaseValue',0);
xlabel ("Gigatons per Year of CO_2 Emissions")
title("CO_2 Emissions and Removal from Forestry")
grid on

In 2020, global forests were responsible for 4 gigatons of carbon dioxed emissions. By 2050, the
carbon dioxide emissions from global forests are projected to decrease for all scenarios. In the
projection for the Below 2°C Immediate and the Net-Zero 2050 (1.5°C) scenarios, the global forests
become a natural carbon sink.

Regional Carbon Dioxide Emissions

The following plots present the projected GHG emissions for various regions that you can select using
the the dropdown control. Use the plotVariableByCountry on page 4-279 function to plot the GHG
emissions for the selected region.

region = ;
options = updateOptions(options,1,strcat("GHG Emissions in ", region),"Million Tons/Year of CO_2 Emissions");
plotVariableByCountry(region,'Emissions | total GHG (scope 1)',{'National','Global'},options);

4 Corporate Credit Risk Simulations for Portfolios

4-270

The patterns for Canada and the United States are similar to the patterns for the Global GHG
Emissions on page 4-268 plot. As described in [2 on page 4-278], these countries have different
climate policies. The climate policies for the United States include:

• Renewable shares in electricity generation
• Corporate Average Fuel Economy standards for both passenger and commercial vehicles

The climate policies for Canada [4 on page 4-279] include:

• Phaseout of traditional coal-fired generation of electricity
• Renewable shares in electricity generation
• Corporate Average Fuel Economy standards for both passenger and commercial vehicles
• Regulations on methane emissions

Impact of Climate Policies

Transitioning to low-carbon economies brings significant changes across industries. Industries must
move away from fossil-fuel sources to meet their energy demands and adapt noncarbon emitting
energy sources like electricity. The plots in this section show the carbon price, GHG emissions, and
energy production for the four climate scenarios.

Shadow Carbon Price

To achieve the emission mitigation targets, the model must increase the shadow price of carbon. The
shadow carbon price applies a theoretical surcharge per ton of carbon emissions. The more

 Analyze Transition Scenarios for Climate-Related Financial Risks

4-271

aggressive the scenario, the greater the increase of the carbon price. Use the plotVariableByCountry
on page 4-279 function to plot the shadow carbon price for the selected region. When region is
Global, the "global" price is the GDP-weighted average across geographies. As described in [2 on
page 4-278], the carbon price is an output in this model. The model aims to reduce emissions by a
predetermined amount, incorporating noncarbon tax policies first. Then, the model calculates a
shadow carbon price to capture the remaining intensity required in government climate policy to
meet the emissions targets. The carbon price is modeled as a tax, where the tax revenue is returned
to households as lump-sum transfers in the same period.

region = ;
options = updateOptions(options,1,strcat(region, " Shadow Carbon Price"),"2014 US Dollars/Ton of CO_2 Emissions");
plotVariableByCountry(region,'Carbon price',{'Global','National'},options)

The Baseline (2019 Policies) scenario does not reflect any significant change in the carbon shadow
price. On the other hand, the shadow carbon price for the Below 2°C Delayed scenario shows sharp
increases because after 2030 countries have to make up for the lost time in mitigating the gas
emissions. The Below 2°C Immediate and the Net-Zero 2050 (1.5°C) scenarios have a smoother
increase of the shadow carbon price because there is time to achieve the goals by 2100 and 2050,
respectively. However, the Net-Zero 2050 (1.5°C) scenario exhibits faster increases of the shadow
carbon price as the target of 2050 is more aggressive.

4 Corporate Credit Risk Simulations for Portfolios

4-272

Regional Sectorial Carbon Dioxide Emissions

Use the plotVariableBySector on page 4-280 function to show bar graphs for the predicted GHG
emissions, by sector, for the four climate scenarios. Low-carbon policies lead to changes in all
economies and not only the fossil-fuel economies like coal, oil, natural gas, and refined oil.

region = ;
if (strcmp(region, "Global"))
 options = updateOptions(options,1e-3,strcat(region, " GHG Emissions Per Sector"),"Gigatons/year of CO_2 Emissions");
else
 options = updateOptions(options,1,strcat(region, " GHG Emissions Per Sector"),"Million Tons/Year of CO_2 Emissions");
end
plotVariableBySector(region,{'Emissions | total GHG (scope 1)','Emissions and removals from forestry'},options)

You can see that the contribution of the fossil-fuel sectors to gas emissions significantly lowers by
midcentrury as the demand for these products goes down.

The largest impact in the reduction of gas emissions is achieved by the electricity sector. The
electricity sector uses low to zero emission technologies like wind and solar. Also many sectors
leverage electricity as a substitute to fossil-fuel products. For example, in the commercial
transportation sector, you can see the transition to electric vehicles.

For Canada and the United States, the patterns are similar to the Global GHG Emissions on page 4-
268 plot, but there are some key differences. In Canada, the electricity sector completely substitutes
the fossil-fuel products, achieving negative gas emissions by midcentury, while leveraging

 Analyze Transition Scenarios for Climate-Related Financial Risks

4-273

sophisticated technologies. In the United States, the forest carbon sequestration plays a major role in
the carbon budget.

Sectorial Energy Production

Use the plotEnergyBySector on page 4-281 function to visualize the use of primary and secondary
energy, globally, by sector. Primary energy refers to the amount of energy that a sector delivers and
secondary energy refers to the amount of electrical energy each sector generates.

options.energytype= ;
if strcmp(options.energytype,"primary")
 options = updateOptions(options,1e-3,"Global Primary Energy","Exajoules");
else
 %1TWh = 0.0036 EJ
 options = updateOptions(options,36*1e-4,"Global Secondary Energy (Electricity Generation)","Exajoules");
end
plotEnergyBySector('Global',{'Global','Electricity'},options)

Globally, the dominant energy type is fossil fuels. However, by midcentury renewable energies
become the dominant energy types. Electrification supports decarbonization in many sectors. The
production sectors are moving away from fossil-fuel products and adapting electrification,
contributing to the increased generation of electricity.

4 Corporate Credit Risk Simulations for Portfolios

4-274

Regional Electricity Generation

Use the plotEnergyBySector on page 4-281 function to show bar graphs for electricity generation by
region.

region = ;
options = updateOptions(options, 1,strcat(region," Electricity Generation"), "TW/H",'secondary');
plotEnergyBySector(region,'Electricity',options)

Regional Net Component Changes for Electricity Sector

When a sector is not efficient, the direct emission costs increase because the sector produces more
emissions, which also increases indirect costs. Similarly, the revenue decreases because the sector is
not very efficient and the capital expenditures are projected to be low.

Therefore, the net income of a company is computed as:

Net Income = Revenues - Direct Emission Costs - Indirect Costs - Capital Expenditures [2 on page 4-
278]

• Revenues = (output price * production)
• Direct Emissions costs = (carbon price * scope1 emissions), where direct emissions cost refers to

the increase in a sector's cost associated with the release of greenhouse gases from burning fossil
fuels

• Indirect Costs = (input price * inputs in production), where indirect cost refers to the direct
emission cost of upstream sectors that is passed to the sector.

 Analyze Transition Scenarios for Climate-Related Financial Risks

4-275

• Capital Expenditures = (capital price * new capital added), where capital expenditures refers to
the cost of investing in new technologies so the sector can become more efficient

Use the plotNetComponents on page 4-283 function to show the bar graphs for the evolution of the
net components for the electricity sector in a selected region.

region = ;
options = updateOptions(options, 1,region, " Change from Baseline (2019 Policies) (%)");
plotNetComponents(region,'Electricity',options)

For Canada and the United States the direct emission costs are dropping as the policies become
stricter and the carbon price increases. To maintain efficiency, the Capital Expenditures also rise. You
can see a large impact in both components for the Net-Zero 2050 (1.5°C) scenario where energy
technology shows a rapid evolution. However, this change results in lower revenue than the Below
2°C Immediate and Below 2°C Delayed scenarios where the technology evolution remains steady.

Regional and Sectorial Net Component Changes

Use the plotNetIncomeBySector on page 4-283 function to generate the bar graphs for net
component changes by sector and region.

sector = ;

region = ;

4 Corporate Credit Risk Simulations for Portfolios

4-276

options = updateOptions(options, 1,strcat(region, " - " ,sector), "Change from Baseline (2019 Policies) (%)");
plotNetIncomeBySector(region,sector,options)

The fossil-fuel sectors present negative net income change as the demand for their products become
less. Electricity, on the other hand, presents a postive change in net income as this becomes the
dominant energy source in the future.

GDP Impact

Use the plotVariableByCountry on page 4-279 function to generate a plot that shows the GDP change
across all three climate scenarios compared with the Baseline (2019 Policies) scenario.

region = ;
options = updateOptions(options, 1,strcat("GDP ", region), "Deviation from Baseline Percentage");
plotVariableByCountry(region,'GDP', [], options);

 Analyze Transition Scenarios for Climate-Related Financial Risks

4-277

The regional and global GDP impacts show similar patterns. Delayed policy action results in sharper
impacts to the GDP by 2050 (see Below 2°C Delayed), while immediate policy action results in more
gradual decrease of the GDP (see Below 2°C Immediate and Net-Zero 2050 (1.5°C)).

Summary

The climate scenarios illustrate the important sectoral restructuring that the global economies need
to undertake to meet climate targets. The climate scenarios show that every sector contributes to the
transition and that the financial impacts vary across sectors. These impacts depend on how emissions
and capital expenditures affect the sectors and on how the decarbonization of economies affects
product demand. The four climate scenarios also highlight the risks of significant macroeconomic
impacts, in particular for commodity-exporting countries like Canada. The economic impacts for
Canada are driven mostly by declines in global prices of commodities rather than by domestic policy
decisions. Finally, the climate scenarios show that delaying climate policy action increases the overall
economic impacts and risks to financial stability.

References

[1] https://www.bankofcanada.ca/2022/01/climate-transition-scenario-data

[2] "Transition Scenarios for Analyzing Climate-Related Financial Risks" available at: https://
www.bankofcanada.ca/wp-content/uploads/2021/11/sdp2022-1.pdf.

4 Corporate Credit Risk Simulations for Portfolios

4-278

https://www.bankofcanada.ca/2022/01/climate-transition-scenario-data
https://www.bankofcanada.ca/wp-content/uploads/2021/11/sdp2022-1.pdf
https://www.bankofcanada.ca/wp-content/uploads/2021/11/sdp2022-1.pdf

[3] EPPA Model Structure available at https://globalchange.mit.edu/research/research-tools/eppa and
https://globalchange.mit.edu/research/research-tools/human-system-model.

[4] "Government of Canada's Pan-Canadian Framework on Clean Growth and Climate Change"
available at https://www.canada.ca/en/services/environment/weather/climatechange/pan-canadian-
framework.html.

Local Functions

plotVariableByCountry

function plotVariableByCountry(country,variable,sector,options)

GDPflag = false; % Flag that the function is going to be used for GDP plots
if strcmp(variable,'GDP')
 GDPflag = true;
 if strcmp(country,'Global')
 variable = "Global GDP";
 sector = "Global";
 elseif strcmp(country,'Canada')
 variable = "Real GDP";
 sector = "National";
 else
 variable = "US GDP";
 sector = "National";
 end
end

% C02 emmissions removal from forestry
baseline_sc = options.baseline(ismember(options.baseline.CL_VARIABLE,variable),:);
b2delayed_sc = options.b2delayed(ismember(options.b2delayed.CL_VARIABLE,variable),:);
b2immediate_sc = options.b2immediate(ismember(options.b2immediate.CL_VARIABLE,variable),:);
netzero2050_sc = options.netzero2050(ismember(options.netzero2050.CL_VARIABLE,variable),:);

% Global C02 emmissions removal from forestry
baseline_sc_co = sortrows(baseline_sc((ismember(baseline_sc.CL_GEOGRAPHY,country) & ismember(baseline_sc.CL_SECTOR,sector)),:),"CL_YEAR","ascend");
b2delayed_sc_co = sortrows(b2delayed_sc((ismember(b2delayed_sc.CL_GEOGRAPHY,country) & ismember(b2delayed_sc.CL_SECTOR,sector)),:),"CL_YEAR","ascend");
b2immediate_sc_co = sortrows(b2immediate_sc((ismember(b2immediate_sc.CL_GEOGRAPHY,country) &ismember(b2immediate_sc.CL_SECTOR,sector)),:),"CL_YEAR","ascend");
netzero2050_sc_co = sortrows(netzero2050_sc((ismember(netzero2050_sc.CL_GEOGRAPHY,country) & ismember(netzero2050_sc.CL_SECTOR,sector)),:),"CL_YEAR","ascend");

figure
if ~GDPflag, plot(baseline_sc_co.CL_YEAR,baseline_sc_co.CL_VALUE.*options.factor), end
hold on
plot(b2delayed_sc_co.CL_YEAR,b2delayed_sc_co.CL_VALUE.*options.factor)
plot(b2immediate_sc_co.CL_YEAR, b2immediate_sc_co.CL_VALUE.*options.factor)
plot(netzero2050_sc_co.CL_YEAR,netzero2050_sc_co.CL_VALUE.*options.factor)
hold off
if ~GDPflag
 legend('Baseline (Policies 2019)','Below 2^oC Delayed','Below 2^oC Immediate','Net-Zero 2050 1.5^oC','Location','southoutside','NumColumns',2)
else
 legend('Below 2^oC Delayed','Below 2^oC Immediate','Net-Zero 2050 1.5^oC','Location','southoutside','NumColumns',3)
end
ylabel(options.yLabel)
title(options.title)
grid on

 Analyze Transition Scenarios for Climate-Related Financial Risks

4-279

https://globalchange.mit.edu/research/research-tools/eppa
https://globalchange.mit.edu/research/research-tools/human-system-model
https://www.canada.ca/en/services/environment/weather/climatechange/pan-canadian-framework.html
https://www.canada.ca/en/services/environment/weather/climatechange/pan-canadian-framework.html

end

plotVariableBySector

function plotVariableBySector(country,variable,options)

baseline_sc = options.baseline(ismember(options.baseline.CL_VARIABLE,variable),:);
b2delayed_sc = options.b2delayed(ismember(options.b2delayed.CL_VARIABLE,variable),:);
b2immediate_sc = options.b2immediate(ismember(options.b2immediate.CL_VARIABLE,variable),:);
netzero2050_sc = options.netzero2050(ismember(options.netzero2050.CL_VARIABLE,variable),:);

baseline_sc_co = sortrows(baseline_sc(ismember(baseline_sc.CL_GEOGRAPHY,country),:),"CL_YEAR","ascend");
b2delayed_sc_co = sortrows(b2delayed_sc(ismember(b2delayed_sc.CL_GEOGRAPHY,country),:),"CL_YEAR","ascend");
b2immediate_sc_co = sortrows(b2immediate_sc(ismember(b2immediate_sc.CL_GEOGRAPHY,country),:),"CL_YEAR","ascend");
netzero2050_sc_co = sortrows(netzero2050_sc(ismember(netzero2050_sc.CL_GEOGRAPHY,country),:),"CL_YEAR","ascend");

YRS = unique(baseline_sc_co.CL_YEAR);
SEC = unique(baseline_sc_co.CL_SECTOR); SEC(SEC=="Oil & Gas") = []; SEC(SEC=="Global") = []; SEC(SEC=="National") = [];

scenariosTitles = {'Baseline (Policies 2019)','Below 2^oC Delayed','Below 2^oC Immediate','Net-Zero 2050 1.5^oC'};

% Perform initiatilization
for ii = 1:length(YRS)
 for jj = 1:length(SEC)
 idx = jj+((ii-1)*length(SEC));
 fun = @max;
 max_baseline_sc_co(idx,:) = varfun(fun,baseline_sc_co((ismember(baseline_sc_co.CL_YEAR,YRS(ii)) & ismember(baseline_sc_co.CL_SECTOR,SEC(jj))),["CL_VALUE","CL_YEAR","CL_SECTOR","CL_VARIABLE"]),'GroupingVariables',{'CL_SECTOR','CL_VARIABLE'});
 max_b2delayed_sc_co(idx,:) = varfun(fun,b2delayed_sc_co((ismember(b2delayed_sc_co.CL_YEAR,YRS(ii))& ismember(b2delayed_sc_co.CL_SECTOR,SEC(jj))),["CL_VALUE","CL_YEAR","CL_SECTOR","CL_VARIABLE"]),'GroupingVariables',{'CL_SECTOR','CL_VARIABLE'});
 max_b2immediate_sc_co(idx,:) = varfun(fun,b2immediate_sc_co((ismember(b2immediate_sc_co.CL_YEAR,YRS(ii))& ismember(b2immediate_sc_co.CL_SECTOR,SEC(jj))),["CL_VALUE","CL_YEAR","CL_SECTOR","CL_VARIABLE"]),'GroupingVariables',{'CL_SECTOR','CL_VARIABLE'});
 max_netzero2050_sc_co(idx,:) = varfun(fun,netzero2050_sc_co((ismember(netzero2050_sc_co.CL_YEAR,YRS(ii))& ismember(netzero2050_sc_co.CL_SECTOR,SEC(jj))),["CL_VALUE","CL_YEAR","CL_SECTOR","CL_VARIABLE"]),'GroupingVariables',{'CL_SECTOR','CL_VARIABLE'});
 end
end

T1 = [];
T2 = [];
T3 = [];
T4 = [];

% Prepare data to stack
for ii = 1:length(YRS)
 T1 = [T1; table2array(max_baseline_sc_co(ismember(max_baseline_sc_co.max_CL_YEAR,YRS(ii)),"max_CL_VALUE"))'.*options.factor];
 T2 = [T2; table2array(max_b2delayed_sc_co(ismember(max_b2delayed_sc_co.max_CL_YEAR,YRS(ii)),"max_CL_VALUE"))'.*options.factor];
 T3 = [T3; table2array(max_b2immediate_sc_co(ismember(max_b2immediate_sc_co.max_CL_YEAR,YRS(ii)),"max_CL_VALUE"))'.*options.factor];
 T4 = [T4; table2array(max_netzero2050_sc_co(ismember(max_netzero2050_sc_co.max_CL_YEAR,YRS(ii)),"max_CL_VALUE"))'.*options.factor];

end

% Create colorSet
rng(0)
colorSet = round(rand(length(SEC),3),1);

figure
t = tiledlayout(1,4);
t.Title.String = options.title;
t.YLabel.String = options.yLabel;
colororder(colorSet)

4 Corporate Credit Risk Simulations for Portfolios

4-280

ax1 = nexttile;
bar(ax1,YRS,T1,'stacked');
xtickangle(90)
grid on
title(scenariosTitles(1))

ax2 = nexttile;
bar(ax2,YRS,T2,'stacked');
xtickangle(90)
grid on
title(scenariosTitles(2))

ax3 = nexttile;
bar(ax3,YRS,T3,'stacked');
xtickangle(90)
grid on
title(scenariosTitles(3))

ax4 = nexttile;
bar(ax4,YRS,T4,'stacked')
xtickangle(90)
grid on
title(scenariosTitles(4))

linkaxes([ax1 ax2 ax3 ax4],'xy')

lg = legend(SEC,'Location','southoutside','NumColumns',3);
lg.Layout.Tile = 'South'; % Legend placement with tiled layout

end

plotEnergyBySector

function plotEnergyBySector(country,sector,options)

Prim = {'Primary Energy | Bioenergy','Primary Energy | Coal','Primary Energy | Gas', 'Primary Energy | Hydro', ...
 'Primary Energy | Nuclear','Primary Energy | Oil','Primary Energy | Renewables (wind&solar)'};
Sec = {'Secondary Energy | Electricity| Bioelectricity (CCS)', ...
 'Secondary Energy | Electricity| Bioelectricity and other', ...
 'Secondary Energy | Electricity| Coal (CCS)', ...
 'Secondary Energy | Electricity| Gas (CCS)', ...
 'Secondary Energy | Electricity| Hydro', ...
 'Secondary Energy | Electricity| Nuclear', ...
 'Secondary Energy | Electricity| Gas (without CCS)', ...
 'Secondary Energy | Electricity| Coal (without CCS)', ...
 'Secondary Energy | Electricity| Oil', ...
 'Secondary Energy | Electricity| Wind&Solar'};
if strcmp(options.energytype,'primary')
 EnergyVars = Prim;
else
 EnergyVars = Sec;
end

baseline_co = sortrows(options.baseline((ismember(options.baseline.CL_GEOGRAPHY,country) & ismember(options.baseline.CL_VARIABLE,EnergyVars) & ismember(options.baseline.CL_SECTOR,sector)),:),"CL_YEAR","ascend");
b2delayed_co = sortrows(options.b2delayed((ismember(options.b2delayed.CL_GEOGRAPHY,country) & ismember(options.b2delayed.CL_SECTOR,sector) & ismember(options.b2delayed.CL_VARIABLE,EnergyVars)),:),"CL_YEAR","ascend");
b2immediate_co = sortrows(options.b2immediate((ismember(options.b2immediate.CL_GEOGRAPHY,country) & ismember(options.b2immediate.CL_SECTOR,sector) & ismember(options.b2immediate.CL_VARIABLE,EnergyVars)),:),"CL_YEAR","ascend");

 Analyze Transition Scenarios for Climate-Related Financial Risks

4-281

netzero2050_co = sortrows(options.netzero2050((ismember(options.netzero2050.CL_GEOGRAPHY,country) & ismember(options.netzero2050.CL_SECTOR,sector) & ismember(options.netzero2050.CL_VARIABLE,EnergyVars)),:),"CL_YEAR","ascend");

scenariosTitles = {'Baseline (Policies 2019)','Below 2^oC Delayed','Below 2^oC Immediate','Net-Zero 2050 1.5^oC'};

YRS = unique(baseline_co.CL_YEAR);
VARS = unique(baseline_co.CL_VARIABLE);

T1 = [];
T2 = [];
T3 = [];
T4 = [];

% Prepare data to stack
for ii = 1:length(YRS)
 T1 = [T1; table2array(baseline_co(ismember(baseline_co.CL_YEAR,YRS(ii)),"CL_VALUE"))'.*options.factor];
 T2 = [T2; table2array(b2delayed_co(ismember(b2delayed_co.CL_YEAR,YRS(ii)),"CL_VALUE"))'.*options.factor];
 T3 = [T3; table2array(b2immediate_co(ismember(b2immediate_co.CL_YEAR,YRS(ii)),"CL_VALUE"))'.*options.factor];
 T4 = [T4; table2array(netzero2050_co(ismember(netzero2050_co.CL_YEAR,YRS(ii)),"CL_VALUE"))'.*options.factor];

end

rng(0)
colorSet = round(rand(length(VARS),3),1);

figure
t = tiledlayout(1,4);
t.Title.String = options.title;
t.YLabel.String = options.yLabel;
colororder(colorSet)

ax1 = nexttile;
area(YRS,T1);
grid on
xtickangle(90)
title(scenariosTitles(1))

ax2 = nexttile;
area(YRS,T2);
grid on
xtickangle(90)
title(scenariosTitles(2))

ax3 = nexttile;
area(YRS,T3);
xtickangle(90)
grid on
title(scenariosTitles(3))

ax4 = nexttile;
area(YRS,T4)
xtickangle(90)
grid on
title(scenariosTitles(4))

4 Corporate Credit Risk Simulations for Portfolios

4-282

if strcmp(options.energytype,'primary')
 newVars = strrep(EnergyVars,'Primary Energy | ','');
else
 newVars = strrep(EnergyVars,'Secondary Energy | Electricity| ','');
end
lg = legend(newVars,'Location','southoutside','NumColumns',3) ;
lg.Layout.Tile = 'South'; % Legend placement with tiled layout

linkaxes([ax1 ax2 ax3 ax4],'xy')
xtickangle(90)

end

plotNetComponents

function plotNetComponents(country,sector,options)

NetVars = {'Direct emissions costs', ...
 'Capital expenditure', ...
 'Revenue'};
NetVarsTitles = {'Direct Emissions Costs', 'Capital Expenditure', 'Revenue'};

figure
t = tiledlayout(1,length(NetVars));
t.Title.String = options.title;
t.YLabel.String = options.yLabel;

for ii = 1:length(NetVars)
 baseline_co = sortrows(options.baseline((ismember(options.baseline.CL_GEOGRAPHY,country) & ismember(options.baseline.CL_VARIABLE,NetVars(ii)) & ismember(options.baseline.CL_SECTOR,sector)),:),"CL_YEAR","ascend");
 b2delayed_co = sortrows(options.b2delayed((ismember(options.b2delayed.CL_GEOGRAPHY,country) & ismember(options.b2delayed.CL_SECTOR,sector) & ismember(options.b2delayed.CL_VARIABLE,NetVars(ii))),:),"CL_YEAR","ascend");
 b2immediate_co = sortrows(options.b2immediate((ismember(options.b2immediate.CL_GEOGRAPHY,country) & ismember(options.b2immediate.CL_SECTOR,sector) & ismember(options.b2immediate.CL_VARIABLE,NetVars(ii))),:),"CL_YEAR","ascend");
 netzero2050_co = sortrows(options.netzero2050((ismember(options.netzero2050.CL_GEOGRAPHY,country) & ismember(options.netzero2050.CL_SECTOR,sector) & ismember(options.netzero2050.CL_VARIABLE,NetVars(ii))),:),"CL_YEAR","ascend");

 nexttile(ii)
 bar(unique(baseline_co.CL_YEAR),[(b2delayed_co.CL_VALUE-baseline_co.CL_VALUE)./baseline_co.CL_VALUE, ...
 (b2immediate_co.CL_VALUE-baseline_co.CL_VALUE)./baseline_co.CL_VALUE,...
 (netzero2050_co.CL_VALUE-baseline_co.CL_VALUE)./baseline_co.CL_VALUE].*100);
 grid on

 title(NetVarsTitles(ii))

end
lg = legend('Below 2^oC Delayed','Below 2^oC Immediate','Net-Zero 2050 (1.5^oC)','Location','southoutside','NumColumns',3);
lg.Layout.Tile = 'South'; % Legend placement with tiled layout
end

plotNetIncomeBySector

function plotNetIncomeBySector(country,sector, options)

NetVars = {'Capital expenditure', ...
 'Direct emissions costs', ...
 'Revenue', ...
 'Indirect costs'};

figure
t = tiledlayout(1,3);

 Analyze Transition Scenarios for Climate-Related Financial Risks

4-283

t.Title.String = options.title;
t.YLabel.String = options.yLabel;

% Capital expenditure
baseline_CE = sortrows(options.baseline((ismember(options.baseline.CL_GEOGRAPHY,country) & ismember(options.baseline.CL_VARIABLE,NetVars(1)) & ismember(options.baseline.CL_SECTOR,sector)),:),"CL_YEAR","ascend");
b2delayed_CE = sortrows(options.b2delayed((ismember(options.b2delayed.CL_GEOGRAPHY,country) & ismember(options.b2delayed.CL_SECTOR,sector) & ismember(options.b2delayed.CL_VARIABLE,NetVars(1))),:),"CL_YEAR","ascend");
b2immediate_CE = sortrows(options.b2immediate((ismember(options.b2immediate.CL_GEOGRAPHY,country) & ismember(options.b2immediate.CL_SECTOR,sector) & ismember(options.b2immediate.CL_VARIABLE,NetVars(1))),:),"CL_YEAR","ascend");
netzero2050_CE = sortrows(options.netzero2050((ismember(options.netzero2050.CL_GEOGRAPHY,country) & ismember(options.netzero2050.CL_SECTOR,sector) & ismember(options.netzero2050.CL_VARIABLE,NetVars(1))),:),"CL_YEAR","ascend");

% Direct emissions costs
baseline_DEC = sortrows(options.baseline((ismember(options.baseline.CL_GEOGRAPHY,country) & ismember(options.baseline.CL_VARIABLE,NetVars(2)) & ismember(options.baseline.CL_SECTOR,sector)),:),"CL_YEAR","ascend");
b2delayed_DEC = sortrows(options.b2delayed((ismember(options.b2delayed.CL_GEOGRAPHY,country) & ismember(options.b2delayed.CL_SECTOR,sector) & ismember(options.b2delayed.CL_VARIABLE,NetVars(2))),:),"CL_YEAR","ascend");
b2immediate_DEC = sortrows(options.b2immediate((ismember(options.b2immediate.CL_GEOGRAPHY,country) & ismember(options.b2immediate.CL_SECTOR,sector) & ismember(options.b2immediate.CL_VARIABLE,NetVars(2))),:),"CL_YEAR","ascend");
netzero2050_DEC = sortrows(options.netzero2050((ismember(options.netzero2050.CL_GEOGRAPHY,country) & ismember(options.netzero2050.CL_SECTOR,sector) & ismember(options.netzero2050.CL_VARIABLE,NetVars(2))),:),"CL_YEAR","ascend");

% Revenue
baseline_RE = sortrows(options.baseline((ismember(options.baseline.CL_GEOGRAPHY,country) & ismember(options.baseline.CL_VARIABLE,NetVars(3)) & ismember(options.baseline.CL_SECTOR,sector)),:),"CL_YEAR","ascend");
b2delayed_RE = sortrows(options.b2delayed((ismember(options.b2delayed.CL_GEOGRAPHY,country) & ismember(options.b2delayed.CL_SECTOR,sector) & ismember(options.b2delayed.CL_VARIABLE,NetVars(3))),:),"CL_YEAR","ascend");
b2immediate_RE = sortrows(options.b2immediate((ismember(options.b2immediate.CL_GEOGRAPHY,country) & ismember(options.b2immediate.CL_SECTOR,sector) & ismember(options.b2immediate.CL_VARIABLE,NetVars(3))),:),"CL_YEAR","ascend");
netzero2050_RE = sortrows(options.netzero2050((ismember(options.netzero2050.CL_GEOGRAPHY,country) & ismember(options.netzero2050.CL_SECTOR,sector) & ismember(options.netzero2050.CL_VARIABLE,NetVars(3))),:),"CL_YEAR","ascend");

% Indirect costs
baseline_IC = sortrows(options.baseline((ismember(options.baseline.CL_GEOGRAPHY,country) & ismember(options.baseline.CL_VARIABLE,NetVars(4)) & ismember(options.baseline.CL_SECTOR,sector)),:),"CL_YEAR","ascend");
b2delayed_IC = sortrows(options.b2delayed((ismember(options.b2delayed.CL_GEOGRAPHY,country) & ismember(options.b2delayed.CL_SECTOR,sector) & ismember(options.b2delayed.CL_VARIABLE,NetVars(4))),:),"CL_YEAR","ascend");
b2immediate_IC = sortrows(options.b2immediate((ismember(options.b2immediate.CL_GEOGRAPHY,country) & ismember(options.b2immediate.CL_SECTOR,sector) & ismember(options.b2immediate.CL_VARIABLE,NetVars(4))),:),"CL_YEAR","ascend");
netzero2050_IC = sortrows(options.netzero2050((ismember(options.netzero2050.CL_GEOGRAPHY,country) & ismember(options.netzero2050.CL_SECTOR,sector) & ismember(options.netzero2050.CL_VARIABLE,NetVars(4))),:),"CL_YEAR","ascend");

if strcmp(sector,"Electricity")
 baseline_NI = baseline_RE.CL_VALUE -baseline_DEC.CL_VALUE - baseline_CE.CL_VALUE;
 b2delayed_NI = b2delayed_RE.CL_VALUE -b2delayed_DEC.CL_VALUE - b2delayed_CE.CL_VALUE;
 b2immediate_NI = b2immediate_RE.CL_VALUE -b2immediate_DEC.CL_VALUE - b2immediate_CE.CL_VALUE;
 netzero2050_NI = netzero2050_RE.CL_VALUE -netzero2050_DEC.CL_VALUE - netzero2050_CE.CL_VALUE;
else
 % Net incomes
 baseline_NI = baseline_RE.CL_VALUE -baseline_DEC.CL_VALUE - baseline_IC.CL_VALUE - baseline_CE.CL_VALUE;
 b2delayed_NI = b2delayed_RE.CL_VALUE -b2delayed_DEC.CL_VALUE - b2delayed_IC.CL_VALUE - b2delayed_CE.CL_VALUE;
 b2immediate_NI = b2immediate_RE.CL_VALUE -b2immediate_DEC.CL_VALUE - b2immediate_IC.CL_VALUE - b2immediate_CE.CL_VALUE;
 netzero2050_NI = netzero2050_RE.CL_VALUE -netzero2050_DEC.CL_VALUE - netzero2050_IC.CL_VALUE - netzero2050_CE.CL_VALUE;
end

nexttile;
bar(unique(baseline_RE.CL_YEAR),((b2immediate_NI-baseline_NI)./baseline_NI) .*100);
title('Below 2^oC Immediate')
grid on

nexttile;
bar(unique(baseline_RE.CL_YEAR),((b2delayed_NI-baseline_NI)./baseline_NI) .*100);
title('Below 2^oC Delayed')
grid on

nexttile;
bar(unique(baseline_RE.CL_YEAR),((netzero2050_NI-baseline_NI)./baseline_NI) .*100);
title('Net-Zero 2050 1.5^oC')
grid on

4 Corporate Credit Risk Simulations for Portfolios

4-284

end

preprocessBankOfCanadaData

function [ClimateTransitionScenarioData,options] = preprocessBankOfCanadaData(ClimateTransitionScenarioData)

VariableSubset = {'Direct emissions costs', ... % Emissions
 'Emission intensity','Emissions (scope 1)| CH4', ...
 'Emissions (scope 1)| CO2', ...
 'Emissions (scope 1)| HFC', ...
 'Emissions (scope 1)| N2O', ...
 'Emissions (scope 1)| PFC', ...
 'Emissions (scope 1)| SF6', ...
 'Emissions (scope 2)| total GHG', ...
 'Emissions | total GHG (scope 1)', ...
 'Emissions/removals from forestry', ...
 'Carbon price' ... % Shadow carbon price
 'Primarsy Energy | Bioenergy', ... % Primary energy
 'Primary Energy | Coal', ...
 'Primary Energy | Gas', ...
 'Primary Energy | Hydro', ...
 'Primary Energy | Nuclear', ...
 'Primary Energy | Oil', ...
 'Primary Energy | Renewables (wind&solar)', ...
 'Primary Energy | Total', ...
 'Secondary Energy | Electricity| Bioelectricity (CCS)', ... % Secondary energy for electricity
 'Secondary Energy | Electricity| Bioelectricity and other', ...
 'Secondary Energy | Electricity| Coal (CCS)', ...
 'Secondary Energy | Electricity| Coal (without CCS)', ...
 'Secondary Energy | Electricity| Gas (CCS)', ...
 'Secondary Energy | Electricity| Gas (without CCS)', ...
 'Secondary Energy | Electricity| Hydro', ...
 'Secondary Energy | Electricity| Nuclear', ...
 'Secondary Energy | Electricity| Oil', ...
 'Secondary Energy | Electricity| Wind&Solar', ...
 'Capital expenditure', ... % Components of net income
 'Direct emissions costs', ...
 'Indirect costs', ...
 'Revenue', ...
 'US GDP', ... % GDPs
 'Global GDP', ...
 'Real GDP'};

% Keep only the specific VARIABLES
ClimateTransitionScenarioData = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_VARIABLE, VariableSubset),:);

% Find unique values of the categories. These are useful for the controls
% that appear later.
regions = string(unique(ClimateTransitionScenarioData.CL_GEOGRAPHY));
sectors = string(unique(ClimateTransitionScenarioData.CL_SECTOR));
vars = string(unique(ClimateTransitionScenarioData.CL_VARIABLE));
SCE = unique(ClimateTransitionScenarioData.CL_SCENARIO);

% Remove table variables from data
ClimateTransitionScenarioData = removevars(ClimateTransitionScenarioData,{'k'});
ClimateTransitionScenarioData = sortrows(ClimateTransitionScenarioData);

 Analyze Transition Scenarios for Climate-Related Financial Risks

4-285

% Pull data by scenario
baseline = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_SCENARIO, 'Baseline (2019 policies)'),:);
b2delayed = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_SCENARIO, 'Below 2°C delayed'),:);
b2immediate = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_SCENARIO, 'Below 2°C immediate'),:);
netzero2050 = ClimateTransitionScenarioData(ismember(ClimateTransitionScenarioData.CL_SCENARIO, 'Net-zero 2050 (1.5°C)'),:);

% Options for local functions
options = struct;
options.regions = regions;
options.sectors = sectors;
options.var = vars;
options.scenarios = SCE;
options.baseline = baseline;
options.b2delayed = b2delayed;
options.b2immediate = b2immediate;
options.netzero2050 = netzero2050;
end

addData

function options = updateOptions(options,varargin)
% varargin
% 1st: factor
% 2nd: title
% 3rd: ylabel
% 4th: energy type
if nargin<3
 options.factor = varargin{1};
elseif nargin<4
 options.factor = varargin{1};
 options.title = varargin{2};
elseif nargin<5
 options.factor = varargin{1};
 options.title = varargin{2};
 options.yLabel = varargin{3};
else
 options.factor = varargin{1};
 options.title = varargin{2};
 options.yLabel = varargin{3};
 options.energytype = varargin{4};
end

end

See Also

Related Examples
• “Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios” on page 4-231
• “Assess Physical and Transition Risk for Mortgages” on page 4-248

External Websites
• Modeling the Impact of Transition and Physical Climate Risks on a Portfolio of Mortgages (13

min 52 sec)

4 Corporate Credit Risk Simulations for Portfolios

4-286

https://www.mathworks.com/videos/modeling-the-impact-of-transition-and-physical-climate-risks-on-a-portfolio-of-mortgages-1633579102333.html?s_tid=srchtitle_climate%20finance_6
https://www.mathworks.com/videos/modeling-the-impact-of-transition-and-physical-climate-risks-on-a-portfolio-of-mortgages-1633579102333.html?s_tid=srchtitle_climate%20finance_6

Interpretability and Explainability for Credit Scoring

This example shows different techniques for interpreting and explaining the logic behind credit
scoring predictions.

While credit scorecard models, in general, are straightforward to interpret, this example uses a black-
box model, without revealing the logic, to show the workflow for explaining predictions. In this
example, you work with the creditscorecard object from Financial Toolbox™ and pass the scoring
function to interpretability tools in Statistics and Machine Learning Toolbox™. These tools include:

• Partial dependence plots (PDP) on page 4-290
• Iindividual conditional expectation plots (ICE) on page 4-292
• Local interpretable model-agnostic explanations (LIME) on page 4-294
• Shapley values on page 4-296

These tools support regression and classification modeling, which make interpretation more efficient.
For more information on these techniques, see “Interpret Machine Learning Models”. In this
example, the score model of the creditscorecard object is used as the black-box model. For an
example of this workflow, see “Interpret and Stress-Test Deep Learning Networks for Probability of
Default” on page 4-178.

Background

Credit scoring is the process by which lenders assign scores to borrowers and use those scores to
decide whether or not to accept a loan application. Lenders use credit scoring models to come up
with these scores. Traditionally, simple, interpretable models such as credit scorecards and logistic
regression have been widely used in this area. Over time, Machine Learning (ML) and Artificial
Intelligence (AI) techniques were introduced to implement credit scoring models. Such techniques,
while improving predictive power, also are more black-box and there is little or no explanation behind
the decisions. Consequently, the credit scoring predictions of ML and AI techniques are difficult for
humans to interpret. As a result, lenders are implementing different interpretability and explainability
methods to get a better understanding of the logic behind the credit scoring predictions. In addition,
regulators are also requiring that practitioners use more interpretability and also fairness methods to
ensure that no equal opportunity laws are broken while making credit decisions. For more
information on using fairness metrics, see “Explore Fairness Metrics for Credit Scoring Model” on
page 3-98.

Create Credit Scorecard Model

Load credit card data and create a credit scorecard model using the creditscorecard object.

load CreditCardData
sc = creditscorecard(data,IDVar="CustID");

Apply automatic binning. This example uses a split algorithm, with a maximum of 5 bins per predictor
and with the constraint that each bin has at least 50 observations. For more information, see
autobinning and “Bin Data to Create Credit Scorecards Using Binning Explorer” on page 3-23.

sc = autobinning(sc,Algorithm="Split",AlgorithmOptions={"MaxNumBins",5,"MinCount",50});

Verify that the binning for the numeric variables has five bins or levels. For example, here is the bin
information for the customer age predictor.

 Interpretability and Explainability for Credit Scoring

4-287

bi = bininfo(sc,"CustAge");
disp(bi)

 Bin Good Bad Odds WOE InfoValue
 _____________ ____ ___ ______ _________ __________

 {'[-Inf,35)'} 93 76 1.2237 -0.50255 0.038003
 {'[35,47)' } 321 184 1.7446 -0.14791 0.0094258
 {'[47,53)' } 194 64 3.0312 0.40456 0.03252
 {'[53,61)' } 128 64 2 -0.011271 2.0365e-05
 {'[61,Inf]' } 67 9 7.4444 1.303 0.079183
 {'Totals' } 803 397 2.0227 NaN 0.15915

For categorical variables, there may be fewer than five bins in total, since the split algorithm in
autobinning can merge categories into a single group. For example, the residential status predictor
initially has three levels: Tenant, Home Owner, and Other. The split algorithm returns only two
groups.

[bi,cg] = bininfo(sc,"ResStatus");
disp(bi)

 Bin Good Bad Odds WOE InfoValue
 __________ ____ ___ ______ _________ _________

 {'Group1'} 672 344 1.9535 -0.034802 0.0010314
 {'Group2'} 131 53 2.4717 0.20049 0.0059418
 {'Totals'} 803 397 2.0227 NaN 0.0069732

The category grouping information shows that Tentant and Home Owner are merged into Group1.
This grouping means Tenant and Home Owner will get the same number of points in the final
scorecard.

disp(cg)

 Category BinNumber
 ______________ _________

 {'Tenant' } 1
 {'Home Owner'} 1
 {'Other' } 2

Fit the model coefficients using fitmodel. For illustration purposes, keep only five model predictors,
including some categorical ones.

PredictorsInModel = ["CustAge" "CustIncome" "EmpStatus" "ResStatus" "UtilRate"];
sc = fitmodel(sc,PredictorVars=PredictorsInModel,VariableSelection="fullmodel",Display="off");

Scale the points so that 500 points correspond to odds of 2, and the odds double every 50 points.

sc = formatpoints(sc,PointsOddsAndPDO=[500 2 50]);

Display the scorecard using displaypoints. The credit scorecard model is a lookup table. For
example, for customer age there are five bins or levels with different points for each level. A
visualization of the score, as a function of age, has a piecewise constant pattern with five levels, as
shown in Partial Dependence Plot on page 4-290. For residential status, Tenant and Home Owner are
in Group1, and they get the same number of points.

[ScorecardPointsTable,MinPts,MaxPts] = displaypoints(sc);
disp(ScorecardPointsTable)

4 Corporate Credit Risk Simulations for Portfolios

4-288

 Predictors Bin Points
 ______________ _________________ ______

 {'CustAge' } {'[-Inf,35)' } 71.84
 {'CustAge' } {'[35,47)' } 91.814
 {'CustAge' } {'[47,53)' } 122.93
 {'CustAge' } {'[53,61)' } 99.511
 {'CustAge' } {'[61,Inf]' } 173.54
 {'CustAge' } {'<missing>' } NaN
 {'ResStatus' } {'Group1' } 97.318
 {'ResStatus' } {'Group2' } 116.43
 {'ResStatus' } {'<missing>' } NaN
 {'EmpStatus' } {'Unknown' } 85.326
 {'EmpStatus' } {'Employed' } 118.11
 {'EmpStatus' } {'<missing>' } NaN
 {'CustIncome'} {'[-Inf,31000)' } 68.158
 {'CustIncome'} {'[31000,38000)'} 102.11
 {'CustIncome'} {'[38000,42000)'} 93.302
 {'CustIncome'} {'[42000,47000)'} 109.18
 {'CustIncome'} {'[47000,Inf]' } 121.21
 {'CustIncome'} {'<missing>' } NaN
 {'UtilRate' } {'[-Inf,0.12)' } 106.84
 {'UtilRate' } {'[0.12,0.3)' } 94.647
 {'UtilRate' } {'[0.3,0.39)' } 140.95
 {'UtilRate' } {'[0.39,0.68)' } 69.635
 {'UtilRate' } {'[0.68,Inf]' } 94.634
 {'UtilRate' } {'<missing>' } NaN

One "traditional" approach to measure the importance of each predictor in the credit scorecard
model is to compute the percent of the total score range that comes from each predictor.

PtsRange = MaxPts - MinPts;
NumPred = length(PredictorsInModel);
PercentWeight = zeros(NumPred,1);

for ii = 1 : NumPred
 Ind = strcmpi(PredictorsInModel{ii},ScorecardPointsTable.Predictors);
 MaxPtsPred = max(ScorecardPointsTable.Points(Ind));
 MinPtsPred = min(ScorecardPointsTable.Points(Ind));
 PercentWeight(ii) = 100*(MaxPtsPred-MinPtsPred)/PtsRange;
end

PredictorWeights = table(PredictorsInModel',PercentWeight,VariableNames=["Predictor" "Weight"]);
disp(PredictorWeights)

 Predictor Weight
 ____________ ______

 "CustAge" 36.587
 "CustIncome" 19.085
 "EmpStatus" 11.795
 "ResStatus" 6.8768
 "UtilRate" 25.656

Customer age is the main variable in the model, since it corresponds to 36% of the total score range.
A customer can get anywhere from 71.8 to 173.5 points, based on their age. This range has a
difference of over 100 points between the minimum and maximum values. On the other end,

 Interpretability and Explainability for Credit Scoring

4-289

residential status plays a minor role in the score, with points ranging from 97.3 to 116.4 only, a
difference of less than 20 points.

An alternative to this "traditional" approach is to use the following explainability techniques from
Statistics and Machine Learning Toolbox: Partial Dependence Plot on page 4-290, Individual
Conditional Expectation Plot on page 4-292, Local Interpretable Model-Agnostic Explanation Plot on
page 4-294, and Shapley Values on page 4-296.

Partial Dependence Plot

The partial dependence plot (PDP) shows the effect of one or two variables on the predicted score.

Use the plotPartialDependence function to pass the score method of the creditscorecard
object as a black-box model.

One Predictor

Select a predictor using the dropdown option.

As an example, if customer age is selected, note the piecewise constant shape of the plot, with jumps
occuring at the bin edges, and with five levels in total. This is consistent with the five bins for
customer age in the credit scorecard model.

predictor = ;

plotPartialDependence(@(tbl)score(sc,tbl),predictor,data)

4 Corporate Credit Risk Simulations for Portfolios

4-290

Two Predictors

Generating a partial dependence plot with two predictors can take significantly longer than the one-
predictor case. Typically, the more unique values a predictor has in the data set, the longer it takes to
plot the partial dependence. Here's a report of the number of unique values in the data.

NumUniqueValuesTable = varfun(@(x)length(unique(x)),data(:,PredictorsInModel));
NumUniqueValuesTable.Properties.VariableNames = erase(NumUniqueValuesTable.Properties.VariableNames,'Fun_');
disp(NumUniqueValuesTable)

 CustAge CustIncome EmpStatus ResStatus UtilRate
 _______ __________ _________ _________ ________

 54 45 2 3 110

The categorical predictors have fewer unique levels, so these plots for categorical predictors run
faster. Numeric variables like customer age are relatively discrete and so is utilization rate because
this rate's values are rounded to two decimals. However, a continuous predictor (for example, the
average monthly balance (AMBalance) in the data table) can have many unique values.

Select a predictor and additional predictor to then use plotPartialDependence to generate the
PDP plot.

predictor = ;

additionalPredictor = ;

plotPartialDependence(@(tbl)score(sc,tbl),[predictor,additionalPredictor],data)

 Interpretability and Explainability for Credit Scoring

4-291

Individual Conditional Expectation Plot

Similar to the partial dependence plot, the individual conditional expectation plot (ICE) shows the
effect of one of the variables on the predicted score. The red line in the ICE plot matches the partial
dependence plot. While the partial dependence plot shows the average score as a function of the
selected predictor, the ICE plot disaggregates and shows the score for each observation (each gray
line) as a function of the selected predictor. For more information, see the More About section on the
plotPartialDependence reference page.

predictor = ;

plotPartialDependence(@(tbl)score(sc,tbl),predictor, ...
 data,Conditional="absolute")

4 Corporate Credit Risk Simulations for Portfolios

4-292

Select a Query Point

The PDP and ICE plots provide a global view of the credit scorecard scores, where the score is
visualized for all values of the selected predictor. In contrast, LIME and Shapley are local
explainability techniques that explain the behavior of the model in a neighborhood of a query point of
choice. For more information, see “Interpret Machine Learning Models”.

To see how a query point helps to explain credit scores , use index 92 in the training data as your
query point. You can select other query points by typing an index value into the text box.

QueryPointIndex = ; % ID number of the observation to explain

Use score to display the query point score and the points, by predictor, for this query point.

[ScoresTraining,PointsTraining] = score(sc,data);
fprintf("Selected index %d, with score %g\n",QueryPointIndex,ScoresTraining(QueryPointIndex))

Selected index 92, with score 417.289

disp(PointsTraining(QueryPointIndex,:))

 CustAge ResStatus EmpStatus CustIncome UtilRate
 _______ _________ _________ __________ ________

 71.84 97.318 85.326 68.158 94.647

The plots that follow show the location of the query point (dotted vertical line) relative to the
distribution of values for the scores and for each predictor. For example, for index 92, the score is low

 Interpretability and Explainability for Credit Scoring

4-293

relative to the distribution. For the customer age predictor, the query point is on the bottom group.
This result is similar for the customer income, employment status, and residential status predictors.
The points for the utilization rate predictor are closer to the middle of the distribution, but still below
average.

figure
t = tiledlayout(3,2);
nexttile
plotQueryInHistogram("Score",QueryPointIndex,ScoresTraining,PointsTraining)
nexttile
plotQueryInHistogram("CustAge",QueryPointIndex,ScoresTraining,PointsTraining)
nexttile
plotQueryInHistogram("CustIncome",QueryPointIndex,ScoresTraining,PointsTraining)
nexttile
plotQueryInHistogram("EmpStatus",QueryPointIndex,ScoresTraining,PointsTraining)
nexttile
plotQueryInHistogram("ResStatus",QueryPointIndex,ScoresTraining,PointsTraining)
nexttile
plotQueryInHistogram("UtilRate",QueryPointIndex,ScoresTraining,PointsTraining)
title(t,"Query Point Relative to Distribution")

Local Interpretable Model-Agnostic Explanation Plot

The local interpretable model-agnostic explanation (LIME) plot shows the coefficients of a local linear
model near the instance of a score that you want to explain. LIME explains the scores around a
particular observation, or query point, with a simple local model, such as a linear regression model or
a decision tree.

4 Corporate Credit Risk Simulations for Portfolios

4-294

Use lime to create a lime object specifying the data set of interest (the training data set), the model
"type" (use "regression" to indicate a numeric prediction), and which variables are categorical. When
you create a lime object, the toolbox generates a random synthetic data set. Use the synthetic data
to fit simple local models to explain the local behavior.

rng('default'); % for reproducibility
limeExplainer = lime(@(tbl)score(sc,tbl),data(:,PredictorsInModel),Type="regression", ...
 CategoricalPredictors=["ResStatus" "EmpStatus"]);

Select a maximum number of predictors (NumPredToExplain) to explain and use a
SimpleModelType of a "tree" to explain the local behavior of the score. The results are sensitive to
the kernel width parameter (KernelWidthChoice) that controls how much neighbor points are
weighted while fitting the linear simple model.

NumPredToExplain = ; % number of variables/predictors to explain

KernelWidthChoice = ;
limeExplainer = fit(limeExplainer,data(QueryPointIndex,PredictorsInModel), ...
 NumPredToExplain,SimpleModelType="tree",KernelWidth=KernelWidthChoice);

figure
f = plot(limeExplainer);

When the simple model is a tree, based on the reported predictor importance, customer age is the
main predictor, followed by employment status and customer income.

 Interpretability and Explainability for Credit Scoring

4-295

Shapley Values

Shapley values explain the deviation of the predicted score from the average predicted score. The
sum of the Shapley values for all predictors corresponds to the total deviation of the score for the
query point from the average score.

The Shapley values are estimated based on a simulation. For larger data sets, this simulation is time
consuming. For illustration purposes, this example uses only 500 rows of the training data with the
shapley constructor.

rng('default'); % for reproducibility

shapleyExplainer = shapley(@(tbl)score(sc,tbl),data(500,PredictorsInModel), ...
 QueryPoint=data(QueryPointIndex,PredictorsInModel),CategoricalPredictors=["EmpStatus" "ResStatus"]);

figure
plot(shapleyExplainer)

For the query point with index 92, the predicted score is 417, whereas the average score for the
training data set passed to shapley function is 516. You expect the Shapley values to be negative, or
at least have important negative components that explain why the predicted score is below average.
In contrast, for scores above average, the Shapley values add up to a positive amount. In this
example, the estimated Shapley values show that the main deviation from the average is explained by
the customer income and employment status predictors, followed by the customer age and utilization
rate predictors. The residential status predictor is not important. This result might be a combination
of the simulation itself with the fact that residential status has a smaller impact on scores for this
model.

4 Corporate Credit Risk Simulations for Portfolios

4-296

Final Remarks

Explainability techniques are widely used to understand the behavior of predictive models. In this
example, a creditscorecard model shows how explainability techniques, such as PDP, ICE, LIME,
and Shapley are applied to explain a black-box model. Although credit scorecard models are simple
and interpretable, you can apply the explainability tools in this example to other scoring models that
are treated as black-box models or to supported models in Statistics and Machine Learning Toolbox.
Alternatively, instead of explaining the scores, you can pass the probdefault function as the black-
box model to explain the probability of default predictions.

Local Functions

function plotQueryInHistogram(VariableChoice,QueryPointIndex,Scores,PointsTable)

if VariableChoice=="Score"
 HistData = Scores;
else
 HistData = PointsTable.(VariableChoice);
end

histogram(HistData)
hold on
xline(HistData(QueryPointIndex),':','LineWidth',2.5)
hold off
xlabel(VariableChoice)
ylabel('Frequency')

end

See Also

Related Examples
• “Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios” on page 4-231
• “Assess Physical and Transition Risk for Mortgages” on page 4-248

External Websites
• Modeling the Impact of Transition and Physical Climate Risks on a Portfolio of Mortgages (13

min 52 sec)

 Interpretability and Explainability for Credit Scoring

4-297

https://www.mathworks.com/videos/modeling-the-impact-of-transition-and-physical-climate-risks-on-a-portfolio-of-mortgages-1633579102333.html?s_tid=srchtitle_climate%20finance_6
https://www.mathworks.com/videos/modeling-the-impact-of-transition-and-physical-climate-risks-on-a-portfolio-of-mortgages-1633579102333.html?s_tid=srchtitle_climate%20finance_6

Model Risk Management with
Modelscape

• “Get Started with Modelscape” on page 5-2
• “Modelscape Governance” on page 5-4
• “Modelscape Develop” on page 5-6
• “Modelscape Validate” on page 5-9
• “Modelscape Test” on page 5-12
• “Modelscape Deploy” on page 5-13
• “Extensibility” on page 5-15
• “Model Development and Experiment Manager” on page 5-16
• “Remove Risk Factors” on page 5-22
• “Fairness Metrics in Modelscape” on page 5-26
• “Screen Risk Factors by Custom Criteria” on page 5-30
• “Model Documentation in Modelscape” on page 5-35
• “Metrics Handlers” on page 5-45
• “Credit Scorecard Validation Metrics” on page 5-48
• “Validation of Credit Models in ECB Templates” on page 5-57
• “Validation of External Models” on page 5-60
• “File Attachments in Modelscape Review Editor” on page 5-68
• “Customization of Signoff Forms in Review Editor” on page 5-70
• “Model Implementation for Modelscape Deploy” on page 5-74
• “Customizing Model Inventory: Risk Tiering” on page 5-78
• “Test Metrics in Modelscape” on page 5-85

5

Get Started with Modelscape
Modelscape™ provides workflow tools for model lifecycle support, including governance, automation,
documentation, and operation in a unified, customizable system. Use Modelscape if you are a
professional with a role related to model development and deployment in financial services.
Modelscape supports models you build with MATLAB, Python®, R, SAS®, and other programming
languages.

Installation
To host Modelscape for your organization, contact MathWorks Consulting Services. After you have set
up Modelscape, to use it in MATLAB R2023a, download the Support Software Downloader for your
operating system, run it, and install Modelscape for MATLAB.

Modelscape Workflow
Use Modelscape to implement workflows for creating, documenting, validating, deploying, and
managing financially regulated models and associated data.

This figure shows how these components work together and the corresponding audience for each of
the workflow steps.

Modelscape includes these workflow tools:

5 Model Risk Management with Modelscape

5-2

https://www.mathworks.com/services/consulting/contact.html
https://www.mathworks.com/support/install/support-software-downloader.html

• “Modelscape Governance” on page 5-4 — Bring together the management of the whole lifecycle
across the model inventory, workflow, risk tiering, and management reporting.

• “Modelscape Develop” on page 5-6 — Work with reusable components and automatic model
documentation.

• “Modelscape Validate” on page 5-9 — Bring languages, tools, datasets, and application
programming interfaces (APIs) together in one place.

• “Modelscape Test” on page 5-12 — Collate model artifacts for quality assurance, packaging, and
deployment.

• “Modelscape Deploy” on page 5-13 — Securely execute, scale, and audit cross-language model
that you store onsite or in cloud.

See Also

More About
• Model Risk Management Lifecycle
• MathWorks Modelscape Model Risk Management (1 min 38 sec)
• Improving Model Governance with MATLAB

 Get Started with Modelscape

5-3

https://uk.mathworks.com/solutions/finance-and-risk-management/model-risk-management/model-risk-management-lifecycle.html
https://uk.mathworks.com/videos/mathworks-modelscape-model-risk-management-solution-1666809195863.html
https://uk.mathworks.com/campaigns/offers/financial-risk-improve-model-governance-white-paper.html

Modelscape Governance
Modelscape Governance™ is an interactive environment that comprises a regulatory-compliant
governance solution for all models in a business area. Use Modelscape Governance if you develop,
validate, review, test, deploy, monitor, and use models. Modelscape Governance brings together
Modelscape models, model versions, and lifecycles. To customize the environment further for your
needs, see “Extensibility” on page 5-15.

Use Modelscape Governance to perform these tasks:

• Model metadata management for any programming language or spreadsheet
• Metadata tracking for data you use in the model development process
• Dependency analysis and tracking for models and data
• Inspection, viewing, and analysis of model and data relationships
• Viewing and reporting on the model state within the model lifecycle
• Management of the model hierarchy and dependencies

You can also extend and customize Modelscape Governance to perform these tasks:

• Score model risk and automate reporting.
• Customize workflow and approval procedures.
• Review, comment on, and approve models for state changes across the model lifecycle.
• Generate reports and customized dashboards for model governance.
• Integrate models with internal or vendor applications.

For more information about extending and customizing Modelscape Governance, see “Extensibility”
on page 5-15.

Modelscape Governance Workflow
Working with Modelscape Models and Model Versions

Modelscape models are quantitative solutions that apply statistical, economic, or other techniques to
given inputs to produce an output. You can use these outputs to guide pricing or other business
decisions. Modelscape models must be backed by a Git™ repository and associated with a lifecycle.

Each Modelscape model has multiple model versions. Model versions are committed updates of a
Modelscape model. For example, Probability of Default for Retail Credit in Europe is a Modelscape
model, and its 2015 and 2020 versions are the model versions. While a Modelscape model
corresponds to a Git repository, a model version refers to a Git commit.

Create Lifecycles Using Lifecycle Designer

Each Modelscape model must be associated with a lifecycle. A lifecycle represents the steps of a
model version from drafting and proposal to retiring and decommissioning. At any time, each model
version is in one specific state of the model lifecycle. This figure shows a simplified example lifecycle:

5 Model Risk Management with Modelscape

5-4

To create and edit lifecycles, use the Lifecycle Designer app.

Create Modelscape Models and Add Dependencies Between Modelscape Models

You can use the Inventory Browser app to create new models.

When you have more than one model, you can add dependencies between the models using the
Dependency Editor in the Inventory Browser app.

See Also
Apps
Inventory Browser | Lifecycle Designer

More About
• MathWorks Modelscape Governance (1 min 41 sec)
• Facilitating Model Governance with the MathWorks Model Inventory

 Modelscape Governance

5-5

https://uk.mathworks.com/videos/mathworks-modelscape-governance-1666807410306.html
https://uk.mathworks.com/content/dam/mathworks/white-paper/facilitating-model-governance-with-the-mathworks-model-inventory.pdf

Modelscape Develop
Modelscape Develop™ is a set of model development and documentation tools. These tools are
intended for risk managers, analysts, and quants who develop, test, and document models for risk
assessment and decision support.

Modelscape Develop comprises these tools:

• Interactive apps for data preparation, model construction, model testing, and validation
• A comprehensive library of validation statistics, machine and deep learning, financial, risk, and

economic algorithms
• Customizable and reusable model development templates
• Automated model documentation generation

You can use Modelscape Develop to perform these tasks:

• Build, test, experiment with, and validate multiple models in parallel.
• Create models from validated pre-built functions instead of writing code or building your own

libraries.
• Automate iterative workflows through code generation and reuse.
• Integrate algorithms and internal IP developed in any language or application.
• Generate live, auditable, and traceable documentation for model validation and governance.
• Preserve model development history for auditability, transparency, and knowledge transfer.

Modelscape Develop Workflow
Use Modelscape Develop to develop statistical and machine learning models in MATLAB.

This figure shows how to use the Modelscape Develop workflow in parallel with the Modelscape
Validate™ workflow. The Develop workflow comprises the white boxes and the Validate workflow
comprises the orange boxes. You can also perform the validation workflow independently after the
development workflow.

5 Model Risk Management with Modelscape

5-6

Preprocess Data Using Live Tasks

Load data for your models in MATLAB. You can preprocess the data using the Remove Risk Factors
and Screen Risk Factors live tasks.

Use Remove Risk Factors to interactively inspect variables from a data table and filter them out. You
can also add the reasons for including or excluding variables and use the live task to document your
analysis. For more information on how to do this, see “Remove Risk Factors” on page 5-22.

Use the Screen Risk Factors live task to interactively use predefined, customizable screening criteria
to filter out input variables based on their predictive power. You can also add the reasons for
including or excluding variables and use the live task to document your analysis. For more
information on how to do this, see “Screen Risk Factors by Custom Criteria” on page 5-30.

You can also use the suite of metrics in Modelscape to analyze the bias in your data set. For more
details, see “Fairness Metrics in Modelscape” on page 5-26.

Train Models Using MATLAB

After preprocessing your input features, you can use MATLAB to train your machine learning models.
For example, you can use the Classification Learner and Regression Learner apps to train your
models.

You can also use the suite of metrics in Modelscape to analyze the bias in your models. For more
details, see “Fairness Metrics in Modelscape” on page 5-26.

Check Performance of Models

You can check the performance of your model using validation metrics available in Modelscape. For
more details, see “Modelscape Validate” on page 5-9. After you compare models, you can select a
model that suits your needs.

 Modelscape Develop

5-7

Perform Model Comparisons Using Experiment Manager

You can compare the performance of your models against each other or against existing models using
the app. For more information, see “Model Development and Experiment Manager” on page 5-16.

Document Model Development Process

Document the results and analyses of the model in a Microsoft® Word document from MATLAB. Many
workflows in financial institutions involve writing and submitting reports to internal control functions
or regulatory bodies. These documents often conform to a given house style and are typically
Microsoft Word documents. Using Modelscape, you can add text, visualization, and tabular content to
a Microsoft Word document from MATLAB. For more information, see “Model Documentation in
Modelscape” on page 5-35.

After you develop a model, you can pass it to one of these stages:

• Validation stage — For more information, see “Modelscape Validate” on page 5-9.
• Test stage — For more information, see “Modelscape Test” on page 5-12.
• Deployment stage — For more information, see “Modelscape Deploy” on page 5-13.

See Also
Apps
Remove Risk Factors | Screen Risk Factors

Related Examples
• “Remove Risk Factors” on page 5-22
• “Screen Risk Factors by Custom Criteria” on page 5-30
• “Model Development and Experiment Manager” on page 5-16
• “Fairness Metrics in Modelscape” on page 5-26
• “Model Documentation in Modelscape” on page 5-35

More About
• MathWorks Modelscape Develop (1 min 29 sec)

5 Model Risk Management with Modelscape

5-8

https://uk.mathworks.com/videos/mathworks-modelscape-develop-1666809214426.html

Modelscape Validate
Modelscape Validate is a model validation and documentation workflow. Use this workflow if you
review business line data, models, assumptions, or if you build challenger models. Use Modelscape
Validate to validate models written in any programming language.

You can record anomalies or observations related to models and the appropriate closure measures or
actions and export the findings to a PDF file using the Review Editor app. The app also logs and
stores all activity with the model, which ensures traceability and reproducibility.

Modelscape Validate comprises these features:

• Interactive apps for data preparation, model construction, model testing, and validation
• A comprehensive library of validation statistics, machine and deep learning, financial, risk, and

economic algorithms
• Customizable and reusable model development and documentation templates
• Automated model documentation generation

You can use Modelscape Validate to perform these tasks:

• Build, test, experiment with, and validate multiple models in parallel.
• Create models from validated pre-built functions instead of writing code or building your own

libraries.
• Automate iterative workflows through code generation and reuse.
• Integrate algorithms and internal IP.
• Generate live, auditable, and traceable documentation for model validation and governance.
• Preserve model development history for auditability, transparency, and knowledge transfer.

Modelscape Validate Workflow
This figure shows how to use the Modelscape Develop workflow in parallel with the Modelscape
Validate workflow. The Develop workflow comprises the white boxes and the Validate workflow
comprises the orange boxes. You can also perform the validation workflow independently after the
development workflow.

After you develop a model version, you can propose to deploy it. To deploy the model version, you
must first validate it.

 Modelscape Validate

5-9

Raise Review Request

To begin validation for a model version, lock the commit version of the Modelscape model in the
GitHub® repository and raise a review request for that model version. This action sends a review
request to the Validator team.

Open Review Editor App

Open the Modelscape Home page, look for the model version, and open a review. Opening a review
opens the Review Editor app. Use the Review Editor app to perform model validation on that model
version.

Analyze Model Version

Create live scripts using the Review Editor app and use them to explore and analyze data. You can
run the models and perform what-if analyses, which include adjusting the parameters of models,
using different methods for fitting models, and observing any consequent changes in the model
performance.

You can use the metrics in Modelscape to analyze the bias in your models. For more details, see
“Fairness Metrics in Modelscape” on page 5-26.

You can write scripts to implement model validation suites. For an example script that shows how to
validate a probability of default model, see “Credit Scorecard Validation Metrics” on page 5-48. This
example shows how to use the techniques in the BCBS Working Paper 14.

If your model version uses a programming language other than MATLAB, you can still use the
validation tools from Modelscape. For more information, see “Validation of External Models” on page
5-60.

For an example that shows how to validate credit models using the European Central Bank template,
see “Validation of Credit Models in ECB Templates” on page 5-57.

5 Model Risk Management with Modelscape

5-10

https://www.bis.org/publ/bcbs_wp14.pdf

Attach Documents to Review

You can attach documents to the Review Editor app. These documents include recommendations for
improvement or evidence of model performance reports outside the Review Editor app. Use the app
to attach files such as detailed model validation documents and scripts supporting such documents.
By default, the Review Editor attaches the files to the project or model repository.

You can customize the location to which you save documents. See “Extensibility” on page 5-15 for
more details.

Make Review Decision

Finish your review by using the submit button and sign-off your form in the app. You can customize
the Submit Review dropdown and sign-off forms based on the needs of your organization. For more
details, see “Extensibility” on page 5-15.

By default, the Review Editor app provides a full review form and a reduced review form. Use the
reduced review form to approve the model if the changes are trivial. If the changes are not trivial and
have a significant material impact, for example on the value of trade, use the full review form.

You can choose to approve or reject the model version. The next stages depend on the model
lifecycle. If you do not approve the model version, it could be sent back to the developer. If you
approve the model version, it could be sent to production and deployment.

See Also
Apps
Review Editor

Related Examples
• “Fairness Metrics in Modelscape” on page 5-26
• “Credit Scorecard Validation Metrics” on page 5-48
• “Metrics Handlers” on page 5-45
• “Validation of External Models” on page 5-60
• “Validation of Credit Models in ECB Templates” on page 5-57

More About
• MathWorks Modelscape Validate (1 min 32 sec)
• Model Validation is Everyone's Business
• BCBS Working Paper 14

 Modelscape Validate

5-11

https://uk.mathworks.com/videos/mathworks-modelscape-validate-1666807391601.html
https://uk.mathworks.com/content/dam/mathworks/white-paper/model-validation-is-everyones-business.pdf
https://www.bis.org/publ/bcbs_wp14.pdf

Modelscape Test
Modelscape Test™ is a set of model implementation and testing workflow tools. Use these tools if you
build, test, and deploy quantitative models to business systems and end users.

Modelscape Test supports these workflows:

• Test authoring frameworks for unit and performance testing
• Integration with continuous integration (CI) and continuous delivery (CD) tools
• Automated testing and reporting
• Pre- and post-production model verification reporting

You can use Modelscape Test to perform these tasks:

• Eliminate rework through minimizing or eliminating the need to recode quant models.
• Automate model testing, acceptance, and deployment to production.
• Generate live, auditable, and traceable documentation of model verification pre- and post-

production deployment.
• Preserve model testing and deployment history for auditability, transparency, and knowledge

transfer.

Modelscape Test Workflow
After you develop a model version, follow these steps to test your code.

Write Tests

Use MATLAB to write tests for your code. For more information, see “Write Script-Based Unit Tests”,
“Write Function-Based Unit Tests”, and “Author Class-Based Unit Tests in MATLAB”.

Run in CI and Get Test Results

Set up a MATLAB project for continuous integration in a CI platform. Use this platform to create a
continuous integration workflow to perform automated testing and obtain test results. For more
details, see “Continuous Integration Using MATLAB Projects and Jenkins”.

5 Model Risk Management with Modelscape

5-12

Modelscape Deploy
Modelscape Deploy™ is a model execution workflow. Use this workflow if you deploy quantitative
models to business systems and end users and manage their operation.

Modelscape Deploy comprises these features:

• Automated model deployment and prediction interface registration
• Model auditing of data inputs, outputs, and model use
• Single model deployment that can be called by multiple languages, applications, and web services
• Encrypted model packaging

Use Modelscape Deploy to perform these tasks:

• Maintain a single model used by multiple business applications and programming languages.
• Operationalize models that you build in MATLAB, Python, R, SAS and other languages.
• Generate model and data use reports.
• Monitor and manage server performance programmatically or through dashboards.

Modelscape Deploy Workflow
Follow these steps to build a Docker® image from your Modelscape model, create a build for the
model, and the deploy the build.

Create Modelscape Model

Start with your model, such as a credit default model. Your model can be written in MATLAB or
another programming language. If your model is written in MATLAB, follow all of these steps to
create a Docker image. Otherwise, skip to the “Create Docker Image from Model” on page 5-13
section.

Begin by implementing a subclass that inherits from mrm.execution.Model class. You can use this
class to make a Modelscape model. For more details, see the Work with Modelscape Deploy section in
the “Model Implementation for Modelscape Deploy” on page 5-74.

Test Modelscape Model

Call the checkModel function with the original model, Modelscape model, and the model parameters
as inputs. Performing this recommended optional step ensures that the Modelscape model has the
correct set of inputs, parameters, and outputs. For more details, see checkModel.

Create Docker Image from Model

Create an image for deployment using the packageModel function. For more details about this
function, see packageModel and “Model Implementation for Modelscape Deploy” on page 5-74.
Running this function on your model creates a Docker image in the local Docker registry.

If your model is not written in MATLAB, you need to create a Docker image of the model. You also
need to create a Docker image of a web server that listens to port 8080 and responds to the
signature/ and evaluation/ endpoints with defined payloads.

 Modelscape Deploy

5-13

Push Docker Image to Registry

Push the image to a registry that is visible to Modelscape using docker push imageName, where
imageName is the name of your Docker image. For more information about the registry, talk to your
system administrator or contact Consulting services at MathWorks®.

Create Build

Create a Build of your Docker Image using the createBuild function. For more details, see this
example “Model Implementation for Modelscape Deploy” on page 5-74

Create and Execute Model Deployment

Create or use an existing deployment environment. You can use an isolated environment in your
organization with specific permissions and security provisions. Ask your system administrator for
more information.

Create a deployment, which is an instance of your build in the deployment environment. Creating a
deployment is equivalent to creating a container from a Docker Image.

Execute the deployment from your deployment environment.

See Also
checkModel | packageModel

Related Examples
• “Model Implementation for Modelscape Deploy” on page 5-74

More About
• MathWorks Modelscape Deploy (1 min 29 sec)
• Model Execution Environment

5 Model Risk Management with Modelscape

5-14

https://uk.mathworks.com/videos/mathworks-modelscape-deploy-1666813149517.html
https://uk.mathworks.com/content/dam/mathworks/white-paper/mathworks-model-execution-environment.pdf

Extensibility
Extend and customize your Modelscape environment.

Customize Inventory Browser
Customize the Inventory Browser app to make it specific to your organization. You can customize the
model data entry and the model summary table. You can also add new filters to the Inventory Browser
and find models with a particular attribute easily. For an example that shows how to customize the
Inventory Browser app, see “Customizing Model Inventory: Risk Tiering” on page 5-78.

Implement Test Metrics
You can implement different test metrics in MATLAB using Modelscape tools. For an example that
shows how to implement test metrics, see “Test Metrics in Modelscape” on page 5-85.

Customize Review Editor
You can attach review files to model reviews using the Review Editor app. These files include model
validation documents and scripts supporting such documents. By default, you attach the files to the
project (or model) repository. You can also store these attachments in a network folder. For an
example that shows how to customize and extend your Review Editor app, see “File Attachments in
Modelscape Review Editor” on page 5-68.

You can also customize the signoff forms in the Review Editor app. For an example that shows how to
customize signoff forms, see “Customization of Signoff Forms in Review Editor” on page 5-70.

See Also

Related Examples
• “Customizing Model Inventory: Risk Tiering” on page 5-78
• “Test Metrics in Modelscape” on page 5-85
• “File Attachments in Modelscape Review Editor” on page 5-68
• “Customization of Signoff Forms in Review Editor” on page 5-70

 Extensibility

5-15

Model Development and Experiment Manager

This example shows how to use MATLAB® Experiment Manager with Modelscape™ at various stages
of model development.

This example sets up experiments, uses Modelscape validation metrics in the process, and bridges
the gap between Experiment Manager and model documentation. This example uses a feature
selection process that works through all the subsets of the predictors to find the best subset using the
performance metric of the area under the receiver operating characteristic (AUROC). Such
exhaustive feature selection, though computationally intense, allows you to compare against more
effective methods in the process of model validation.

This example uses the CreditCardData.mat data set, which contains three tables of customer
information such as age, income, and employment status. After excluding the response variable
(status) and the customer id, this data set has nine possible predictors. This example creates an
experiment with nine trials such that the Kth trial runs through all the K-element subsets of the
maximal, nine-element predictor set. This example shows how to set up hyperparameters, write and
run the experiment, and document the experiment results.

Write Experiment in Experiment Manager

Load the Experiment Manager App from the app gallery in MATLAB. Create a Blank Project and
select ‘Custom Training’ under ‘Blank Experiments’. Set a single hyperparameter.

To write the experiment function, add a function name to the ‘Training Function’ box.

Clicking Edit opens a Live Script. Fill in the function written below. The function has two inputs.
params is a struct whose fields correspond to the given hyperparameters (in this case K), and
monitor is an experiments.Monitor object.

function output = ExhaustiveSearchExample(params,monitor)
 allData = load('CreditCardData.mat');

5 Model Risk Management with Modelscape

5-16

 data = allData.data;

 monitor.Metrics = "AUROC";
 monitor.Info = ["MaxAUROC", "MeanAUROC", "StdDevAUROC"];
 allVars = data.Properties.VariableNames;
 predictorFlags = ~ismember(allVars, {'status', 'CustID'});
 predictorVars = allVars(predictorFlags);

 N = numel(predictorVars);
 K = params.K;
 numRuns = nchoosek(N, K);
 masks = mrm.data.filter.allMasks(N,K);
 bestAUROC = 0;
 allAurocs = zeros(numRuns, 1);

 for i = 1:numRuns
 % choose a set of predictors
 thesePredictors = predictorVars(masks{i});

 % fit the model for these predictors
 sc = creditscorecard(data, 'IDVar', 'CustID', 'ResponseVar', 'status', ...
 'GoodLabel', 0, 'BinMissingData', true, ...
 'PredictorVars', thesePredictors);
 sc = autobinning(sc);
 sc = fitmodel(sc, 'VariableSelection','fullmodel');
 monitor.Progress = i/numRuns*100;

 % record performance metrics
 aurocMetric = mrm.data.validation.pd.AUROC(data.status, score(sc));
 recordMetrics(monitor, i, "AUROC", aurocMetric.Metric);
 allAurocs(i) = aurocMetric.Metric;
 if aurocMetric.Metric > bestAUROC
 bestAUROC = aurocMetric.Metric;
 updateInfo(monitor, "MaxAUROC", aurocMetric.Metric);
 output.model = sc;
 output.predictors = thesePredictors;
 end
 end
 updateInfo(monitor, "StdDevAUROC", std(allAurocs), "MeanAUROC", mean(allAurocs));
end

The Monitor object can record two types of data: 'Metrics' and 'Info'.

• Metrics are parametrized data (in this example by the index of the predictor subset). Save metric
levels by calling recordMetrics.

• Information fields carry just a single datum per trial. Save information fields by calling
updateInfo.

You can write several metrics and information fields. This example reports the maximum, the mean,
and standard deviation of all the recorded AUROC scores. This allows you to compare the distribution
of the achieved AUROC values with the mean value.

The output of the experiment consists of the optimal set of predictors along with a model fitted using
that subset.

 Model Development and Experiment Manager

5-17

Analyze Experiment Results

Run the experiment to produce the following table.

The table shows you the maximum achieved AUROC along with the mean and standard deviation for
each trial. The final column in the table shows the value of the AUROC metric for the last K-element
predictor set.

Clicking 'Training Plot' in the Experiment Manager shows how the metric varies over the K-element
subsets.

You can add 'annotations' to the summary table by right-clicking on any cell.

5 Model Risk Management with Modelscape

5-18

Document with Modelscape Reporting

To record your findings in model documentation, use Modelscape Reporting. Use function
fillReportFromWorkspace to include development artifacts such as tables in Microsoft Word
documents. For more information, see “Model Documentation in Modelscape” on page 5-35.

You can extract the summary table and the annotations from the Experiment Manager outputs and
insert them in documents using fillReportFromWorkspace. To do this, you need the name of the
experiment and a set of results. These can be found in the Experiment Browser part of Experiment
Manager.

Here 'FirstExample' is the name of the project, 'ExhaustiveSearchExample' is the name of the
experiment, and 'MaxMeanAndStdDev' is name of the set of results. You can rename the experiment
and the results by right-clicking on these names.

Use function extractExperimentResults in either Live Script or Command Window to extract the
summary table and the annotations. This call should take place in the root folder of the project -
otherwise use the optional ProjectFolder argument to point to the correct location.

[results, annotations] = extractExperimentResults('ExhaustiveSearchExample', 'MaxMeanAndStdDev')

 Model Development and Experiment Manager

5-19

You can then insert columns from these variables into placeholders titled FSSummary and
FSDetails in the Word document.

FSSummary = results(:,{'K','MaxAUROC','MeanAUROC','StdDevAUROC'});
FSDetails = annotations(:,{'K','Header','Comment'});

Push these tables to the model document.

previewDocument = fillReportFromWorkspace('ExhaustiveDocExample.docx');
winopen(previewDocument)

Your tables then appear in the Word document.

5 Model Risk Management with Modelscape

5-20

 Model Development and Experiment Manager

5-21

Remove Risk Factors

This example shows how to remove or include variables from a table and record the corresponding
reasons using the Modelscape™ Remove Risk Factors task.

The example also shows how to include the results of this analysis in model documents using the
Modelscape reporting feature.

All columns in a table of input data may not be relevant while developing a statistical model. Not all
the data in the table is necessarily usable for a statistical model. For example, randomized user
identifiers (IDs) are often irrelevant, legally sensitive data such as ethnic origin or religious beliefs
cannot be used, and some data can be of poor quality. This example shows you how to select relevant
variables in such a table and record your reasons.

This example uses the Credit Scorecard data set, which contains three tables of customer information
such as age, income, and employment status. One such table, dataMissing, deliberately has a few
blank entries in the data set. The data could be used for developing a statistical model such as a
MATLAB® credit scorecard model. The example loads the data set in the Remove Risk Factors task,
marks some variables for exclusion, and documents the results using Modelscape reporting.

Load Data and Launch the Tool

Load the input data from CreditCardData.mat.

load CreditCardData

Open a new live script. There are two ways to open the Remove Risk Factors task:

1 Type remove and select Remove Risk Factors in the drop-down selection.

2. Search for the tool under Task in the Live Editor gallery.

In the task, select your input data, for example dataMissing variable.

5 Model Risk Management with Modelscape

5-22

Inspect and Filter Variables

The task shows the summary statistics and the histogram for the first variable in the table (in this
case CustID).

To inspect other variables, click the corresponding variable name in the Analyze data variables
section. This section contains three columns that you can sort. The Variable Names column is read-
only. The Exclude column allows you to exclude variables from the table. To do this, check the
Exclude button to mark the corresponding variable for removal. The Comment column lets you add
reasons for the exclusion (or inclusion) by double-clicking the box.

 Remove Risk Factors

5-23

When you exclude variables and add comments, the task dynamically produces two outputs:

• filteredTable: This is a subtable of the input table without the excluded risk factors. Use this
subtable in the next step of the model development process - for example feature selection.

• exclusionTable: This table includes all the data of the input table together with the exclusion
flags and comments in the task. To view this information, tick the 'Preview summary tables' box in
'Display results' section. This information is stored in
exclusionTable.Properties.CustomProperties meta data.

5 Model Risk Management with Modelscape

5-24

progressSummaryPreview lists the total number of variables, the excluded variables, the included
variables, and the number of variables with comments. You can use this last datum to indicate
whether the removal process is complete - in the end, every variable must have a reason for either
exclusion or some indication that the variable has been inspected.

Document with Modelscape Reporting

Use Modelscape Reporting to document the findings of the analysis described above. Use the meta
data stored in exclusionTable for this purpose. To include the tables shown above as
exclusionSummaryPreview and progressSummaryPreview in a Word document, create
document holes with titles ExclusionSummary and ProgressSummary in the Word document.

import mrm.data.filter.*
[ExclusionSummary, ProgressSummary] = summarizeExclusionTable(exclusionTable)

To create document holes in a Word document, view the Developer tab, and click the 'Rich Text
Content Control' symbol Aa in the Controls area. Then click 'Properties' and fill in the Title fields.

Running fillReportFromWorkspace will then pick up these new variables from the MATLAB
workspace and insert them into the model document.

For more information on fillReportFromWorkspace, see “Model Documentation in Modelscape”
on page 5-35.

 Remove Risk Factors

5-25

Fairness Metrics in Modelscape

This example shows how to detect bias in data and statistical models using a special suite of metrics
in Modelscape™.

The metrics are built on the fairnessMetrics class from Statistics and Machine Learning
Toolbox™ (SMLT).

Modelscape tools let you set thresholds for these metrics and produce reports that appear consistent
with other Modelscape validation reports.

This example uses a pre-constructed SMLT fairnessMetrics object to assess bias in a credit card data
set. This example assesses this data based on fifteen metrics using a RiskFairnessMetrics handler
object and documents the results in a Word document.

Load Data and Create RiskFairnessMetrics Handler Object

Load a pre-prepared Modelscape bias detection object. These objects are constructed from the SMLT
fairnessMetrics objects.

load FairnessEvaluator.mat
disp(fairnessData)

 fairnessMetrics with properties:

 SensitiveAttributeNames: {'AgeGroup' 'ResStatus' 'OtherCC'}
 ReferenceGroup: {'45 < Age <= 60' 'Home Owner' 'Yes'}
 ResponseName: 'Y'
 PositiveClass: 1
 BiasMetrics: [9x7 table]
 GroupMetrics: [9x20 table]
 ModelNames: 'Model1'

This object carries the metrics for certain model predictions. It contains four bias metrics ("Disparate
Impact", "Statistical Parity Difference", "Average Absolute Odds Difference" and "Equal Opportunity
Difference"), and 11-group metrics, including "False Negative Rate" and "Rate of Positive
Predictions". These metrics are based on data with three attributes ("AgeGroup", "ResStatus" and
"OtherCC").

For evaluating data without model predictions, only the metrics "Disparate Impact" and "Statistical
Parity Difference" would be present.

Construct a Modelscape fairness metric handler from a fairnessMetrics object to compute a
metric for every bias and group metric.

riskFairnessMetrics(fairnessData)

ans =
 RiskFairnessMetricsHandler with properties:

 NegativePredictiveValue: [1x1 mrm.data.validation.fairness.NegativePredictiveValue]
 AverageAbsoluteOddsDifference: [1x1 mrm.data.validation.fairness.AverageAbsoluteOddsDifference]
 TrueNegativeRate: [1x1 mrm.data.validation.fairness.TrueNegativeRate]
 FalseNegativeRate: [1x1 mrm.data.validation.fairness.FalseNegativeRate]
 EqualOpportunityDifference: [1x1 mrm.data.validation.fairness.EqualOpportunityDifference]

5 Model Risk Management with Modelscape

5-26

 StatisticalParityDifference: [1x1 mrm.data.validation.fairness.StatisticalParityDifference]
 FalseOmissionRate: [1x1 mrm.data.validation.fairness.FalseOmissionRate]
 Accuracy: [1x1 mrm.data.validation.fairness.Accuracy]
 DisparateImpact: [1x1 mrm.data.validation.fairness.DisparateImpact]
 RateOfNegativePredictions: [1x1 mrm.data.validation.fairness.RateOfNegativePredictions]
 RateOfPositivePredictions: [1x1 mrm.data.validation.fairness.RateOfPositivePredictions]
 FalsePositiveRate: [1x1 mrm.data.validation.fairness.FalsePositiveRate]
 FalseDiscoveryRate: [1x1 mrm.data.validation.fairness.FalseDiscoveryRate]
 PositivePredictiveValue: [1x1 mrm.data.validation.fairness.PositivePredictiveValue]
 TruePositiveRate: [1x1 mrm.data.validation.fairness.TruePositiveRate]

RiskFairnessMetricsHandler is one example of an Modelscape MetricsHandler. For more
examples and further information on the properties of these objects, see “Metrics Handlers” on page
5-45.

The rest of this example describes the extra features available in RiskFairnessMetricsHandler
not shared by the other metrics handlers.

Specify Thresholds for Fairness Metrics

You can specify thresholds for the fairness metrics using the riskFairnessThresholds function.
Depending on the metric, riskFairnessThresholds expects either a single threshold level or two
threshold levels:

• DisparateImpact, StatisticalParityDifference, EqualOpportunityDifference,
and the metrics for rates of positive and negative predictive value expect two inputs. A metric
level between the two inputs is considered a "Pass", and values outside this range is considered a
"Fail". For the rates of positive and negative predictive value, the threshold is not compared
against the rate itself, but against the deviation of the rate from the true positive or negative rate.

• Other metrics require a single threshold value. A metric value is assigned a "Pass" or a "Fail"
status depending on which side of this threshold the value is. riskFairnessThresholds
automatically works out which way these statuses go for each metric.

To set the thresholds, specify name-value pairs using the metric names in the
riskFairnessThresholds function. For example, set the thresholds for
StatisticalParityDifference and FalseNegativeRate.

fairnessThresholds = riskFairnessThresholds("StatisticalParityDifference", [-0.15, 0.2], ...
 "FalseNegativeRate", 0.6)

fairnessThresholds =
 RiskFairnessThresholds with properties:

 FalseNegativeRate: 0.6000
 StatisticalParityDifference: [-0.1500 0.2000]

For StatisticalParityDifference, a value within the range -0.15 to 0.2 is assigned a "Pass",
and values outside of this range are considered as "Fail". For False Negative Rate, values below 0.6
return a "Pass"; otherwise, a "Fail" is returned.

Construct a fairness metric handler with these thresholds.

fairnessMetricHandler = riskFairnessMetrics(fairnessData, fairnessThresholds);

 Fairness Metrics in Modelscape

5-27

Interrogate Fairness Metrics

Use the report method to interrogate fairness metrics. This method summarizes across all the
metrics, sensitive attributes, and attribute groups.

overallSummary = report(fairnessMetricHandler);
disp(overallSummary)

 Summary Metric Value Status Diagnostic
 ________________________________ ________ ___________ ___

 Statistical Parity Difference 0.54197 Fail (0.2, Inf)
 Disparate Impact 0.050237 <undefined> <undefined>
 Equal Opportunity Difference 0.39151 <undefined> <undefined>
 Average Absolute Odds Difference 0.49949 <undefined> <undefined>
 False Positive Rate 0.775 <undefined> <undefined>
 False Negative Rate 1 Fail (0.6, Inf)
 True Positive Rate 0 <undefined> <undefined>
 True Negative Rate 0.225 <undefined> <undefined>
 False Discovery Rate 1 <undefined> <undefined>
 False Omission Rate 0.4 <undefined> <undefined>
 Positive Predictive Value 0 <undefined> <undefined>
 Negative Predictive Value 0.6 <undefined> <undefined>
 Rate of Negative Predictions 0.23438 <undefined> <undefined>
 Rate of Positive Predictions 0.76562 <undefined> <undefined>
 Accuracy 0.42188 <undefined> <undefined>
 Overall NaN Fail Fails at: Statistical Parity Difference, and 1 other(s)

In this example, the model outputs fail both the tests. This failure is because the values shown in this
table are the 'worst' levels seen across all attributes and groups.

For more details on these failures, pass extra arguments to report. For example, display detailed
data about Statistical Parity Difference.

spdSummary = report(fairnessMetricHandler, "Metrics", "StatisticalParityDifference");
disp(spdSummary)

 SensitiveAttribute | Group StatisticalParityDifference Status Diagnostic
 __________________________ ___________________________ ______ __

 AgeGroup | Age <= 30 0.54197 Fail (0.2, Inf)
 AgeGroup | 30 < Age <= 45 0.42456 Fail (0.2, Inf)
 AgeGroup | 45 < Age <= 60 0 Pass (-0.15, 0.2]
 AgeGroup | Age > 60 -0.21242 Fail (-Inf, -0.15]
 ResStatus | Home Owner 0 Pass (-0.15, 0.2]
 ResStatus | Tenant 0.080908 Pass (-0.15, 0.2]
 ResStatus | Other -0.11961 Pass (-0.15, 0.2]
 OtherCC | No 0.19661 Pass (-0.15, 0.2]
 OtherCC | Yes 0 Pass (-0.15, 0.2]
 Overall NaN Fail Fails at: AgeGroup | Age <= 30, and 2 other(s)

In the data, the worst statistical parity difference is in the under-30s age group.

For data sets with many predictors or groups, you can focus on a single attribute or attribute group.

spdAgeGroupReport = report(fairnessMetricHandler, ...
 "Metrics", "StatisticalParityDifference", ...
 "SensitiveAttribute","AgeGroup");
disp(spdAgeGroupReport)

5 Model Risk Management with Modelscape

5-28

 AgeGroup | Group StatisticalParityDifference Status Diagnostic
 _________________________ ___________________________ ______ __

 AgeGroup | Age <= 30 0.54197 Fail (0.2, Inf)
 AgeGroup | 30 < Age <= 45 0.42456 Fail (0.2, Inf)
 AgeGroup | 45 < Age <= 60 0 Pass (-0.15, 0.2]
 AgeGroup | Age > 60 -0.21242 Fail (-Inf, -0.15]
 Overall NaN Fail Fails at: AgeGroup | Age <= 30, and 2 other(s)

On the contrary, by omitting the "Metrics" argument, you can view a single attribute or attribute-
group and see how this attribute or group measures by all the metrics.

Visualize Fairness Metrics

The fairness metrics handler supports different visualizations that are specific to bias detection and
are not inherited from the generic MetricsHandler functionality. For individual metrics,
visualize returns a bar chart across all sensitive attributes and groups, with vertical dotted lines
indicating the thresholds. You can also restrict the view to a specific attribute.

visualize(fairnessMetricHandler, "Metric", "StatisticalParityDifference", "SensitiveAttribute", "AgeGroup");

 Fairness Metrics in Modelscape

5-29

Screen Risk Factors by Custom Criteria

This example shows how to use the Screen Risk Factors task to automatically exclude risk factors
from a table based on their predictive power.

This example also shows how to set up the screening criteria.

Feature selection is an important step in the development of a statistical model. Input data can have
hundreds or thousands of variables, and discarding some variables often improves model
interpretability, training times, and other important attributes.

This example loads the Screen Risk Factors data set, which contains a table of customer information
such as age, income, and employment status. This example uses pre-defined metrics to assess risk
factors individually and analyzes the predictive power of each variable relative to a given (binary)
response variable. This example then shows you how to select variables automatically or semi-
automatically using the Screen Risk Factors task. This example also shows you how to customize the
screening criteria used to assess the risk factors.

Load Data and Pre-defined Screening Criteria

Load the example data from ScreenRiskFactorsData.mat.

load ScreenRiskFactorsData.mat

Construct pre-defined screening criteria in your workspace. Use ExampleScreeningCriteria to
generate myCriteria object. This function returns a ScreeningCriteria object defined by an
mrm.data.selection.TestSuiteFactory.

import mrm.data.selection.*
myCriteria = ExampleScreeningCriteria();

These criteria have been set up as follows:

1 For each variable, the Information Value and Chi-squared p-value are calculated.
2 These values are compared against certain thresholds that assign the metric a Pass, Fail or

Undecided classification. In this case, the thresholds for the metrics are hard-coded but you can
obtain the thresholds from the appropriate data in the development environment.

3 The overall classification works on the 'worst-of' basis. If the status for either Information Value
or the Chi-squared p-value is a Fail, the overall status will be Fail, and so on.

The TestSuiteFactory sets the StatusInterpreter of the metrics handler to
overallScreeningStatus. This is where the auto-generated exclusions and comments are set. For
the exclusions, the function must assign to each MetricsHandler state an
mrm.data.selection.ScreeningStatus object (or an ErrorTestStatus or NullStatus) to
ensures that the Screen Risk Factors task automatically marks the variable for exclusion.

In addition, the percentage of missing entries is displayed. This value does not affect the overall
rating.

Launch Screen Risk Factors

Open a new live script and launch the Screen Risk Factors task. This can be done in two ways:

1) Start typing 'Screen' and select the task from the drop-down menu

5 Model Risk Management with Modelscape

5-30

2) Search for Screen Risk Factors in the Live Task gallery

The task opens in a reduced view until the required inputs are selected:

• Input table must be a table or a timetable; the drop-down shows all such objects in the
workspace. For this example, select data.

• Response variable drop-down shows all the binary variables in the input table. For this example,
select defaultIndicator.

• Criteria should be the ScreeningCriteria object you wish to apply - in this case myCriteria.

Analyze and Remove Risk Factors

The task now expands.

 Screen Risk Factors by Custom Criteria

5-31

The task calculates the screening metrics for each risk factor in the input table. The summary of the
results is shown in the 'Analyze data variables' section. The table contains one row for each variable
in the input table.

• 'Status' shows the overall classification of the variable based on the screening metrics.
• 'Exclude' shows whether the variable is to be removed from the data set.
• 'Comment' contains the reasons for excluding the variable, or for leaving the variable included.

The live task auto populates the 'Exclude' and 'Comment' columns based on the criteria. In this
example, the 'Fails' are automatically excluded and 'Passes' are automatically included with
automatically generated comments. The 'Undecided' risk factors are left blank for the user to analyze.
You can overwrite these auto-completed values and sort the table according to any of these columns.

The area underneath the table is specific to the risk-factor variable and displays the screening
metrics, as well as a double histogram that demonstrates how well (or not) the variable discriminates
between the two possible responses. To switch the view to another variable, click the variable name
in the table.

Document with Modelscape Reporting

The live task dynamically produces two outputs:

• filteredTable: This is a subtable of the input table without the excluded risk factors. Use this
subtable in the next step of the model development process.

• exclusionTable: This table includes all the data of the input table together with the exclusion
flags and comments in the Live Task. To view this information, tick the 'Preview summary tables'
box in the 'Display results' section. This information is stored in
exclusionTable.Properties.CustomProperties meta data.

5 Model Risk Management with Modelscape

5-32

You can insert the above tables into model documentation using the Modelscape Reporting feature.
To achieve this, create document holes with titles, say ExclusionSummary and ProgressSummary,
in the Word document.

To create document holes in a Word document, view the Developer tab, and click the 'Rich Text
Content Control' symbol Aa in the Controls area. Then click 'Properties', and fill in the Title fields.

import mrm.data.filter.*
[ExclusionSummary, ProgressSummary] = summarizeExclusionTable(exclusionTable)

After you have created holes, pick up the new variables from the MATLAB workspace and insert them
into the model document using fillReportFromWorkspace.

For examples of creating document holes and for more details on the use of
fillReportFromWorkspace, see “Model Documentation in Modelscape” on page 5-35.

Set Up Custom Criteria

To learn about test metrics, thresholds, and handlers used by screening criteria object, refer to the
“Test Metrics in Modelscape” on page 5-85 and “Metrics Handlers” on page 5-45 examples.

You can customize the criteria used to screen variables in the Screen Risk Factors Live Task. The
criteria must be in an mrm.data.selection.ScreeningCriteria object. For the class definition,
run:

edit mrm.data.selection.ScreeningCriteria

 Screen Risk Factors by Custom Criteria

5-33

This class is a holder for a handle to a function f.

f(inputData, 'PredictorVar', varName, 'ResponseVar', respVar)

The function f call must be well-defined and produce an mrm.data.validation.MetricsHandler
object for any table or timetable inputData, any predictor variable varName, and for a given binary
response variable respVar. TestSuiteFactory has this signature for the function call.

To see examples of these functions in the Modelscape package, run

edit mrm.data.selection.ExampleScreeningCriteria;
edit mrm.data.selection.TestSuiteFactory;
edit mrm.data.selection.overallScreeningStatus;

5 Model Risk Management with Modelscape

5-34

Model Documentation in Modelscape

This example shows how to add content to a Microsoft® Word document from MATLAB®.

Many workflows in financial institutions involve writing and submitting reports to internal control
functions or regulatory bodies. These documents often conform to a given house style and are
typically Microsoft Word documents.

This example shows how to create a link from the MATLAB model development environment to the
Word document. This enables the authors to push text, visualizations, and tables from MATLAB to the
Microsoft Word document. This removes the need for error-prone processes involving screenshots
and copy-pasting and ensures that the Word document contents are always in a consistent state.
Authors can go back and forth between Microsoft Word and MATLAB, adding new text at the
Microsoft Word side and refreshing the MATLAB contents as needed.

This example begins with a simple case of inserting a single MATLAB variable from the workspace to
a Microsoft Word document. This example then describes the workflow you can use to insert more
content from MATLAB to a Microsoft Word document.

Insert a single MATLAB Variable from Workspace to Word Document

Open a blank Microsoft Word document and add some text such as a title to it. Create a placeholder
for your MATLAB content to the document - in MATLAB Report Generator terminology these are
called holes. To do this, on the Developer tab, click the 'Rich Text Content Control' symbol Aa in the
Controls area. Then click 'Properties' and fill in the Title and Tag fields as follows:

The 'Title' you have entered here will be the identifier of the hole - different holes will in general have
different identifiers. By contrast, the tag tells MATLAB this is a placeholder it should fill in. The tag
should always be 'Hole' as shown above. Your document should now look something like this:

 Model Documentation in Modelscape

5-35

Save your document to, say, myTestDocument.docx. Open MATLAB and navigate to the folder with
the document.

Create the content you want to fill in, for example:

HoleContent = datetime("now");

The variable name must match the Title you chose earlier.

Preview how the content will appear in the document by calling fillReportFromWorkspace.

myDoc = "myTestDocument.docx";
previewDoc = fillReportFromWorkspace(myDoc);
winopen(previewDoc);

Calling fillReportFromWorkspace pushes the datetime content to a temporary document whose
name is stored in previewDoc. Calling winopen opens this document.

If you want the datetime to be formatted in a different way, you can recreate the hole content.

HoleContent = datetime("now", "Format", "dd-MMM-uuuu");

Rerun the fillReportFromWorkspace and winopen calls. You should then see only the date in the
Word document, not the hours, minutes, and seconds.

previewDoc is intended as a preview which you can discard later. To modify your original file
myTestDocument.docx, close the main myTestDocument file and run:

fillReportFromWorkspace(myDoc, "OutputMode","Publish");
winopen(myDoc);

The date now appears in the main document. The HoleContent placeholder in your document
remains refillable even after this operation. Running fillReportFromWorkspace in the Publish
mode refreshes every time you fill the document. You will however need to close the document in
Word every time you do this.

5 Model Risk Management with Modelscape

5-36

If fillReportFromWorkspace cannot find the required MATLAB content for a hole, it will insert the
text "Place-holder for hole id 'HoleContent'" in red boldface font to highlight this to the user.
Similarly, other formatting errors show different messages depending on the error.

Use the Model Documentation Workflow

Use the following workflow to document in Modelscape™ Reporting.

1 Create Word document.
2 Edit Word document and add holes for the contents to be filled in from MATLAB.
3 Create MATLAB contents.
4 Fill them into a preview document using fillReportFromWorkspace (in the Preview mode).
5 Repeat steps 2-4 as required.
6 Fill the MATLAB contents to the main document using fillReportFromWorkspace in the

Publish mode.

Use Optional fillReportFromWorkspace Arguments

You can use the following optional arguments with fillReportFromWorkspace.

• OutputMode: 'Preview' or 'Publish'. 'Preview' fills the document into a copy of the input
document, whereas 'Publish' overwrites the input document. The default option is 'Preview'.

• PresavedContentsFiles: an array of strings giving the names of .mat files.
fillReportFromWorkspace searches for the MATLAB content to insert first from these files,
then from the workspace. This argument is intended to be used primarily in multi-author projects -
see below.

• NewContentsFile: a string specifying the name of a .mat file. Inserted MATLAB contents will be
saved to this file. If PresavedContentsFiles are provided as well, only the contents found in
the workspace and not in the presaved mat files will be saved. This argument is primarily for
multi-author projects.

• MappingRules: FillReportMappings object specifying the formatter mapping rules - see
below for details.

• Options: FillReportOptions object specifying any overrides to formatter defaults - see below
for details.

Use Supported MATLAB Content Types

This section shows you what MATLAB contents are supported and how to format them when filling
the holes in a Word document.

There are two types of holes: inline and block holes. Inline holes insert contents within paragraphs
(text, scalar numbers, ...) whereas block holes are for contents that require their own paragraph
(such as figures and tables). You can insert some contents only into block holes

Preview Content

Use function previewContent to check how a MATLAB variable appears in a document.

previewDoc = previewContent(datetime("now"));

This function creates and opens a document to which the input content has been added. The resulting
document is saved in a file with name Preview-xyz.docx, where xyz is the type of input content.
You may delete this preview document after viewing it.

 Model Documentation in Modelscape

5-37

Insert Basic MATLAB Content Types

The appearance of MATLAB contents in a Word document is governed by helper classes called
formatters. The table below lists these formatters and describes how they work for the supported
core MATLAB content types.

To insert a plot or other kind of a figure created in a Live Script, use the following MATLAB
commands.

FigureContent = figure(); % "open" figure
plot(rand(10)); % do the work to plot the figure
figure(); % mark the work on FigureContent as finished

Insert MATLAB Report Generator Types

If you are familiar with MATLAB Report Generator, you can bypass the Modelscape formatters by
wrapping MATLAB content into mlreportgen.dom or mlreportgen.report objects. The
supported types are listed below. Note however that these types are not guaranteed to support the
PresavedContentFiles and NewContentsFile arguments used in multi-author projects, as the
Report Generator objects do not, in general, allow saving and loading into MAT files.

Report Generator DOM Types

The following types are supported. The type names are shortened - for class definitions, see
mlreportgen.dom.Text, mlreportgen.dom.Paragraph and so on.

5 Model Risk Management with Modelscape

5-38

Report Generator Reporter Types

The following types are supported. Again, the type names are shortened - see
mlreportgen.report.Equation and so on for the class definitions.

Insert Composite Types

Modelscape Reporting automatically handles certain "composite" types such as arrays of numerical
data (or strings, or logicals, or categoricals,...) and cell arrays of mixed-type data. The logic is the
same:

1 Loop through the composite structure and format each element (double, string, logical, etc.) as
explained above.

 Model Documentation in Modelscape

5-39

2 Display this table of formatted cells.

To see an example, run the following command (and delete the resulting Preview-cell.docx file
afterwards).

previewDoc = previewContent({pi, true, 3; "abc", datetime("now"), hours(1)});

Insert File Contents

You can also insert the contents of certain types of files directly from files to the target document
without loading them first into the MATLAB workspace using Modelscape Reporting. In this case the
MATLAB workspace must contain a file content object for each inserted file, and the name of this
object must match the title of the hole to be filled.

Construct the file content objects using a fileContent helper function. For example, insert the
contents of myTable.csv as a table to a hole titled TableFromFile and then use
fillReportFromWorkspace. .

TableFromFile = fileContent('myTable.csv');

fileContent helper will try to infer the type of the file from its extension. The following file types
and recognized extensions are supported.

• image: all the extensions are recognized by mlreportgen.dom.Image including png, svg and
jpg.

• table: csv, xml, xls* and the common spreadsheet variants.
• text: txt and log.

You can explicitly specifiy the file type for unrecognized extensions.

TableOfErrors = fileContent('errorLogs.err', 'table');

You can also pass arguments to fileContent that will be understood by the returned file content
class. Currently this is supported for table contents, for which fileContent accepts the parameters
used by readtable.

TableFromFile = fileContent('myTable.csv', 'table', 'ReadRowNames', false);

Supply the file content type when you use these extra arguments.

Using Custom File Contents

You can create your own file content classes. To learn more, contact MathWorks Consulting Services.

Format Controls - Individual Contents

Usually, the document hole title names match the name of the MATLAB variables to be filled in. You
can control how this content appears in the Word document.

1 You can overwrite the formatter that is used for the given content.
2 You can pass extra control parameters to the formatter (be it the default formatter or a custom

one).

To use these controls, use a hole title should be of the form ClassName(ContentName, Label1,
Value1, Label2, Value2,...), where

5 Model Risk Management with Modelscape

5-40

https://www.mathworks.com/services/consulting/contact.html

• ClassName is the name of the formatter class or function that you use (or the word Default in
which case no override is used).

• ContentName is the name of the MATLAB workspace variable defining the content.
• Label1, Value1, ... are name-value pairs that you pass to the formatter.

The rules for looking up the overriding class are as follows:

• In decreasing order of priority, either the ClassName such as
mrm.reporting.format.Scalar, or the mrm.reporting.customize.ClassName, or
mrm.reporting.format.ClassName, is used.

• Otherwise, a placeholder with a warning that no class definition was found is inserted.

Example: Using mrm.reporting.customize.Exp for Exponential Notation

Modelscape Reporting has an example custom class mrm.reporting.customize.Exp that you can
use for displaying numerical data in the exponential notation. This class supports an argument called
ExpPrecision that controls how many digits are shown after the decimal point (the default being 3).

Suppose you want to display a MATLAB variable MyNumber that carries the number 123456.54321.
Using a Word document hole title MyNumber for this placeholder, this content appears in a Word
document as 123456.5432. To override this, rename the document hole.

• Exp(MyNumber) - the number appears as 1.235e+05.
• Exp(MyNumber,"ExpPrecision",1) - the number appears as 1.2e+05.

The name-value pairs can also be properties of the underlying Report Generator class. For example,
Exp(MyNumber, "Color", "blue") shows the text 1.2345e+05 in blue font in the Word
document.

Format Controls at Document Level

Formatting contents is not practical if you want to change the number of decimal places for every
numeric variable inserted into a document. To apply a change to every hole in the given document,
use a FillReportOptions object for these options, and pass the object to
fillReportFromWorkspace using the 'Options' label. However, note that hole-level arguments take
precedence over the top-level options.

The following control options are available.

• ImageSnapshotFormat: option used by Modelscape Figure formatter to control the format of the
image taken of plots and other figures - defaults to svg.

• MaxNumericPrecision: number of decimal places shown in (non-integer) numeric variables -
defaults to 4.

• PlaceHolderColor: colour of the text placed into document holes to alert user of missing
MATLAB contents etc - defaults to crimson.

• TableDisplayUnits: option used by MRM FormalTable formatter to decide whether units are
displayed in the formatted table - defaults to false.

You can add any name-value pairs to the options object to pass to fillReportFromWorkspace, to
be picked up by the appropriate classes. For example, change the ExpPrecision parameter in all
numerical contents formatted in the exponential notation.

 Model Documentation in Modelscape

5-41

myOptions = FillReportOptions("ExpPrecision", 1);

previewDoc = fillReportFromWorkspace(myDocument, "Options", myOptions);

In the setup of the example in the previous section, the content 123456.54321 placed into a hole
titled as Exp(MyNumber) will then appear as 1.2e+05 and not as 1.235e+05.

Map Overrides

You can use properties of Report Generator DOM objects at the document level. These will be picked
up by the respective formatters. For example, adding the argument Color with value blue to the
options makes the text in all the contents to appear in blue - this includes doubles, logicals,
categoricals, strings and so on. However, this must be used with caution. For example, StyleName
makes sense for at least table and text formatters, but the value Grid Table 2 will only be
understood by tables. For these kinds of changes, it is better to use mapping overrides and custom
classes.

To map overrides, use the FillReportMappings objects.

FillReportMappings

ans =
 "categorical" "mrm.reporting.format.Categorical"
 "char" "mrm.reporting.format.Text"
 "datetime" "mrm.reporting.format.Datetime"
 "duration" "mrm.reporting.format.Duration"
 "logical" "mrm.reporting.format.Logical"
 "numeric" "mrm.reporting.format.Scalar"
 "string" "mrm.reporting.format.Text"
 "table" "mrm.reporting.format.FormalTable"
 "timetable" "mrm.reporting.format.FormalTable"
 "matlab.ui.Figure" "mrm.reporting.format.Figure"

FillReportMappings objects contain two columns that should match the table shown above in the
section "Basic MATLAB Content Types". You can override these mappings, add new mappings, and
pass the customized mapping object to fillReportFromWorkspace using the MappingRules
argument.

For example, Modelscape Reporting has a CheckBox formatter to display logical variables as ticked
or unticked checkboxes (and not as strings 'true'/'false'). To use this formatter for all logicals in a
document, you can write the following:

myMappings = FillReportMappings("logical", "mrm.reporting.customize.CheckBox");
previewDoc = fillReportFromWorkspace(myDocument, "MappingRules", myMappings);

Similarly, you can add mapping data for in-house data types that are not directly supported by
Modelscape Reporting. For example, if your model development process involves a custom class
EnrichedTable for which you have written a custom formatter
mrm.reporting.customize.MyTableFormatter (see next section), then you can add this to the
mapping rules

myMappings = FillReportMappings("EnrichedTable", "mrm.reporting.customize.MyTableFormatter");

and call fillReportFromWorkspace with this as the MappingRules argument, as above.

To find the applicable mapping, MRM Reporting runs the test isa(content, t) for all the types t
that show up in the left-hand column of the FillReportMappings display. The applicable formatter

5 Model Risk Management with Modelscape

5-42

is the one corresponding to the last type for which this returns true; if no mapping is found, a
placeholder with that message is inserted into the document.

Customize Formatters

Writing new formatters may be necessary for at least two reasons:

• Changing the style of an existing formatter in a way that is not controllable through
FillReportOptions.

• Creating a formatter for a new content type.

Place all custom formatters in a mrm.reporting.customize package - that is, in a +mrm\
+reporting\+customize\ folder on the MATLAB path. The interface requirements for a formatter
class are as follows:

• The formatter should be a subclass either mlreportgen.dom.Element or
mlreportgen.report.Reporter - in practice this will mean one of the classes listed in the
section "MATLAB Report Generator Types" above.

• The formatter constructor should take as inputs content (the MATLAB variable to be formatted),
rpt (an mlreportgen.report.Report object) and options (a FillReportOptions object) -
in this order.

Alternatively, the formatter can be a function that returns either an mlreportgen.dom.Element or
an mlreportgen.report.Reporter object and has the same signature as the class constructor
described above.

For example, to apply Word table style Grid Table 2 to all tables in a safe way, create the following
custom formatter.

classdef MyTableFormatter < mrm.reporting.format.FormalTable

 methods
 function this = MyTableFormatter(content, report, options)
 arguments
 content table
 report(1,1) mlreportgen.report.Report = mlreportgen.report.Report()
 options(1,1) FillReportOptions = FillReportOptions()
 end
 this@mrm.reporting.format.FormalTable(content, report, options);
 this.StyleName = "Grid Table 2";
 mrm.reporting.internal.setDOMOptions(this, options);
 end
 end
end

Use this for all tables.

myMappings = FillReportMappings('table','mrm.reporting.customize.MyTableFormatter');
previewDoc = fillReportFromWorkspace('TestDoc.docx', 'MappingRules', myMappings);
winopen(previewDoc);

Note that if you want to run this example, you must ensure that the Grid Table 2 style is present in
your test document. To do this, create and click an empty table, hit Ctrl+Alt+S and select Grid Table
2 from the dropdown menu to apply the style. Then save the document. You can now delete your
empty table. The style definition will remain in the docx file.

 Model Documentation in Modelscape

5-43

Work on Multi-Author Projects

Several authors can co-operate on a documentation project simultaneously by following a slight
modification of the reporting workflow explained above. Most of the work (steps 2-6) can be done by
the authors in parallel; only the document creation and building the final version (steps 1, 7 and 8)
should be coordinated and carried out by a lead author or similar. To avoid clashes between the hole
names created by different authors, it may be advantageous to use a naming convention such as
prefixing the hole names by the author's initials.

1 Create a Word document in a shared location that allows simultaneous editing, for example
SharePoint.

2 Edit the Word document as before, adding holes for the contents to be filled in from MATLAB.
3 Create MATLAB contents.
4 Fill them into the Word document using fillReportFromWorkspace in the Preview mode and

check that contents are correctly displayed. The authors may also use the
PresavedContentsFiles argument to include any MATLAB contents the other users may have
already made available.

5 Repeat steps 2-4 as required.
6 Fill in the MATLAB contents using fillReportFromWorkspace still in Preview mode but using

the NewContentsFile argument to save the MATLAB contents you are contributing to the
document. Store the resulting mat file next to the Word document in the shared location.

7 When all authors have contributed their document contents into different mat files, run
fillReportFromWorkspace, passing in all the mat files through the
PresavedContentsFiles argument. Check that all the contents are correctly displayed.

8 Run fillReportFromWorkspace, this time in Publish mode, again with all the mat files listed
as the PresavedContentsFiles argument.

Note that authors are free to reference contents provided in each other's mat files.

5 Model Risk Management with Modelscape

5-44

Metrics Handlers

This example shows how to manage Modelscape™ test metrics and their associated threshold objects
using MetricsHandler objects.

MetricsHandler produces reports that summarize the metrics and the status of the metrics in the
container relative to their thresholds.

For more information about test metrics and thresholds, see “Credit Scorecard Validation Metrics” on
page 5-48 and “Fairness Metrics in Modelscape” on page 5-26. To learn how to write your own
metrics, see “Test Metrics in Modelscape” on page 5-85.

This example shows you how to set up some metrics and thresholds for mock data of a credit scoring
model. This example creates a metrics handler object to visualize the metrics and summarize the
results. It shows you how to set an overall status to the handler based on various metrics.

Set Up Test Metrics and Thresholds

Use the following random data as an example of training response data (defaultIndicators) and
model predictions (scores).

rng('default');
scores = rand(1000,1);
defaultIndicators = double(scores + rand(1000,1) < 1);

Create three metrics:

1) Area under the receiver operating characteristic curve (AUROC),

2) Cumulative accuracy profile (CAP Accuracy) ratio, and

3) Kolmogorov-Smirnov statistic.

For AUROC and CAP Accuracy ratio, set values greater than 0.8 as Pass, values less than 0.7 as Fail,
and values between these as Undecided, requiring further inspection. Set no thresholds for the
Kolmogorov-Smirnov statistic.

import mrm.data.validation.TestThresholds
import mrm.data.validation.pd.*

auroc = AUROC(defaultIndicators, scores);
aurocThresholds = TestThresholds([0.7, 0.8], ["Fail", "Undecided", "Pass"]);

cap = CAPAccuracyRatio(defaultIndicators, scores);
capThresholds = TestThresholds([0.6, 0.7], ["Fail", "Undecided", "Pass"]);

ks = KSStatistic(defaultIndicators, scores);

Add metrics to a Metrics Handler Object

Add the metrics created in the previous section to a MetricsHandler object.

import mrm.data.validation.MetricsHandler
mh = MetricsHandler();
append(mh, auroc, aurocThresholds);

 Metrics Handlers

5-45

append(mh, cap, capThresholds);
append(mh, ks);
disp(mh)

 MetricsHandler with properties:

 CAP: [1x1 mrm.data.validation.pd.CAPAccuracyRatio]
 KS: [1x1 mrm.data.validation.pd.KSStatistic]
 AUROC: [1x1 mrm.data.validation.pd.AUROC]

The handler contains these three metrics that can be accessed as properties of this handler object.
This allows you to access constituent metrics' diagnostics and visualizations.

visualize(mh.AUROC);

Interrogate Metrics Handlers

Use the report method to view the performance of the model relative to the given metrics.

summaryTable = report(mh);
disp(summaryTable)

 Metric Value Status Diagnostic
 ____________________________ _______ ___________ ___________

 Area under ROC curve 0.82905 Pass (0.8, Inf)
 Accuracy ratio 0.65809 Undecided (0.6, 0.7]
 Kolmogorov-Smirnov statistic 0.51462 <undefined> <undefined>

5 Model Risk Management with Modelscape

5-46

The model performs well on AUROC, whereas the "Undecided" status on the Accuracy Ratio suggests
the model requires a closer look.

When the handler carries complex non-scalar metrics, use arguments Keys and Metrics arguments
with report. For more information, see “Fairness Metrics in Modelscape” on page 5-26.

Set Overall Status to the Handler

For a handler with many metrics, set an overall status to the handler by associating a 'status
interpreter' to the handler. This section shows how to use an interpreter supplied with Modelscape
that is compatible with your threshold objects.

mh.StatusInterpreter = @mrm.data.validation.overallStatus;
summaryTable = report(mh);
disp(summaryTable)

 Metric Value Status Diagnostic
 ____________________________ _______ ___________ ___________

 Area under ROC curve 0.82905 Pass (0.8, Inf)
 Accuracy ratio 0.65809 Undecided (0.6, 0.7]
 Kolmogorov-Smirnov statistic 0.51462 <undefined> <undefined>
 Overall NaN Undecided <undefined>

The overall status is in general decided based on the status descriptions of the individual metrics. In
the above case, the overall status is the 'worst' of the individual statuses - 'Undecided'.

Thresholding systems with other descriptive strings - for example "Red", "Amber", "Green" require a
custom status interpreter to be implemented. To do this, see the instructions before the
StatusInterpreter declaration in the MetricsHandler implementation.

edit mrm.data.validation.MetricsHandler

Alternatively, modify the interpreter as required.

edit mrm.data.validation.overallStatus

You can also set the StatusInterpreter for the handler immediately at construction:

mh2 = MetricsHandler('StatusInterpreter', @mrm.data.validation.overallStatus)

 Metrics Handlers

5-47

Credit Scorecard Validation Metrics

This example shows how to implement a Probability of Default (PD) model validation suite covering
the techniques laid out in the BCBS Working Paper 14.

The techniques apply to any PD model. This example loads the test data, sets and computes some key
quantities, and calculates various model validation metrics. The results are stored in a collection
object.

MH = mrm.data.validation.MetricsHandler;

This example uses PDModelValidation data set which consists of a pre-fitted MATLAB® credit
scorecard object. This example shows you how to compute various metrics and summarize them.

Prepare Data

Load the scorecard to validate.

modelDataFile = "PDModelValidation.mat";
inputData = load(modelDataFile);

Set the response variable and default indicator.

responseVar = 'status';
outcomeIndicator = 1;

Extract key data and precompute certain key quantities

sc = inputData.sc;
testData = sc.Data;
scores = sc.score;
defaultProbs = probdefault(sc);
defaultIndicators = testData.(responseVar) == outcomeIndicator;

Visualize Cumulative Accuracy Profile and Compute Accuracy Ratio

The Cumulative Accuracy Profile (CAP) curve plots the proportion of defaulting names against the
proportion of all names in the test set as one goes through the scores from the lowest to the highest.
The Accuracy Ratio (AR) measures how the model relates to hypothetical perfect and random models.
AR of 1 indicates the model is perfect, whereas AR of 0 indicates the scoring model is no better than
a random model.

CAPMetric = mrm.data.validation.pd.CAPAccuracyRatio(defaultIndicators, scores);
visualize(CAPMetric);

5 Model Risk Management with Modelscape

5-48

https://www.bis.org/publ/bcbs_wp14.pdf

displayResult(CAPMetric);

Accuracy ratio is 0.3223

append(MH, CAPMetric);

Compute and Visualize Receiver Operating Characteristic

The Receiver Operating Characteristic (ROC) curve plots the proportion of defaulting names against
the proportion of non-defaulting names in the test set as the scores move from the lowest to the
highest. The associated test metric is the area under the ROC curve (AUROC). AUROC of 1 indicates
a perfect model.

ROCMetric = mrm.data.validation.pd.AUROC(defaultIndicators, scores);
visualize(ROCMetric);

 Credit Scorecard Validation Metrics

5-49

displayResult(ROCMetric);

Area under ROC curve is 0.6611

append(MH, ROCMetric);

Compute and Visualize Kolmogorov-Smirnov Statistic

The Kolmogorov-Smirnov statistic indicates the maximal separation of defaulters from non-defaulters
achieved by the model. The two plots in the visualization are the fractions of defaulters and non-
defaulters in the test set; these plots are referred to as the Hit Rate and the False Alarm Rate in
Working Paper 14.

KSMetric = mrm.data.validation.pd.KSStatistic(defaultIndicators, scores);
visualize(KSMetric);

5 Model Risk Management with Modelscape

5-50

displayResult(KSMetric);

Kolmogorov-Smirnov statistic is 0.2232, at score 499.2

append(MH, KSMetric);

Compute and Visualize Pietra Index

Pietra Index is twice the maximal area of a triangle that can be fitted between the ROC curve of the
model and the diagonal. Multiplication by 2 ensures that the range of possible values for the index is
[0,1].

Calculating the Pietra Index assumes that the area under the ROC is convex. In this case the Pietra
Index matches the Kolmogorov-Smirnov statistic calculated previously (indicated by the vertical
dotted line in the plot).

PietraMetric = mrm.data.validation.pd.PietraIndex(defaultIndicators, scores);
visualize(PietraMetric);

 Credit Scorecard Validation Metrics

5-51

displayResult(PietraMetric);

Pietra index is 0.2232

append(MH, PietraMetric);

Compute and Visualize Bayesian Error Rate

Define the error rate at a given score as the weighted sum

ER(s) = pD(1− HR(s)) + (1− pD) * FAR(s)

where pD is the total proportion of defaulters in the test set, and HR and FAR are the Hit Rate and
the False Alarm Rate functions, respectively. The Bayesian Error Rate of the model is the minimum
error rate achieved in the test set. The error rate is sometimes calcualted with equal weights of 0.5
instead of pD and 1− pD; in this case the Bayesian error rate is seen to be equal to 12(1− KS), where
KS is the Kolmogorov-Smirnov statistic.

BERMetric = mrm.data.validation.pd.BayesianErrorRate(defaultIndicators, scores);
visualize(BERMetric);

5 Model Risk Management with Modelscape

5-52

displayResult(BERMetric);

 Value Score
 _______ ______

 Bayesian error rate 0.31 457.9
 Equal-weighted Bayesian error rate 0.38838 499.18

append(MH, BERMetric);

Calculate Mann-Whitney Statistic

The Mann-Whitney statistic is a rank sum metric that you calculate for the defaulter and non-
defaulter populations of the test set. It recovers the area under the ROC curve calculated previously,
and you can use the variance of the Mann-Whitney statistic to calculate confidence intervals for the
AUROC statistic.

mwConfidenceLevel = ;
MWMetric = mrm.data.validation.pd.MannWhitneyMetric(defaultIndicators, scores,...
 mwConfidenceLevel);
displayResult(MWMetric);

Mann-Whitney statistic 0.66113, with confidence interval (0.6606,0.66165) at level 0.95

append(MH, MWMetric);

Calculate Somers' D

To test the hypothesis that low scores correspond to high probability of default, calculate the Somers'
D between the sorted scores and the default indicators (flipped, to preserve the ordering, so that
survival is denoted by 1 and default by 0).

SDMetric = mrm.data.validation.pd.SomersDMetric(defaultIndicators, scores);
displayResult(SDMetric);

 Credit Scorecard Validation Metrics

5-53

Somers' D is 0.3223

append(MH, SDMetric)

Display Brier Score

The Brier score is the squared mean error of the probabilities of default predicted by the model.
Calculate the Brier score also for the "trivial model" which assigns the same probability to each name
(equal to the fraction of defaulting names in the dataset).

BrierMetric = mrm.data.validation.pd.BrierTestMetric(defaultIndicators, defaultProbs);
displayResult(BrierMetric);

 Value

 Brier score 0.20541
 Brier score for trivial model 0.22138

append(MH, BrierMetric);

Perform Binomial Test

The binomial test inspects each ratings category separately and tests whether the number of realized
defaults is plausible given the predicted probability of default.

The confidence level is set using the quantity q below. For example, setting q = 0.95 finds the
scores where the number of observed defaults exceeds the number of defaults that would be
expected with 95% confidence. These scores are highlighted in the visualization by an asterisk.

binConfidenceLevel = ;
BinMetric = mrm.data.validation.pd.BinomialTest(defaultIndicators, defaultProbs, scores,...
 binConfidenceLevel);
visualize(BinMetric);

5 Model Risk Management with Modelscape

5-54

head(formatResult(BinMetric));

 Rating Category Observed Defaults Max Expected Number of Defaults
 _______________ _________________ _______________________________

 369.4 0 1
 377.86 1 1
 379.78 1 1
 391.81 1 1
 394.77 0 1
 395.78 1 1
 396.95 1 1
 398.37 1 1

append(MH, BinMetric);

Compute Hosmer-Lemeshow Metric

This test, also known as the chi-squared test, compares number of observed defaults for each ratings
category with the number that would be expected from the probability of default predicted by the
model. Unlike the results of the binomial test, these measures are combined into a single quantity,
which for large datasets should converge to a χk

2-distribution, where k is the number of ratings
categories in the model. The test statistic is the p-value of this χk

2-distribution.

HLMetric = mrm.data.validation.pd.HosmerLemeshowMetric(defaultIndicators, defaultProbs, scores);
displayResult(HLMetric);

Hosmer-Lemeshow p-value is 0.9177

append(MH, HLMetric);

Compute and Visualize Entropy Measures

Conditional Information Entropy Ratio measures the capability of the model to separate the
defaulters from non-defaulters. Unlike the previous metrics, it does not consider the ordering of the
scores. CIER value close to zero indicates good separation of defaulting names from surviving names.

CIERMetric = mrm.data.validation.pd.EntropyMetric(defaultIndicators, scores);
visualize(CIERMetric);

 Credit Scorecard Validation Metrics

5-55

displayResult(CIERMetric);

Conditional Information Entropy Ratio is 0.557

append(MH, CIERMetric);

The plot illustrates the cumulative sum of the entropies at each score weighted by the proportion of
names with a given score. jumps indicate points where the model struggles to differentiate between
defaulters and non-defaulters.

Display Summary

disp(report(MH))

 Metric Value
 _______________________________________ ________

 "Accuracy ratio" 0.32225
 "Area under ROC curve" 0.66113
 "Kolmogorov-Smirnov statistic" 0.22324
 "Pietra index" 0.22324
 "Bayesian error rate" 0.31
 "Mann-Whitney u-test" 0.66113
 "Somers' D" 0.32225
 "Brier score" 0.20541
 "Binomial test failure rate" 0.087667
 "Hosmer-Lemeshow p-value" 0.91772
 "Conditional Information Entropy Ratio" 0.55697

5 Model Risk Management with Modelscape

5-56

Validation of Credit Models in ECB Templates

This example shows how to fill in the European Central Bank (ECB) model validation templates using
Modelscape™ in MATLAB®.

ECB has published a suite of model validation templates covering a wide array of credit models,
including Probability of Default (PD) models. Find the ECB templates at this address under 'Related
Documents'. Find the instructions for filling in the templates in the document Instructions for
reporting the validation results of internal models - IRB Pillar I models for credit risk.

Fill in ECB Template Input Data Using Modelscape

The ECB validation templates require three kinds of inputs:

1 Model and organization metadata - for example, model and institution names, and the start and
end dates of the review period

2 Directly observable quantitative data - for example, the number of customers who defaulted
during the observation period

3 Model performance metrics - for example, metrics that measure the discriminatory power of the
model, or credit rating migrations

Use Modelscape function fillValidationTemplate to fill in the last two types of inputs. You can
then fill in the model names, identifiers, and other variables in Excel.

fillValidationTemplate(fileName, ...
 "InitialValidationData", initialValidationData, ...
 "InitialPortfolioData", reviewStartPortfolioData, ...
 "TerminalPortfolioData", reviewEndPortfolioData);

• fileName is the name of the spreadsheet you fill in. Use the standard format required by ECB:
"[LEICode]_[ModelType]_[ModelID]_[ReferenceDate]_[VersionNumber].xlsx”. For more details,
see the final paragraph of Section 2.2 of the ECB instructions.

• reviewStartPortfolioData and reviewEndPortfolioData are
mrm.data.validation.reporting.pd.OperationalData objects with information about the
portfolio at the beginning and the end of the current review period. Examples include the model
PDs, exposures, and ratings for the customer populations, as well as flags to indicate credit
transferals and overrides within the populations.

• initialValidationData is an mrm.data.validation.reporting.pd.ValidationData
object with the information used in the initial validation of the model, potentially many years
before the current review period. Examples of such information include the original model PDs
and default indicators for some validation data set.

Set Operational Data

The templates require operational data as a table containing various data with one item per customer
or entity, together with the observation date and flags such as whether the model allows technical
defaults. In this section, the term name indicates a single obligor such as a customer.

Supply the following data as arrays of equal lengths:

1 IDs: a string identifier for each name in the data set

 Validation of Credit Models in ECB Templates

5-57

https://www.bankingsupervision.europa.eu/banking/tasks/internal_models/omm/html/index.en.html
https://www.bankingsupervision.europa.eu/banking/tasks/internal_models/shared/pdf/instructions_validation_reporting_credit_risk.en.pdf
https://www.bankingsupervision.europa.eu/banking/tasks/internal_models/shared/pdf/instructions_validation_reporting_credit_risk.en.pdf

2 PDs: the probabilities of default predicted by the model
3 Ratings: the ratings assigned to the customers (as ordered categorical variables - see below for

more details)
4 Exposures: the current exposure for each name

• Store Ratings as categorical variables with a fixed ascending order. Otherwise, certain data
quality checks built into the ECB templates will fail. Define the categorical variables in MATLAB
using the following syntax:

ratingLabels = categorical(["CCC", "B", "BB", "BBB", "A", "AA", "AAA"], ...
 ["CCC", "B", "BB", "BBB", "A", "AA", "AAA"], 'Ordinal', true);

• While the ECB instructions do not specify a choice of currency, express the exposures in a single
reference currency. This is because various validation measures require calculating the total
exposures within some classes of names.

In addition to the four vectors, the operational data must contain the following arrays of logicals of
the same size as the identifier arrays. These indicate anomalous states of the names and are optional.
The OperationalData class will default these values to false if you do not specify them.

The flags determine the correct in-scope sample, so it is important that you set them correctly.

1 InDefault: set to True if the name currently in default (bullet point 2.3 (c) of the ECB
instructions).

2 TechnicalDefaultIndicators: set to True if the name is in technical default (2.3 (d)).
3 OtherModel: set to True if a different model is used for the name for rating or regulatory capital

purposes (2.3 (e)).
4 NonDefaultablePositive: set to True if the name is non-defaultable even if it has a positive

exposure (p. 10, footnote 18).
5 Deficient: set to True if the name should be excluded from the sample due to process

deficiency (2.5.1 (c)).
6 Outdated: Does the name have an outdated rating or financial statements (2.5.1 (d)).
7 Overridden: set to True if the rating has been overridden (2.5.1 (e)).
8 Transferred: set to True if the name had been transferred to it the rating of some third party

(2.5.1 (f)).

Finally, the OperationalData class should contain the following:

• OutdatedAllowed, TransferralAllowed, OverridesAllowed,
TechnicalDefaultsAllowed: Single logical variables to indicate whether the model and
assignment process allow for outdated accounts, rating transferals, overrides, or technical
defaults (PD validation template, Sheet 2.0).

• Date: The 'as-of' date for the above data.

In practice, it may be convenient to save the one-datum-per-name data as a table and supply the final
four logicals and the as-of date separately.

Set Validation Data

Operational data objects contain snapshots of the model predictions and other relevant data at given
time points. Validation data objects, on the other hand, carry information about how the status of the

5 Model Risk Management with Modelscape

5-58

names changes over time. Validation metrics assess how these changes relate to the PDs predicted by
the model.

Each ValidationData object carries the following data.

• ObsStartDate and ObsEndDate: initial and the terminal dates of the observation period.
• IDs: string identifier for each name in the data set.
• PDs: model PDs as predicted at ObsStartDate.
• Exposures: exposures of the names in some appropriate reference currency, as of

ObsStartDate.
• DefaultIndicators: logical flags indicating the names that have defaulted during the

observation period.
• InitialRatings and TerminalRatings: rating grades predicted by the model at the beginning

and the end of the observation period (as ordered categorical variables). The terminal ratings
should have an ascending order again.

In addition, ValidationData uses an augmented set of possible ratings, where the following three
extra 'ratings' are allowed (see point 2.5.1 (h) of the ECB instructions):

1 Default - for names that defaulted during the observation period
2 Migrated - for non-defaulted names that have moved to a different model during the observation

period
3 Gone - for non-defaulted names that have terminated their business relationship with the credit

institution during the observation period

Note that the validation data containers should have data only for the names that have been pre-
screened to be in scope for validation. Given operational data containers operationalData1 and
operationalData2 for some reference dates, use an MRM helper function to construct the
associated validation data:

validationData = mrm.data.validation.reporting.pd.validationDataFromOperationalData(operationalData1, operationalData2);

This not only performs the appropriate screening but also takes care of the augmentation of the
terminal rating categories as explained above.

 Validation of Credit Models in ECB Templates

5-59

Validation of External Models

This example shows how to use MATLAB® model validation tools on models existing outside of
MATLAB using Modelscape™.

Such a model could be implemented in Python®, R, SAS®, or it could be a MATLAB model deployed
on a web service.

This example covers the use of external models from the point of view of a Model Validator or other
model end user. Although the Validator does not need to know this, this example assumes that a
model has been deployed to a microservice such as Flask (Python) or Plumber (R). The example also
explains how such microservices and alternative interfaces should be implemented.

This example calls an external model from MATLAB to evaluate it with different inputs. The example
then shows you how to implement the API for any external model so that it can be called from
MATLAB.

Call an External Model from MATLAB

This section shows you how to set up an interface and call an externally deployed model. This
example uses a Python toy model although it could be implemented in any other programming
language.

Setup the External Model

Use the Python code in the Appendix to set up mock data of a credit scoring model. This model adds
noise to the input data, scales it, and returns the value as the output credit score of the applicant.

Run the script to make this "model" available in a test development server. The URL should be clearly
visible in the output when the script is run. Copy it here if different from what is shown here:

ModelURL = "http://172.26.249.170:5000/";

In an actual model validation exercise, this information could be provided by the Model Developer as
part of the validation request.

To set up a connection to this model, run the following:

extModel = externalModelClient("RootURL", ModelURL)

extModel =
 ExternalModel with properties:

 InputNames: "income"
 ParameterNames: "weight"
 OutputNames: "score"

The model expects a single input called 'income' and a single parameter called 'weight', and returns a
single output called 'score'.

The types and sizes of these inputs should be explained in model documentation, but you can also find
this information in the InputDefinition, ParameterDefinition and OutputDefinition
properties of extModel.

5 Model Risk Management with Modelscape

5-60

extModel.InputDefinition

ans = struct with fields:
 sizes: []
 dataType: [1×1 struct]

extModel.InputDefinition.dataType

ans = struct with fields:
 name: "double"

Empty sizes property indicates that a scalar is expected.

Evaluate the Model

Use the evaluate method of ExternalModel on your model. This method expects two inputs:

• The first input must be a table. Each row of the table must consist of the data for a single
customer, or a single 'run'. The table is then a 'batch of runs'. The variable names of the table
must match the InputNames shown by ExternalModel.

• The second input is a struct whose fields match the ParameterNames shown by ExternalModel.
The values carried by this struct apply to all the runs in the batch. If the model has no parameters,
omit this input.

The primary output is a table whose variable names match the OutputNames shown by
ExternalModel. The rows correspond to the runs in the input batch. There may also be run-specific
diagnostics consisting of one struct per run and a single batch diagnostic struct.

For your toy model, use random numbers in the range from 0 to 100,000 as customer incomes for the
input data. For parameters, use a weight of 1.1.

N = 1000;
income = 1e5*rand(N,1);
inputData = table(income, 'VariableNames',"income");
parameters = struct('weight', 1.1);

Call your model.

[modelScores, diagnostics, batchDiagnostics] = evaluate(extModel, inputData, parameters);
head(modelScores)

 score

 Row_1 110.66
 Row_2 137.69
 Row_3 52.155
 Row_4 87.029
 Row_5 73.207
 Row_6 26.722
 Row_7 36.671
 Row_8 24.878

The output is a table of the same size as the inputs. Not specifying the row names in input data
defaults them to Row_1, Row2, and so on.

 Validation of External Models

5-61

For this example, create a mock response variable by thresholding the income. Validate the scores of
the above model against this response variable.

defaultIndicators = income < 20000; % mocked-up response data
aurocMetric = mrm.data.validation.pd.AUROC(defaultIndicators, modelScores.score);
formatResult(aurocMetric)

ans =
"Area under ROC curve is 0.8236"

visualize(aurocMetric);

The toy model returns some diagnostics to illustrate their size and shape. The run-specific
diagnostics are a single struct with a field for every run.

diagnostics.Row_125

ans = struct with fields:
 noise: 1.7133e+04

In this case, each struct records some 'noise' term that was used in the calculation of the model
prediction. Batch diagnostics consist of a single struct carrying information shared across all runs, in
this case, the elapsed valuation time at the server side.

batchDiagnostics

5 Model Risk Management with Modelscape

5-62

batchDiagnostics = struct with fields:
 valuationTime: 0.0080

Extra Arguments

Under the hood, ExternalModel talks to the model through a REST API. If necessary, the headers
and HTTP options used for the corresponding message exchanges can be modified by passing extra
Headers and Options arguments to externalModelClient. Headers should be of type
matlab.net.http.HeaderField objects and Options should be of type
matlab.net.http.HTTPOptions.

For example, extend the connection timeout to 20 seconds.

options = matlab.net.http.HTTPOptions('ConnectTimeout',20);
extModel = externalModelClient("RootURL", ModelURL, "Options", options)

Implement an ExternalModel Interface

This part of the example explains how to implement an API for an external model to call it from
MATLAB.

The externalModelClient function creates an object of type
mrm.validation.external.ExternalModel. This object talks to the external model through a
REST API, and it works with any model that implements the API below.

Endpoints

The API must implement two endpoints:

• /signature must accept a GET request and return a JSON string carrying the information about
inputs, parameters and outputs.

• /evaluate must accept a POST request with inputs and parameters in a JSON format and must
return a payload containing outputs, diagnostics, and batch diagnostics as a JSON string.

The status code for a successful response should be 200 OK; note that this is the default in Flask, for
example.

Evaluation Inputs

The /evaluate endpoint should accept a payload of the following format.

 Validation of External Models

5-63

The columns in inputs should list the input names, index should specify the row names, data
should contain the actual input data one row at the time, and parameters should just record the
parameters with their values. The asterisks indicate the values - for example doubles or strings.

Note that the inputs datum is compatible with the construction of Pandas DataFrames with split
orientation; see the example implementation in the Appendix.

Response Formats

The /signature endpoint should return a payload of the following format:

5 Model Risk Management with Modelscape

5-64

The /evaluate endpoint should return a payload in the following format:

 Validation of External Models

5-65

Note again that the outputs data is compatible with the JSON output of Pandas dataframes with
split orientation.

See the sample code in the Appendix for an interface implementation used in the first part of this
example.

Work with Alternative APIs

This section explains how to make external models available to a Model Validator in MATLAB when
the default API is either impossible or inconvenient to implement - for example when your
organization already has a preferred REST API for evaluating models. For this, implement an API
class that inherits from mrm.validation.external.ExternalModelBase. Package this
implementation in a +mrm/+validation/+external/ folder on the MATLAB path.

This custom API must populate the InputNames, ParameterNames and OutputNames properties
shown to the Validator after an externalModelClient call. It must also implement the evaluate
method which should take as inputs a table and a struct as in the default API ExternalModel. It is
then the responsibility of the custom API to serialise the inputs, manage the REST API calls, and
deserialise the outputs into tables and structs as shown above.

When a custom API has been implemented as, say, mrm.validation.external.CustomAPI, the
Validator can initialize a connection to the model through this client by adding an APIType argument
to the externalModelClient call.

extModelNew = externalModelClient("APIType", "CustomAPI", "RootURL", ModelURL)

5 Model Risk Management with Modelscape

5-66

Any further arguments will also be passed through to CustomAPI.

Appendix: Flask Interface

The following Python code was used for setting up the external model used in the first part of this
example.

from flask import Flask, request, jsonify
import pandas as pd
import numpy as np
import time

toyModel = Flask(__name__)

@toyModel.route('/evaluate', methods=['POST'])
def calc():
 start = time.time()
 data = request.get_json()
 inputData = data['inputs']
 inputDF = pd.DataFrame(inputData['data'], columns=inputData['columns'], index=inputData['index'])
 parameters = data['parameters']

 noise = np.random.uniform(low = -50000, high=50000, size=inputDF.shape)

 outDF = inputDF.rename(columns={'income':'score'})
 outDF = outDF.add(noise)
 outDF = outDF.mul(parameters['weight']/1000)

 diagnostics = pd.DataFrame(noise, columns=["noise"], index=inputDF.index)
 end = time.time()
 batchDiagnostics = {'valuationTime' : end - start}
 output = {'outputs': outDF.to_json(orient='split'),
 'diagnostics' : diagnostics.to_dict(orient='index'),
 'batchDiagnostics' : batchDiagnostics}
 return output

@toyModel.route('/signature', methods=['GET'])
def getInputs():
 outData = {
 'inputs': [{"name": "income", "dataType": {"name": "double"},"sizes": []}],
 'parameters': [{"name": "weight", "dataType": {"name": "double"}, "sizes": []}],
 'outputs': [{"name": "score", "dataType": {"name": "double"}, "sizes": []}]
 }
 return(jsonify(outData))

if __name__ == '__main__':
 toyModel.run(debug=True, host='0.0.0.0')

 Validation of External Models

5-67

File Attachments in Modelscape Review Editor

This example shows how to attach files to reviews using Review Editor app in the Modescape™
Review Environment (MRE).

You can attach documents to the Review Editor app. These documents include recommendations for
improvement or evidence of model performance reports outside the Review Editor app. Use the app
to attach files such as detailed model validation documents and scripts supporting such documents.
By default, the Review Editor attaches the files to the project or model repository You can also use
the tools in the package to store the attachments in a network folder. This example explains how to
use these tools, extend, and customize them.

Use Custom Repositories

Attachments repositories are subclasses of an (abstract)
modelscape.review.app.filerepository.FileRepository base class. Construct such a
subclass using a Review object, which defines the following functions:

• upload: how and where a given file should be stored.

5 Model Risk Management with Modelscape

5-68

• list: a list of the currently attached files.
• URI: an identifier for a given file.
• openRepositoryLocation: open the entire attachments repository for inspection.

The implementation must be in the MATLAB path.

For example, see the network folder repository:

edit modelscape.review.app.filerepository.NetworkFolderRepository;

Configure Attachment Repositories

Use MATLAB settings to point the MRE to the correct file repository class. To see the current active
value of this setting, run:

s = settings;
s.mrmreview.FileRepository.Type.ActiveValue

ans =
"modelscape.review.app.filerepository.ProjectRepository"

The default value is modelscape.review.app.filerepository.ProjectRepository. If your
custom repository file, myRepository.m, is in directory /+mre/+custom/ on the MATLAB path, then
point the MRE to it by running:

s.mrmreview.FileRepository.Type.TemporaryValue = "mre.custom.myRepository";

Querying the active value of the setting as above should now return mre.custom.myRepository.
To reset the value of this setting, run

s.mrmreview.FileRepository.Type.TemporaryValue = s.mrmreview.FileRepository.Type.FactoryValue;

Use Network Folder Repository

You can also define other MATLAB settings and use them for configuring project repositories. Review
Editor contains a repository definition for storing attachments to a network folder. To use this
repository, run:

s = settings;
s.mrmreview.FileRepository.Type.TemporaryValue = "modelscape.review.app.filerepository.NetworkFolderRepository";

Set the network folder to which Review Editor must copy the files to.

s.mrmreview.FileRepository.Root.TemporaryValue = "//some/network/folder/name";

To ensure each model gets a unique directory, this repository saves the files to a directory of the
form //some/network/folder/name, where name is the string returned by the ModelName
method of the Modelscape Review class.

 File Attachments in Modelscape Review Editor

5-69

Customization of Signoff Forms in Review Editor

This example shows how to customize review sign off forms using Review Editor app in the
Modelscape™ Review Environment (MRE).

MRE comes equipped with a selection of forms that can be customized to sign off on a given review to
match your validation processes. You can also create your own signoff forms using MRE.

The customization consists of two parts: formatting of the signoff forms and configuring the list of
forms available to the validators.

Format Signoff Forms

Implement customized signoff forms as subclasses of an abstract interface class
modelscape.review.app.signoff.SignoffForm. Begin by opening an example form in the
Model Review Environment.

edit modelscape.review.app.signoff.forms.FullReview

5 Model Risk Management with Modelscape

5-70

In most cases, you can simply copy and rename this class, and edit it as required. The class definition
must be on your MATLAB path.

You must give the validator a list of labels corresponding to various steps of the validation work, and
a list of controls that allow users to input their comments. Labels are strings such as "Approved?",
"Materiality" or "Known weaknesses", whereas controls include drop-down menus, checkboxes, and
containers for free-form text; there should be one control for each label. The form also requires
submit and cancel buttons. The layout of these labels, values, submit and cancel buttons is part of the
configuration. To select the form from the submit review toolstrip dropdown, you also need a method
called fullName().

Configure Components of the Form

This section shows you how to configure the components of the form.

Layout

Control the layout of labels, controls and buttons by a matlab.ui.container.GridLayout object
that uses the Parent object of the form as its parent container.

this.UIGrid = uigridlayout(this.Parent, [8 4],...
 'ColumnWidth', {'1x','1x','1x', '1x'}, ...
 'RowHeight', {25, 50, 50, 50, 50, 25, 25, 25});

In this case, the grid has one row per label-control pair and one row for the submit and cancel
buttons. Row heights vary depending on the type of control to be used.

Labels and Controls

Insert the labels and controls into the layout grid using utility functions in the MRE package.

import modelscape.review.app.signoff.helpers.formatLabel;
import modelscape.review.app.signoff.helpers.formatDropDown;
import modelscape.review.app.signoff.helpers.formatTextArea;
import mmodelscape.review.app.signoff.helpers.formatCheckBox;

These helper functions create the labels and controls, and place them in the layout grid. Placed them
in arrays called this.Labels and this.Controls. For example, place a label "Risk rating" into
the first column of the 6th row and a drop-down menu with selection "High", "Medium", "Low" (and
default value "Select") into the second column of that row.

this.Labels{6} = formatLabel(this.UIGrid, 'Risk rating', 6, 1);
this.Controls{6}= formatDropDown(this.UIGrid, 6, 2, ...
 {'Select', 'High', 'Medium', 'Low'}, 'Select');

Use the other two helper functions in a similar way.

Submit and Cancel Buttons

Define the remaining two components using the following helper functions of the SignoffForm base
class.

createSubmitReviewButton(this, 8, 3);
createDiscardReviewButton(this, 8, 4);

These will place the required buttons in the 3rd and 4th column of the 8th row of the layout grid. The
helper functions also configure the buttons to trigger the appropriate events in the Review app.

 Customization of Signoff Forms in Review Editor

5-71

fullName()

For each signoff form class, define a static method fullName(), which returns the name, or a short
description, of the implemented class. Use a concise string to identify this customized form in the
signoff dropdown list of the MRE main toolstrip.

An example of this method definition is as follows:

methods (Static)
 function fn = fullName()
 fn = "Full review signoff";
 end
end

Configure the Signoff Form Selection Menu

The signoff forms for review submission are in the dropdown list under the Submit Review icon in the
Review Editor app. By default, the list contains the examples of the MRE package. This section
explains how to configure the list.

Configuration File

Implement each signoff form as a class definition. Encode the list of forms shown to the user into an
XML file that lists these classes in the following syntax.

1 The XML root node is called <formSelection>.
2 Define each form in the list by a <formDefinition> node. These will contain a <className> node

that sets the full name of the form class to be used

For example, the following XML defines the forms shipped with the MRE package:

<formSelection>
 <formDefinition>
 <className>modelscape.review.app.signoff.forms.FullReview</className>
 </formDefinition>
 <formDefinition>
 <className>modelscape.review.app.signoff.forms.ReducedReview</className>
 </formDefinition>
</formSelection>

This file need not be stored in the MATLAB path.

MRE SignoffFormsSelection Setting

To point the MRE to the correct XML configuration file, use MATLAB settings. To see the current
value of this setting, run:

s = settings;
s.mrmreview.Signoff.ConfigFile.ActiveValue

The default value of this setting is the empty string.

If the configuration file is saved as c:\MRE\resources\formSelection.xml, set MRE to point to
this file.

s.mrmreview.Signoff.ConfigFile.TemporaryValue = "c:\Modelscape\resources\formSelection.xml";

Querying the active value as shown above should then return the location of the custom XML.

5 Model Risk Management with Modelscape

5-72

To reset the default setting, run:

s.mrmreview.Signoff.ConfigFile.TemporaryValue = s.mrmreview.Signoff.ConfigFile.FactoryValue;

 Customization of Signoff Forms in Review Editor

5-73

Model Implementation for Modelscape Deploy

This example shows you how to use and implement the Modelscape™ Deploy™.

Modelscape Deploy supports a generic interface for specifying model inputs, model outputs, and a
single method to execute models. This example explains the interface and shows you how a model
developer must implement it.

This example uses a toy model that takes inputs x and y and calculates the weighted sum z = A*x +
B*y, where A and B are scalar weights. If x and y are vectors, the evaluation of the model is a batch
evaluation for each pair of elements in x and y. The scalars A and B are configurable, but constant
across a batch of evaluations – and are therefore regarded as parameters.

Realistic examples of inputs varying within a batch are the contract details for a book of derivative
transactions, and the data corresponding to a group of credit card applicants. Examples of
parameters corresponding to these inputs are the number of Monte Carlo paths used for pricing the
derivatives, and certain macro-economic data used for credit-scoring the loan applicants. Note that
the batch parameters are fixed for all inputs within a batch.

Work with Modelscape Deploy

Models to be executed in Modelscape Deploy must be implemented as subclasses of
mrm.execution.Model.

classdef WeightedSum < mrm.execution.Model

Both the inputs and the outputs of the model execution must be tables. Each model class defines how
to interroage the input table and populate the output table.

Methods for Inputs and Outputs

Each model must implement three methods for specifying the inputs and the outputs of the model.

• getInputs: returns the definition of the variables required for each evaluation in a batch - for
example, the names and types of x and y above.

• getParameters: returns the definition of the variables that are fixed within a batch of
evaluations - that is the names and types of A and B above.

• getOutputs: returns the definition of the output variables - variable z above.

The output, in each case, should be a struct with the following fields:

• name: a cell array of strings containing the names of the input/output variables.
• type: a cell array of structs defining the type of each input/output variable - each struct should

have a field called name with any of the values listed in mwtype.
• sizes: a cell array of two-element arrays [a b] defining the size of each input/output variable -

use NaN to indicate unrestricted size, e.g. [1 NaN] for a single column of an arbitrary height.

Define the toy model as follows.

function parameters = getInputs(~)
 doubleDatatype = struct(...
 "name", "double");
 parameters = struct(...

5 Model Risk Management with Modelscape

5-74

 "name", {"X", "Y"}, ...
 "dataType", {doubleDatatype, doubleDatatype});
end

function parameters = getParameters(~)
 doubleDatatype = struct(...
 "name", "double");
 parameters = struct(...
 "name", {"A", "B"}, ...
 "dataType", {doubleDatatype, doubleDatatype});
end

function parameters = getOutputs(~)
 doubleDatatype = struct(...
 "name", "double");
 parameters = struct(...
 "name", {"Z"}, ...
 "dataType", {doubleDatatype});
end

Evaluation Method

Define the evaluate method as follows.

[outputs, diagnostics, batchDiagnostics] = evaluate(this, inputs, parameters)

Here inputs should be a table, with a row for each evaluation within the batch, and parameters
should be struct, that contains the variables that apply to all evaluations within the batch.

The outputs variable must be a table and contain a row for each row of the inputs table. The
diagnostics output must be an array of structs, one for each row of the input table. The
batchDiagnostic output is a single diagnostic for the whole batch and must be a scalar struct.

The toy model also has the following definition.

function [outputs, diagnostics, batchDiagnostics] = evaluate(~, inputs, parameters)
 outputs = table(...
 parameters.A * inputs.X + parameters.B * inputs.Y, ...
 'VariableNames', {'Z'}, ...
 'RowNames', inputs.Properties.RowNames);
 rawDiagnostics = [inputs.Properties.RowNames, repmat({struct()}, numel(inputs.Properties.RowNames), 1)]';
 diagnostics = struct(rawDiagnostics{:});
 batchDiagnostics = struct();
end

In this case the diagnostics structs are empty. In the more complicated examples listed above, they
could carry, for instance, information about the Monte Carlo noise present in the valuation.

Create an image for Deployment

To deploy a model that implements the mrm.execution.Model interface, firstly, package the
executable model code into a Docker® image suitable for deployment using MATLAB® Compiler
SDK. Use the helper function mrm.execution.packageModel to do this.

modelInstance = WeightedSum();
outputFolder = tempname();
imageName = mrm.execution.compiler.packageModel(modelInstance, ...
 OutputFolder=outputFolder, ...

 Model Implementation for Modelscape Deploy

5-75

 Name="weighted-sum", ...
 Tag="v1")

Runtime Image Already Exists
Sending build context to Docker daemon 278kB

Step 1/6 : FROM matlabruntime/r2023a/prerelease/update0/308000000000000000
 ---> 9578d4e15248
Step 2/6 : COPY ./applicationFilesForMATLABCompiler /usr/bin/mlrtapp
 ---> ff0709fcec70
Step 3/6 : RUN chmod -R a+rX /usr/bin/mlrtapp/*
 ---> Running in c83375557f83
Removing intermediate container c83375557f83
 ---> da1d6f8978b3
Step 4/6 : RUN useradd -ms /bin/bash appuser
 ---> Running in aab934c26070
Removing intermediate container aab934c26070
 ---> 5e5490e6e58e
Step 5/6 : USER appuser
 ---> Running in fd6d76d6d108
Removing intermediate container fd6d76d6d108
 ---> 54efdb411a1b
Step 6/6 : ENTRYPOINT ["/opt/matlabruntime/R2023a/bin/glnxa64/muserve", "-a", "/usr/bin/mlrtapp/weightedsum.ctf"]
 ---> Running in 4c6771bc9751
Removing intermediate container 4c6771bc9751
 ---> 0da443f8e974
Successfully built 0da443f8e974
Successfully tagged weighted-sum:v1

DOCKER CONTEXT LOCATION:

/tmp/tp984f0556_95f6_46b1_a428_473bcc9e54dc/docker

FOR HELP GETTING STARTED WITH MICROSERVICE IMAGES, PLEASE READ:

/tmp/tp984f0556_95f6_46b1_a428_473bcc9e54dc/docker/GettingStarted.txt

Sending build context to Docker daemon 4.608kB

Step 1/7 : FROM weighted-sum:v1
 ---> 0da443f8e974
Step 2/7 : COPY ./routes.json /usr/bin/mlrtapp/routes.json
 ---> e97e7b05ec7e
Step 3/7 : USER root
 ---> Running in 01c65af653f1
Removing intermediate container 01c65af653f1
 ---> 276549f8c441
Step 4/7 : RUN useradd -u 2000 -ms /bin/bash modeluser
 ---> Running in e5d62f47d4fa
Removing intermediate container e5d62f47d4fa
 ---> 206c7ad88b83
Step 5/7 : USER 2000
 ---> Running in 98307802e3cb
Removing intermediate container 98307802e3cb
 ---> 0ac44031eb4a
Step 6/7 : EXPOSE 8080
 ---> Running in 75b018a3bd8d

5 Model Risk Management with Modelscape

5-76

Removing intermediate container 75b018a3bd8d
 ---> 314e6255d91e
Step 7/7 : CMD ["--http", "8080","--routes-file", "/usr/bin/mlrtapp/routes.json"]
 ---> Running in 1549e1f467cc
Removing intermediate container 1549e1f467cc
 ---> f703f5e9bd1b
Successfully built f703f5e9bd1b
Successfully tagged weighted-sum:v1

imageName =
"weighted-sum:v1"

Deploy to Modelscape Deploy

The image must be pushed to a Docker registry visible to the Modelscape API. For the next steps,
choose the model version for which you want to create a model version build. Create the build, a
deployment environment, and deploy your build.

 Model Implementation for Modelscape Deploy

5-77

Customizing Model Inventory: Risk Tiering

This example shows how to customize the Model Inventory to hold information specific to your
organization.

You can customize the model data entry and the model summary table. You can also add new filters to
the Inventory Browser app to make it easy to find models with a particular value of a custom
attribute.

This example uses a simple tree-based approach to Risk Tiering as an example. The model is from a
paper by Mankatonia and Joshi (Measuring model risk: a practitioner’s approach, RMA Journal,
2013). This example along with other examples are also discussed in a paper by Kiritz, Ravitz and
Levonian (Model risk tiering: an exploration of industry practices and principles, Journal of Risk
Model Validation, 2019).

Add Custom Data to Inventory Browser

The inventory data is most likely stored outside of MATLAB®, for example, in a database. Various
features of the Inventory Browser such as the model entry form do not access this external resource
directly - rather, they interact with it through a client. Modelscape™ supports both database-backed
and (for test use) in-memory clients.

Add new model-specific data to the Inventory Browser as references. To do this:

• If necessary, create a new type for the reference.
• Create the reference itself.
• Associate the reference to a given model.

Create a new reference type called RiskTieringData with the following attributes:

• RiskPriceValueUse: a string Unset, True or False denoting whether the model is used to
measure risk, price, or value.

• CriticalUse: a string Unset, True or False denoting whether the model is used for critical
business decisions, regulatory reporting, or similar.

• Exposure: a string Unset, High, Medium, or Low denoting the exposure level of the model.
• Override: a string Unset, High, Medium, or Low denoting a risk tier level override.
• RiskTier: a string Unset, High, Medium, or Low denoting the final risk tier which is worked out

from the information above.

Construct a client with a model and this reference type, and attach a reference to this model. To learn
more about how to do this, contact MathWorks Consulting Services.

Open an Inventory session with this client.

app = mrm.inventory.InventoryApp(client);
app.open

Customize Model Data Entry

Customize the Inventory Browser model entry by adding new tabs next to the 'Details' included in the
default view, and by changing the layout and contents of the 'Details' tab. Implement these
customizations as subclasses of mrm.inventory.model.FormCustomization. Include the

5 Model Risk Management with Modelscape

5-78

https://uk.mathworks.com/services/consulting/contact.html

subclasses in +mrm/+inventory/+custom/+model/ folder on the MATLAB path. Implement the
following methods for each subclass.

• The constructor must take two inputs: the parent mrm.inventory.model.Form object and the
client carried by the Form. If you want to assign these to the Form and Client properties, leave
this to the base class constructor and not implement this at all.

• Use populateCustomContents(this) to set up the additional tab and any controls such as
drop-downs.

• onModelSet(this) must obtain the required references through the client and set these values
to the controls. Note that the identifier of the model being displayed on the forms can be obtained
from the GUIDEdit property of the parent form.

• onSubmit(this) must read the values carried by the dropdowns and other controls and use the
client to update the relevant references associated to the model.

Note that you can customize the 'Details' tab by modifying the layout grid, stored as the
DetailsLayout property, of the parent mrm.inventory.model.Form object. Here are some
examples of possible customizations.

1 Replace controls with new custom controls by hiding the existing control. To do this, use the
property Visible and create a new control in the same location in the grid.

2 Add new controls to the form by resizing the DetailsLayout grid.
3 Reorganize controls by using Layout.Row properties.

Finally, you can overwrite the labels of the 'Details' tab controls in a customization class. See
mrm.inventory.model.Form for the names of properties defining the labels.

The following code snippet illustrates how you can apply these customizations to implement a risk
tiering form. For the form layout, populateCustomContents creates dropdowns for
RiskPriceValueUse, CriticalUse, Exposure and Override, and a non-editable label to display
the resulting RiskTier. There is a button to recalculate the risk tier, as you want this to happen only
once all the required inputs have been considered and set. Finally, the example shows a mechanism
for displaying whether the risk tier stored in the inventory is in sync with the chosen inputs - if not,
the comment '(Stale)' is added to the risk tier. The new tiering data is stored in the Inventory only
when the 'Update' button is pressed.

classdef RiskTieringCustomTab < mrm.inventory.model.FormCustomization
%Implements a custom tab for calculating the risk tier

% Copyright 2021-2023 The MathWorks, Inc.

 properties (Access = private)
 % Base grid
 Grid(1,1) matlab.ui.container.GridLayout

 % Tree model controls
 UsageDD(1,1) matlab.ui.control.DropDown
 CriticalUseDD(1,1) matlab.ui.control.DropDown
 ExposureLevelDD(1,1) matlab.ui.control.DropDown
 OverrideDD(1,1) matlab.ui.control.DropDown

 CalculateButton(1,1) matlab.ui.control.Button
 RiskTierLabel(1,1) matlab.ui.control.Label

 Customizing Model Inventory: Risk Tiering

5-79

 % Convenience variable for setting the stale status of the tiering
 SavedTieringData struct

 % Cache the reference type for risk tiering data
 RiskTieringReferenceType
 end

 methods
 function this = RiskTieringCustomTab(form, client)
 this@mrm.inventory.model.FormCustomization(form, client);
 this.RiskTieringReferenceType = this.Client.getReferenceTypeByName("RiskTieringData");
 end

 function populateCustomContent(this)
 parentTab = uitab(this.Form.TabGroup, ...
 'Title', 'Risk tiering', ...
 'Tag', 'risktiering_tab');

 % Set up grid
 this.Grid = uigridlayout(parentTab, [6 2]);
 this.Grid.RowHeight = repmat(30, 1, 6);
 this.Grid.ColumnWidth = {'1x', '1x'};

 % Row 1
 uilabel(this.Grid, 'Text', 'Does the model measure risk, price or value?');
 this.UsageDD = uidropdown(this.Grid, ...
 'Items', ["Unset"; "True"; "False"], ...
 "ItemsData", ["Unset"; "True"; "False"], ...
 "ValueChangedFcn", @(~,~)this.setStaleStatus);

 % Row 2
 uilabel(this.Grid, 'Text', 'Is the model usage critical?', ...
 'Tooltip', 'Includes use for critical business decisions, regulatory purposes or financial reporting?');
 this.CriticalUseDD = uidropdown(this.Grid, ...
 'Items', ["Unset"; "True"; "False"], ...
 "ItemsData", ["Unset"; "True"; "False"], ...
 "ValueChangedFcn", @(~,~)this.setStaleStatus);

 % Row 3
 uilabel(this.Grid, 'Text', 'Exposure');
 this.ExposureLevelDD = uidropdown(this.Grid, ...
 'Items', ["Unset"; "High"; "Medium"; "Low"], ...
 'ItemsData', ["Unset"; "High"; "Medium"; "Low"], ...
 'ValueChangedFcn', @(~,~)this.setStaleStatus);

 % Row 4
 % Tier names 5-7 are 'Low (Stale)' etc, so don't include them in the drop-down.
 uilabel(this.Grid, 'Text', 'Override');
 this.OverrideDD = uidropdown(this.Grid, ...
 'Items', ["Unset"; "Low"; "Medium"; "High"], ...
 "ItemsData", ["Unset"; "Low"; "Medium"; "High"], ...
 "ValueChangedFcn", @(~,~)this.setStaleStatus);

 % Row 5
 this.CalculateButton = uibutton(this.Grid, 'Text', 'Calculate');
 this.CalculateButton.ButtonPushedFcn = @this.onCalculateRiskTier;
 this.CalculateButton.Layout.Row = 5;
 this.CalculateButton.Layout.Column = 2;

5 Model Risk Management with Modelscape

5-80

 % Row 6
 uilabel(this.Grid, 'Text', 'Risk tier');
 this.RiskTierLabel = uilabel(this.Grid, 'Text', '');
 end

 function onModelSet(this)
 guid = this.Form.GUIDEdit.Value;
 tieringDataForThisModel = this.Client.getReferenceByModelAndType(...
 guid, this.RiskTieringReferenceType.GUID);
 this.SavedTieringData = tieringDataForThisModel.Attributes;

 this.UsageDD.Value = this.SavedTieringData.RiskPriceValueUse;
 this.CriticalUseDD.Value = this.SavedTieringData.CriticalUse;
 this.ExposureLevelDD.Value = this.SavedTieringData.Exposure;
 this.OverrideDD.Value = this.SavedTieringData.Override;
 this.RiskTierLabel.Text = this.SavedTieringData.RiskTier;
 end

 function onSubmit(this)
 guid = this.Form.GUIDEdit.Value;
 data = containers.Map;
 data("RiskPriceValueUse") = this.UsageDD.Value;
 data("CriticalUse") = this.CriticalUseDD.Value;
 data("Exposure") = this.ExposureLevelDD.Value;
 data("Override") = this.OverrideDD.Value;
 data("RiskTier") = this.RiskTierLabel.Text;

 tieringReference = this.Client.getReferenceByModelAndType(...
 guid, this.RiskTieringReferenceType.GUID);
 this.Client.updateReference(tieringReference.GUID, "Attributes", ...
 data);
 end
 end

 methods (Access = protected)

 function setStaleStatus(this)
 isStale = this.SavedTieringData.RiskPriceValueUse ~= this.UsageDD.Value || ...
 this.SavedTieringData.CriticalUse ~= this.CriticalUseDD.Value || ...
 this.SavedTieringData.Exposure ~= this.ExposureLevelDD.Value || ...
 this.SavedTieringData.Override ~= this.OverrideDD.Value;

 if isStale && ~contains(this.RiskTierLabel.Text, "Stale") && ...
 this.RiskTierLabel ~= "Unset"
 this.RiskTierLabel.Text = string(this.RiskTierLabel.Text) + " (Stale)";
 elseif ~isStale && contains(this.RiskTierLabel.Text, "Stale")
 this.RiskTierLabel.Text = extractBefore(this.RiskTierLabel.Text, ...
 " (Stale)");
 end
 end

 function onCalculateRiskTier(this, ~, ~)
 tieringInputs.riskpricevalueflag = this.UsageDD.Value;
 tieringInputs.criticalflag = this.CriticalUseDD.Value;
 tieringInputs.exposurelevel = this.ExposureLevelDD.Value;
 tieringInputs.override = this.OverrideDD.Value;

 Customizing Model Inventory: Risk Tiering

5-81

 riskTier = mrm.inventory.custom.riskTierTreeSimple(tieringInputs);
 this.RiskTierLabel.Text = riskTier;
 end
 end
end

Customize Model Summary Table

Customize the summary table of model data shown in the Inventory Browser by omitting columns,
including columns corresponding to the custom data set up in the previous two sections, and
reordering any of the columns shown. Implement these customizations as a single subclass of
mrm.inventory.model.TableCustomization that must be in a +mrm/+inventory/+custom/
+model folder on the MATLAB path. The class must implement the following methods:

• The constructor must accept a single input consisting of the user-visible headers for the default
view of the model table. It must also set properties ColumnVisible, ColumnOrdering and
AllHeaders.

• process(this, uit, modelIds, client) takes as its inputs the uitable being customized
and the ids of the model to be displayed, and performs the required customizations. Client is also
supplied for looking up custom data.

The following example code illustrates how this can be done. The resulting table shows only the name
and the id of each model from the base product model data, and the exposure level, risk tier and any
possible override from the tiering data itself. These columns are also reordered to demonstrate this
capability.

classdef TableCustomizationExample < mrm.inventory.model.TableCustomization
%Example to illustrate addition, removal and reordering of summary table
%column.

% Copyright 2021-2023 The MathWorks, Inc.

 methods
 function this = TableCustomizationExample(parentHeaders)
 this.ExtraHeaders = ["Risk Tier", "RiskPrice", "Exposure", "Critical", "Tier override"];
 this.AllHeaders = [parentHeaders, this.ExtraHeaders];

 baseVisible = [true, true, false]; % 1-2 of visible columns
 riskTierVisible = [true, false, true, false, true]; % 3-5 of visible columns

 this.ColumnVisible = [baseVisible, riskTierVisible];
 this.ColumnOrdering = [2 1 3 5 4]; % for visible columns only
 end

 function uit = process(this, uit, modelIds, client)
 arguments
 this
 uit matlab.ui.control.Table
 modelIds(1,:) string
 client
 end

 % Step 1: Read the risk tiering data for all the modelIds from
 % the client.
 tieringDataType = client.getReferenceTypeByName("RiskTieringData");

5 Model Risk Management with Modelscape

5-82

 tieringData = arrayfun(@(id)client.getReferenceByModelAndType(id, ...
 tieringDataType.GUID), modelIds);

 % Step 2: Arrange this to extraModelTable table with columns
 % corresponding to this.ExtraHeaders
 [tiers, materialUseFlags, exposures, criticalUseFlags, overrides] = ...
 arrayfun(@(ref)readRiskTierData(ref), tieringData);
 extraModelData = table(tiers', materialUseFlags', exposures', ...
 criticalUseFlags', overrides', 'VariableNames', ...
 ["riskTier", "riskPriceValue", "exposure", "critical", "override"]);

 % Step 3: Concatenate this with uit.Data:
 uit.Data = [uit.Data, extraModelData];
 uit.ColumnName = this.AllHeaders;

 % Step 4: Use the helper methods from TableCustomization base
 % to reset the visibility and the ordering of the columns.
 this.setVisibility(uit);
 this.setOrdering(uit);
 end
 end
end

function [tier, materialuseflag, exposure, criticaluseflag, override] = readRiskTierData(ref)
 tier = string(ref.Attributes.RiskTier);
 materialuseflag = string(ref.Attributes.RiskPriceValueUse);
 exposure = string(ref.Attributes.Exposure);
 criticaluseflag = string(ref.Attributes.CriticalUse);
 override = string(ref.Attributes.Override);
end

Create Custom Filters

Inventory Browser is equipped with an interactive UI for creating filters to limit the list of models
shown in the Models table. These filters make no distinction between data included in the default
view and columns added as part of customization process. You can, for example, construct a filter to
show only models with a ‘High’ risk tier.

Inventory Browser has two filters in the “Saved Filters” list of the filter editor: “Search by Name”,
which allows you to filter by the model name, and “Create Custom Filter”, which shows a more
complex filter, intended as a template for creating more complicated queries.

This section shows you how to create new filters and how to add them to the “Saved Filters” list.

To customize your own filters, implement new filters as subclasses of
mrm.inventory.model.filter.FilterDefinition with the following properties.

• Name() must carry a string that is to be displayed in the Filter dropdown - for example "Filter by
Risk Tier"

• Serialization must carry the default initialization of the filters as a JSON string

To understand the format of the serialization JSON, see
mrm.inventory.model.filter.FilterByName for simple (“Primitive”) filters that reference just
a single column and see the default serialization in mrm.inventory.model.filter.CustomFilterTemplate
for more complex (“Composite”) filters.

 Customizing Model Inventory: Risk Tiering

5-83

To make the filters visible, implement a function called modelFilters in a +mrm/+inventory/
+custom/+model/ folder on the MATLAB path. This function must take no inputs, and it must return a
row array of all the filters you want to include in the Saved Filters list.

The code below illustrates this. Note that the modelFilters output can include a mixture of custom
filters and filters shipped with Modelscape itself.

function filters = modelFilters()
%Example filter selection customization

% Copyright 2022-2023 The MathWorks, Inc.

 filters = [mrm.inventory.model.filter.FilterByName, ...
 mrm.inventory.custom.model.filter.FilterByRiskTier, ...
 mrm.inventory.model.filter.CustomFilterTemplate];
end

In the filter implementation, the variable name in uit.Data may be different from the user-visible
header shows in the Inventory - here riskTier vs user-visible "Risk Tier". The implementation does
not need to reside in any package folder, but it makes sense to have all customization code in a single
location, so use +mrm/+inventory/+custom/+model/+filter here.

classdef FilterByRiskTier < mrm.inventory.model.filterDefinition
% Example defintion for filtering by risk tier in Modelscape Inventory

% Copyright 2022-2023 The MathWorks, Inc.

 methods
 function this = FilterByRiskTier()
 this.name = "Filter by Risk Tier";
 this.Serialization = ['{"type":"Primitive","header":"riskTier",', ...
 '"operation":"CONTAINS","value":"","parent":[],"id":"1"}'];
 end
 end
end

5 Model Risk Management with Modelscape

5-84

Test Metrics in Modelscape

This example shows how to implement various test metrics in MATLAB® using Modelscape™.

For information about test metrics from the model developer's or validator's point of view, see “Credit
Scorecard Validation Metrics” on page 5-48 or “Fairness Metrics in Modelscape” on page 5-26.

Write Test Metrics

The basic building block of Modelscape metrics framework is the
mrm.data.validation.TestMetric class. This class defines the following properties:

• Name: a human-readable name for the test metric.
• ShortName: a concise name for accessing metrics in MetricsHandler objects. This name must

be a valid MATLAB property name.
• Value: the value(s) carried by the metric. The values can be a scalar or a row vector of doubles.
• Keys: an n-by-m array of strings that parametrize the values of the metric. m is the length of

Value. The keys default to an empty string.
• KeyNames: a vector of strings of size of the height of Keys. It defaults to "Key".
• Diagnostics: a free form struct carrying any diagnostics related to the calculation of the metric.

Any subclass of TestMetric must implement a constructor and a compute method to fill in these
values.

For example, the Modelscape statistical parity difference (SPD) metric for bias detection has Name
"Statistical Parity Difference" and ShortName "StatisticalParityDifference". The following table shows
how the Keys and KeyNames are arranged.

Here "SensitiveAttribute" and "Group" are the KeyNames, and the two columns with certain attribute-
group combinations are the Keys. The ShortName appears as the third header, and the third column
of the table carries the Value of the metric.

The base class has the following overridable methods:

 Test Metrics in Modelscape

5-85

• ComparisonValue(this): use this method to change the value against which thresholds are
compared - for example, in statistical hypothesis testing, this should return the p-value associated
to the computed statistic.

• formatResult(this): returns by default a table as shown above for the SPD metric.
• project(this): returns a restriction of a (non-scalar) metric to a subset of keys. Extend the

default implementation in a subclass to cover any diagnostic or auxiliary data carried by the
subclass objects.

Write Metrics With Visualizations

To write test metrics equipped with visualizations, the metrics should inherit from
mrm.data.validation.TestMetricWithVisualization. This class adds an additional
requirement to the TestMetric base class to implement a visualization method with the signature
fig = visualize(this, options). options allows for any name value arguments that may be
useful for the given metric. For example, use a particular sensitive attribute with the
StatisticalParityDifference metric for visualization.

spdFig = visualize(spdMetric, "SensitiveAttribute","ResStatus");

Write Metrics Projecting onto Selected Keys

The visualization above shows the SPD metrics for the ResStatus attribute only. This plot uses the
project method of the TestMetric class that uses selected keys of a metric. For a metric with N
key names, project accepts an array of up to N strings as the Keys argument. The output restricts

5 Model Risk Management with Modelscape

5-86

the metric to those keys where the first key matches the first element of the array, the second key
matches the second element of the array, and so on.

spdResStatus = project(spdMetric, "Keys", "ResStatus")

returns:

On specifying both keys, the results is a scalar metric:

spdTenant = project(spdMetric, "Keys", ["ResStatus", "Tenant"])

The base class implementation of project does not handle diagnostics or other auxiliary data
carried by the subclass. If necessary, implement this in the subclass using the secondary
keySelection output in project.

Write Summarizable Metrics

Summary metrics reveal a different aspect of non-scalar metrics. In the case of the SPD metric,
across all the attribute-group pairs, the "summary" SPD value is the value with the largest deviation
from the completely non-biased value of zero.

spdSummary = summary(spdMetric)

returns:

 Test Metrics in Modelscape

5-87

Summarize a given TestMetric class by inheriting from
mrm.data.validation.TestMetricWithSummaryValue class and implementing the abstract
summary method. This returns a metric of the same type with a singleton Value. The meaning of the
summary value - if it exists- depends on the metric, so there is no default implementation for this
method. However, the protected summaryCore method in TestMetricWithSummaryValue may be
helpful.

Write Test Thresholds

Test metrics are often compared against thresholds to qualitatively assess of the inputs. For example,
a model validator might require that the area under ROC curve should be at least 0.8 for the model to
be deemed acceptable, values under 0.7 are red flags, and values between 0.7 and 0.8 require a
closer look.

Use Modelscape class mrm.data.validation.TestThresholds to implement these thresholds.
Encode the thresholds and classifications into a TestThresholds object.

aurocThresholds = mrm.data.validation.TestThresholds([0.7, 0.8], ["Fail", "Undecided", "Pass"]);

These thresholds and labels govern the output of the status method of TestThresholds. For
example, status(aurocThresholds, 0.72) returns the following.

Comment indicates the interval to which the given input belongs.

Customize Thresholds

Implement thresholding regimes, with different narrative strings as Comments, or different
diagnostics, as subclasses of mrm.data.validation.TestThresholdsBase. Implement the
status method of the class to populate the Comment and Diagnostics properties as required.

5 Model Risk Management with Modelscape

5-88

Write Statistical Hypothesis Tests

In some cases, notably in statistical hypothesis testing, the relevant quantity to compare against test
thresholds is the associated p-value (under some relevant null hypothesis). In these cases, use the
test metric class to override the ComparisonValue method and return the p-value instead of the
Value of the metric. For an example, see the Modelscape implementation of the Augmented Dickey-
Fuller test.

edit mrm.data.validation.timeseries.ADFMetric

Set the thresholds against which to compare the p-values.

adfThreshold = mrm.data.validation.PValueThreshold(0.05)

This TestThresholds object returns status as "Reject" for p-values less than 0.05 and "Accept"
otherwise.

 Test Metrics in Modelscape

5-89

Inventory Browser
Create Modelscape models and add dependencies

Description
Use the Inventory Browser app to create Modelscape models and add dependencies between
models.

Modelscape models are quantitative solutions that apply statistical, economic, or other techniques to
given inputs to produce an output. You can use these outputs to guide pricing or other business
decisions. Modelscape models must be backed by a Git repository and associated with a lifecycle.

Each Modelscape model has multiple model versions. Model versions are committed updates of a
Modelscape model. For example, Probability of Default for Retail Credit in Europe is a Modelscape
model, and its 2015 and 2020 versions are the model versions. While a Modelscape model
corresponds to a Git repository, a model version refers to a Git commit.

Use the model inventory browser app to create new Modelscape models and add dependencies
between models.

5 Model Risk Management with Modelscape

5-90

Open the Inventory Browser App
• Launch the Inventory Browser app from the Modelscape Home page. To host Modelscape for

your organization, contact MathWorks Consulting Services.

Examples

Create New Model

Create a new model by clicking New Model on the menu. Associate the model with a lifecycle. To
create a lifecycle for your model, see the Lifecycle Designer app.

Add the model name and other relevant fields.

Click Create to create the model. The table of models on the left shows the new model.

Launch Model in Browser

Select a row in the Models table and click Browser under the Launch Model dropdown.

If the model has a valid repository URL, the app launches a browser that displays the repository.

Update Model Details

On the left of the app, in the table of models, double-click the row containing the model you want to
update. The app opens the details windows associated with the model.

Update the fields you want to modify.

Click Update to save your changes.

Add Dependencies Between Models

Add dependencies between two or more Modelscape models in Inventory Browser.

Dependencies show the links between Modelscape models. When two Modelscape models are linked
together by a dependency arrow, the model near the upstream link (at the head of the arrow) takes
inputs from the outputs of the model near the downstream link (at the tail of the arrow).

You can also create dependencies between Modelscape models and data, or between models and
Modelscape references. Modelscape references are the files or information that you can associate
with a Modelscape model, model version, or Review document.

Click the Model Dependencies tab to show the existing dependencies between models.

Select upstream and downstream dependencies for the model and click Add. Alternatively, click the
upstream model and hold Ctrl while you click the downstream model.

 Inventory Browser

5-91

https://www.mathworks.com/services/consulting/contact.html

Click Save to save the dependency diagram.

Version History
Introduced in R2023a

See Also
Functions

Topics
“Modelscape Governance” on page 5-4

5 Model Risk Management with Modelscape

5-92

Lifecycle Designer
Create and edit lifecycles in Modelscape

Description
Use the Lifecycle Designer app to create new lifecycles and edit existing lifecycles in Modelscape.

Each Modelscape model must be associated with a lifecycle and have multiple model versions.
Modelscape models are quantitative methods that apply statistical, economic, or other techniques to
given inputs to produce an output. A Modelscape model corresponds to a Git repository. A model
version refers to a Git commit.

A lifecycle represents the steps of a model version from drafting and proposal to retiring and
decommissioning. At any time, each model version is in one specific state of the model lifecycle.
Using this app, you can:

• Create a new model lifecycle
• Open, view, and edit existing lifecycles

Open the Lifecycle Designer App
• Launch the Lifecycle Designer app from the Modelscape Home page. To host Modelscape for

your organization, contact MathWorks Consulting Services.

Examples

Create New Lifecycle

Create a new lifecycle in Lifecycle Designer by selecting the New button on the menu.

 Lifecycle Designer

5-93

https://www.mathworks.com/services/consulting/contact.html

To add a new state to the lifecycle, drag the State button to the corresponding location in the app.
You can rename the state by double-clicking its text box.

To add a new decision to the lifecycle, drag the Task button to the corresponding location in the app.
You can rename the task by double-clicking its text box.

Add connections between the different stages of the lifecycle. To add a connection from stage 1 to
stage 2, click stage 1 and then hold Ctrl while you click stage 2.

To group different stages, drag a swimlane to cover the stages you want to group. You can also click
and drag your mouse to select stages and click Group on the menu.

To ungroup stages in a swimlane, select the swimlane and click Ungroup on the menu.

To save your lifecycle for the first time, click Save As... under the Save dropdown menu. If you
continue editing the lifecycle and want to save it under the same name, click Save under the Save
dropdown menu.

Open and Edit Existing Lifecycle

Open, view, and edit a preexisting lifecycle in Lifecycle Designer.

Open an existing lifecycle by clicking the Open dropdown button on the menu and clicking the
corresponding lifecycle.

Edit the lifecycle by adding or deleting new stages, grouping or ungrouping elements in swimlanes,
and adding or removing connections between stages. When you are finished, save the lifecycle by
clicking Save under the Save dropdown menu.

Version History
Introduced in R2023a

See Also
Functions

Topics
“Modelscape Governance” on page 5-4

5 Model Risk Management with Modelscape

5-94

Review Editor
Validate Modelscape models and submit reviews

Description
Use the Review Editor app to validate and add reviews to Modelscape models.

After a model developer in your organization develops a model, that model can be proposed to be
deployed for production. However, you must validate the model version first. You can validate the
model version using the Review Editor app. Use the app to explore data and analyze the model
version. You can record anomalies or observations related to models, make an appropriate closure
measure, and export the findings to a PDF file. Use the app to perform any of these tasks:

• Open, view, and run models.
• Attach supporting documents.
• Make a review decision.

Open the Review Editor App
• To launch the Review Editor app, open the Modelscape Home page. To host Modelscape for your

organization, contact MathWorks Consulting Services. On the Home page, click Models on the
navigation bar and open the version of the model you want to review. Open the Review Editor
app to review a specific model version by clicking Open Review next to the model version.

 Review Editor

5-95

https://www.mathworks.com/services/consulting/contact.html

Examples

Analyze Model Version

Create a new live script by clicking the New Script button on the menu.

Use the live scripts to explore data and analyze the model versions. For instance, you can perform
what-if analyses, which include changing the model parameters, using different fitting methods, and
observing changes in the model performance.

To perform these analyses, you can use the suite of metrics in Modelscape. For more details, see
“Fairness Metrics in Modelscape” on page 5-26. You can use these metrics to analyze the bias in your
models.

You can also write scripts to implement model validation suites. For an example that shows how to
validate a probability-of-default model, see “Credit Scorecard Validation Metrics” on page 5-48. This
example shows how to use the techniques in the BCBS Working Paper 14.

If your model version uses a programming language other than MATLAB, you can still use the
validation tools from Modelscape. For more information, see “Validation of External Models” on page
5-60.

For an example that shows how to validate credit models using the European Central Bank template,
see “Validation of Credit Models in ECB Templates” on page 5-57.

After you perform your analyses, save your work by clicking New Revision and describing your
changes.

Attach Documents to Review

To attach documents, click Explore on the menu, and upload file attachments using the Upload
button. You can attach recommendations for improvement, evidence of model performance reports
you generate outside the app, detailed model validation documents, and supporting scripts.

By default, the Review Editor attaches files to the model repository. The location to which you save
documents is customizable at an organizational level. See “Extensibility” on page 5-15 for more
details.

Make Review Decision

Finish your review by using the submit button and sign-off your form in the app. You can customize
the Submit Review dropdown and sign-off forms based on the needs of your organization. For more
details, see “Extensibility” on page 5-15.

By default, the Review Editor app provides a full review form and a reduced review form. Use the
reduced review form to approve the model if the changes are trivial. If the changes are not trivial and
have a significant material impact, for example on the value of trade, use the full review form.

5 Model Risk Management with Modelscape

5-96

https://www.bis.org/publ/bcbs_wp14.pdf

You can choose to approve or reject the model version. The next stages depend on the model
lifecycle. If you do not approve the model version, it could be sent back to the developer. If you
approve the model version, it could be sent to production and deployment.

• “File Attachments in Modelscape Review Editor” on page 5-68
• “Customization of Signoff Forms in Review Editor” on page 5-70
• “Fairness Metrics in Modelscape” on page 5-26
• “Credit Scorecard Validation Metrics” on page 5-48
• “Metrics Handlers” on page 5-45
• “Validation of External Models” on page 5-60
• “Validation of Credit Models in ECB Templates” on page 5-57

Version History
Introduced in R2023a

See Also
Topics
“File Attachments in Modelscape Review Editor” on page 5-68
“Customization of Signoff Forms in Review Editor” on page 5-70
“Fairness Metrics in Modelscape” on page 5-26
“Credit Scorecard Validation Metrics” on page 5-48
“Metrics Handlers” on page 5-45
“Validation of External Models” on page 5-60
“Validation of Credit Models in ECB Templates” on page 5-57
“Modelscape Validate” on page 5-9

 Review Editor

5-97

Remove Risk Factors
Remove or include data and record reasons in Modelscape

Description
Use the Modelscape Remove Risk Factors task to remove or include variables from a data table and
record the corresponding reasons. Not all the data in the table is necessarily usable for a statistical
model. For example, randomized user identifiers (IDs) are often irrelevant, legally sensitive data such
as ethnic origin or religious beliefs cannot be used, and some data can be of poor quality. The task
automatically generates MATLAB code for your live script. This task requires the Modelscape for
MATLAB support package.

Using this task, you can:

• Inspect summary statistics and histograms for variables in a data table.
• Remove variables from a data table and record the corresponding reason for exclusion.
• Record reasons for including variables in a data table.
• Export the resulting subtables to MATLAB desktop.

For general information about Live Editor tasks, see “Add Interactive Tasks to a Live Script”.

5 Model Risk Management with Modelscape

5-98

Open the Remove Risk Factors
To add the Threshold Predictors task to a live script in the MATLAB Editor:

• On the Live Editor tab, select Task > Remove Risk Factors.

 Remove Risk Factors

5-99

• In a code block in the script, type a relevant keyword, such as remove. Select Remove Risk
Factors from the suggested command completions.

Examples
• “Remove Risk Factors” on page 5-22

Parameters
Input table — Table of input data to inspect
table of input data containing variables to inspect

Input table must be a MATLAB table or a timetable. The columns of Input table contain the
variables for different data points, for example, Residence Status or Customer ID.

Filtered table — Display table of filtered variables
check box to display subtable with excluded variables

Check the Filtered table check box to display the subtable after excluding the removed variables.
The filtered table contains the columns from the Input table without the variables that you mark for
exclusion.

Preview summary tables — Display tables of summary
check box to display two tables with summaries of variables and progress

Check the Preview summary tables check box to display two tables of additional information about
the feature selection process. The exclusionSummaryPreview table includes all the data of the
input table together with the exclusion flags and comments that you record in the task. The
progressSummaryPreview table shows the total number of variables that are present, excluded,
included, and commented against.

Version History
Introduced in R2021b

Topics
“Remove Risk Factors” on page 5-22

5 Model Risk Management with Modelscape

5-100

Screen Risk Factors
Remove risk factors from data in Modelscape

Description
Use the Modelscape Screen Risk Factors task to automatically remove risk factors from a data table
based on their predictive power relative to a binary response variable. Feature selection is an
important step in the development of a statistical model. Input data can have hundreds or thousands
of variables, and discarding some variables often improves model interpretability, training times, and
other important attributes. The task automatically generates MATLAB code for your live script. This
task requires the Modelscape for MATLAB support package.

Using this task, you can:

• Inspect summary statistics and histograms for variables in a data table.
• Use customizable screening criteria to analyze the predictive power of variables.
• Remove variables from a data table and record the corresponding reason for exclusion.
• Record reasons for including variables in a data table.
• Export the resulting subtables to MATLAB desktop.

For general information about Live Editor tasks, see “Add Interactive Tasks to a Live Script”.

 Screen Risk Factors

5-101

Open the Screen Risk Factors
To add the Threshold Predictors task to a live script in the MATLAB Editor:

• On the Live Editor tab, select Task > Screen Risk Factors.

• In a code block in the script, type a relevant keyword, such as screen. Select Screen Risk
Factors from the suggested command completions.

5 Model Risk Management with Modelscape

5-102

Examples
• “Screen Risk Factors by Custom Criteria” on page 5-30

Parameters
Input table — Table of input data to inspect
table of input data containing variables to inspect

Input table must be a MATLAB table or a timetable. The columns of Input table contain the
variables for different data points, for example, Residence Status or Customer ID.

Response variable — Binary variable in table
binary variable to use for prediction

Response variable must be a binary variable in the input table. The task evaluates the risk factors in
the input data table based on their power to predict this response variable.

Criteria — Screening criteria to apply to input variables
screeningCriteria object

Criteria must be an object containing the criteria against which to screen the input variables. You
can use the predefined criteria or customize your own screening criteria. For more details, see
“Screen Risk Factors by Custom Criteria” on page 5-30.

Filtered table — Display table of filtered variables
check box to display subtable with excluded variables

Check the Filtered table check box to display the subtable after excluding the removed variables.
The filtered table contains the columns from the Input table without the variables that you mark for
exclusion.

Preview summary tables — Display tables of summary
check box to display two tables with summaries of variables and progress

Check the Preview summary tables check box to display two tables of additional information about
the feature selection process. The exclusionSummaryPreview table includes all the data of the
input table together with the exclusion flags and comments that you record in the task. The
progressSummaryPreview table shows the total number of variables that are present, excluded,
included, and commented against.

 Screen Risk Factors

5-103

Version History
Introduced in R2021b

Topics
“Screen Risk Factors by Custom Criteria” on page 5-30

5 Model Risk Management with Modelscape

5-104

checkModel
Check Modelscape model validity

Syntax
result = mrm.execution.checkModel(model,inputData)
result = mrm.execution.checkModel(model,inputData,parameterData)

Description
result = mrm.execution.checkModel(model,inputData) checks the validity of a Modelscape
model by creating several test methods. The function determines whether the Modelscape model has
the right shape for the input of the original model. The function returns the result of the tests in
result. This function requires the Modelscape for MATLAB support package.

result = mrm.execution.checkModel(model,inputData,parameterData) specifies
additional parameters for the model.

Examples

Check Validity of Modelscape implementation of Generalized Linear Model (GLM)

Create a Modelscape model as a subclass of the mrm.execution.Model class.

The model takes the inputs X1, and X2, as well as an optional parameter intercept. The function
computes the output Y as the value of exp(intercept + alpha1*X1 + alpha2*X2).

The Modelscape model must also implement three methods for specifying the inputs and the outputs
of the model: getInputs, getParameters, and getOutputs. For more details, see the “Model
Implementation for Modelscape Deploy” on page 5-74

classdef glmModel < mrm.execution.Model
 % implement simple GLM with two inputs X1 and X2 that computes
 % Y = exp(intercept + alpha1*X1 + alpha2*X2)
 properties
 alpha1 = 1
 alpha2 = 2
 end

 methods

 function parameters = getInputs(~)
 doubleDatatype = struct(...
 "name", "double");
 parameters = struct(...
 "name", {"X1","X2"}, ...
 "dataType", {doubleDatatype, doubleDatatype});
 end

 checkModel

5-105

 function parameters = getParameters(~)
 doubleDatatype = struct(...
 "name", "double");
 parameters = struct(...
 "name", {"intercept"}, ...
 "dataType", {doubleDatatype});
 end

 function parameters = getOutputs(~)
 doubleDatatype = struct(...
 "name", "double");
 parameters = struct(...
 "name", {"Y"}, ...
 "dataType", {doubleDatatype});
 end

 function [outputs,diagnostics,batchDiagnostics] = evaluate(this,inputs,parameters)
 outputs = table(...
 exp(parameters.intercept + this.alpha1*inputs.X1 + this.alpha2*inputs.X2), ...
 'VariableNames', {'Y'}, ...
 'RowNames', inputs.Properties.RowNames);
 rawDiagnostics = [inputs.Properties.RowNames repmat({struct()} numel(inputs.Properties.RowNames) 1)]';
 diagnostics = struct(rawDiagnostics{:});
 batchDiagnostics = struct();
 end

 end
end

Validate the custom model.

result = mrm.execution.checkModel(model, inputData, parameterData);

Input Arguments
model — Modelscape model
subclass of mrm.execution.Model

Modelscape model, specified as a subclass of the mrm.execution.Model class. This model must
also implement three methods for specifying the inputs and the outputs of the model: getInputs,
getParameters, and getOutputs. For more details, see “Model Implementation for Modelscape
Deploy” on page 5-74.

inputData — Original model inputs
table

Original model inputs, specified as a table.
Data Types: table

parameterData — Original model parameters
structure

Original model parameters, specified as a structure.
Data Types: struct

5 Model Risk Management with Modelscape

5-106

Output Arguments
result — Test results
matlab.unittest.TestResult class

Test results, returned as a matlab.unittest.TestResult class. The results include information
describing whether the test pass, fail, or run to completion, as well as the duration of each test.

Version History
Introduced in R2023a

See Also
“Modelscape Deploy” on page 5-13

Topics
“Model Implementation for Modelscape Deploy” on page 5-74

 checkModel

5-107

packageModel
Create Docker image of Modelscape model

Syntax
imageName = mrm.execution.compiler.packageModel(model)
imageName = mrm.execution.compiler.packageModel(model,Name=Value)

Description
imageName = mrm.execution.compiler.packageModel(model) creates a Docker image of the
model model. This function requires the Modelscape for MATLAB support package.

imageName = mrm.execution.compiler.packageModel(model,Name=Value) specifies
options using one or more name-value arguments in addition to the input argument in the previous
syntax.

Examples

Create Docker Image of Modelscape Model

Create a Modelscape model.

Specify the model name and the location and tag of the image.

Create a Docker image of the model, specifying the model name and version.

imageName = mrm.execution.compiler.packageModel(modelInstance,
 Name="weighted-sum",
 Tag="v1");

Input Arguments
model — Modelscape model
subclass of mrm.execution.Model

Modelscape model, specified as a subclass of the mrm.execution.Model class. This model must
also implement three methods for specifying the inputs and the outputs of the model: getInputs,
getParameters, and getOutputs. For more details, see “Model Implementation for Modelscape
Deploy” on page 5-74.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Registry — Registry of Docker Image
'' (default) | character vector | string scalar

5 Model Risk Management with Modelscape

5-108

Registry of the Docker image name, specified as a character vector or string scalar. The function
creates a Docker image with a name in the format Registry/Repository/Name:Tag.
Data Types: char | string

Repository — Repository of Docker Image
'' (default) | character vector | string scalar

Repository of the Docker image name, specified as a character vector or string scalar. The function
creates a Docker image with a name in the format Registry/Repository/Name:Tag.
Data Types: char | string

Name — Name of Docker Image
Modelscape model class name (default) | character vector | string scalar

Name of the Docker image, specified as a character vector or string scalar. The function creates a
Docker image with a name in the format Registry/Repository/Name:Tag.
Data Types: char | string

Tag — Tag of Docker Image
'' (default) | character vector | string scalar

Tag of the Docker image name, specified as a character vector or string scalar. The function creates a
Docker image with a name in the format Registry/Repository/Name:Tag.
Data Types: char | string

Output Arguments
imageName — Name of Docker image
string scalar

Name of the Docker image in the local Docker registry, returned as a string scalar.

Version History
Introduced in R2023a

See Also
“Modelscape Deploy” on page 5-13

Topics
“Model Implementation for Modelscape Deploy” on page 5-74

 packageModel

5-109

Functions

6

Binning Explorer
Bin data and export into a creditscorecard object

Description
The Binning Explorer app enables you to manage binning categories for a creditscorecard
object. Use screenpredictors to pare down a potentially large set of predictors to a subset that is
most predictive of the credit score card response variable. You can then use this subset of predictors
when creating a MATLAB table of data. After creating a table of data in your MATLAB workspace, or
after using creditscorecard to create a creditscorecard object, use the Binning Explorer to:

• Select an automatic binning algorithm with an option to bin missing data. (For more information
on algorithms for automatic binning, see autobinning.)

• Shift bin boundaries.
• Split bins.
• Merge bins.
• Save and export a creditscorecard object.

6 Functions

6-2

Open the Binning Explorer App
• MATLAB toolstrip: On the Apps tab, under Computational Finance, click the app icon.
• MATLAB command prompt:

• Enter binningExplorer to open the Binning Explorer app.
• Enter binningExplorer(data) or binningExplorer(data,Name,Value) to open a table

in the Binning Explorer app by specifying a table (data) as input.
• Enter binningExplorer(sc) to open a creditscorecard object in the Binning Explorer

app by specifying a creditscorecard object (sc) as input.

To access Help for the App, click the Help icon on the toolbar.

Examples
• “Overview of Binning Explorer” on page 3-2
• “Feature Screening with screenpredictors” on page 3-64
• “Common Binning Explorer Tasks” on page 3-4
• “Bin Data to Create Credit Scorecards Using Binning Explorer” on page 3-23
• “Case Study for Credit Scorecard Analysis”
• “Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page 3-36

Version History
Introduced in R2016b

See Also
Functions
screenpredictors | creditscorecard | autobinning

Topics
“Overview of Binning Explorer” on page 3-2
“Feature Screening with screenpredictors” on page 3-64
“Common Binning Explorer Tasks” on page 3-4
“Bin Data to Create Credit Scorecards Using Binning Explorer” on page 3-23
“Case Study for Credit Scorecard Analysis”
“Stress Testing of Consumer Credit Default Probabilities Using Panel Data” on page 3-36
“Overview of Binning Explorer” on page 3-2
“Credit Scorecard Modeling Workflow”

External Websites
Credit Scorecard Modeling Using the Binning Explorer App (6 min 17 sec)

 Binning Explorer

6-3

https://www.mathworks.com/videos/credit-scorecard-modeling-using-the-binning-explorer-app-121587.html

asrf
Asymptotic Single Risk Factor (ASRF) capital

Syntax
[capital,VaR] = asrf(PD,LGD,R)
[capital,VaR] = asrf(___ ,Name,Value)

Description
[capital,VaR] = asrf(PD,LGD,R) computes regulatory capital and value-at-risk using an ASRF
model.

The ASRF model is useful because the Basel II documents propose this model as the standard for
certain types of capital requirements. ASRF is not a Monte-Carlo model, so you can quickly compute
the capital requirements for large credit portfolios. You can use the ASRF model to perform a quick
sensitivity analysis and exploring "what-if" scenarios more easily than rerunning large simulations.

[capital,VaR] = asrf(___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute Necessary Capital Using an ASRF Model

Load saved portfolio data.

load CreditPortfolioData.mat

Compute asset correlation for corporate, sovereign, and bank exposures.

R = 0.12 * (1-exp(-50*PD)) / (1-exp(-50)) +...
 0.24 * (1 - (1-exp(-50*PD)) / (1-exp(-50)));

Compute the asymptotic single risk factor capital. By specifying the name-value pair argument for
EAD, the capital is returned in terms of currency.

capital = asrf(PD,LGD,R,'EAD',EAD);

Apply a maturity adjustment.

b = (0.11852 - 0.05478 * log(PD)).^2;
matAdj = (1 + (Maturity - 2.5) .* b) ./ (1 - 1.5 * b);
adjustedCapital = capital .* matAdj;

portfolioCapital = sum(adjustedCapital)

portfolioCapital = 175.7865

6 Functions

6-4

Input Arguments
PD — Probability of default
numeric vector with elements from 0 to 1

Probability of default, specified as a NumCounterparties-by-1 numeric vector with elements from 0
to 1, representing the default probabilities for the counterparties.
Data Types: double

LGD — Loss given default
numeric vector with elements from 0 to 1

Loss given default, specified as a NumCounterparties-by-1 numeric vector with elements from 0 to
1, representing the fraction of exposure that is lost when a counterparty defaults. LGD is defined as (1
- Recovery). For example, an LGD of 0.6 implies a 40% recovery rate in the event of a default.
Data Types: double

R — Asset correlation
numeric vector

Asset correlation, specified as a NumCounterparties-by-1 numeric vector.

The asset correlations, R, have values from 0 to 1 and specify the correlation between assets in the
same asset class.

Note The correlation between an asset value and the underlying single risk factor is sqrt(R). This
value, sqrt(R), corresponds to the Weights input argument to the creditDefaultCopula and
creditMigrationCopula classes for one-factor models.

Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: capital = asrf(PD,LGD,R,'EAD',EAD)

EAD — Exposure at default
1 (default) | numeric vector

Exposure at default, specified as the comma-separated pair consisting of 'EAD' and a
NumCounterparties-by-1 numeric vector of credit exposures.

If EAD is not specified, the default EAD is 1, meaning that capital and VaR results are reported as a
percentage of the counterparty's exposure. If EAD is specified, then capital and VaR are returned in
units of currency.
Data Types: double

 asrf

6-5

VaRLevel — Value at risk level
0.999 (99.9%) (default) | decimal value between 0 and 1

Value at risk level used when calculating the capital requirement, specified as the comma-separated
pair consisting of 'VaRLevel' and a decimal value between 0 and 1.
Data Types: double

Output Arguments
capital — Capital for each element in portfolio
vector

Capital for each element in the portfolio, returned as a NumCounterparties-by-1 vector. If the
optional input EAD is specified, then capital is in units of currency. Otherwise, capital is reported
as a percentage of each exposure.

VaR — Value-at-risk for each exposure
vector

Value-at-risk for each exposure, returned as a NumCounterparties-by-1 vector. If the optional input
EAD is specified, then VaR is in units of currency. Otherwise, VaR is reported as a percentage of each
exposure.

More About
ASRF Model Capital

In the ASRF model, capital is defined as the loss in excess of the expected loss (EL) at a high
confidence level.

The formula for capital is

capital = VaR - EL

Algorithms
The capital requirement formula for exposures is defined as

VaR = EAD * LGD * Φ Φ−1(PD)− RΦ−1(1− VaRLevel)
1− R

capital = VaR− EAD * LGD * PD

where

ϕ is the normal CDF.

ϕ-1 is the inverse normal CDF.

R is asset correlation.

EAD is exposure at default.

PD is probability of default.

6 Functions

6-6

LGD is loss given default.

Version History
Introduced in R2017b

References
[1] Basel Committee on Banking Supervision. "International Convergence of Capital Measurement

and Capital Standards." June, 2006 (https://www.bis.org/publ/bcbs128.pdf).

[2] Basel Committee on Banking Supervision. "An Explanatory Note on the Basel II IRB Risk Weight
Functions." July, 2005 (https://www.bis.org/bcbs/irbriskweight.pdf).

[3] Gordy, M.B. "A Risk-Factor Model Foundation for Ratings-Based Bank Capital Rules." Journal of
Financial Intermediation. Vol. 12, pp. 199-232, 2003.

See Also
creditDefaultCopula | creditMigrationCopula

Topics
“Calculating Regulatory Capital with the ASRF Model” on page 4-59

 asrf

6-7

https://www.bis.org/publ/bcbs128.pdf
https://www.bis.org/bcbs/irbriskweight.pdf

bin
Binomial test for value-at-risk (VaR) backtesting

Syntax
TestResults = bin(vbt)
TestResults = bin(vbt,Name,Value)

Description
TestResults = bin(vbt) generates the binomial test results for value-at-risk (VaR) backtesting.

TestResults = bin(vbt,Name,Value) adds an optional name-value pair argument for
TestLevel.

Examples

Generate Bin Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9500

Generate the bin test results.

TestResults = bin(vbt)

TestResults=1×9 table
 PortfolioID VaRID VaRLevel Bin ZScoreBin PValueBin Observations Failures TestLevel
 ___________ _____ ________ ______ _________ _________ ____________ ________ _________

 "Portfolio" "VaR" 0.95 accept 0.68905 0.49079 1043 57 0.95

Run Bin Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.

6 Functions

6-8

load VaRBacktestData
 vbt = varbacktest(EquityIndex,...
 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
 'PortfolioID','Equity',...
 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x6 double]
 PortfolioID: "Equity"
 VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95" "EWMA99"]
 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the bin test results using the TestLevel optional argument.

TestResults = bin(vbt,'TestLevel',0.90)

TestResults=6×9 table
 PortfolioID VaRID VaRLevel Bin ZScoreBin PValueBin Observations Failures TestLevel
 ___________ ______________ ________ ______ _________ _________ ____________ ________ _________

 "Equity" "Normal95" 0.95 accept 0.68905 0.49079 1043 57 0.9
 "Equity" "Normal99" 0.99 reject 2.0446 0.040896 1043 17 0.9
 "Equity" "Historical95" 0.95 accept 0.9732 0.33045 1043 59 0.9
 "Equity" "Historical99" 0.99 accept 0.48858 0.62514 1043 12 0.9
 "Equity" "EWMA95" 0.95 accept 0.9732 0.33045 1043 59 0.9
 "Equity" "EWMA99" 0.99 reject 3.6006 0.0003175 1043 22 0.9

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData
properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more
information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = bin(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric between 0 and 1.

 bin

6-9

Data Types: double

Output Arguments
TestResults — Bin test results
table

Bin test results, returned as a table where the rows correspond to all combinations of portfolio ID,
VaR ID, and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for corresponding VaR data column
• 'Bin' — Categorical array with categories accept and reject that indicate the result of the

bin test
• 'ZScoreBin' — Z-score of the number of failures
• 'PValueBin' — P-value of the bin test
• 'Observations' — Number of observations
• 'Failures' — Number of failures.
• 'TestLevel' — Test confidence level.

Note For bin test results, the terms accept and reject are used for convenience, technically a
bin test does not accept a model. Rather, the test fails to reject it.

More About
Binomial Test (Bin)

The bin function performs a binomial test to assess if the number of failures is consistent with the
VaR confidence level.

The binomial test is based on a normal approximation to the binomial distribution.

Algorithms
The result of the binomial test is based on a normal approximation to a binomial distribution.
Suppose:

• N is the number of observations.
• p = 1 - VaRLevel is the probability of observing a failure if the model is correct.
• x is the number of failures.

If the failures are independent, then the number of failures is distributed as a binomial distribution
with parameters N and p. The expected number of failures is N*p, and the standard deviation of the
number of failures is

Np(1− p)

6 Functions

6-10

The test statistic for the bin test is the z-score, defined as:

ZScoreBin = (x− Np)
Np(1− p)

The z-score approximately follows a standard normal distribution. This approximation is not reliable
for small values of N or small values of p, but for typical uses in VaR backtesting analyses (N = 250 or
much larger,p in the range 1 -10%) the approximation gives results in line with other tests.

The tail probability of the bin test is the probability that a standard normal distribution exceeds the
absolute value of the z-score

TailProbability = 1− F(ZScoreBin)

where F is the standard normal cumulative distribution. When too few failures are observed, relative
to the expected failures, PValueBin is (approximately) the probability of observing that many failures
or fewer. For too many failures, this is (approximately) the probability of observing that many failures
or more.

The p-value of the bin test is defined as two times the tail probability. This is because the binomial
test is a two-sided test. If alpha is defined as 1 minus the test confidence level, the test rejects if the
tail probability is less than one half of alpha, or equivalently if

PValueBin = 2 ∗ TailProbability < alpha

Version History
Introduced in R2016b

References
[1] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

See Also
varbacktest | tl | pof | tuff | cc | cci | tbf | tbfi | summary | runtests

Topics
“VaR Backtesting Workflow” on page 2-6
“Value-at-Risk Estimation and Backtesting” on page 2-10
“Overview of VaR Backtesting” on page 2-2
“Binomial Test” on page 2-2
“Comparison of ES Backtesting Methods” on page 2-26

 bin

6-11

cc
Conditional coverage mixed test for value-at-risk (VaR) backtesting

Syntax
TestResults = cc(vbt)
TestResults = cc(vbt,Name,Value)

Description
TestResults = cc(vbt) generates the conditional coverage (CC) mixed test for value-at-risk (VaR)
backtesting.

TestResults = cc(vbt,Name,Value) adds an optional name-value pair argument for
TestLevel.

Examples

Generate CC Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9500

Generate the cc test results.

TestResults = cc(vbt)

TestResults=1×19 table
 PortfolioID VaRID VaRLevel CC LRatioCC PValueCC POF LRatioPOF PValuePOF CCI LRatioCCI PValueCCI Observations Failures N00 N10 N01 N11 TestLevel
 ___________ _____ ________ ______ ________ ________ ______ _________ _________ ______ _________ _________ ____________ ________ ___ ___ ___ ___ _________

 "Portfolio" "VaR" 0.95 accept 0.72013 0.69763 accept 0.46147 0.49694 accept 0.25866 0.61104 1043 57 932 53 53 4 0.95

Run the CC Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.

6 Functions

6-12

load VaRBacktestData
 vbt = varbacktest(EquityIndex,...
 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
 'PortfolioID','Equity',...
 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x6 double]
 PortfolioID: "Equity"
 VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95" "EWMA99"]
 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the cc test results using the TestLevel optional input.

TestResults = cc(vbt,'TestLevel',0.90)

TestResults=6×19 table
 PortfolioID VaRID VaRLevel CC LRatioCC PValueCC POF LRatioPOF PValuePOF CCI LRatioCCI PValueCCI Observations Failures N00 N10 N01 N11 TestLevel
 ___________ ______________ ________ ______ ________ _________ ______ _________ _________ ______ _________ _________ ____________ ________ ____ ___ ___ ___ _________

 "Equity" "Normal95" 0.95 accept 0.72013 0.69763 accept 0.46147 0.49694 accept 0.25866 0.61104 1043 57 932 53 53 4 0.9
 "Equity" "Normal99" 0.99 accept 4.0757 0.13031 reject 3.5118 0.060933 accept 0.56393 0.45268 1043 17 1008 17 17 0 0.9
 "Equity" "Historical95" 0.95 accept 1.0487 0.59194 accept 0.91023 0.34005 accept 0.13847 0.70981 1043 59 928 55 55 4 0.9
 "Equity" "Historical99" 0.99 accept 0.5073 0.77597 accept 0.22768 0.63325 accept 0.27962 0.59695 1043 12 1018 12 12 0 0.9
 "Equity" "EWMA95" 0.95 accept 0.95051 0.62173 accept 0.91023 0.34005 accept 0.040277 0.84094 1043 59 927 56 56 3 0.9
 "Equity" "EWMA99" 0.99 reject 10.779 0.0045645 reject 9.8298 0.0017171 accept 0.94909 0.32995 1043 22 998 22 22 0 0.9

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData
properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more
information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = cc(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric between 0 and 1.

 cc

6-13

Data Types: double

Output Arguments
TestResults — cc test results
table

cc test results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR
ID, and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for corresponding VaR data column
• 'CC' — Categorical array with the categories accept and reject that indicate the result of the

cc test
• 'LRatioCC' — Likelihood ratio of the cc test
• 'PValueCC' — P-value of the cc test
• 'POF' — Categorical array with the categories accept and reject that indicate the result of the

pof test
• 'LRatioPOF' — Likelihood ratio of the pof test
• 'PValuePOF' — P-value of the pof test
• 'CCI' — Categorical array with categories 'accept' and 'reject' that indicate the result of

the cci test
• 'LRatioCCI' — Likelihood ratio of the cci test
• 'PValueCCI' — P-value of the cci test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'N00' — Number of periods with no failures followed by a period with no failures
• 'N10' — Number of periods with failures followed by a period with no failures
• 'N01' — Number of periods with no failures followed by a period with failures
• 'N11' — Number of periods with failures followed by a period with failures
• 'TestLevel' — Test confidence level

Note For cc test results, the terms accept and reject are used for convenience, technically a cc
test does not accept a model. Rather, the test fails to reject it.

More About
Conditional Coverage (CC) Mixed Test

The cc function performs the conditional coverage mixed test, also known as Christoffersen's interval
forecasts method.

'Mixed' means that it combines a frequency and an independence test. The frequency test is Kupiec's
proportion of failures test, implemented by the pof function. The independence test is the conditional

6 Functions

6-14

coverage independence test implemented by the cci function. This is a likelihood ratio test proposed
by Christoffersen (1998) to assess the independence of failures on consecutive time periods. The CC
test combines the POF test and the CCI test.

Algorithms
The likelihood ratio (test statistic) of the cc test is the sum of the likelihood ratios of the pof and cci
tests,

LRatioCC = LRatioPOF + LRatioCCI

which is asymptotically distributed as a chi-square distribution with 2 degrees of freedom. See the
Algorithms section in pof and cci for the definition of their likelihood ratios.

The p-value of the cc test is the probability that a chi-square distribution with 2 degrees of freedom
exceeds the likelihood ratio LRatioCC,

PValueCC = 1− F(LRatioCC)

where F is the cumulative distribution of a chi-square variable with 2 degrees of freedom.

The result of the cc test is to accept if

F(LRatioCC) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with 2 degrees of
freedom.

Version History
Introduced in R2016b

References
[1] Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol. 39, 1998,

pp. 841 – 862.

See Also
varbacktest | tl | tuff | bin | pof | cci | tbf | tbfi | summary | runtests

Topics
“VaR Backtesting Workflow” on page 2-6
“Value-at-Risk Estimation and Backtesting” on page 2-10
“Overview of VaR Backtesting” on page 2-2
“Christoffersen’s Interval Forecast Tests” on page 2-4
“Comparison of ES Backtesting Methods” on page 2-26

 cc

6-15

cci
Conditional coverage independence test for value-at-risk (VaR) backtesting

Syntax
TestResults = cci(vbt)
TestResults = cci(vbt,Name,Value)

Description
TestResults = cci(vbt) generates the conditional coverage independence (CCI) for value-at-risk
(VaR) backtesting.

TestResults = cci(vbt,Name,Value) adds an optional name-value pair argument for
TestLevel.

Examples

Generate CCI Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9500

Generate the cci test results.

TestResults = cci(vbt)

TestResults=1×13 table
 PortfolioID VaRID VaRLevel CCI LRatioCCI PValueCCI Observations Failures N00 N10 N01 N11 TestLevel
 ___________ _____ ________ ______ _________ _________ ____________ ________ ___ ___ ___ ___ _________

 "Portfolio" "VaR" 0.95 accept 0.25866 0.61104 1043 57 932 53 53 4 0.95

Run the CCI Test for VaR Backtests for Multiple VaR's at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.

6 Functions

6-16

load VaRBacktestData
 vbt = varbacktest(EquityIndex,...
 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
 'PortfolioID','Equity',...
 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x6 double]
 PortfolioID: "Equity"
 VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95" "EWMA99"]
 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the cci test results using the TestLevel optional input.

TestResults = cci(vbt,'TestLevel',0.90)

TestResults=6×13 table
 PortfolioID VaRID VaRLevel CCI LRatioCCI PValueCCI Observations Failures N00 N10 N01 N11 TestLevel
 ___________ ______________ ________ ______ _________ _________ ____________ ________ ____ ___ ___ ___ _________

 "Equity" "Normal95" 0.95 accept 0.25866 0.61104 1043 57 932 53 53 4 0.9
 "Equity" "Normal99" 0.99 accept 0.56393 0.45268 1043 17 1008 17 17 0 0.9
 "Equity" "Historical95" 0.95 accept 0.13847 0.70981 1043 59 928 55 55 4 0.9
 "Equity" "Historical99" 0.99 accept 0.27962 0.59695 1043 12 1018 12 12 0 0.9
 "Equity" "EWMA95" 0.95 accept 0.040277 0.84094 1043 59 927 56 56 3 0.9
 "Equity" "EWMA99" 0.99 accept 0.94909 0.32995 1043 22 998 22 22 0 0.9

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData
properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more
information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = cci(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric between 0 and 1.

 cci

6-17

Data Types: double

Output Arguments
TestResults — cci test results
table

cci test results, returned as a table where the rows correspond to all combinations of portfolio ID,
VaR ID, and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'CCI' — Categorical array with the categories accept and reject that indicate the result of the

cci test
• 'LRatioCCI' — Likelihood ratio of the cci test
• 'PValueCCI' — P-value of the cci test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'N00' — Number of periods with no failures followed by a period with no failures
• 'N10' — Number of periods with failures followed by a period with no failures
• 'N01' — Number of periods with no failures followed by a period with failures
• 'N11' — Number of periods with failures followed by a period with failures
• 'TestLevel' — Test confidence level

Note For cci test results, the terms accept and reject are used for convenience, technically a
cci test does not accept a model. Rather, the test fails to reject it.

More About
Conditional Coverage Independence (CCI) Test

The cci function performs the conditional coverage independence test.

This is a likelihood ratio test proposed by Christoffersen (1998) to assess the independence of failures
on consecutive time periods. For the conditional coverage mixed test, see the cc function.

Algorithms
To define the likelihood ratio (test statistic) of the cc test, first define the following quantities:

• 'N00' — Number of periods with no failures followed by a period with no failures
• 'N10' — Number of periods with failures followed by a period with no failures
• 'N01' — Number of periods with no failures followed by a period with failures
• 'N11' — Number of periods with failures followed by a period with failures

6 Functions

6-18

Then define the following conditional probability estimates:

• p01 = Probability of having a failure on period t, given that there was no failure on period t - 1

p01 = N01
(N00 + N01)

• p11 = Probability of having a failure on period t, given that there was a failure on period t - 1

p11 = N11
(N10 + N11)

Define also the unconditional probability estimate of observing a failure:

pUC = Probability of having a failure on period t

pUC = (N01 + N11)
(N00 + N01 + N10 + N11)

The likelihood ratio of the CCI test is then given by

LRatioCCI = − 2log 1− pUC N00 + N10pUCN01 + N11

1− p01 N00p01N01 1− p11 N10p11N11

= − 2((N00+N10)log(1− pUC) + (N01+N11)log(pUC)−N00 log(1− p01)−N01 log(p01)−N10 log(1− p11)−N11 log(p11))

which is asymptotically distributed as a chi-square distribution with 1 degree of freedom.

The p-value of the CCI test is the probability that a chi-square distribution with 1 degree of freedom
exceeds the likelihood ratio LRatioCCI,

PValueCCI = 1 ‐ F(LRatioCCI)

where F is the cumulative distribution of a chi-square variable with 1 degree of freedom.

The result of the test is to accept if

F(LRatioCCI) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with 1 degree of
freedom.

If one or more of the quantities N00, N10, N01, or N11 are zero, the likelihood ratio is handled
differently. The likelihood ratio as defined above is composed of three likelihood functions of the form

L = (1− p)n1 × pn2

For example, in the numerator of the likelihood ratio, there is a likelihood function of the form L with
p = pUC, n1 = N00 + N10, and n2 = N01 + N11. There are two such likelihood functions in the
denominator of the likelihood ratio.

It can be shown that whenever n1 = 0 or n2 = 0, the likelihood function L is replaced by the constant
value 1. Therefore, whenever N00, N10, N01, or N11 is zero, replace the corresponding likelihood
functions by 1 in the likelihood ratio, and the likelihood ratio is well-defined.

 cci

6-19

Version History
Introduced in R2016b

References
[1] Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol. 39, 1998,

pp. 841 – 862.

See Also
varbacktest | tl | tuff | bin | pof | cc | tbf | tbfi | summary | runtests

Topics
“VaR Backtesting Workflow” on page 2-6
“Value-at-Risk Estimation and Backtesting” on page 2-10
“Overview of VaR Backtesting” on page 2-2
“Christoffersen’s Interval Forecast Tests” on page 2-4
“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-20

cdfSummary
Compute CDFs to ultimate claims for developmentTriangle object

Syntax
selectedLinkRatiosTable = cdfSummary(developmentTriangle)

Description
selectedLinkRatiosTable = cdfSummary(developmentTriangle) calculates the cumulative
development factors (CDFs) and the percentage of total claims.

Examples

Calculate CDFs and Percentage of Total Claims for Development Triangle

Calculate the CDFs and the percentage of total claims for a developmentTriangle object using
simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data.

dT = developmentTriangle(data)

dT =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

 cdfSummary

6-21

Use linkRatioAverages function to calculate the different link ratio averages.

LinkRatioAveragesTable = linkRatioAverages(dT)

LinkRatioAveragesTable=8×9 table
 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120
 ______ ______ ______ ______ ______ ______ _____ ______ _______

 Simple Average 1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.003 1.002 1.001
 Simple Average - Latest 5 1.172 1.056 1.0268 1.0108 1.0054 1.0038 1.003 1.002 1.001
 Simple Average - Latest 3 1.17 1.0533 1.027 1.0117 1.0057 1.0037 1.003 1.002 1.001
 Medial Average - Latest 5x1 1.1733 1.0567 1.0267 1.0103 1.005 1.004 1.003 1.002 1.001
 Volume-weighted Average 1.1766 1.0563 1.025 1.0107 1.0054 1.0038 1.003 1.002 1.001
 Volume-weighted Average - Latest 5 1.172 1.056 1.0268 1.0108 1.0054 1.0038 1.003 1.002 1.001
 Volume-weighted Average - Latest 3 1.1701 1.0534 1.027 1.0117 1.0057 1.0037 1.003 1.002 1.001
 Geometric Average - Latest 4 1.17 1.055 1.0267 1.011 1.0055 1.0037 1.003 1.002 1.001

Use the cdfSummary function to calculate CDFs and the percentage of total claims and return a table
with the selected link ratios, CDFs, and percent of total claims.

dT.SelectedLinkRatio = [1.1755, 1.0577, 1.0273, 1.0104, 1.0044, 1.0026, 1.0016, 1.0006, 1.0004];
selectedLinkRatiosTable = cdfSummary(dT)

selectedLinkRatiosTable=3×10 table
 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 Ultimate
 _______ _______ _______ _______ _______ _______ ______ ______ _______ ________

 Selected 1.1755 1.0577 1.0273 1.0104 1.0044 1.0026 1.0016 1.0006 1.0004 1
 CDF to Ultimate 1.303 1.1084 1.048 1.0201 1.0096 1.0052 1.0026 1.001 1.0004 1
 Percent of Total Claims 0.76747 0.90216 0.95422 0.98027 0.99046 0.99482 0.9974 0.999 0.9996 1

Input Arguments
developmentTriangle — Development triangle
developmentTriangle object

Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

Output Arguments
selectedLinkRatiosTable — CDF to ultimate claims
table

CDF to ultimate claims, returned as a table. The table shows the selected ratios, CDFs, and
percentage of total claims.

6 Functions

6-22

More About
Cumulative Development Factors

Calculating the cumulative development factors (CDFs) of a random variable is a method to describe
the distribution of random variables.

The CDF of a real-valued random variable X, or just distribution function of X, evaluated at x, is the
probability that X takes a value less than or equal to x.

Ultimate Claims

Ultimate claims are the total sum the insured, its insurer(s), and/or its reinsurer(s) pay for a fully
developed loss. A fully developed loss is the paid losses plus outstanding and reported losses and
incurred-but-not-reported (IBNR) losses.

Version History
Introduced in R2020b

See Also
view | linkRatios | linkRatioAverages | ultimateClaims | fullTriangle |
linkRatiosPlot | claimsPlot

Topics
“Mean Square Error of Prediction for Estimated Ultimate Claims” on page 4-161
“Bootstrap Using Chain Ladder Method” on page 4-168
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 cdfSummary

6-23

claimsPlot
Plot claims for development triangle

Syntax
claimsPlot(dT)
claimsPlot(dT,Name,Value)
h = claimsPlot(ax, ___)

Description
claimsPlot(dT) plots one line for each origin period for all development periods.

claimsPlot(dT,Name,Value) specifies options using one or more name-value pair arguments in
addition to the input arguments in the previous syntax.

h = claimsPlot(ax, ___) additionally returns the figure handle h. Use this syntax with any of the
input arguments in previous syntaxes.

Examples

Generate Line Plot of Cumulative Claims for Each Development Period

Generate a line plot of cumulative claims for each of the development periods using a
developmentTriangle object containing simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data.

dT = developmentTriangle(data)

dT =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}

6 Functions

6-24

 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

Use the claimsPlot function to generate a line plot of cumulative claims.

claimsPlot(dT)

Input Arguments
dT — Development triangle
developmentTriangle object

Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

ax — Valid axis object
object

 claimsPlot

6-25

(Optional) Valid axis object, specified as an ax object created using axes. The function creates the
plot on the axes specified by the optional ax argument instead of on the current axes (gca). The
optional argument ax must precede any of the input argument combinations.
Data Types: object

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: claimsPlot(dT,'Cumulative',false)

Cumulative — Cumulative claims
true (default) | logical with value true or false

Cumulative claims, specified as the comma-separated pair consisting of 'Cumulative' and a logical
value.
Data Types: logical

Output Arguments
h — Figure handle
handle object

Figure handle for line objects, returned as a handle object.

Version History
Introduced in R2021a

See Also
view | linkRatios | linkRatioAverages | cdfSummary | ultimateClaims | fullTriangle |
linkRatiosPlot

Topics
“Mean Square Error of Prediction for Estimated Ultimate Claims” on page 4-161
“Bootstrap Using Chain Ladder Method” on page 4-168
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

6 Functions

6-26

concentrationIndices
Compute ad-hoc concentration indices for a portfolio

Syntax
ci = concentrationIndices(PortfolioData)
[ci,Lorenz] = concentrationIndices(___ ,Name,Value)

Description
ci = concentrationIndices(PortfolioData) computes multiple ad-hoc concentration indices
for a given portfolio. The concentrationIndices function supports the following indices:

• CR — Concentration ratio
• Deciles — Deciles of the portfolio weights distribution
• Gini — Gini coefficient
• HH — Herfindahl-Hirschman index
• HK — Hannah-Kay index
• HT — Hall-Tideman index
• TE — Theil entropy index

[ci,Lorenz] = concentrationIndices(___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute Concentration Indices for a Credit Portfolio

Compute the concentration indices for a credit portfolio using a portfolio that is described by its
exposures. The exposures at default are stored in the EAD array.

Load the CreditPortfolioData.mat file that contains EAD used for the PortfolioData input
argument.

load CreditPortfolioData.mat
ci = concentrationIndices(EAD)

ci=1×8 table
 ID CR Deciles Gini HH HK HT TE
 ___________ ________ ___________ _______ ________ ________ ________ _______

 "Portfolio" 0.058745 1x11 double 0.55751 0.023919 0.013363 0.022599 0.53485

 concentrationIndices

6-27

Compute Multiple Concentration Ratios

Use the CRIndex optional input to obtain the concentration ratios for the tenth and twentieth largest
exposures. In the output, the CR column becomes a vector, with one value for each requested index.

Load the CreditPortfolioData.mat file that contains the EAD used for the PortfolioData input
argument.

load CreditPortfolioData.mat
ci = concentrationIndices(EAD,'CRIndex',[10 20])

ci=1×8 table
 ID CR Deciles Gini HH HK HT TE
 ___________ __________________ ___________ _______ ________ ________ ________ _______

 "Portfolio" 0.38942 0.58836 1x11 double 0.55751 0.023919 0.013363 0.022599 0.53485

Modify the Alpha Parameter of the Hannah-Kay Index

Use the HKAlpha optional input to set the alpha parameter for the Hannah-Kay (HK) index. Use a
vector of alpha values to compute the HK index for multiple parameter values. In the output, the HK
column becomes a vector, with one value for each requested alpha value.

Load the CreditPortfolioData.mat file that contains EAD used for the PortfolioData input
argument.

load CreditPortfolioData.mat
ci = concentrationIndices(EAD,'HKAlpha',[0.5 3])

ci=1×8 table
 ID CR Deciles Gini HH HK HT TE
 ___________ ________ ___________ _______ ________ ____________________ ________ _______

 "Portfolio" 0.058745 1x11 double 0.55751 0.023919 0.013363 0.029344 0.022599 0.53485

Create an ID to Compare Concentration Index Results

Compare the concentration measures using an ID optional argument for a fully diversified portfolio
and a fully concentrated portfolio.

ciD = concentrationIndices([1 1 1 1 1],'ID','Fully diversified');
ciC = concentrationIndices([0 0 0 0 5],'ID','Fully concentrated');
disp([ciD;ciC])

 ID CR Deciles Gini HH HK HT TE
 ____________________ ___ ___________ ____ ___ ___ ___ ___________

 "Fully diversified" 0.2 1x11 double 0 0.2 0.2 0.2 -2.2204e-16
 "Fully concentrated" 1 1x11 double 0.8 1 1 1 1.6094

6 Functions

6-28

Apply Scaling to Concentration Indices

Use the ScaleIndices optional input to scale the index values of Gini, HH, HK, HT, and TE. The
range of ScaleIndices is from 0 through 1, independent of the number of loans.

ciDU = concentrationIndices([1 1 1 1 1],'ID','Diversified, unscaled');
ciDS = concentrationIndices([1 1 1 1 1],'ID','Diversified, scaled','ScaleIndices',true);
ciCU = concentrationIndices([0 0 0 0 5],'ID','Concentrated, unscaled');
ciCS = concentrationIndices([0 0 0 0 5],'ID','Concentrated, scaled','ScaleIndices',true);
disp([ciDU;ciDS;ciCU;ciCS])

 ID CR Deciles Gini HH HK HT TE
 ________________________ ___ ___________ ____ __________ ___________ ___________ ___________

 "Diversified, unscaled" 0.2 1x11 double 0 0.2 0.2 0.2 -2.2204e-16
 "Diversified, scaled" 0.2 1x11 double 0 3.4694e-17 -3.4694e-17 -6.9389e-17 -1.3796e-16
 "Concentrated, unscaled" 1 1x11 double 0.8 1 1 1 1.6094
 "Concentrated, scaled" 1 1x11 double 1 1 1 1 1

Plot an Approximate Lorenz Curve Using Deciles Information

Load the CreditPortfolioData.mat file that contains EAD used for the PortfolioData input
argument.

load CreditPortfolioData.mat
P = EAD;
ci = concentrationIndices(P);

Visualize an approximate Lorenz curve using the deciles information and also the concentration at
the decile level.

Proportion = 0:0.1:1;

figure;
subplot(2,1,1)
area(Proportion',[ci.Deciles' Proportion'-ci.Deciles'])
axis([0 1 0 1])
title('Lorenz Curve (By Deciles)')
xlabel('Proportion of Loans')
ylabel('Proportion of Value')

subplot(2,1,2)
bar(diff(ci.Deciles))
axis([0 11 0 1])
title('Concentration by Decile')
xlabel('Decile')
ylabel('Weight')

 concentrationIndices

6-29

Plot an Exact Lorenz Curve Using the Optional Lorenz Output

Load the CreditPortfolioData.mat file that contains the EAD used for the PortfolioData input
argument. The optional output Lorenz contains the data for the exact Lorenz curve.

load CreditPortfolioData.mat
P = EAD;
[~,Lorenz] = concentrationIndices(P);

figure;
area(Lorenz.ProportionLoans,[Lorenz.ProportionValue Lorenz.ProportionLoans-Lorenz.ProportionValue])
axis([0 1 0 1])
title('Lorenz Curve')
xlabel('Proportion of Loans')
ylabel('Proportion of Value')

6 Functions

6-30

Input Arguments
PortfolioData — Nonnegative portfolio positions in N assets
numeric array

Nonnegative portfolio positions in N assets, specified as an N-by-1 (or 1-by-N) numeric array.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [ci,Lorenz] = concentrationIndices(PortfolioData,'CRIndex',100)

CRIndex — Index of interest for concentration ratio
1 (default) | nonnegative integer

Index of interest for the concentration ratio, specified as the comma-separated pair consisting of
'CRIndex' and an integer value between 1 and N, where N is the number of assets in the portfolio.
The default value for CRIndex is 1 (the default CR is the largest portfolio weight). If CRIndex is a
vector, the concentration ratio is computed for the index value in the given order.

 concentrationIndices

6-31

Data Types: double

HKAlpha — Alpha parameter for Hannah-Kay index
0.5 (default) | nonnegative numeric

Alpha parameter for Hannah-Kay index, specified as the comma-separated pair consisting of
'HKAlpha', and a positive number that cannot be equal to 1. If HKAlpha is a vector, the Hannah-Kay
index is computed for each alpha value in the given order.
Data Types: double

ID — User-defined ID for portfolio
"Portfolio" (default) | character vector | string object

User-defined ID for the portfolio, specified as the comma-separated pair consisting of 'ID' and a
scalar string object or character vector.
Data Types: char | string

ScaleIndices — Flag to indicate whether to scale concentration indices
false (no scaling) (default) | logical

Flag to indicate whether to scale concentration indices, specified as the comma-separated pair
consisting of 'ScaleIndices' and a logical scalar. When the ScaleIndices is set to true, the
value of the Gini, HH, HK, HT, and TE indices are scaled so that all these indices have a minimum
value of 0 (full diversification) and a maximum value of 1 (full concentration).

Note Scaling is applied only for portfolios with at least two assets. Otherwise, the scaling capability
is undefined.

Data Types: logical

Output Arguments
ci — Concentration indices information for given portfolio
table

Concentration indices information for the given portfolio, returned as a table with the following
columns:

• ID — Portfolio ID string. Use the ID name-value pair argument to set it.
• CR — Concentration ratio. By default, the concentration ratio for the first index (largest portfolio

weight) is reported. Use the CRIndex name-value pair argument to choose a different index. If
CRIndex is a vector of length m, then CR is a row vector of size 1-by-m. For more information, see
“More About” on page 6-33.

• Deciles — Deciles of the portfolio weights distribution is a 1-by-11 row vector containing the
values 0, the nine decile cut points, and 1. For more information, see “More About” on page 6-33.

• Gini — Gini coefficient. For more information, see “More About” on page 6-33.
• HH — Herfindahl-Hirschman index. For more information, see “More About” on page 6-33.
• HK — Hannah-Kay index (reciprocal). By default, the 'alpha' parameter is set to 0.5. Use the

HKAlpha name-value pair argument to choose a different value. If HKAlpha is a vector of lengthm,
then HK is a row vector of size 1-by-m. For more information, see “More About” on page 6-33.

6 Functions

6-32

• HT — Hall-Tideman index. For more information, see “More About” on page 6-33.
• TE — Theil entropy index. For more information, see “More About” on page 6-33.

Lorenz — Lorenz curve data
table

Lorenz curve data, returned as a table with the following columns:

• ProportionLoans — (N+1)-by-1 numeric array containing the values 0, 1/N, 2/N, ... N/N = 1. This
is the data for the horizontal axis of the Lorenz curve.

• ProportionValue — (N+1)-by-1 numeric array containing the proportion of portfolio value
accumulated up to the corresponding proportion of loans in the ProportionLoans column. This
is the data for the vertical axis of the Lorenz curve.

More About
Portfolio Notation

All the concentration indices for concentrationIndices assume a credit portfolio with an
exposure to counterparties.

Let P be a given credit portfolio with exposure to N counterparties. Let x1,...xN represent the
exposures to each counterparty, with xi > = 0 for all i = 1,...N. And, let x be the total portfolio
exposure

x = ∑
i = 1

N
xi

Assume that x > 0, that is, at least one exposure is nonzero. The portfolio weights are given by
w1,...,wN with

wi =
xi
x

The weights are sorted in non-decreasing order. The following standard notation uses brackets
around the indices to denote ordered values.

w[1] ≤ w[2] ≤ ... ≤ w[N]

Concentration Ratio

The concentration ratio (CR) answers the question “what proportion of the total exposure is
accumulated in the largest k loans?”

The formula for the concentration ratio (CR) is:

CRk = ∑
i = 1

k
w[N − i + 1]

For example, if k=1, CR1 is a sum of the one term w[N-1+1] = w[N], that is, it is the largest weight. For
any k, the CR index takes values from 0 through 1.

 concentrationIndices

6-33

Lorenz Curve

The Lorenz curve is a visualization of the cumulative proportion of portfolio value (or cumulative
portfolio weights) against the cumulative proportion of loans.

The cumulative proportion of loans (p) is defined by:

p0 = 0, p1 = 1
N , p2 = 2

N , ..., pN = N
N = 1

The cumulative proportion of portfolio value L is defined as:

L0 = 0, Lk = ∑i = 1
k w[i]

The Lorenz curve is a plot of L versus p, or the cumulative proportion of portfolio value versus
cumulative proportion of the number of loans (sorted from smallest to largest).

The diagonal line is indicated in the same plot because it represents the curve for the portfolio with
the least possible concentration (all loans with the same weight). The area between the diagonal and
the Lorenz curve is a visual representation of the Gini coefficient, which is another concentration
measure.

Deciles

Deciles are commonly used in the context of income inequality.

If you sort individuals by their income level, what proportion of the total income is earned by the
lowest 10% and the lowest 20% of the population? In a credit portfolio, loans can be sorted by
exposure. The first decile corresponds to the proportion of the portfolio value that is accumulated by

6 Functions

6-34

the smallest 10% loans, and so on. Deciles are proportions, therefore they always take values from 0
through 1.

Defining the cumulative proportion of loans (p) and the cumulative proportion of values L as in
“Lorenz Curve” on page 6-34, the deciles are a subset of the proportion of value array. Given indices
d1, d2,..., d9 such that the proportion of loans matches exactly these values:

pd1 = 0.1, pd2 = 0.2, ..., pd9 = 0.9

The deciles D0,D1,....,D9,D10 are defined as the corresponding proportion of values:

D0 = L0 = 0, D1 = Ld1, D2 = Ld2, ..., D9 = Ld9, D10 = LN = 1

When the total number of loans N is not divisible by 10, no indices match the exact proportion of
loans 0.1, 0.2, and so on. In that case, the decile values are linearly interpolated from the Lorenz
curve data (that is, from the p and L arrays). With this definition, there are 11 values in the deciles
information because the end points 0% and 100% are included.

Gini Index

The Gini index (or coefficient) is visualized on a Lorenz curve plot as the area between the diagonal
and the Lorenz curve.

Technically, the Gini index is the ratio of that area to the area of the full triangle under the diagonal
on the Lorenz curve plot. The Gini index is also defined equivalently as the average absolute
difference between all the weights in the portfolio normalized by the average weight.

Using the proportion of values that array L defined in the Lorenz curve section, the Gini index is
given by the formula:

Gini = 1− 1
N∑i = 1

N (Li− 1 + Li)

Equivalently, the Gini index can be computed from the sorted weights directly with the formula:

Gini = 1
N∑i = 1

N (2i− 1)w[i]− 1

The Gini coefficient values are always between 0 (full diversification) and 1 - 1/N (full concentration).

Herfindahl-Hirschman Index

The Herfindahl-Hirschman index is commonly used as a measure of market concentration.

The formula for the Herfindahl-Hirschman index is:

HH = ∑i = 1
N wi2

The Herfindahl-Hirschman index takes values between 1/N (full diversification) and 1 (full
concentration).

Hannah-Kay Index

The Hannah-Kay index is a generalization of the Herfindahl-Hirschman index.

The formula for the Hannah-Kay depends on a parameter ɑ > 0, ɑ ≄ 1, as follows:

 concentrationIndices

6-35

HKα = ∑i = 1
N wiα

1/(α− 1)

This formula is the reciprocal of the original Hannah-Kay index, which is defined with 1/(1 - ɑ) in the
exponent. For concentration analysis, the reciprocal formula is the standard because it increases as
the concentration increases. This is the formula implemented in concentrationIndices. The
Hannah-Kay index takes values between 1/N (full diversification) and 1 (full concentration).

Hall-Tideman Index

The Hall-Tideman index is a measure commonly used for market concentration.

The formula for the Hall-Tideman index is:

HT = 1
2∑i = 1

N (N − i + 1)w[i]− 1

The Hall-Tideman index takes values between 1/N (full diversification) and 1 (full concentration).

Theil Entropy Index

The Theil entropy index, based on a traditional entropy measure (for example, Shannon entropy), is
adjusted so that it increases as concentration increases (entropy moves in the opposite direction), and
shifted to make it positive.

The formula for the Theil entropy index is:

TE = ∑i = 1
N wilog(wi) + log(N)

The Theil entropy index takes values between 0 (full diversification) and log(N) (full concentration).

Version History
Introduced in R2017a

References
[1] Basel Committee on Banking Supervision. "Studies on Credit Risk Concentration". Working paper

no. 15. November, 2006.

[2] Calabrese, R., and F. Porro. "Single-name concentration risk in credit portfolios: a comparison of
concentration indices." working paper 201214, Geary Institute, University College, Dublin,
May, 2012.

[3] Lütkebohmert, E. Concentration Risk in Credit Portfolios. Springer, 2009.

See Also
Topics
“Analyze the Sensitivity of Concentration to a Given Exposure” on page 4-49
“Compare Concentration Indices for Random Portfolios” on page 4-51
“Concentration Indices” on page 1-15

6 Functions

6-36

conditional
Conditional expected shortfall (ES) backtest by Acerbi and Szekely

Syntax
TestResults = conditional(ebts)
[TestResults,SimTestStatistic] = conditional(ebts,Name,Value)

Description
TestResults = conditional(ebts) runs the conditional ES backtest of Acerbi-Szekely (2014).
The conditional test has two underlying tests, a preliminary Value-at-Risk (VaR) backtest that is
specified using the name-value pair argument VaRTest, and the standalone conditional ES backtest.
A 'reject' result on either underlying test produces a 'reject' result on the conditional test.

[TestResults,SimTestStatistic] = conditional(ebts,Name,Value) adds optional name-
value pair arguments for TestLevel and VaRTest.

Examples

Run an ES Conditional Test

Create an esbacktestbysim object.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
 'DegreesOfFreedom',10,...
 'Location',Mu,...
 'Scale',Sigma,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);

Generate the ES conditional test report.

TestResults = conditional(ebts)

TestResults=3×14 table
 PortfolioID VaRID VaRLevel Conditional ConditionalOnly PValue TestStatistic CriticalValue VaRTest VaRTestResult VaRTestPValue Observations Scenarios TestLevel
 ___________ _____________ ________ ___________ _______________ ______ _____________ _____________ _______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 reject reject 0 -0.092302 -0.043941 "pof" accept 0.70347 1966 1000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject reject 0.001 -0.11714 -0.052575 "pof" accept 0.40682 1966 1000 0.95
 "S&P" "t(10) 99%" 0.99 reject reject 0.003 -0.14608 -0.085433 "pof" accept 0.11536 1966 1000 0.95

 conditional

6-37

Input Arguments
ebts — esbacktestbysim object
object

esbacktestbysim (ebts) object, which contains a copy of the given data (the PortfolioData,
VarData, ESData, and Distribution properties) and all combinations of portfolio ID, VaR ID, and
VaR levels to be tested. For more information on creating an esbacktestbysim object, see
esbacktestbysim.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [TestResults,SimTestStatistic] = conditional(ebts,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric value between 0 and 1.
Data Types: double

VaRTest — Indicator for VaR back test
'pof' (default) | character vector with a value of 'tl', 'bin', 'pof', 'tuff', 'cc', 'cci',
'tbf', or 'tbfi' | string array with a value of 'tl', 'bin', 'pof', 'tuff', 'cc', 'cci', 'tbf',
or 'tbfi'

Indicator for VaR back test, specified as the comma-separated pair consisting of 'VaRTest' and a
character vector or string array with a value of 'tl', 'bin', 'pof', 'tuff', 'cc', 'cci', 'tbf',
or 'tbfi'. For more information on these VaR backtests, see varbacktest.

Note The specified VaRTest is run using the same TestLevel value that is specified with the
TestLevel name-value pair argument in the conditional function.

Data Types: char | string

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID,
and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data.
• 'VaRID' — VaR ID for each of the VaR data columns provided.

6 Functions

6-38

• 'VaRLevel' — VaR level for the corresponding VaR data column.
• 'Conditional'— Categorical array with categories 'accept' and 'reject' indicating the result of

the conditional test. This result combines the outcome of the 'ConditionalOnly' column and
the VaR test.

• 'ConditionalOnly'— Categorical array with categories 'accept' and 'reject' indicating the
result of the standalone conditional test, independent of the VaR test outcome.

• 'PValue'— P-value of the standalone conditional test (for the'ConditionalOnly' column).
• 'TestStatistic'— Conditional test statistic (for the'ConditionalOnly' column).
• 'CriticalValue'— Critical value for the conditional test.
• 'VaRTest'— String array indicating the selected VaR test as specified by the VaRTest argument.
• 'VaRTestResult'— Categorical array with categories 'accept' and 'reject' indicating the

result of the VaR test selected with the 'VaRTest' argument.
• 'VaRTestPValue'— P-value for the VaR backtest. If the traffic-light test (tl) is used, this is 1

minus the traffic-light test's 'Probability' column value.
• 'Observations'— Number of observations.
• 'Scenarios'— Number of scenarios simulated to get the p-values.
• 'TestLevel'— Test confidence level.

Note For the test results, the terms 'accept' and 'reject' are used for convenience. Technically,
a test does not accept a model; rather, a test fails to reject it.

SimTestStatistic — Simulated values of test statistic
numeric array

Simulated values of the test statistic, returned as a NumVaRs-by-NumScenarios numeric array.

More About
Conditional Test by Acerbi and Szekely

The conditional test is also known as the first Acerbi-Szekely test.

The conditional test statistic is based on the conditional relationship

ESt = − Et Xt Xt < − VaRt

where

Xt is the portfolio outcome, that is the portfolio return or portfolio profit and loss for period t.

VaRt is the estimated VaR for period t.

ESt is the estimated expected shortfall for period t.

The number of failures is defined as

NumFailures = ∑
t = 1

N
It

 conditional

6-39

where

N is the number of periods in the test window (t = 1,...,N).

It is the VaR failure indicator on period t with a value of 1 if Xt < -VaR, and 0 otherwise.

The conditional test statistic is defined as:

Zcond = 1
NumFailures ∑t = 1

N XtIt
ESt

+ 1

The conditional test has two parts. A VaR backtest, specified by the VaRTest name-value pair
argument, must be run for the number of failures (NumFailures), and a standalone conditional test
is performed for the conditional test statistic Zcond. The conditional test accepts the model only when
both the VaR test and the standalone conditional test accept the model.

Significance of the Test

Under the assumption that the distributional assumptions are correct, the expected value of the test
statistic Zcond, assuming at least one VaR failure, is 0.

This is expressed as:

E[Zcond NumFailures > 0] = 0

Negative values of the test statistic indicate risk underestimation. The conditional test is a one-sided
test that rejects when there is evidence that the model underestimates risk (for technical details on
the null and alternative hypotheses, see Acerbi-Szekely, 2014). The conditional test rejects the model
when the p-value is less than 1 minus the test confidence level.

For more information on the steps to simulate the test statistics and the details for the computation of
the p-values and critical values, see simulate.

Edge Cases

The conditional test statistic is undefined (NaN) when there are no VaR failures in the data
(NumFailures = 0).

The p-value is set to NaN in these cases, and test result is to 'accept', because there is no evidence
of risk underestimation.

Likewise, the simulated conditional test statistic is undefined (NaN) for scenarios with no VaR failures.
These scenarios are discarded for the estimation of the significance of the test. Under the assumption
that the distributional assumptions are correct, E[Zcond NumFailures > 0] = 0, so the significance is
computed over scenarios with at least one failure (NumFailures > 0). The number of scenarios
reported by the conditional test function is the number of scenarios with at least one VaR failure.
The number of scenarios reported can be smaller than the total number of scenarios simulated. The
critical value is estimated over the scenarios with at least one VaR failure. If the simulated test
statistic is NaN for all scenarios, the critical value is set to NaN. Scenarios with no failures are more
likely as the expected number of failures NpVaR gets smaller.

Version History
Introduced in R2017b

6 Functions

6-40

References
[1] Acerbi, C. and Szekely, B. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

See Also
summary | runtests | unconditional | quantile | simulate | minBiasRelative |
minBiasAbsolute | esbacktestbysim | tl | bin | pof | tuff | cc | cci | tbf | tbfi |
esbacktestbyde

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“Comparison of ES Backtesting Methods” on page 2-26

 conditional

6-41

conditionalDE
Conditional Du-Escanciano (DE) expected shortfall (ES) backtest

Syntax
TestResults = conditionalDE(ebtde)
[TestResults,SimTestStatistic] = conditionalDE(___ ,Name,Value)

Description
TestResults = conditionalDE(ebtde) runs the conditional expected shortfall (ES) backtest by
Du and Escanciano [1]. The conditional test supports critical values by large-scale approximation and
by finite-sample simulation.

[TestResults,SimTestStatistic] = conditionalDE(___ ,Name,Value) specifies options
using one or more name-value pair arguments in addition to the input argument in the previous
syntax.

Examples

Create an esbacktestbyde Object and Run a ConditionalDE Test

Create an esbacktestbyde object for a t model with 10 degrees of freedom and 2 lags, and then run
a conditionalDE test.

load ESBacktestDistributionData.mat
 rng('default'); % For reproducibility
 ebtde = esbacktestbyde(Returns,"t",...
 'DegreesOfFreedom',T10DoF,...
 'Location',T10Location,...
 'Scale',T10Scale,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);
 conditionalDE(ebtde,'NumLags',2)

ans=3×13 table
 PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic CriticalValue AutoCorrelation Observations CriticalValueMethod NumLags Scenarios TestLevel
 ___________ _____________ ________ _____________ __________ _____________ _____________ _______________ ____________ ___________________ _______ _________ _________

 "S&P" "t(10) 95%" 0.95 reject 3.2121e-09 39.113 5.9915 0.11009 1966 "large-sample" 2 NaN 0.95
 "S&P" "t(10) 97.5%" 0.975 reject 1.6979e-07 31.177 5.9915 0.087348 1966 "large-sample" 2 NaN 0.95
 "S&P" "t(10) 99%" 0.99 reject 9.1526e-05 18.598 5.9915 0.076814 1966 "large-sample" 2 NaN 0.95

Input Arguments
ebtde — esbacktestbyde object
object

6 Functions

6-42

esbacktestbyde object, which contains a copy of the data (the PortfolioData, VarData, and
ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more
information on creating an esbacktestbyde object, see esbacktestbyde.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults =
conditionalDE(ebtde,'CriticalValueMethod','simulation','NumLags',10,'TestLeve
l',0.99)

CriticalValueMethod — Method to compute critical values, confidence intervals, and p-
values
'large-sample' (default) | character vector with values of 'large-sample' or 'simulation' |
string with values of "large-sample" or "simulation"

Method to compute critical values, confidence intervals, and p-values, specified as the comma-
separated pair consisting of 'CriticalValueMethod' and a character vector or string with a value
of 'large-sample' or 'simulation'.
Data Types: char | string

NumLags — Number of lags in conditionalDE test
1 (default) | positive integer

Number of lags in the conditionalDE test, specified as the comma-separated pair consisting of
'NumLags' and a positive integer.
Data Types: double

TestLevel — Test confidence level
0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric value between 0 and 1.
Data Types: double

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID,
and VaR levels to be tested. The columns correspond to the following:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR levels
• 'VaRLevel' — VaR level

 conditionalDE

6-43

• 'ConditionalDE'— Categorical array with the categories 'accept' and 'reject', which
indicate the result of the conditional DE test

• 'PValue'— P-value of the conditional DE test
• 'TestStatistic'— Conditional DE test statistic
• 'CriticalValue'— Critical value for the conditional DE test
• 'AutoCorrelation'— Autocorrelation for the reported number of lags
• 'Observations'— Number of observations
• 'CriticalValueMethod'— Method used to compute confidence intervals and p-values
• 'NumLags'— Number of lags
• 'Scenarios'— Number of scenarios simulated to get the p-values
• 'TestLevel'— Test confidence level

Note If you specify CriticalValueMethod as 'large-sample', the function reports the number
of 'Scenarios' as NaN.

For the test results, the terms 'accept' and 'reject' are used for convenience. Technically, a test
does not accept a model; rather, a test fails to reject it.

SimTestStatistic — Simulated values of the test statistics
numeric array

Simulated values of the test statistics, returned as an NumVaRs-by-NumScenarios numeric array.

More About
Conditional DE Test

The conditional DE test is a one-sided test to check if the test statistic is much larger than zero.

The test statistic for the conditional DE test is derived in several steps. First, define the
autocovariance for lag j:

γ j = 1
N − j∑t = j + 1

N (Ht − α/2)(Ht − j− α/2)

where

• ɑ = 1- VaRLevel.
• Ht is the cumulative failures or violations process: Ht = (ɑ - Ut)I(Ut < ɑ) / ɑ, where I(x) is the

indicator function.
• Ut are the ranks or mapped returns Ut = Pt(Xt), where Pt(Xt) = P(Xt | θt) is the cumulative

distribution of the portfolio outcomes or returns Xt over a given test window t = 1,...N and θt are
the parameters of the distribution. For simplicity, the subindex t is both the return and the
parameters, understanding that the parameters are those used on date t, even though those
parameters are estimated on the previous date t-1, or even prior to that.

The exact theoretical mean ɑ/2, as opposed to the sample mean, is used in the autocovariance
formula, as suggested in the paper by Du and Escanciano [1].

6 Functions

6-44

The autocorrelation for lag j is then

ρ j =
γ j
γ0

The test statistic for m lags is

CES(m) = N∑ j = 1
m ρ j

2

Significance of the Test

The test statistic CES is a random variable and a function of random return sequences or portfolio
outcomes X1,...,XN:

CES = CES(X1, ..., XN) .

For returns observed in the test window 1,...,N, the test statistic attains a fixed value:

CES
obs = CES(Xobs1, ..., XobsN) .

In general, for unknown returns that follow a distribution of Pt, the value of CES is uncertain and it
follows a cumulative distribution function:

PC(x) = P CES ≤ x .

This distribution function computes a confidence interval and a p-value. To determine the distribution
PC, the esbacktestbyde class supports the large-sample approximation and simulation methods.
You can specify one of these methods by using the optional name-value pair argument
CriticalValueMethod.

For the large sample approximation method, the distribution PC is derived from an asymptotic
analysis. If the number of observations N is large, the test statistic is approximately distributed as a
chi-square distribution with m degrees of freedom:

CES(m) dist χm
2 = PC

Note that the limiting distribution is independent of ɑ.

If ɑtest = 1 - test confidence level, then the critical value CV is the value that satisfies the equation

1− PC(CV) = αtest .

The p-value is determined as

Pvalue1− PC(CES
obs) .

The test rejects if pvalue < ɑtest.

For the simulation method, the distribution PCis estimated as follows

1 Simulate M scenarios of returns as

Xs = (X1
s, ..., XN

s), s = 1, ..., M .

 conditionalDE

6-45

2 Compute the corresponding test statistic as

CES
s = CES(X1

s, ..., XN
s), s = 1, ..., M .

3 Define PC as the empirical distribution of the simulated test statistic values as

PC = P CES ≤ x = 1
M I(CES

s ≤ x),

where I(.) is the indicator function.

In practice, simulating ranks is more efficient than simulating returns and then transforming the
returns into ranks. simulate.

For the empirical distribution, the value of 1-PC(x) may be different than P[CES ≥ x] because the
distribution may have nontrivial jumps (simulated tied values). Use the latter probability for the
estimation of confidence levels and p-values.

If ɑtest = 1 - test confidence level, then the critical value of levels CV is the value that satisfies the
equation

P CES ≥ CV = αtest .

The reported critical value CV is one of the simulated test statistic values Cs
ES that approximately

solves the preceding equation.

The p-value is determined as

pvalue = P CES ≥ CES
obs .

The test rejects if pvalue < ɑtest.

Version History
Introduced in R2019b

References
[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk."

Management Science. Vol. 63, Issue 4, April 2017.

[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk".
January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also
esbacktestbyde | summary | runtests | unconditionalDE | simulate | esbacktestbysim

Topics
“Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano” on page 2-63
“Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and
Escanciano” on page 2-72
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20

6 Functions

6-46

https://www.bis.org/bcbs/publ/d352.pdf

“ES Backtest Using Du-Escanciano Method” on page 2-24
“Comparison of ES Backtesting Methods” on page 2-26

 conditionalDE

6-47

confidenceBands
Confidence interval bands

Syntax
cbTable = confidenceBands(cdc)
cbTable = confidenceBands(cdc,Name,Value)

Description
cbTable = confidenceBands(cdc) returns a table of the requested risk measure and its
associated confidence bands. confidenceBands is used to investigate how the values of a risk
measure and its associated confidence interval converge as the number of scenarios increases. The
simulate function must be run before confidenceBands is used. For more information on using a
creditDefaultCopula object, see creditDefaultCopula.

cbTable = confidenceBands(cdc,Name,Value) adds optional name-value pair arguments.

Examples

Generate a Table of the Associated Confidence Bands for a Requested Risk Measure for a
creditDefaultCopula Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditDefaultCopula object with a two-factor model.

cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cdc =
 creditDefaultCopula with properties:

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioLosses: []

Set the VaRLevel to 99%.

cdc.VaRLevel = 0.99;

Use the simulate function before running confidenceBands. Use confidenceBands with the
creditDefaultCopula object to generate the cbTable.

cdc = simulate(cdc,1e5);
cbTable = confidenceBands(cdc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.9);
cbTable(1:10,:)

6 Functions

6-48

ans=10×4 table
 NumScenarios Lower Std Upper
 ____________ ______ ______ ______

 1000 23.38 24.237 25.166
 2000 23.255 23.859 24.497
 3000 23.617 24.117 24.642
 4000 23.44 23.871 24.319
 5000 23.504 23.891 24.291
 6000 23.582 23.935 24.301
 7000 23.756 24.086 24.426
 8000 23.587 23.893 24.208
 9000 23.582 23.871 24.167
 10000 23.525 23.799 24.079

Input Arguments
cdc — creditDefaultCopula object
object

creditDefaultCopula object obtained after running the simulate function.

For more information on creditDefaultCopula objects, see creditDefaultCopula.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: cbTable =
confidenceBands(cdc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.9,'NumPoi
nts',50)

RiskMeasure — Risk measure to investigate
'CVaR' (default) | character vector or string with values 'EL', 'Std', 'VaR', or 'CVaR'

Risk measure to investigate, specified as the comma-separated pair consisting of 'RiskMeasure'
and a character vector or string. Possible values are:

• 'EL' — Expected loss, the mean of portfolio losses
• 'Std' — Standard deviation of the losses
• 'VaR' — Value at risk at the threshold specified by the VaRLevel property of the

creditDefaultCopula object
• 'CVaR' — Conditional VaR at the threshold specified by the VaRLevel property of the

creditDefaultCopula object

Data Types: char | string

ConfidenceIntervalLevel — Confidence interval level
0.95 (default) | numeric between 0 and 1

 confidenceBands

6-49

Confidence interval level, specified as the comma-separated pair consisting of
'ConfidenceIntervalLevel' and a numeric between 0 and 1. For example, if you specify 0.95, a
95% confidence interval is reported in the output table (cbTable).
Data Types: double

NumPoints — Number of scenario samples to report
100 (default) | nonnegative integer

Number of scenario samples to report, specified as the comma-separated pair consisting of
'NumPoints' and a nonnegative integer. The default is 100, meaning confidence bands are reported
at 100 evenly spaced points of increasing sample size ranging from 0 to the total number of simulated
scenarios.

Note NumPoints must be a numeric scalar greater than 1, and is typically much smaller than total
number of scenarios simulated. confidenceBands can be used to obtain a qualitative idea of how
fast a risk measure and its confidence interval are converging. Specifying a large value for
NumPoints is not recommended and could cause performance issues with confidenceBands.

Data Types: double

Output Arguments
cbTable — Requested risk measure and associated confidence bands
table

Requested risk measure and associated confidence bands at each of the NumPoints scenario sample
sizes, returned as a table containing the following columns:

• NumScenarios — Number of scenarios at the sample point
• Lower — Lower confidence band
• RiskMeasure — Requested risk measure where the column takes its name from whatever risk

measure is requested with the optional input RiskMeasure
• Upper — Upper confidence band

Version History
Introduced in R2017a

References
[1] Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk Models.”

Journal of Banking and Finance. Vol. 24, 2000, pp. 59 – 117.

[2] Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and Finance. Vol.
24, 2000, pp. 119 – 149.

[3] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P. Morgan, New
York, 1997.

[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

6 Functions

6-50

[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.

[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and
Tools. Princeton University Press, 2005.

See Also
creditDefaultCopula | table | simulate | portfolioRisk | riskContribution |
getScenarios

Topics
“Credit Simulation Using Copulas” on page 4-2
“creditDefaultCopula Simulation Workflow” on page 4-5
“Modeling Correlated Defaults with Copulas” on page 4-18
“One-Factor Model Calibration” on page 4-64
“Corporate Credit Risk” on page 1-3
“Credit Simulation Using Copulas” on page 4-2

 confidenceBands

6-51

getScenarios
Counterparty scenarios

Syntax
scenarios = getScenarios(cdc,scenarioIndices)

Description
scenarios = getScenarios(cdc,scenarioIndices) returns counterparty scenario details as a
matrix of individual losses for each counterparty for the scenarios requested in scenarioIndices.

The simulate function must be run before getScenarios is used. For more information on using a
creditDefaultCopula object, see creditDefaultCopula.

Examples

Compute Individual Losses for Each Counterparty

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditDefaultCopula object with a two-factor model.

cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cdc =
 creditDefaultCopula with properties:

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioLosses: []

Set the VaRLevel to 99%.

cdc.VaRLevel = 0.99;

Use the simulate function before running getScenarios. Use the getSenarios function with the
creditDefaultCopula object to generate the scenarios matrix.

cdc = simulate(cdc,1e5);
scenarios = getScenarios(cdc,[2,3]);
% expected loss for each scenario
mean(scenarios)

ans = 1×2

6 Functions

6-52

 0.0369 0.0329

Input Arguments
cdc — creditDefaultCopula object
object

creditDefaultCopula object obtained after running the simulate function.

For more information on creditDefaultCopula objects, see creditDefaultCopula.

scenarioIndices — Specifies which scenarios are returned
vector

Specifies which scenarios are returned, entered as a vector.

Output Arguments
scenarios — Counterparty losses
matrix

Counterparty losses, returned as NumCounterparties-by-N matrix where N is the number of
elements in scenarioIndices.

Note If the number of scenarios requested is large, then the output matrix, scenarios, could be
large and potentially limited by the available machine memory.

Version History
Introduced in R2017a

References
[1] Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk Models.”

Journal of Banking and Finance. Vol. 24, 2000, pp. 59 – 117.

[2] Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and Finance. Vol.
24, 2000, pp. 119 – 149.

[3] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P. Morgan, New
York, 1997.

[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.

[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and
Tools. Princeton University Press, 2005.

 getScenarios

6-53

See Also
simulate | portfolioRisk | riskContribution | confidenceBands | creditDefaultCopula

Topics
“Credit Simulation Using Copulas” on page 4-2
“Modeling Correlated Defaults with Copulas” on page 4-18
“One-Factor Model Calibration” on page 4-64
“Corporate Credit Risk” on page 1-3
“Credit Simulation Using Copulas” on page 4-2

6 Functions

6-54

portfolioRisk
Generate portfolio-level risk measurements

Syntax
[riskMeasures,confidenceIntervals] = portfolioRisk(cdc)
[riskMeasures,confidenceIntervals] = portfolioRisk(cdc,Name,Value)

Description
[riskMeasures,confidenceIntervals] = portfolioRisk(cdc) returns tables of risk
measurements for the portfolio losses. The simulate function must be run before portfolioRisk
is used. For more information on using a creditDefaultCopula object, see
creditDefaultCopula.

[riskMeasures,confidenceIntervals] = portfolioRisk(cdc,Name,Value) adds an
optional name-value pair argument for ConfidenceIntervalLevel. The simulate function must
be run before portfolioRisk is used.

Examples

Generate Tables for Risk Measure and Confidence Intervals for a creditDefaultCopula
Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditDefaultCopula object with a two-factor model.

cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cdc =
 creditDefaultCopula with properties:

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioLosses: []

Set the VaRLevel to 99%.

cdc.VaRLevel = 0.99;

Use the simulate function before running portfolioRisk. Then use portfolioRisk with the
creditDefaultCopula object to generate the riskMeasure and ConfidenceIntervals tables.

cdc = simulate(cdc,1e5);
[riskMeasure,confidenceIntervals] = portfolioRisk(cdc,'ConfidenceIntervalLevel',0.9)

 portfolioRisk

6-55

riskMeasure=1×4 table
 EL Std VaR CVaR
 ______ ______ _____ ______

 24.876 23.778 102.4 121.28

confidenceIntervals=1×4 table
 EL Std VaR CVaR
 ________________ ________________ ________________ ________________

 24.752 25 23.691 23.866 101.35 103.35 120.32 122.24

View a histogram of the portfolio losses.

histogram(cdc.PortfolioLosses);
title('Distribution of Portfolio Losses');

For further analysis, use the simulate, portfolioRisk, riskContribution, confidenceBands,
and getScenarios functions with the creditDefaultCopula object.

Input Arguments
cdc — creditDefaultCopula object
object

6 Functions

6-56

creditDefaultCopula object obtained after running the simulate function.

For more information on creditDefaultCopula objects, see creditDefaultCopula.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [riskMeasure,confidenceIntervals] =
portfolioRisk(cdc,'ConfidenceIntervalLevel',0.9)

ConfidenceIntervalLevel — Confidence interval level
0.95 (default) | numeric between 0 and 1

Confidence interval level, specified as the comma-separated pair consisting of
'ConfidenceIntervalLevel' and a numeric between 0 and 1. For example, if you specify 0.95, a
95% confidence interval is reported in the output table (riskMeasures).
Data Types: double

Output Arguments
riskMeasures — Risk measures
table

Risk measures, returned as a table containing the following columns:

• EL — Expected loss, the mean of portfolio losses
• Std — Standard deviation of the losses
• VaR — Value at risk at the threshold specified by the VaRLevel property of the

creditDefaultCopula object
• CVaR — Conditional VaR at the threshold specified by the VaRLevel property of the

creditDefaultCopula object

confidenceIntervals — Confidence intervals
table

Confidence intervals, returned as a table of confidence intervals corresponding to the portfolio risk
measures reported in the riskMeasures table. Confidence intervals are reported at the level
specified by the ConfidenceIntervalLevel parameter.

Version History
Introduced in R2017a

References
[1] Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk Models.”

Journal of Banking and Finance. Vol. 24, 2000, pp. 59 – 117.

 portfolioRisk

6-57

[2] Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and Finance. Vol.
24, 2000, pp. 119 – 149.

[3] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P. Morgan, New
York, 1997.

[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.

[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and
Tools. Princeton University Press, 2005.

See Also
table | creditDefaultCopula | simulate | riskContribution | confidenceBands |
getScenarios

Topics
“Credit Simulation Using Copulas” on page 4-2
“creditDefaultCopula Simulation Workflow” on page 4-5
“Modeling Correlated Defaults with Copulas” on page 4-18
“One-Factor Model Calibration” on page 4-64
“Corporate Credit Risk” on page 1-3
“Credit Simulation Using Copulas” on page 4-2

6 Functions

6-58

riskContribution
Generate risk contributions for each counterparty in portfolio

Syntax
Contributions = riskContribution(cdc)
Contributions = riskContribution(cdc,Name,Value)

Description
Contributions = riskContribution(cdc) returns a table of risk contributions for each
counterparty in the portfolio. The risk Contributions table allocates the full portfolio risk measures
to each counterparty, such that the counterparty risk contributions sum to the portfolio risks reported
by portfolioRisk.

Note When creating a creditDefaultCopula object, you can set the 'UseParallel' property if
you have Parallel Computing Toolbox™. Once the 'UseParallel' property is set, parallel
processing is used to compute riskContribution.

The simulate function must be run before riskContribution is used. For more information on
using a creditDefaultCopula object, see creditDefaultCopula.

Contributions = riskContribution(cdc,Name,Value) adds an optional name-value pair
argument for VaRWindow.

Examples

Determine the Risk Contribution for Each Counterparty for a creditDefaultCopula Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditDefaultCopula object with a two-factor model.

cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cdc =
 creditDefaultCopula with properties:

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioLosses: []

Set the VaRLevel to 99%.

 riskContribution

6-59

cdc.VaRLevel = 0.99;

Use the simulate function before running riskContribution. Then use riskContribution with
the creditDefaultCopula object to generate the risk Contributions table.

cdc = simulate(cdc,1e5);
Contributions = riskContribution(cdc);
Contributions(1:10,:)

ans=10×5 table
 ID EL Std VaR CVaR
 __ __________ __________ _________ __________

 1 0.036031 0.022762 0.083828 0.13625
 2 0.068357 0.039295 0.23373 0.24984
 3 1.2228 0.60699 2.3184 2.3775
 4 0.002877 0.00079014 0.0024248 0.0013137
 5 0.12127 0.037144 0.18474 0.24622
 6 0.12638 0.078506 0.39779 0.48334
 7 0.84284 0.3541 1.6221 1.8183
 8 0.00090088 0.00011379 0.0016463 0.00089197
 9 0.93117 0.87638 3.3868 3.9936
 10 0.26054 0.37918 1.7399 2.3042

Note: Due to simulation noise or numerical error, the VaR contribution can sometimes be greater than
the CVaR contribution.

Input Arguments
cdc — creditDefaultCopula object
object

creditDefaultCopula object obtained after running the simulate function.

For more information on creditDefaultCopula objects, see creditDefaultCopula.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Contributions = riskContribution(cdc,'VaRWindow',0.3)

VaRWindow — Size of the window used to compute VaR contributions
0.05 (default) | numeric between 0 and 1

Size of the window used to compute VaR contributions, specified as the comma-separated pair
consisting of 'VaRWindow' and a scalar numeric with a percent value. Scenarios in the VaR scenario
set are used to calculate the individual counterparty VaR contributions.

The default is 0.05, meaning that all scenarios with portfolio losses within 5 percent of the VaR are
included when computing counterparty VaR contributions.

6 Functions

6-60

Data Types: double

Output Arguments
Contributions — Risk contributions
table

Risk contributions, returned as a table containing the following risk contributions for each
counterparty:

• EL — Expected loss for the particular counterparty over the scenarios
• Std — Standard deviation of loss for the particular counterparty over the scenarios
• VaR — Value at risk for the particular counterparty over the scenarios
• CVaR — Conditional value at risk for the particular counterparty over the scenarios

The risk Contributions table allocates the full portfolio risk measures to each counterparty, such
that the counterparty risk contributions sum to the portfolio risks reported by portfolioRisk.

More About
Risk Contributions

The riskContribution function reports the individual counterparty contributions to the total
portfolio risk measures using four risk measures: expected loss (EL), standard deviation (Std), VaR,
and CVaR.

• EL is the expected loss for each counterparty and is the mean of the counterparty's losses across
all scenarios.

• Std is the standard deviation for counterparty i:

StdConti = Stdi
∑ jStd jρi j

Stdρ

where

Stdi is the standard deviation of losses from counterparty i.

StdÏ is the standard deviation of portfolio losses.

ρij is the correlation of the losses between counterparties i and j.
• VaR contribution is the mean of a counterparty's losses across all scenarios in which the total

portfolio loss is within some small neighborhood around the Portfolio VaR. The default of the
'VaRWindow' parameter is 0.05 meaning that all scenarios in which the total portfolio loss is
within 5% of the portfolio VaR are included in VaR neighborhood.

• CVaR is the mean of the counterparty's losses in the set of scenarios in which the total portfolio
losses exceed the portfolio VaR.

Version History
Introduced in R2017a

 riskContribution

6-61

References
[1] Glasserman, P. “Measuring Marginal Risk Contributions in Credit Portfolios.” Journal of

Computational Finance. Vol. 9, No. 2, Winter 2005/2006.

[2] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P. Morgan, New
York, 1997.

See Also
table | creditDefaultCopula | simulate | portfolioRisk | confidenceBands |
getScenarios

Topics
“Credit Simulation Using Copulas” on page 4-2
“creditDefaultCopula Simulation Workflow” on page 4-5
“Modeling Correlated Defaults with Copulas” on page 4-18
“One-Factor Model Calibration” on page 4-64
“Corporate Credit Risk” on page 1-3
“Credit Simulation Using Copulas” on page 4-2

External Websites
Parallel Computing with MATLAB (53 min 27 sec)

6 Functions

6-62

https://www.mathworks.com/videos/parallel-computing-with-matlab-81694.html

simulate
Simulate credit defaults using a creditDefaultCopula object

Syntax
cdc = simulate(cdc,NumScenarios)
cdc = simulate(___ ,Name,Value)

Description
cdc = simulate(cdc,NumScenarios) performs the full simulation of credit scenarios and
computes defaults and losses for the portfolio defined in the creditDefaultCopula object. For
more information on using a creditDefaultCopula object, see creditDefaultCopula.

Note When creating a creditDefaultCopula object, you can set the 'UseParallel' property if
you have Parallel Computing Toolbox. Once the 'UseParallel' property is set, parallel processing
is used to compute simulate.

cdc = simulate(___ ,Name,Value) adds optional name-value pair arguments for (Copula,
DegreesOfFreedom, and BlockSize).

Examples

Run a Simulation Using a creditDefaultCopula Object

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditDefaultCopula object with a two-factor model.

cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cdc =
 creditDefaultCopula with properties:

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioLosses: []

Set the VaRLevel to 99%.

cdc.VaRLevel = 0.99;

 simulate

6-63

Use the simulate function with the creditDefaultCopula object. After using simulate, you can
then use the portfolioRisk, riskContribution, confidenceBands, and getScenarios
functions with the updated creditDefaultCopula object.

cdc = simulate(cdc,1e5)

cdc =
 creditDefaultCopula with properties:

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9900
 UseParallel: 0
 PortfolioLosses: [30.1008 3.6910 3.2895 19.2151 7.5761 44.5088 19.5419 1.7909 72.1443 12.6933 36.0228 1.7909 4.8512 23.0230 54.0877 35.9298 35.3757 26.1678 36.8868 24.6242 2.9770 15.3030 0 0 10.5546 61.2268 32.5802 42.5504 10.2981 4.8318 ...]

You can use riskContribution with the creditDefaultCopula object to generate the risk
Contributions table.

Contributions = riskContribution(cdc);
Contributions(1:10,:)

ans=10×5 table
 ID EL Std VaR CVaR
 __ __________ __________ _________ __________

 1 0.036031 0.022762 0.083828 0.13625
 2 0.068357 0.039295 0.23373 0.24984
 3 1.2228 0.60699 2.3184 2.3775
 4 0.002877 0.00079014 0.0024248 0.0013137
 5 0.12127 0.037144 0.18474 0.24622
 6 0.12638 0.078506 0.39779 0.48334
 7 0.84284 0.3541 1.6221 1.8183
 8 0.00090088 0.00011379 0.0016463 0.00089197
 9 0.93117 0.87638 3.3868 3.9936
 10 0.26054 0.37918 1.7399 2.3042

Input Arguments
cdc — creditDefaultCopula object
object

creditDefaultCopula object, obtained from creditDefaultCopula.

For more information on a creditDefaultCopula object, see creditDefaultCopula.

NumScenarios — Number of scenarios to simulate
nonnegative integer

Number of scenarios to simulate, specified as a nonnegative integer. Scenarios are processed in
blocks to conserve machine resources.
Data Types: double

6 Functions

6-64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: cdc = simulate(cdc,NumScenarios,'Copula','t','DegreesOfFreedom',5)

Copula — Type of copula
'Gaussian' (default) | character vector or string with values 'Gaussian' or 't'

Type of copula, specified as the comma-separated pair consisting of 'Copula' and a character vector
or string. Possible values are:

• 'Gaussian' — A Gaussian copula
• 't' — A t copula with degrees of freedom specified using DegreesOfFreedom.

Data Types: char | string

DegreesOfFreedom — Degrees of freedom for t copula
5 (default) | nonnegative numeric value

Degrees of freedom for a t copula, specified as the comma-separated pair consisting of
'DegreesOfFreedom' and a nonnegative numeric value. If Copula is set to 'Gaussian', the
DegreesOfFreedom parameter is ignored.
Data Types: double

BlockSize — Number of scenarios to process in each iteration
nonnegative numeric value

Number of scenarios to process in each iteration, specified as the comma-separated pair consisting of
'BlockSize' and a nonnegative numeric value.

If unspecified, BlockSize defaults to a value of approximately 1,000,000 / (Number-of-
counterparties). For example, if there are 100 counterparties, the default BlockSize is 10,000
scenarios.
Data Types: double

Output Arguments
cdc — Updated creditDefaultCopula object
object

Updated creditDefaultCopula object. The object is populated with the simulated
PortfolioLosses.

For more information on a creditDefaultCopula object, see creditDefaultCopula.

Note In the simulate function, the Weights (specified when using creditDefaultCopula) are
transformed to ensure that the latent variables have a mean of 0 and a variance of 1.

 simulate

6-65

Version History
Introduced in R2017a

References
[1] Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk Models.”

Journal of Banking and Finance. Vol. 24, 2000, pp. 59 – 117.

[2] Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and Finance. Vol.
24, 2000, pp. 119 – 149.

[3] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P. Morgan, New
York, 1997.

[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.

[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and
Tools. Princeton University Press, 2005.

See Also
table | creditDefaultCopula | portfolioRisk | riskContribution | confidenceBands |
getScenarios

Topics
“Credit Simulation Using Copulas” on page 4-2
“creditDefaultCopula Simulation Workflow” on page 4-5
“Modeling Correlated Defaults with Copulas” on page 4-18
“One-Factor Model Calibration” on page 4-64
“Corporate Credit Risk” on page 1-3
“Credit Simulation Using Copulas” on page 4-2

External Websites
Parallel Computing with MATLAB (53 min 27 sec)

6 Functions

6-66

https://www.mathworks.com/videos/parallel-computing-with-matlab-81694.html

confidenceBands
Confidence interval bands

Syntax
cbTable = confidenceBands(cmc)
cbTable = confidenceBands(cmc,Name,Value)

Description
cbTable = confidenceBands(cmc) returns a table of the requested risk measure and its
associated confidence bands. Use confidenceBands to investigate how the values of a risk measure
and its associated confidence interval converge as the number of scenarios increases. Before you run
the confidenceBands function, you must run the simulate function. For more information on
using a creditMigrationCopula object, see creditMigrationCopula.

cbTable = confidenceBands(cmc,Name,Value) adds optional name-value pair arguments.

Examples

Generate a Table of the Associated Confidence Bands for a Requested Risk Measure for a
creditMigrationCopula Object

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a four-factor model using
creditMigrationCopula.

cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc =
 creditMigrationCopula with properties:

 Portfolio: [250x5 table]
 FactorCorrelation: [4x4 double]
 RatingLabels: [8x1 string]
 TransitionMatrix: [8x8 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioValues: []

Set the VaRLevel to 99%.

 confidenceBands

6-67

cmc.VaRLevel = 0.99;

Use the simulate function to simulate 100,000 scenarios, and then use the confidenceBands
function to generate the cbTable.

cmc = simulate(cmc,1e5);
cbTable = confidenceBands(cmc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.9,'NumPoints',50);
cbTable(1:10,:)

ans=10×4 table
 NumScenarios Lower Std Upper
 ____________ _____ _____ _____

 2000 11996 12308 12637
 4000 12871 13108 13354
 6000 12556 12744 12939
 8000 12830 12997 13168
 10000 12702 12850 13001
 12000 12784 12920 13059
 14000 12895 13022 13151
 16000 12747 12864 12983
 18000 12948 13060 13174
 20000 12971 13077 13186

Input Arguments
cmc — creditMigrationCopula object
object

creditMigrationCopula object obtained after running the simulate function.

For more information on creditMigrationCopula objects, see creditMigrationCopula.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: cbTable =
confidenceBands(cmc,'RiskMeasure','Std','ConfidenceIntervalLevel',0.9,'NumPoi
nts',50)

RiskMeasure — Risk measure to investigate
'CVaR' (default) | character vector or string with values 'EL', 'Std', 'VaR', or 'CVaR'

Risk measure to investigate, specified as the comma-separated pair consisting of 'RiskMeasure'
and a character vector or string. Possible values are:

• 'EL' — Expected loss, the mean of portfolio losses
• 'Std' — Standard deviation of the losses

6 Functions

6-68

• 'VaR' — Value at risk at the threshold specified by the VaRLevel property of the
creditMigrationCopula object

• 'CVaR' — Conditional VaR at the threshold specified by the VaRLevel property of the
creditMigrationCopula object

Data Types: char | string

ConfidenceIntervalLevel — Confidence interval level
0.95 (default) | numeric between 0 and 1

Confidence interval level, specified as the comma-separated pair consisting of
'ConfidenceIntervalLevel' and a numeric between 0 and 1. For example, if you specify 0.95, a
95% confidence interval is reported in the output table (cbTable).
Data Types: double

NumPoints — Number of scenario samples to report
100 (default) | nonnegative integer

Number of scenario samples to report, specified as the comma-separated pair consisting of
'NumPoints' and a nonnegative integer. The default is 100, meaning that confidence bands are
reported at 100 evenly spaced points of increasing sample size ranging from 0 to the total number of
simulated scenarios.

Note NumPoints must be a numeric scalar greater than 1. NumPoints is typically much smaller
than total number of scenarios simulated. You can use confidenceBands to obtain a qualitative idea
of how fast a risk measure and its confidence interval are converging. Specifying a large value for
NumPoints is not recommended and can potentially cause performance issues with
confidenceBands.

Data Types: double

Output Arguments
cbTable — Requested risk measure and associated confidence bands
table

Requested risk measure and associated confidence bands at each of the NumPoints scenario sample
sizes, returned as a table containing the following columns:

• NumScenarios — Number of scenarios at the sample point
• Lower — Lower confidence band
• RiskMeasure — Requested risk measure, where the column takes its name from whatever risk

measure is requested with the optional input RiskMeasure
• Upper — Upper confidence band

Version History
Introduced in R2017a

 confidenceBands

6-69

References
[1] Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk Models.”

Journal of Banking and Finance. Vol. 24, 2000, pp. 59 – 117.

[2] Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and Finance. Vol.
24, 2000, pp. 119 – 149.

[3] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P. Morgan, New
York, 1997.

[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.

[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and
Tools. Princeton University Press, 2005.

See Also
table | creditMigrationCopula | simulate | portfolioRisk | riskContribution |
getScenarios

Topics
“creditMigrationCopula Simulation Workflow” on page 4-10
“One-Factor Model Calibration” on page 4-64
“Credit Rating Migration Risk” on page 1-10

6 Functions

6-70

getScenarios
Counterparty scenarios

Syntax
scenarios = getScenarios(cmc,scenarioIndices)

Description
scenarios = getScenarios(cmc,scenarioIndices) returns counterparty scenario details as a
matrix of individual values for each counterparty for the scenarios requested in scenarioIndices.

Before you use the getScenarios function, you must run the simulate function. For more
information on using a creditMigrationCopula object, see creditMigrationCopula.

Examples

Compute Individual Values for Each Counterparty

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a four-factor model using
creditMigrationCopula.

cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc =
 creditMigrationCopula with properties:

 Portfolio: [250x5 table]
 FactorCorrelation: [4x4 double]
 RatingLabels: [8x1 string]
 TransitionMatrix: [8x8 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioValues: []

Set the VaRLevel to 99%.

 cmc.VaRLevel = 0.99;

Use the simulate function to simulate 100,000 scenarios, and then use the getScenarios function
to generate the scenarios matrix.

 getScenarios

6-71

cmc = simulate(cmc,1e5);
scenarios = getScenarios(cmc,[2,3]);
scenarios(1:10,:)

ans = 10×2
104 ×

 1.3082 1.3216
 0.2893 0.2893
 0.9788 0.9754
 0.4503 0.4503
 1.0376 1.0376
 0.5795 0.5795
 0.5350 0.5350
 0.4956 0.4956
 0.3537 0.3537
 2.3492 2.3492

Input Arguments
cmc — creditMigrationCopula object
object

creditMigrationCopula object obtained after running the simulate function.

For more information on creditMigrationCopula objects, see creditMigrationCopula.

scenarioIndices — Specifies which scenarios are returned
vector

Specifies which scenarios are returned, entered as a vector.

Output Arguments
scenarios — Counterparty values
matrix

Counterparty values, returned as NumCounterparties-by-N matrix, where N is the number of
elements in scenarioIndices.

Note If the number of scenarios requested is very large, then the output matrix, scenarios, could
be very large, and potentially limited by the available machine memory.

Version History
Introduced in R2017a

References
[1] Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk Models.”

Journal of Banking and Finance. Vol. 24, 2000, pp. 59 – 117.

6 Functions

6-72

[2] Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and Finance. Vol.
24, 2000, pp. 119 – 149.

[3] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P. Morgan, New
York, 1997.

[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.

[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and
Tools. Princeton University Press, 2005.

See Also
creditMigrationCopula | simulate | portfolioRisk | riskContribution |
confidenceBands

Topics
“creditMigrationCopula Simulation Workflow” on page 4-10
“One-Factor Model Calibration” on page 4-64
“Credit Rating Migration Risk” on page 1-10

 getScenarios

6-73

portfolioRisk
Generate portfolio-level risk measurements

Syntax
[riskMeasures,confidenceIntervals] = portfolioRisk(cmc)
[riskMeasures,confidenceIntervals] = portfolioRisk(cmc,Name,Value)

Description
[riskMeasures,confidenceIntervals] = portfolioRisk(cmc) returns tables of risk
measurements for the portfolio losses. Before you use the portfolioRisk function, run the
simulate function. For more information on using a creditMigrationCopula object, see
creditMigrationCopula.

[riskMeasures,confidenceIntervals] = portfolioRisk(cmc,Name,Value) adds an
optional name-value pair argument for ConfidenceIntervalLevel.

Examples

Generate Tables for Risk Measure and Confidence Intervals for a creditMigrationCopula
Object

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a four-factor model using
creditMigrationCopula.

cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc =
 creditMigrationCopula with properties:

 Portfolio: [250x5 table]
 FactorCorrelation: [4x4 double]
 RatingLabels: [8x1 string]
 TransitionMatrix: [8x8 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioValues: []

Set the VaRLevel to 99%.

6 Functions

6-74

 cmc.VaRLevel = 0.99;

Use the simulate function to simulate 100,000 scenarios, and then use the portfolioRisk
function to generate the riskMeasure and ConfidenceIntervals tables.

 cmc = simulate(cmc,1e5);
[riskMeasure,confidenceIntervals] = portfolioRisk(cmc,'ConfidenceIntervalLevel',0.9)

riskMeasure=1×4 table
 EL Std VaR CVaR
 ______ _____ _____ _____

 4515.9 12963 57176 83975

confidenceIntervals=1×4 table
 EL Std VaR CVaR
 ________________ ______________ ______________ ______________

 4448.5 4583.4 12916 13011 56012 58278 82433 85517

Input Arguments
cmc — creditMigrationCopula object
object

creditMigrationCopula object obtained after running the simulate function.

For more information on creditMigrationCopula objects, see creditMigrationCopula.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [riskMeasure,confidenceIntervals] =
portfolioRisk(cmc,'ConfidenceIntervalLevel',0.9)

ConfidenceIntervalLevel — Confidence interval level
0.95 (default) | numeric between 0 and 1

Confidence interval level, specified as the comma-separated pair consisting of
'ConfidenceIntervalLevel' and a numeric between 0 and 1. For example, if you specify 0.95, a
95% confidence interval is reported in the output table (riskMeasures).
Data Types: double

Output Arguments
riskMeasures — Risk measures
table

 portfolioRisk

6-75

Risk measures, returned as a table containing the following columns:

• EL — Expected loss, the mean of portfolio losses
• Std — Standard deviation of the losses
• VaR — Value at risk at the threshold specified by the VaRLevel property of the

creditMigrationCopula object
• CVaR — Conditional VaR at the threshold specified by the VaRLevel property of the

creditMigrationCopula object

confidenceIntervals — Confidence intervals
table

Confidence intervals, returned as a table of confidence intervals corresponding to the portfolio risk
measures reported in the riskMeasures table. Confidence intervals are reported at the level
specified by the ConfidenceIntervalLevel parameter.

Version History
Introduced in R2017a

References
[1] Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk Models.”

Journal of Banking and Finance. Vol. 24, 2000, pp. 59 – 117.

[2] Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and Finance. Vol.
24, 2000, pp. 119 – 149.

[3] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P. Morgan, New
York, 1997.

[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.

[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and
Tools. Princeton University Press, 2005.

See Also
table | creditMigrationCopula | simulate | riskContribution | confidenceBands |
getScenarios

Topics
“creditMigrationCopula Simulation Workflow” on page 4-10
“One-Factor Model Calibration” on page 4-64
“Credit Rating Migration Risk” on page 1-10

6 Functions

6-76

riskContribution
Generate risk contributions for each counterparty in portfolio

Syntax
Contributions = riskContribution(cmc)
Contributions = riskContribution(cmc,Name,Value)

Description
Contributions = riskContribution(cmc) returns a table of risk contributions for each
counterparty in the portfolio. The risk Contributions table allocates the full portfolio risk measures
to each counterparty, such that the counterparty risk contributions sum to the portfolio risks reported
by portfolioRisk.

Note When creating a creditMigrationCopula object, you can set the 'UseParallel' property
if you have Parallel Computing Toolbox. Once the 'UseParallel' property is set, parallel
processing is used to compute riskContribution.

Before you use the riskContribution function, you must run the simulate function. For more
information on using a creditMigrationCopula object, see creditMigrationCopula.

Contributions = riskContribution(cmc,Name,Value) adds an optional name-value pair
argument for VaRWindow.

Examples

Determine the Risk Contribution for Each Counterparty for a creditMigrationCopula
Object

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a four-factor model using
creditMigrationCopula.

cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc =
 creditMigrationCopula with properties:

 Portfolio: [250x5 table]

 riskContribution

6-77

 FactorCorrelation: [4x4 double]
 RatingLabels: [8x1 string]
 TransitionMatrix: [8x8 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioValues: []

Set the VaRLevel to 99%.

cmc.VaRLevel = 0.99;

Use the simulate function to simulate 100,000 scenarios, and then use the riskContribution
function to generate the Contributions table.

cmc = simulate(cmc,1e5);
Contributions = riskContribution(cmc);
Contributions(1:10,:)

ans=10×5 table
 ID EL Std VaR CVaR
 __ ______ ______ ______ ______

 1 15.521 41.153 238.72 279.18
 2 8.49 18.838 92.074 122.19
 3 6.0937 20.069 113.22 181.53
 4 6.6964 55.885 272.23 313.25
 5 23.583 73.905 360.32 573.39
 6 10.722 114.97 445.94 728.38
 7 1.8393 84.754 262.32 490.39
 8 11.711 39.768 175.84 253.29
 9 2.2154 4.4038 22.797 31.039
 10 1.7453 2.5545 9.8801 17.603

Input Arguments
cmc — creditMigrationCopula object
object

creditMigrationCopula object obtained after running the simulate function.

For more information on creditMigrationCopula objects, see creditMigrationCopula.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Contributions = riskContribution(cmc,'VaRWindow',0.3)

VaRWindow — Size of the window used to compute VaR contributions
0.05 (default) | numeric between 0 and 1

6 Functions

6-78

Size of the window used to compute VaR contributions, specified as the comma-separated pair
consisting of 'VaRWindow' and a scalar numeric with a percent value. Scenarios in the VaR scenario
set are used to calculate the individual counterparty VaR contributions.

The default is 0.05, meaning that all scenarios with portfolio losses within 5 percent of the VaR are
included when computing counterparty VaR contributions.
Data Types: double

Output Arguments
Contributions — Risk contributions
table

Risk contributions, returned as a table containing the following risk contributions for each
counterparty:

• EL — Expected loss for the particular counterparty over the scenarios
• Std — Standard deviation of loss for the particular counterparty over the scenarios
• VaR — Value at risk for the particular counterparty over the scenarios
• CVaR — Conditional value at risk for the particular counterparty over the scenarios

The risk Contributions table allocates the full portfolio risk measures to each counterparty, such
that the counterparty risk contributions sum to the portfolio risks reported by portfolioRisk.

More About
Risk Contributions

The riskContribution function reports the individual counterparty contributions to the total
portfolio risk measures using four risk measures: expected loss (EL), standard deviation (Std), VaR,
and CVaR.

• EL is the expected loss for each counterparty and is the mean of the counterparty's losses across
all scenarios.

• Std is the standard deviation for counterparty i:

StdConti = Stdi
∑ jStd jρi j

Stdρ

where

Stdi is the standard deviation of losses from counterparty i.

StdÏ is the standard deviation of portfolio losses.

ρij is the correlation of the losses between counterparties i and j.
• VaR contribution is the mean of a counterparty's losses across all scenarios in which the total

portfolio loss is within some small neighborhood around the Portfolio VaR. The default of the
'VaRWindow' parameter is 0.05 meaning that all scenarios in which the total portfolio loss is
within 5% of the portfolio VaR are included in VaR neighborhood.

 riskContribution

6-79

• CVaR is the mean of the counterparty's losses in the set of scenarios in which the total portfolio
losses exceed the portfolio VaR.

Version History
Introduced in R2017a

References
[1] Glasserman, P. “Measuring Marginal Risk Contributions in Credit Portfolios.” Journal of

Computational Finance. Vol. 9, No. 2, Winter 2005/2006.

[2] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P. Morgan, New
York, 1997.

See Also
table | creditMigrationCopula | simulate | portfolioRisk | confidenceBands |
getScenarios

Topics
“creditMigrationCopula Simulation Workflow” on page 4-10
“One-Factor Model Calibration” on page 4-64
“Credit Rating Migration Risk” on page 1-10

External Websites
Parallel Computing with MATLAB (53 min 27 sec)

6 Functions

6-80

https://www.mathworks.com/videos/parallel-computing-with-matlab-81694.html

simulate
Simulate credit migrations using creditMigrationCopula object

Syntax
cmc = simulate(cmc,NumScenarios)
cmc = simulate(___ ,Name,Value)

Description
cmc = simulate(cmc,NumScenarios) performs the full simulation of credit scenarios and
computes changes in value due to credit rating changes for the portfolio defined in the
creditMigrationCopula object. For more information on using a creditMigrationCopula
object, see creditMigrationCopula.

Note When creating a creditMigrationCopula object, you can set the 'UseParallel' property
if you have Parallel Computing Toolbox. Once the 'UseParallel' property is set, parallel
processing is used to compute simulate.

cmc = simulate(___ ,Name,Value) adds optional name-value pair arguments for (Copula,
DegreesOfFreedom, and BlockSize).

Examples

Run a Simulation Using a creditMigrationCopula Object

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a four-factor model using
creditMigrationCopula.

cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc =
 creditMigrationCopula with properties:

 Portfolio: [250x5 table]
 FactorCorrelation: [4x4 double]
 RatingLabels: [8x1 string]
 TransitionMatrix: [8x8 double]
 VaRLevel: 0.9500
 UseParallel: 0

 simulate

6-81

 PortfolioValues: []

Set the VaRLevel to 99%.

 cmc.VaRLevel = 0.99;

Use the simulate function to simulate 100,000 scenarios. After using simulate, you can then use the
portfolioRisk, riskContribution, confidenceBands, and getScenarios with the updated
creditMigrationCopula object.

cmc = simulate(cmc,1e5)

cmc =
 creditMigrationCopula with properties:

 Portfolio: [250x5 table]
 FactorCorrelation: [4x4 double]
 RatingLabels: [8x1 string]
 TransitionMatrix: [8x8 double]
 VaRLevel: 0.9900
 UseParallel: 0
 PortfolioValues: [2.0082e+06 1.9950e+06 1.9933e+06 2.0009e+06 1.9819e+06 1.9955e+06 1.9962e+06 1.9966e+06 2.0018e+06 2.0036e+06 1.9873e+06 1.9929e+06 2.0015e+06 1.9875e+06 1.9962e+06 2.0070e+06 2.0054e+06 2.0037e+06 2.0032e+06 1.9990e+06 ...]

You can use the riskContribution function with the creditMigrationCopula object to generate
the risk Contributions table.

Contributions = riskContribution(cmc);
Contributions(1:10,:)

ans=10×5 table
 ID EL Std VaR CVaR
 __ ______ ______ ______ ______

 1 15.521 41.153 238.72 279.18
 2 8.49 18.838 92.074 122.19
 3 6.0937 20.069 113.22 181.53
 4 6.6964 55.885 272.23 313.25
 5 23.583 73.905 360.32 573.39
 6 10.722 114.97 445.94 728.38
 7 1.8393 84.754 262.32 490.39
 8 11.711 39.768 175.84 253.29
 9 2.2154 4.4038 22.797 31.039
 10 1.7453 2.5545 9.8801 17.603

Input Arguments
cmc — creditMigrationCopula object
object

creditMigrationCopula object, obtained from creditMigrationCopula.

For more information on a creditMigrationCopula object, see creditMigrationCopula.

6 Functions

6-82

NumScenarios — Number of scenarios to simulate
nonnegative integer

Number of scenarios to simulate, specified as a nonnegative integer. Scenarios are processed in
blocks to conserve machine resources.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: cmc =
simulate(cmc,NumScenarios,'Copula','t','DegreesOfFreedom',5,'BlockSize',1000)

Copula — Type of copula
'Gaussian' (default) | character vector or string with values 'Gaussian' or 't'

Type of copula, specified as the comma-separated pair consisting of 'Copula' and a character vector
or string. Possible values are:

• 'Gaussian' — Gaussian copula
• 't' — t copula with degrees of freedom specified by using DegreesOfFreedom.

Data Types: char | string

DegreesOfFreedom — Degrees of freedom for t copula
5 (default) | nonnegative numeric value

Degrees of freedom for a t copula, specified as the comma-separated pair consisting of
'DegreesOfFreedom' and a nonnegative numeric value. If Copula is set to 'Gaussian', the
DegreesOfFreedom parameter is ignored.
Data Types: double

BlockSize — Number of scenarios to process in each iteration
nonnegative numeric value

Number of scenarios to process in each iteration, specified as the comma-separated pair consisting of
'BlockSize' and a nonnegative numeric value. Adjust BlockSize for performance, especially
when executing large simulations.

If unspecified, BlockSize defaults to a value of approximately 1,000,000 / (Number-of-
counterparties). For example, if there are 100 counterparties, the default BlockSize is 10,000
scenarios.
Data Types: double

Output Arguments
cmc — Updated creditMigrationCopula object
object

 simulate

6-83

creditMigrationCopula object, returned as an updated object that is populated with the
simulated PortfolioValues.

For more information on a creditMigrationCopula object, see creditMigrationCopula.

Note In the simulate function, the Weights (specified when using creditMigrationCopula) are
transformed to ensure that the latent variables have a mean of 0 and a variance of 1.

Version History
Introduced in R2017a

References
[1] Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk Models.”

Journal of Banking and Finance. Vol. 24, 2000, pp. 59 – 117.

[2] Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and Finance. Vol.
24, 2000, pp. 119 – 149.

[3] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P. Morgan, New
York, 1997.

[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.

[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and
Tools. Princeton University Press, 2005.

See Also
table | creditMigrationCopula | portfolioRisk | riskContribution | confidenceBands |
getScenarios

Topics
“creditMigrationCopula Simulation Workflow” on page 4-10
“One-Factor Model Calibration” on page 4-64
“Credit Rating Migration Risk” on page 1-10

External Websites
Parallel Computing with MATLAB (53 min 27 sec)

6 Functions

6-84

https://www.mathworks.com/videos/parallel-computing-with-matlab-81694.html

displaypoints
Return points per predictor per bin for a compactCreditScorecard object

Syntax
PointsInfo = displaypoints(csc)
[PointsInfo,MinScore,MaxScore] = displaypoints(csc)
[PointsInfo,MinScore,MaxScore] = displaypoints(___ ,Name,Value)

Description
PointsInfo = displaypoints(csc) returns a table of points for all bins of all predictor variables
used in the compactCreditScorecard object. The PointsInfo table displays information on the
predictor name, bin labels, and the corresponding points per bin.

[PointsInfo,MinScore,MaxScore] = displaypoints(csc) returns a table of points for all
bins of all predictor variables used in the compactCreditScorecard object. The PointsInfo table
displays information on the predictor name, bin labels, and the corresponding points per bin and
displaypoints. In addition, the optional MinScore and MaxScore values are returned.

[PointsInfo,MinScore,MaxScore] = displaypoints(___ ,Name,Value) specifies options
using one or more name-value pair arguments in addition to the input arguments in the previous
syntax.

Examples

Display Points for a compactCreditScorecard Object

To create a compactCreditScorecard object, first create a creditscorecard object using the
CreditCardData.mat file to load the data (using a dataset from Refaat 2011).

load CreditCardData.mat
sc = creditscorecard(data)

sc =
 creditscorecard with properties:

 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ''
 VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'status'}
 NumericPredictors: {'CustID' 'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'}
 CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
 BinMissingData: 0
 IDVar: ''
 PredictorVars: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'}
 Data: [1200x11 table]

Before creating a compactCreditScorecard object, you must use autobinning and fitmodel
with the creditscorecard object.

 displaypoints

6-85

sc = autobinning(sc);
sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
 logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ______ __________

 (Intercept) 0.70239 0.064001 10.975 5.0538e-28
 CustAge 0.60833 0.24932 2.44 0.014687
 ResStatus 1.377 0.65272 2.1097 0.034888
 EmpStatus 0.88565 0.293 3.0227 0.0025055
 CustIncome 0.70164 0.21844 3.2121 0.0013179
 TmWBank 1.1074 0.23271 4.7589 1.9464e-06
 OtherCC 1.0883 0.52912 2.0569 0.039696
 AMBalance 1.045 0.32214 3.2439 0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Use the creditscorecard object with compactCreditScorecard to create a
compactCreditScorecard object.

csc = compactCreditScorecard(sc)

csc =
 compactCreditScorecard with properties:

 Description: ''
 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ''
 NumericPredictors: {'CustAge' 'CustIncome' 'TmWBank' 'AMBalance'}
 CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
 PredictorVars: {'CustAge' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance'}

Then use displaypoints with the compactCreditScorecard object to return a table of points for
all bins of all predictor variables used in the compactCreditScorecard object.

[PointsInfo,MinScore,MaxScore] = displaypoints(csc)

PointsInfo=37×3 table
 Predictors Bin Points
 ______________ ________________ _________

6 Functions

6-86

 {'CustAge' } {'[-Inf,33)' } -0.15894
 {'CustAge' } {'[33,37)' } -0.14036
 {'CustAge' } {'[37,40)' } -0.060323
 {'CustAge' } {'[40,46)' } 0.046408
 {'CustAge' } {'[46,48)' } 0.21445
 {'CustAge' } {'[48,58)' } 0.23039
 {'CustAge' } {'[58,Inf]' } 0.479
 {'CustAge' } {'<missing>' } NaN
 {'ResStatus' } {'Tenant' } -0.031252
 {'ResStatus' } {'Home Owner' } 0.12696
 {'ResStatus' } {'Other' } 0.37641
 {'ResStatus' } {'<missing>' } NaN
 {'EmpStatus' } {'Unknown' } -0.076317
 {'EmpStatus' } {'Employed' } 0.31449
 {'EmpStatus' } {'<missing>' } NaN
 {'CustIncome'} {'[-Inf,29000)'} -0.45716
 ⋮

MinScore = -1.3100

MaxScore = 3.0726

displaypoints always displays a '<missing>' bin for each predictor. The value of the
'<missing>' bin comes from the initial creditscorecard object, and the '<missing>' bin is set
to NaN whenever the scorecard model has no information on how to assign points to missing data.

To configure the points for the '<missing>' bin, you must use the initial creditscorecard object.
For predictors that have missing values in the training set, the points for the '<missing>' bin are
estimated from the data if the 'BinMissingData' name-value pair argument is set to true using
creditscorecard. When the 'BinMissingData' parameter is set to false, or when the data
contains no missing values in the training set, use the 'Missing' name-value pair argument in
formatpoints to indicate how to assign points to the missing data. Then, rebuild the
compactCreditScorecard object and rerun displaypoints. Here is an example of this workflow:

sc = formatpoints(sc,'Missing','minpoints');
csc = compactCreditScorecard(sc);
[PointsInfo,MinScore,MaxScore] = displaypoints(csc)

PointsInfo=37×3 table
 Predictors Bin Points
 ______________ ________________ _________

 {'CustAge' } {'[-Inf,33)' } -0.15894
 {'CustAge' } {'[33,37)' } -0.14036
 {'CustAge' } {'[37,40)' } -0.060323
 {'CustAge' } {'[40,46)' } 0.046408
 {'CustAge' } {'[46,48)' } 0.21445
 {'CustAge' } {'[48,58)' } 0.23039
 {'CustAge' } {'[58,Inf]' } 0.479
 {'CustAge' } {'<missing>' } -0.15894
 {'ResStatus' } {'Tenant' } -0.031252
 {'ResStatus' } {'Home Owner' } 0.12696
 {'ResStatus' } {'Other' } 0.37641
 {'ResStatus' } {'<missing>' } -0.031252
 {'EmpStatus' } {'Unknown' } -0.076317
 {'EmpStatus' } {'Employed' } 0.31449
 {'EmpStatus' } {'<missing>' } -0.076317

 displaypoints

6-87

 {'CustIncome'} {'[-Inf,29000)'} -0.45716
 ⋮

MinScore = -1.3100

MaxScore = 3.0726

Display Points for a compactCreditScorecard Object That Contains Missing Data

To create a compactCreditScorecard object, first create a creditscorecard object using the
CreditCardData.mat file to load the data (using a dataset from Refaat 2011). Using the
dataMissing dataset, set the 'BinMissingData' indicator to true.

load CreditCardData.mat
sc = creditscorecard(dataMissing,'BinMissingData',true);

Before creating a compactCreditScorecard object, you must use autobinning and fitmodel
with the creditscorecard object. First, use autobinning with the creditscorecard object.

sc = autobinning(sc);

The binning map or rules for categorical data are summarized in a "category grouping" table,
returned as an optional output. By default, each category is placed in a separate bin. Here is the
information for the predictor ResStatus.

[bi,cg] = bininfo(sc,'ResStatus')

bi=5×6 table
 Bin Good Bad Odds WOE InfoValue
 ______________ ____ ___ ______ _________ __________

 {'Tenant' } 296 161 1.8385 -0.095463 0.0035249
 {'Home Owner'} 352 171 2.0585 0.017549 0.00013382
 {'Other' } 128 52 2.4615 0.19637 0.0055808
 {'<missing>' } 27 13 2.0769 0.026469 2.3248e-05
 {'Totals' } 803 397 2.0227 NaN 0.0092627

cg=3×2 table
 Category BinNumber
 ______________ _________

 {'Tenant' } 1
 {'Home Owner'} 2
 {'Other' } 3

To group categories 'Tenant' and 'Other', modify the category grouping table cg, so the bin
number for 'Other' is the same as the bin number for 'Tenant'. Then use modifybins to update
the creditscorecard object.

cg.BinNumber(3) = 2;
sc = modifybins(sc,'ResStatus','Catg',cg);

6 Functions

6-88

Display the updated bin information using bininfo. Note that the bin labels has been updated and
that the bin membership information is contained in the category grouping cg.

[bi,cg] = bininfo(sc,'ResStatus')

bi=4×6 table
 Bin Good Bad Odds WOE InfoValue
 _____________ ____ ___ ______ _________ __________

 {'Group1' } 296 161 1.8385 -0.095463 0.0035249
 {'Group2' } 480 223 2.1525 0.062196 0.0022419
 {'<missing>'} 27 13 2.0769 0.026469 2.3248e-05
 {'Totals' } 803 397 2.0227 NaN 0.00579

cg=3×2 table
 Category BinNumber
 ______________ _________

 {'Tenant' } 1
 {'Home Owner'} 2
 {'Other' } 2

Use formatpoints with the 'Missing' name-value pair argument to indicate that missing data is
assigned 'maxpoints'.

sc = formatpoints(sc,'BasePoints',true,'Missing','maxpoints','WorstAndBest',[300 800]);

Use fitmodel to fit the model.

sc = fitmodel(sc,'VariableSelection','fullmodel','Display','Off');

Use the creditscorecard object with compactCreditScorecard to create a
compactCreditScorecard object.

csc = compactCreditScorecard(sc)

csc =
 compactCreditScorecard with properties:

 Description: ''
 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ''
 NumericPredictors: {'CustID' 'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'}
 CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
 PredictorVars: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'}

Then use displaypoints with the compactCreditScorecard object to return a table of points for
all bins of all predictor variables used in the compactCreditScorecard object. By setting the
displaypoints name-value pair argument for 'ShowCategoricalMembers' to true, all the
members contained in each individual group are displayed.

[PointsInfo,MinScore,MaxScore] = displaypoints(csc,'ShowCategoricalMembers',true)

PointsInfo=51×3 table
 Predictors Bin Points

 displaypoints

6-89

 _______________ ______________ _______

 {'BasePoints' } {'BasePoints'} 535.25
 {'CustID' } {'[-Inf,121)'} 12.085
 {'CustID' } {'[121,241)' } 5.4738
 {'CustID' } {'[241,1081)'} -1.4061
 {'CustID' } {'[1081,Inf]'} -7.2217
 {'CustID' } {'<missing>' } 12.085
 {'CustAge' } {'[-Inf,33)' } -25.973
 {'CustAge' } {'[33,37)' } -22.67
 {'CustAge' } {'[37,40)' } -17.122
 {'CustAge' } {'[40,46)' } -2.8071
 {'CustAge' } {'[46,48)' } 9.5034
 {'CustAge' } {'[48,51)' } 10.913
 {'CustAge' } {'[51,58)' } 13.844
 {'CustAge' } {'[58,Inf]' } 37.541
 {'CustAge' } {'<missing>' } -9.7271
 {'TmAtAddress'} {'[-Inf,23)' } -9.3683
 ⋮

MinScore = 300.0000

MaxScore = 800.0000

Input Arguments
csc — Compact credit scorecard model
compactCreditScorecard object

Compact credit scorecard model, specified as a compactCreditScorecard object.

To create a compactCreditScorecard object, use compactCreditScorecard or compact from
Financial Toolbox.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [PointsInfo,MinScore,MaxScore] =
displaypoints(csc,'ShowCategoricalMembers',true)

ShowCategoricalMembers — Indicator for how to display bins labels of categories that were
grouped together
false (default) | true or false

Indicator for how to display bins labels of categories that were grouped together, specified as the
comma-separated pair consisting of 'ShowCategoricalMembers' and a logical scalar with a value
of true or false.

6 Functions

6-90

By default, when 'ShowCategoricalMembers' is false, bin labels are displayed as Group1,
Group2,...,Groupn, or if the bin labels were modified in creditscorecard, then the user-defined
bin label names are displayed.

If 'ShowCategoricalMembers' is true, all the members contained in each individual group are
displayed.
Data Types: logical

Output Arguments
PointsInfo — One row per bin, per predictor, with the corresponding points
table

One row per bin, per predictor, with the corresponding points, returned as a table. For example:

Predictors Bin Points
Predictor_1 Bin_11 Points_11
Predictor_1 Bin_12 Points_12
Predictor_1 Bin_13 Points_13

Predictor_1 '<missing>' NaN (Default)
Predictor_2 Bin_21 Points_21
Predictor_2 Bin_22 Points_22
Predictor_2 Bin_23 Points_23

Predictor_2 '<missing>' NaN (Default)
Predictor_j Bin_ji Points_ji

Predictor_j '<missing>' NaN (Default)

displaypoints always displays a '<missing>' bin for each predictor. The value of the
'<missing>' bin comes from the initial creditscorecard object, and the '<missing>' bin is set
to NaN whenever the scorecard model has no information on how to assign points to missing data.

To configure the points for the '<missing>' bin, you must use the initial creditscorecard object.
For predictors that have missing values in the training set, the points for the '<missing>' bin are
estimated from the data if the 'BinMissingData' name-value pair argument for is set to true
using creditscorecard. When the 'BinMissingData' parameter is set to false, or when the
data contains no missing values in the training set, use the 'Missing' name-value pair argument in
formatpoints to indicate how to assign points to the missing data. Then rebuild the
compactCreditScorecard object and rerun displaypoints.

When base points are reported separately (see formatpoints), the first row of the returned
PointsInfo table contains the base points.

MinScore — Minimum possible total score
scalar

 displaypoints

6-91

Minimum possible total score, returned as a scalar.

Note Minimum score is the lowest possible total score in the mathematical sense, independently of
whether a low score means high risk or low risk.

MaxScore — Maximum possible total score
scalar

Maximum possible total score, returned as a scalar.

Note Maximum score is the highest possible total score in the mathematical sense, independently of
whether a high score means high risk or low risk.

Algorithms
The points for predictor j and bin i are, by default, given by

Points_ji = (Shift + Slope*b0)/p + Slope*(bj*WOEj(i))

where bj is the model coefficient of predictor j, p is the number of predictors in the model, and
WOEj(i) is the Weight of Evidence (WOE) value for the i-th bin corresponding to the j-th model
predictor. Shift and Slope are scaling constants.

When the base points are reported separately (see the formatpoints name-value pair argument
BasePoints), the base points are given by

Base Points = Shift + Slope*b0,

and the points for the j-th predictor, i-th row are given by

Points_ji = Slope*(bj*WOEj(i))).

By default, the base points are not reported separately.

The minimum and maximum scores are:
MinScore = Shift + Slope*b0 + min(Slope*b1*WOE1) + ... +min(Slope*bp*WOEp)),
MaxScore = Shift + Slope*b0 + max(Slope*b1*WOE1) + ... +max(Slope*bp*WOEp)).

Use formatpoints to control the way points are scaled, rounded, and whether the base points are
reported separately. See formatpoints for more information on format parameters and for details
and formulas on these formatting options.

Version History
Introduced in R2019a

References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

6 Functions

6-92

See Also
compactCreditScorecard | score | probdefault | validatemodel

Topics
“compactCreditScorecard Object Workflow” on page 3-57
“Case Study for Credit Scorecard Analysis”
“Credit Scorecard Modeling with Missing Values”
“Credit Scorecard Modeling Workflow”
“About Credit Scorecards”

 displaypoints

6-93

fitEADModel
Create specified EAD model object type

Syntax
eadModel = fitEADModel(data,ModelType)
eadModel = fitEADModel(___ ,Name=Value)

Description
eadModel = fitEADModel(data,ModelType) creates an exposure at default (EAD) model object
specified by data and ModelType. fitEADModel takes in credit data in table form and fits an EAD
model. ModelType is supported for a Regression, Tobit, or Beta model.

eadModel = fitEADModel(___ ,Name=Value) specifies options using one or more name-value
arguments in addition to the input arguments in the previous syntax. The available optional name-
value arguments depend on the specified ModelType.

Examples

Create Regression EAD Model

This example shows how to use fitEADModel to create a Regression model for exposure at default
(EAD).

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

6 Functions

6-94

Select Model Type

Select a model type for Regression or Tobit.

ModelType = ;

Select Conversion Measure

Select a conversion measure for the EAD response values.

ConversionMeasure = ;

Create Regression EAD Model

Use fitEADModel to create a Regression model using EADData.

eadModel = fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);

 Regression with properties:

 ConversionTransform: "logit"
 BoundaryTolerance: 1.0000e-07
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the
EAD response data. Use the 'BoundaryTolerance', 'LimitVar', and 'DrawnVar' name-value
arguments to modify the transformation.

eadModel.UnderlyingModel

ans =
Compact linear regression model:
 EAD_lcf_logit ~ 1 + UtilizationRate + Age + Marriage

Estimated Coefficients:
 Estimate SE tStat pValue
 _________ _________ _______ __________

 (Intercept) -2.4745 0.29892 -8.2781 1.6448e-16
 UtilizationRate 6.0045 0.19901 30.172 7.703e-182
 Age -0.020095 0.0073019 -2.752 0.0059471
 Marriage_not married -0.03509 0.13935 -0.2518 0.8012

Number of observations: 4378, Error degrees of freedom: 4374
Root Mean Squared Error: 4.48
R-squared: 0.173, Adjusted R-Squared: 0.173
F-statistic vs. constant model: 305, p-value = 5.7e-180

 fitEADModel

6-95

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-vale argument.

predictedEAD = predict(eadModel, EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel, EADData(TestInd,:),ModelLevel="ConversionMeasure");

Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot,
modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

ModelLevel = ;
[DiscMeasure1, DiscData1] = modelDiscrimination(eadModel, EADData(TestInd,:),ModelLevel=ModelLevel);
modelDiscriminationPlot(eadModel, EADData(TestInd, :), ModelLevel=ModelLevel,SegmentBy="Marriage");

Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the
predictions.

YData = ;

6 Functions

6-96

[CalMeasure1, CalData1] = modelCalibration(eadModel, EADData(TestInd,:), ModelLevel=ModelLevel);
modelCalibrationPlot(eadModel, EADData(TestInd,:),ModelLevel=ModelLevel,YData=YData);

Plot a histogram of observed with respect to the predicted EAD.

figure;
histogram(CalData1.Observed);
hold on;
histogram(CalData1.(('Predicted_' + ModelType)));
xlabel(ConversionMeasure);
legend('Observed', 'Predicted');

 fitEADModel

6-97

Input Arguments
data — Data for loss given default
table

Data for loss given default, specified as a table.
Data Types: table

ModelType — Type of EAD model
character vector with values 'Regression', 'Tobit', or 'Beta' | string with values
"Regression", "Tobit", or "Beta"

Type of EAD model, specified as a scalar string or character vector. Use one of following values:

• Regression —Transform the EAD response variable and fit a linear regression model. For more
information, see “Exposure at Default Regression Models” on page 6-645.

• Tobit — Fit a Tobit "censored" regression model. For more information, see “Exposure at Default
Tobit Models” on page 6-656.

• Beta — Fit a Beta regression model. For more information, see “Beta Regression Models” on page
6-669.

Data Types: string | char

6 Functions

6-98

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: eadModel =
fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriag
e'},ConversionMeasure="ccf",DrawnVar='Drawn',LimitVar='Limit',ResponseVar='EA
D')

The available name-value arguments depend on the value you specify for ModelType.

• Regression — See “Regression Name-Value Arguments” on page 6-638.
• Tobit — See “Tobit Name-Value Arguments” on page 6-648.
• Beta — See “Beta Name-Value Arguments” on page 6-661.

Output Arguments
eadModel — Exposure at default model
eadModel object

Loss given default model, returned as an eadModel object for a Regression, Tobit, or Beta model.

Version History
Introduced in R2021b

R2022b: Support Beta regression for EAD model
Behavior changed in R2022b

To create a Beta model use a ModelType of "Beta".

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory
and Applications. SAS Institute, 2014.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also
Regression | Tobit | Beta

Topics
“Compare Results for Regression and Tobit EAD Models” on page 4-151

 fitEADModel

6-99

“Overview of Exposure at Default Models” on page 1-34

6 Functions

6-100

fitLGDModel
Create specified LGD model object type

Syntax
lgdModel = fitLGDModel(data,ModelType)
lgdModel = fitLGDModel(___ ,Name,Value)

Description
lgdModel = fitLGDModel(data,ModelType) creates a loss given default (LGD) model object
specified by data and ModelType. fitLGDModel takes in credit data in table form and fits a LGD
model. ModelType is supported for Regression, Tobit, or Beta.

lgdModel = fitLGDModel(___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input arguments in the previous syntax. The available optional
name-value pair arguments depend on the specified ModelType.

Examples

Create Regression LGD Model

This example shows how to use fitLGDModel to create a Regression model for loss given default
(LGD).

Load LGD Data

Load the LGD data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

Create Regression LGD Model

Use fitLGDModel to create a Regression model using the data.

lgdModel = fitLGDModel(data,'regression',...
 'ModelID','Example',...
 'Description','Example LGD regression model.',...

 fitLGDModel

6-101

 'PredictorVars',{'LTV' 'Age' 'Type'},...
 'ResponseVar','LGD');
disp(lgdModel)

 Regression with properties:

 ResponseTransform: "logit"
 BoundaryTolerance: 1.0000e-05
 ModelID: "Example"
 Description: "Example LGD regression model."
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model. The underlying model's response variable is the logit transformation of
the LGD response data. Use the 'ResponseTransform' and 'BoundaryTolerance' arguments to
modify the transformation.

lgdModel.UnderlyingModel

ans =
Compact linear regression model:
 LGD_logit ~ 1 + LTV + Age + Type

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept) -5.1939 0.28351 -18.32 1.203e-71
 LTV 3.3217 0.33058 10.048 1.9484e-23
 Age -1.4953 0.068658 -21.779 1.0596e-98
 Type_investment 1.3813 0.19406 7.1178 1.3259e-12

Number of observations: 3487, Error degrees of freedom: 3483
Root Mean Squared Error: 4.3
R-squared: 0.195, Adjusted R-Squared: 0.194
F-statistic vs. constant model: 281, p-value = 2.32e-163

Predict LGD

For LGD prediction, the LGD model applies the inverse transformation so the predictions are in the
LGD scale, not in the transformed scale used to fit the underlying model.

predictedLGD = predict(lgdModel,data);
histogram(predictedLGD)
title('Predicted LGD Histogram')
xlabel('Predicted LGD')
ylabel('Frequency')

6 Functions

6-102

Validate LGD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot,
modelCalibration, and modelCalibrationPlot.

For example, use modelDiscriminationPlot to plot the ROC curve.

modelDiscriminationPlot(lgdModel,data)

 fitLGDModel

6-103

Use modelCalibrationPlot to show a scatter plot of the predictions.

modelCalibrationPlot(lgdModel,data)

6 Functions

6-104

Input Arguments
data — Data for loss given default
table

Data for loss given default, specified as a table.
Data Types: table

ModelType — Type of LGD model
character vector with value 'Regression', 'Tobit', or 'Beta' | string with value "Regression",
"Tobit", or "Beta"

Type of LGD model, specified as a scalar string or character vector. Use one of following values:

• Regression —Transform the LGD response variable and fit a linear regression model. For more
information, see “Loss Given Default Regression Models” on page 6-677.

• Tobit — Fit a Tobit regression model. For more information, see “Loss Given Default Tobit
Models” on page 6-694.

• Beta — Fit a Beta regression model. For more information, see “Beta Regression Models” on page
6-685.

Data Types: string | char

 fitLGDModel

6-105

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: lgdModel = fitLGDModel(data,'regression','PredictorVars',{'LTV'
'Age','Type'},'ResponseVar','LGD','ResponseTransform','probit','BoundaryToler
ance',1e-6)

The available name-value pair arguments depend on the value you specify for ModelType.

• Regression — See “Regression Name-Value Pair Arguments” on page 6-672.
• Tobit — See “Tobit Name-Value Pair Arguments” on page 6-688.
• Beta — See “Beta Name-Value Pair Arguments” on page 6-680.

Output Arguments
lgdModel — Loss given default model
lgdModel object

Loss given default model, returned as an lgdModel object. Supported classes are Regression,
Tobit, and Beta.

Version History
Introduced in R2021a

R2022b: Support Beta regression for LGD model
Behavior changed in R2022b

To create a Beta model use a ModelType of "Beta".

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

See Also
Regression | Tobit | Beta

Topics
“Model Loss Given Default” on page 4-90
“Basic Loss Given Default Model Validation” on page 4-131
“Compare Tobit LGD Model to Benchmark Model” on page 4-133
“Compare Loss Given Default Models Using Cross-Validation” on page 4-140

6 Functions

6-106

“Overview of Loss Given Default Models” on page 1-31

 fitLGDModel

6-107

fitLifetimePDModel
Create specified lifetime PD model object type

Syntax
pdModel = fitLifetimePDModel(data,ModelType)
pdModel = fitLifetimePDModel(___ ,Name,Value)

Description
pdModel = fitLifetimePDModel(data,ModelType) creates a lifetime probability of default
(PD) model object specified by data and ModelType. fitLifetimePDModel takes in credit data in
panel data form and fits a lifetime PD model. ModelType is supported for Logistic, Probit, or
Cox.

pdModel = fitLifetimePDModel(___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax. The available optional
name-value pair arguments depend on the specified ModelType.

Examples

Create Logistic Lifetime PD Model

This example shows how to use fitLifetimePDModel to create a Logistic model using credit and
macroeconomic data.

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat
disp(head(data))

 ID ScoreGroup YOB Default Year
 __ __________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004

disp(head(dataMacro))

 Year GDP Market
 ____ _____ ______

 1997 2.72 7.61

6 Functions

6-108

 1998 3.57 26.24
 1999 2.86 18.1
 2000 2.43 3.19
 2001 1.26 -10.51
 2002 -0.59 -22.95
 2003 0.63 2.78
 2004 1.85 9.48

Join the two data components into a single data set.

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Partition Data

Separate the data into training and test partitions.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Create Logistic Lifetime PD Model

Use fitLifetimePDModel to create a Logistic model using the training data.

pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Logistic",...
 'AgeVar','YOB',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},...
 'ResponseVar','Default');
disp(pdModel)

 Logistic with properties:

 ModelID: "Logistic"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"

 fitLifetimePDModel

6-109

 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

Display the underlying model.

pdModel.UnderlyingModel

ans =
Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -2.7422 0.10136 -27.054 3.408e-161
 ScoreGroup_Medium Risk -0.68968 0.037286 -18.497 2.1894e-76
 ScoreGroup_Low Risk -1.2587 0.045451 -27.693 8.4736e-169
 YOB -0.30894 0.013587 -22.738 1.8738e-114
 GDP -0.11111 0.039673 -2.8006 0.0051008
 Market -0.0083659 0.0028358 -2.9502 0.0031761

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0

Predict Conditional and Lifetime PD

Use the predict function to predict conditional PD values. The prediction is a row-by-row prediction.

dataCustomer1 = data(1:8,:);
CondPD = predict(pdModel,dataCustomer1)

CondPD = 8×1

 0.0092
 0.0053
 0.0045
 0.0039
 0.0037
 0.0037
 0.0019
 0.0012

Use predictLifetime to predict the lifetime cumulative PD values (computing marginal and
survival PD values is also supported). The predictLifetime function uses the ID variable (see the
'IDVar' property for the Logistic object) to transform conditional PDs to cumulative PDs for each
ID.

LifetimePD = predictLifetime(pdModel,dataCustomer1)

LifetimePD = 8×1

 0.0092

6 Functions

6-110

 0.0145
 0.0189
 0.0228
 0.0264
 0.0300
 0.0319
 0.0330

Validate Model

Use modelDiscrimination to measure the ranking of customers by PD.

DiscMeasure = modelDiscrimination(pdModel,data(TestDataInd,:),DataID='test data');
disp(DiscMeasure)

 AUROC

 Logistic, test data 0.70009

Use modelDiscriminationPlot to visualize the ROC curve.

modelDiscriminationPlot(pdModel,data(TestDataInd,:),DataID='test data');

Use modelCalibration to measure the calibration of the predicted PD values. The
modelCalibration function requires a grouping variable and compares the accuracy of the

 fitLifetimePDModel

6-111

observed default rate in the group with the average predicted PD for the group. For example, you can
group by calendar year using the 'Year' variable.

CalMeasure = modelCalibration(pdModel,data(TestDataInd,:),'Year',DataID='test data');
disp(CalMeasure)

 RMSE

 Logistic, grouped by Year, test data 0.000453

Use modelCalibrationPlot to visualize the observed default rates compared to the predicted
probabilities of default (PD).

modelCalibrationPlot(pdModel,data(TestDataInd,:),'Year',DataID='test data');

Input Arguments
data — Data
table

Data, specified as a table, in panel data form. The data must contain an ID column. The response
variable must be a binary variable with the value 0 or 1, with 1 indicating default.
Data Types: table

6 Functions

6-112

ModelType — Type of PD model
character vector with value 'Logistic', 'Probit', or 'Cox' | string with value "Logistic",
"Probit", or "Cox"

Type of PD model, specified as a scalar string or character vector. Use one of following values:

• Logistic —Fit a Logistic model for lifetime probability. For more information, see “Time Interval
for Logistic Models” on page 6-623.

• Probit — Fit a Probit model for lifetime probability. For more information, see “Time Interval for
Probit Models” on page 6-634.

• Cox — Fit a Cox model for lifetime probability. For more information, see “Cox Proportional
Hazards Models” on page 6-550.

Data Types: string | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: pdModel =
fitLifetimePDModel(data(TrainDataInd,:),ModelType,'AgeVar',"YOB",'IDVar',"ID"
,'LoanVars',"ScoreGroup",'MacroVars',
{'GDP','Market'},'ResponseVar',"Default")

The available name-value pair arguments depend on the value you specify for ModelType.

• Logistic — See “Logistic Name-Value Pair Arguments” on page 6-616.
• Probit — See “Probit Name-Value Pair Arguments” on page 6-627.
• Cox — See “Cox Name-Value Arguments” on page 6-537.

Output Arguments
pdModel — Probability of default model
pdModel object

Probability of default model, returned as a pdModel object. Supported classes are Logistic,
Probit, or Cox.

Version History
Introduced in R2020b

References
Independently published

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement
Techniques, Applications, and Examples in SAS. Wiley, 2016.

 fitLifetimePDModel

6-113

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models
LLC, 2018.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python.
Independently published, 2020.

See Also
Logistic | Probit | Cox

Topics
“Basic Lifetime PD Model Validation” on page 4-129
“Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
“Compare Lifetime PD Models Using Cross-Validation” on page 4-121
“Expected Credit Loss Computation” on page 4-124
“Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on page
4-144
“Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-75
“Overview of Lifetime Probability of Default Models” on page 1-25

6 Functions

6-114

fullTriangle
Display full development triangle including ultimate claims

Syntax
fullTriangleTable = fullTriangle(developmentTriangle)

Description
fullTriangleTable = fullTriangle(developmentTriangle) calculates the projected claims
for every origin and development period in the lower half of the development triangle.

Examples

Creates Filled Development Triangles

Calculate the projected claims for every origin and development period in the lower half of the
development triangle for a developmentTriangle object containing simulated insurance claims
data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data.

dT = developmentTriangle(data)

dT =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

 fullTriangle

6-115

Use the ultimateClaims function to calculate CDFs and the percentage of total claims and return a
table with the selected link ratios, CDFs, and percentage of total claims.

dT.SelectedLinkRatio = [1.1755, 1.0577, 1.0273, 1.0104, 1.0044, 1.0026, 1.0016, 1.0006, 1.0004];
selectedLinkRatiosTable = cdfSummary(dT)

selectedLinkRatiosTable=3×10 table
 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 Ultimate
 _______ _______ _______ _______ _______ _______ ______ ______ _______ ________

 Selected 1.1755 1.0577 1.0273 1.0104 1.0044 1.0026 1.0016 1.0006 1.0004 1
 CDF to Ultimate 1.303 1.1084 1.048 1.0201 1.0096 1.0052 1.0026 1.001 1.0004 1
 Percent of Total Claims 0.76747 0.90216 0.95422 0.98027 0.99046 0.99482 0.9974 0.999 0.9996 1

Use the fullTriangle function to create a table containing the filled development triangle.

fullTriangleTable = fullTriangle(dT)

fullTriangleTable=10×11 table
 12 24 36 48 60 72 84 96 108 120 Ultimate
 ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ________

 2010 3995.7 4635 4866.8 4964.1 5013.7 5038.8 5059 5074.1 5084.3 5089.4 5089.4
 2011 3968 4682.3 4963.2 5062.5 5113.1 5138.7 5154.1 5169.6 5179.9 5182 5182
 2012 4217 5060.4 5364 5508.9 5558.4 5586.2 5608.6 5625.4 5628.8 5631 5631
 2013 4374.2 5205.3 5517.7 5661.1 5740.4 5780.6 5803.7 5813 5816.5 5818.8 5818.8
 2014 4499.7 5309.6 5628.2 5785.8 5849.4 5878.7 5894 5903.4 5906.9 5909.3 5909.3
 2015 4530.2 5300.4 5565.4 5715.7 5772.8 5798.2 5813.3 5822.6 5826.1 5828.4 5828.4
 2016 4572.6 5304.2 5569.5 5714.3 5773.7 5799.1 5814.2 5823.5 5827 5829.3 5829.3
 2017 4680.6 5523.1 5854.4 6014.3 6076.8 6103.6 6119.4 6129.2 6132.9 6135.3 6135.3
 2018 4696.7 5495.1 5812.2 5970.9 6032.9 6059.5 6075.2 6085 6088.6 6091.1 6091.1
 2019 4945.9 5813.9 6149.4 6317.2 6382.9 6411 6427.7 6438 6441.8 6444.4 6444.4

Input Arguments
developmentTriangle — Development triangle
developmentTriangle object

Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

Output Arguments
fullTriangleTable — Filled development triangle
table

Filled development triangle, returned as a table.

Version History
Introduced in R2020b

6 Functions

6-116

See Also
view | linkRatios | linkRatioAverages | cdfSummary | ultimateClaims | linkRatiosPlot |
claimsPlot

Topics
“Mean Square Error of Prediction for Estimated Ultimate Claims” on page 4-161
“Bootstrap Using Chain Ladder Method” on page 4-168
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 fullTriangle

6-117

ibnr
Compute IBNR claims for bornhuetterFerguson object

Syntax
ibnrClaims = ibnr(bf)
ibnrClaims = ibnr(___ ,referenceClaimsType)

Description
ibnrClaims = ibnr(bf) computes incurred-but-not-reported (IBNR) claims for reported or paid
claims for a bornhuetterFerguson object.

ibnrClaims = ibnr(___ ,referenceClaimsType) additionally specifies the type of claims data.
Specify this argument after the input argument in the previous syntax.

Examples

Compute IBNR Claims for bornhuetterFerguson Object

Compute IBNR for either reported or paid claims for a bornhuetterFerguson object containing
simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]

6 Functions

6-118

 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create an expectedClaims object where the first input argument is the reported development
triangle and the second input argument is the paid development triangle.

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)

ec =
 expectedClaims with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 InitialClaims: [10x1 double]
 CaseOutstanding: [10x1 double]
 EstimatedClaimsRatios: [10x1 double]
 SelectedClaimsRatios: [10x1 double]

Create a bornhuetterFerguson object with reported claims, paid claims, and expected claims to
calculate ultimate claims, cases outstanding, IBNR claims, and unpaid claims estimates.

bf = bornhuetterFerguson(dT_reported, dT_paid, ec.ultimateClaims)

bf =
 bornhuetterFerguson with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 ExpectedClaims: [10x1 double]
 PercentUnreported: [10x1 double]
 PercentUnpaid: [10x1 double]
 CaseOutstanding: [10x1 double]

Use ibnr to compute IBNR reported claims for a bornhuetterFerguson object.

ibnrClaims = ibnr(bf,"reported")

 ibnr

6-119

ibnrClaims = 10×1
103 ×

 0
 0.0052
 0.0167
 0.0347
 0.0572
 0.0889
 0.1496
 0.3006
 0.6118
 1.5509

Input Arguments
bf — Bornhuetter-Ferguson
bornhuetterFerguson object

Bornhuetter-Ferguson object, specified as a previously created bornhuetterFerguson object.
Data Types: object

referenceClaimsType — Type of claims data
'reported' (default) | character vector with value 'reported' or 'paid' | string with value
"reported" or "paid"

Type of claims data, specified as a character vector or a string.
Data Types: char | string

Output Arguments
ibnrClaims — IBNR claims
array

IBNR claims, returned as an array.

More About
IBNR

Incurred-but-not-reported (IBNR) claims are the claims amount owed by an insurer to all valid
claimants who have had a covered loss but have not yet reported it.

Since the insurer knows neither how many of these losses have occurred nor the severity of each loss,
IBNR is necessarily an estimate.

Version History
Introduced in R2020b

6 Functions

6-120

See Also
ultimateClaims | unpaidClaims | summary

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 ibnr

6-121

ibnr
Compute IBNR claims for capeCod object

Syntax
ibnrClaims = ibnr(cc)

Description
ibnrClaims = ibnr(cc) computes incurred-but-not-reported (IBNR) claims for reported or paid
claims for a capeCod object.

Examples

Compute IBNR Claims for capeCod Object

This example shows how to compute the incurred-but-not-reported (IBNR) claims for a capeCod
object for simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

6 Functions

6-122

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create a capeCod object where the first input argument is the reported development triangle, the
second input argument is the paid development triangle, and the third input is the earned premium.

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
cc = capeCod(dT_reported, dT_paid,earnedPremium)

cc =
 capeCod with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 UsedUpPremium: [10x1 double]
 EstimatedClaimRatios: [10x1 double]
 ExpectedClaimRatio: 0.4258
 EstimatedExpectedClaims: [10x1 double]
 PercentUnreported: [10x1 double]
 CaseOutstanding: [10x1 double]

Use ibnr to compute the IBNR claims.

ibnrClaims = ibnr(cc)

ibnrClaims = 10×1

 0
 7.6650
 12.7454
 48.3382
 66.0055
 63.9011
 118.9799
 208.8065
 594.2093
 999.9805

Input Arguments
cc — Cape Cod object
capeCod object

 ibnr

6-123

Cape Cod object, specified as a previously created capeCod object.
Data Types: object

Output Arguments
ibnrClaims — IBNR claims
array

IBNR claims, returned as an array.

More About
IBNR

Incurred-but-not-reported (IBNR) claims are the claims amount owed by an insurer to all valid
claimants who have had a covered loss but have not yet reported it.

Since the insurer knows neither how many of these losses have occurred nor the severity of each loss,
IBNR is necessarily an estimate.

Version History
Introduced in R2021a

See Also
unpaidClaims | ultimateClaims | summary

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

6 Functions

6-124

ibnr
Compute IBNR claims for chainLadder object

Syntax
ibnrClaims = ibnr(cl)
ibnrClaims = ibnr(___ ,referenceClaimsType)

Description
ibnrClaims = ibnr(cl) computes incurred-but-not-reported (IBNR) claims for a chainLadder
object.

ibnrClaims = ibnr(___ ,referenceClaimsType) additionally specifies the type of claims data.
Specify this argument after the input argument in the previous syntax.

Examples

Calculate IBNR Claims for chainLadder

Calculate the IBNR claims for a chainLadder object containing simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""

 ibnr

6-125

 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create a chainLadder object where the first input argument is the reported development triangle
and the second input argument is the paid development triangle.

cl = chainLadder(dT_reported, dT_paid)

cl =
 chainLadder with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 CaseOutstanding: [10x1 double]

Use ibnr to compute the IBNR claims.

ibnrClaims = ibnr(cl, 'reported')

ibnrClaims = 10×1
103 ×

 0
 0.0052
 0.0169
 0.0349
 0.0575
 0.0880
 0.1489
 0.3019
 0.6084
 1.5181

Input Arguments
cl — Chain Ladder
chainLadder object

6 Functions

6-126

Chain ladder, specified as a previously created chainLadder object.
Data Types: object

referenceClaimsType — Type of claims data
'reported' (default) | character vector with value 'reported' or 'paid' | string with value
"reported" or "paid"

Type of claims data, specified as a character vector or string.
Data Types: char | string

Output Arguments
ibnrClaims — IBNR claims
array

IBNR claims, returned as an array.

.

More About
IBNR

Incurred-but-not-reported (IBNR) claims are the claims amount owed by an insurer to all valid
claimants who have had a covered loss but have not yet reported it.

Since the insurer knows neither how many of these losses have occurred nor the severity of each loss,
IBNR is necessarily an estimate.

Version History
Introduced in R2020b

See Also
unpaidClaims | summary

 ibnr

6-127

ibnr
Compute IBNR claims for expectedClaims object

Syntax
ibnrClaims = ibnr(ec)

Description
ibnrClaims = ibnr(ec) computes the incurred-but-not-reported (IBNR) claims for an
expectedClaims object.

Examples

Compute IBNR Claims for expectedClaims Object

Compute the IBNR claims for an expectedClaims object containing simulated insurance claims
data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

6 Functions

6-128

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create an expectedClaims object where the first input argument is the reported development
triangle and the second input argument is the paid development triangle.

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)

ec =
 expectedClaims with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 InitialClaims: [10x1 double]
 CaseOutstanding: [10x1 double]
 EstimatedClaimsRatios: [10x1 double]
 SelectedClaimsRatios: [10x1 double]

Use ibnr to compute the IBNR claims.

ibnrClaims = ibnr(ec)

ibnrClaims = 10×1
103 ×

 -0.0984
 -0.0176
 -0.0399
 0.0030
 0.0204
 0.1483
 0.1753
 0.2744
 0.6423
 1.6575

Input Arguments
ec — Expected claims
expectedClaims object

 ibnr

6-129

Expected claims, specified as a previously created expectedClaims object.
Data Types: object

Output Arguments
ibnrClaims — IBNR claims
array

IBNR claims, returned as an array.

More About
IBNR

Incurred-but-not-reported (IBNR) claims are the claims amount owed by an insurer to all valid
claimants who have had a covered loss but have not yet reported it.

Since the insurer knows neither how many of these losses have occurred nor the severity of each loss,
IBNR is necessarily an estimate.

Version History
Introduced in R2020b

See Also
ultimateClaims | unpaidClaims | summary

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

6 Functions

6-130

linkRatioAverages
Compute link ratio averages for developmentTriangle object

Syntax
LinkRatioAveragesTable = linkRatioAverages(developmentTriangle)

Description
LinkRatioAveragesTable = linkRatioAverages(developmentTriangle) calculates
different link ratio averages.

Examples

Calculate Link Ratio Averages for a Development Triangle

Calculate different link ratio averages for a developmentTriangle object containing simulated
insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data.

dT = developmentTriangle(data)

dT =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

 linkRatioAverages

6-131

Use the linkRatioAverages function to calculate different link ratio averages.

LinkRatioAveragesTable = linkRatioAverages(dT)

LinkRatioAveragesTable=8×9 table
 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120
 ______ ______ ______ ______ ______ ______ _____ ______ _______

 Simple Average 1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.003 1.002 1.001
 Simple Average - Latest 5 1.172 1.056 1.0268 1.0108 1.0054 1.0038 1.003 1.002 1.001
 Simple Average - Latest 3 1.17 1.0533 1.027 1.0117 1.0057 1.0037 1.003 1.002 1.001
 Medial Average - Latest 5x1 1.1733 1.0567 1.0267 1.0103 1.005 1.004 1.003 1.002 1.001
 Volume-weighted Average 1.1766 1.0563 1.025 1.0107 1.0054 1.0038 1.003 1.002 1.001
 Volume-weighted Average - Latest 5 1.172 1.056 1.0268 1.0108 1.0054 1.0038 1.003 1.002 1.001
 Volume-weighted Average - Latest 3 1.1701 1.0534 1.027 1.0117 1.0057 1.0037 1.003 1.002 1.001
 Geometric Average - Latest 4 1.17 1.055 1.0267 1.011 1.0055 1.0037 1.003 1.002 1.001

Input Arguments
developmentTriangle — Development triangle
developmentTriangle object

Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

Output Arguments
LinkRatioAveragesTable — Link ratio averages
table

Link ratio averages, returned as a table. The table shows Simple Average, Medial Average,
Geometric Average, and Volume-weighted-average.

More About
Link Ratio Averages

The link ratio average is the average of the link ratios or the age-to-age factors.

Version History
Introduced in R2020b

See Also
view | linkRatios | cdfSummary | ultimateClaims | fullTriangle | linkRatiosPlot |
claimsPlot

Topics
“Mean Square Error of Prediction for Estimated Ultimate Claims” on page 4-161
“Bootstrap Using Chain Ladder Method” on page 4-168

6 Functions

6-132

“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 linkRatioAverages

6-133

linkRatios
Compute link ratios for developmentTriangle object

Syntax
LinkRatiosTable = linkRatios(developmentTriangle)

Description
LinkRatiosTable = linkRatios(developmentTriangle) calculates the link ratios between
the current development period and the next for each origin period. You can plot the link ratios using
linkRatiosPlot.

Examples

Calculate Link Ratios for Development Triangle

Calculate the link ratios (age-to-age factors) for a developmentTriangle object containing
simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data.

dT = developmentTriangle(data)

dT =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

6 Functions

6-134

Use the linkRatios function to calculate link ratios between the current development period and
the next period.

LinkRatiosTable = linkRatios(dT)

LinkRatiosTable=10×9 table
 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120
 _____ _____ _____ _____ _____ _____ _____ ______ _______

 2010 1.16 1.05 1.02 1.01 1.005 1.004 1.003 1.002 1.001
 2011 1.18 1.06 1.02 1.01 1.005 1.003 1.003 1.002 NaN
 2012 1.2 1.06 1.027 1.009 1.005 1.004 1.003 NaN NaN
 2013 1.19 1.06 1.026 1.014 1.007 1.004 NaN NaN NaN
 2014 1.18 1.06 1.028 1.011 1.005 NaN NaN NaN NaN
 2015 1.17 1.05 1.027 1.01 NaN NaN NaN NaN NaN
 2016 1.16 1.05 1.026 NaN NaN NaN NaN NaN NaN
 2017 1.18 1.06 NaN NaN NaN NaN NaN NaN NaN
 2018 1.17 NaN NaN NaN NaN NaN NaN NaN NaN
 2019 NaN NaN NaN NaN NaN NaN NaN NaN NaN

Input Arguments
developmentTriangle — Development triangle
developmentTriangle object

Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

Output Arguments
LinkRatiosTable — Link ratios
table

Link ratios, returned as a table.

More About
Link Ratios

Link ratios, also called age-to-age factors or loss development factors (LDFs), represent the ratio of
loss amounts from one valuation date to another, and they are intended to capture growth patterns of
losses over time.

Version History
Introduced in R2020b

See Also
view | linkRatioAverages | cdfSummary | ultimateClaims | fullTriangle |
linkRatiosPlot | claimsPlot

 linkRatios

6-135

Topics
“Mean Square Error of Prediction for Estimated Ultimate Claims” on page 4-161
“Bootstrap Using Chain Ladder Method” on page 4-168
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

6 Functions

6-136

linkRatiosPlot
Plot link ratios for development triangle

Syntax
linkRatiosPlot(dT)
h = linkRatiosPlot(ax, ___)

Description
linkRatiosPlot(dT) plots the link ratios for the development triangle.

h = linkRatiosPlot(ax, ___) additionally specifies the axes and returns the figure handle h.
Use this syntax with the required input argument in the previous syntax.

Examples

Generate Plot for Link Ratios

Generate a plot for the link ratios for a developmentTriangle object containing simulated
insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data.

dT = developmentTriangle(data)

dT =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1

 linkRatiosPlot

6-137

 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

Use the linkRatiosPlot function to plot a series of lines of the link ratios for the development
triangle.

linkRatiosPlot(dT)

Input Arguments
dT — Development triangle
developmentTriangle object

Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

ax — Valid axis object
object

(Optional) Valid axis object, specified as an ax object created using axes. The function creates the
plot on the axes specified by the optional ax argument instead of on the current axes (gca). The
optional argument ax must precede any of the input argument combinations.
Data Types: object

6 Functions

6-138

Output Arguments
h — Figure handle
handle object

Figure handle for the line objects, returned as a handle object.

Version History
Introduced in R2021a

See Also
view | linkRatios | linkRatioAverages | cdfSummary | ultimateClaims | fullTriangle |
claimsPlot

Topics
“Mean Square Error of Prediction for Estimated Ultimate Claims” on page 4-161
“Bootstrap Using Chain Ladder Method” on page 4-168
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 linkRatiosPlot

6-139

mertonByTimeSeries
Estimate default probability using time-series version of Merton model

Syntax
[PD,DD,A,Sa] = mertonByTimeSeries(Equity,Liability,Rate)
[PD,DD,A,Sa] = mertonByTimeSeries(___ ,Name,Value)

Description
[PD,DD,A,Sa] = mertonByTimeSeries(Equity,Liability,Rate) estimates the default
probability of a firm by using the Merton model.

[PD,DD,A,Sa] = mertonByTimeSeries(___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute Probability of Default Using the Time-Series Approach to the Merton Model

Load the data from MertonData.mat.

load MertonData.mat
Dates = MertonDataTS.Dates;
Equity = MertonDataTS.Equity;
Liability = MertonDataTS.Liability;
Rate = MertonDataTS.Rate;

Compute the default probability by using the time-series approach of Merton's model.

[PD,DD,A,Sa] = mertonByTimeSeries(Equity,Liability,Rate);
plot(Dates,PD)

6 Functions

6-140

Compute Probability of Default Using the Time-Series Approach to the Merton Model With
Drift

Load the data from MertonData.mat.

load MertonData.mat
Dates = MertonDataTS.Dates;
Equity = MertonDataTS.Equity;
Liability = MertonDataTS.Liability;
Rate = MertonDataTS.Rate;

Compute the plot for the default probability values by using the time-series approach of Merton's
model. You compute the PD0 (blue line) by using the default values. You compute the PD1 (red line) by
specifying an optional Drift value.

PD0 = mertonByTimeSeries(Equity,Liability,Rate);
PD1 = mertonByTimeSeries(Equity,Liability,Rate,'Drift',0.10);
plot(Dates, PD0, Dates, PD1)

 mertonByTimeSeries

6-141

Input Arguments
Equity — Market value of firm's equity
positive numeric value

Market value of the firm's equity, specified as a positive value.
Data Types: double

Liability — Liability threshold of firm
positive numeric value

Liability threshold of the firm, specified as a positive value. The liability threshold is often referred to
as the default point.
Data Types: double

Rate — Annualized risk-free interest rate
numeric value

Annualized risk-free interest rate, specified as a numeric value.
Data Types: double

6 Functions

6-142

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [PD,DD,A,Sa] =
mertonByTimeSeries(Equity,Liability,Rate,'Maturity',4,'Drift',0.22,'Tolerance
',1e-5,'NumPeriods',12)

Maturity — Time to maturity corresponding to liability threshold
1 year (default) | positive numeric value

Time to maturity corresponding to the liability threshold, specified as the comma-separated pair
consisting of 'Maturity' and a positive value.
Data Types: double

Drift — Annualized drift rate
risk-free interest rate defined in Rate (default) | numeric value

Annualized drift rate, expected rate of return of the firm's assets, specified as the comma-separated
pair consisting of 'Drift' and a numeric value.
Data Types: double

NumPeriods — Number of periods per year
250 trading days per year (default) | positive integer

Number of periods per year, specified as the comma-separated pair consisting of 'NumPeriods' and
a positive integer. Typical values are 250 (yearly), 12 (monthly), or 4 (quarterly).
Data Types: double

Tolerance — Tolerance for convergence of the solver
1e-6 (default) | positive scalar

Tolerance for convergence of the solver, specified as the comma-separated pair consisting of
'Tolerance' and a positive scalar value.
Data Types: double

MaxIterations — Maximum number of iterations allowed
500 (default) | positive integer

Maximum number of iterations allowed, specified as the comma-separated pair consisting of
'MaxIterations' and a positive integer.
Data Types: double

Output Arguments
PD — Probability of default of firm at maturity
numeric value

 mertonByTimeSeries

6-143

Probability of default of the firm at maturity, returned as a numeric.

DD — Distance-to-default
numeric value

Distance-to-default, defined as the number of standard deviations between the mean of the asset
distribution at maturity and the liability threshold (default point), returned as a numeric.

A — Value of firm's assets
numeric value

Value of firm's assets, returned as a numeric value.

Sa — Annualized firm's asset volatility
numeric value

Annualized firm's asset volatility, returned as a numeric value.

More About
Merton Model for Time Series

In the Merton model, the value of a company's equity is treated as a call option on its assets, and the
liability is taken as a strike price.

Given a time series of observed equity values and liability thresholds for a company,
mertonByTimeSeries calibrates corresponding asset values, the volatility of the assets in the
sample's time span, and computes the probability of default for each observation. Unlike
mertonmodel, no equity volatility input is required for the time-series version of the Merton model.
You compute the probability of default and distance-to-default by using the formulae in “Algorithms”
on page 6-144.

Algorithms
Given the time series for equity (E), liability (L), risk-free interest rate (r), asset drift (μA), and
maturity (T), mertonByTimeSeries sets up the following system of nonlinear equations and solves
for a time series asset values (A), and a single asset volatility (σA). At each time period t, where t =
1...n:

A1 =
E1 + L1e−r1T1N(d2)

N(d1)

At =
Et + Lte

−rtTtN(d2)
N(d1)

...

An =
En + Lne−rnTnN(d2)

N(d1)

where N is the cumulative normal distribution. To simplify the notation, the time subscript is omitted
for d1 and d2. At each time period, d1, and d2 are defined as:

6 Functions

6-144

d1 =
ln A

L + (r + 0.5σA
2)T

σA T

d2 = d1− σA T

The formulae for the distance-to-default (DD) and default probability (PD) at each time period are:

DD =
ln A

L + μA− 0.5σA
2 T

σA T

PD = 1− N(DD)

Version History
Introduced in R2017a

References
[1] Zielinski, T. Merton's and KMV Models In Credit Risk Management.

[2] Loeffler, G. and Posch, P.N. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2011.

[3] Kim, I.J., Byun, S.J, Hwang, S.Y. An Iterative Method for Implementing Merton.

[4] Merton, R. C. “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates.” Journal of
Finance. Vol. 29. pp. 449 – 470.

See Also
mertonmodel | asrf

Topics
“Comparison of the Merton Model Single-Point Approach to the Time-Series Approach” on page 4-54
“Default Probability by Using the Merton Model for Structural Credit Risk” on page 1-13

 mertonByTimeSeries

6-145

mertonmodel
Estimates probability of default using Merton model

Syntax
[PD,DD,A,Sa] = mertonmodel(Equity,EquityVol,Liability,Rate)
[PD,DD,A,Sa] = mertonmodel(___ ,Name,Value)

Description
[PD,DD,A,Sa] = mertonmodel(Equity,EquityVol,Liability,Rate) estimates the default
probability of a firm by using the Merton model.

[PD,DD,A,Sa] = mertonmodel(___ ,Name,Value) adds optional name-value pair arguments.

Examples

Compute the Probability of Default Using the Single-Point Approach to the Merton Model

Load the data from MertonData.mat.

load MertonData.mat
Equity = MertonData.Equity;
EquityVol = MertonData.EquityVol;
Liability = MertonData.Liability;
Drift = MertonData.Drift;
Rate = MertonData.Rate;
MertonData

MertonData=5×6 table
 ID Equity EquityVol Liability Rate Drift
 __________ __________ _________ _________ ____ ______

 {'Firm 1'} 2.6406e+07 0.7103 4e+07 0.05 0.0306
 {'Firm 2'} 2.6817e+07 0.3929 3.5e+07 0.05 0.03
 {'Firm 3'} 3.977e+07 0.3121 3.5e+07 0.05 0.031
 {'Firm 4'} 2.947e+07 0.4595 3.2e+07 0.05 0.0302
 {'Firm 5'} 2.528e+07 0.6181 4e+07 0.05 0.0305

Compute the default probability using the single-point approach to the Merton model.

[PD,DD,A,Sa] = mertonmodel(Equity,EquityVol,Liability,Rate,'Drift',Drift)

PD = 5×1

 0.0638
 0.0008
 0.0000
 0.0026
 0.0344

6 Functions

6-146

DD = 5×1

 1.5237
 3.1679
 4.4298
 2.7916
 1.8196

A = 5×1
107 ×

 6.4210
 6.0109
 7.3063
 5.9906
 6.3231

Sa = 5×1

 0.3010
 0.1753
 0.1699
 0.2263
 0.2511

Input Arguments
Equity — Current market value of firm's equity
positive numeric value

Current market value of firm's equity, specified as a positive value.
Data Types: double

EquityVol — Volatility of firm's equity
positive numeric value

Volatility of the firm's equity, specified as a positive annualized standard deviation.
Data Types: double

Liability — Liability threshold of firm
positive numeric value

Liability threshold of firm, specified as a positive value. The liability threshold is often referred to as
the default point.
Data Types: double

Rate — Annualized risk-free interest rate
numeric value

Annualized risk-free interest rate, specified as a numeric value.

 mertonmodel

6-147

Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [PD,DD,A,Sa] =
mertonmodel(Equity,EquityVol,Liability,Rate,'Maturity',4,'Drift',0.22)

Maturity — Time to maturity corresponding to liability threshold
1 year (default) | positive numeric value

Time to maturity corresponding to the liability threshold, specified as the comma-separated pair
consisting of 'Maturity' and a positive value.
Data Types: double

Drift — Annualized drift rate
risk-free interest rate defined in Rate (default) | numeric value

Annualized drift rate (expected rate of return of the firm's assets), specified as the comma-separated
pair consisting of 'Drift' and a numeric value.
Data Types: double

Tolerance — Tolerance for convergence of the solver
1e-6 (default) | positive scalar

Tolerance for convergence of the solver, specified as the comma-separated pair consisting of
'Tolerance' and a positive scalar value.
Data Types: double

MaxIterations — Maximum number of iterations allowed
500 (default) | positive integer

Maximum number of iterations allowed, specified as the comma-separated pair consisting of
'MaxIterations' and a positive integer.
Data Types: double

Output Arguments
PD — Probability of default of firm at maturity
numeric value

Probability of default of the firm at maturity, returned as a numeric value.

DD — Distance-to-default
numeric value

Distance-to-default, defined as the number of standard deviations between the mean of the asset
distribution at maturity and the liability threshold (default point), returned as a numeric value.

6 Functions

6-148

A — Current value of firm's assets
numeric value

Current value of firm's assets, returned as a numeric value.

Sa — Annualized firm's asset volatility
numeric value

Annualized firm's asset volatility, returned as a numeric value.

More About
Merton Model Using Single-Point Calibration

In the Merton model, the value of a company's equity is treated as a call option on its assets and the
liability is taken as a strike price.

mertonmodel accepts inputs for the firm's equity, equity volatility, liability threshold, and risk-free
interest rate. The mertonmodel function solves a 2-by-2 nonlinear system of equations whose
unknowns are the firm's assets and asset volatility. You compute the probability of default and
distance-to-default by using the formulae in “Algorithms” on page 6-149.

Algorithms
Unlike the time series method (see mertonByTimeSeries), when using mertonmodel, the equity
volatility (σE) is provided. Given equity (E), liability (L), risk-free interest rate (r), asset drift (μA), and
maturity (T), you use a 2-by-2 nonlinear system of equations. mertonmodel solves for the asset value
(A) and asset volatility (σA) as follows:

E = AN(d1)− Le−rTN(d2)

σE = A
E N(d1)σA

where N is the cumulative normal distribution, d1 and d2 are defined as:

d1 =
ln A

L + (r + 0.5σA
2)T

σA T

d2 = d1− σA T

The formulae for the distance-to-default (DD) and default probability (PD) are:

DD =
ln A

L + μA− 0.5σA
2 T

σA T

PD = 1− N(DD)

Version History
Introduced in R2017a

 mertonmodel

6-149

References
[1] Zielinski, T. Merton's and KMV Models In Credit Risk Management.

[2] Löffler, G. and Posch, P.N. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2011.

[3] Kim, I.J., Byun, S.J, Hwang, S.Y. An Iterative Method for Implementing Merton.

[4] Merton, R. C. “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates.” Journal of
Finance. Vol. 29. pp. 449 – 470.

See Also
mertonByTimeSeries | asrf

Topics
“Comparison of the Merton Model Single-Point Approach to the Time-Series Approach” on page 4-54
“Default Probability by Using the Merton Model for Structural Credit Risk” on page 1-13

6 Functions

6-150

minBiasAbsolute
Minimally biased absolute test for Expected Shortfall (ES) backtest by Acerbi-Szekely

Syntax
TestResults = minBiasAbsolute(ebts)
[TestResults,SimTestStatistic] = minBiasAbsolute(ebts,Name,Value)

Description
TestResults = minBiasAbsolute(ebts) runs the absolute version of the minimally biased
Expected Shortfall (ES) backtest by Acerbi-Szekely (2017) using the esbacktestbysim object.

[TestResults,SimTestStatistic] = minBiasAbsolute(ebts,Name,Value) specifies
options using one or more name-value pair arguments in addition to the input arguments in the
previous syntax.

Examples

Run minBiasAbsolute ES Backtest

Create an esbacktestbysim object.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
 'DegreesOfFreedom',10,...
 'Location',Mu,...
 'Scale',Sigma,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);

Generate the TestResults and SimTestStatistic reports for the minBiasAbsolute ES
backtest.

[TestResults,SimTestStatistic] = minBiasAbsolute(ebts)

TestResults=3×10 table
 PortfolioID VaRID VaRLevel MinBiasAbsolute PValue TestStatistic CriticalValue Observations Scenarios TestLevel
 ___________ _____________ ________ _______________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 accept 0.062 -0.0014247 -0.0015578 1966 1000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject 0.029 -0.0026674 -0.0023251 1966 1000 0.95
 "S&P" "t(10) 99%" 0.99 reject 0.005 -0.0060982 -0.0039004 1966 1000 0.95

SimTestStatistic = 3×1000

 0.0023 0.0008 -0.0018 0.0004 0.0009 0.0003 -0.0003 0.0008 -0.0001 0.0000 -0.0003 -0.0001 0.0001 0.0006 0.0001 0.0012 0.0009 0.0024 0.0013 -0.0007 -0.0007 0.0002 0.0004 -0.0006 -0.0008 0.0004 0.0001 0.0013 0.0001 -0.0008 -0.0006 0.0008 -0.0007 -0.0014 -0.0009 -0.0004 0.0000 0.0011 0.0014 -0.0004 0.0004 -0.0003 -0.0032 -0.0008 0.0011 0.0008 -0.0013 -0.0018 0.0010 0.0003
 0.0036 0.0005 -0.0032 0.0009 0.0017 0.0002 -0.0003 0.0011 -0.0001 -0.0001 0.0000 0.0001 0.0006 0.0007 0.0000 0.0015 0.0013 0.0030 0.0015 -0.0008 -0.0008 0.0003 0.0005 -0.0007 -0.0010 -0.0002 -0.0002 0.0024 0.0002 -0.0006 -0.0010 0.0012 -0.0002 -0.0017 -0.0012 -0.0005 -0.0004 0.0012 0.0018 -0.0008 0.0004 0.0001 -0.0039 -0.0013 0.0011 0.0013 -0.0020 -0.0031 0.0010 0.0005

 minBiasAbsolute

6-151

 0.0052 -0.0008 -0.0048 0.0014 0.0027 0.0007 0.0005 0.0007 0.0001 -0.0010 0.0024 0.0009 0.0016 0.0012 0.0004 0.0020 0.0022 0.0050 0.0027 0.0007 -0.0012 -0.0001 0.0014 -0.0019 -0.0020 -0.0014 -0.0009 0.0038 0.0003 0.0003 -0.0015 0.0016 0.0009 -0.0015 -0.0009 0.0008 -0.0010 0.0022 0.0016 -0.0023 0.0013 0.0016 -0.0040 -0.0033 0.0014 0.0020 -0.0040 -0.0055 0.0008 0.0008

Input Arguments
ebts — esbacktestbysim object
object

esbacktestbysim (ebts) object, which contains a copy of the given data (the PortfolioData,
VarData, ESData, and Distribution properties) and all combinations of portfolio IDs, VaR IDs,
and VaR levels to be tested. For more information on creating an esbacktestbysim object, see
esbacktestbysim.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = minBiasAbsolute(ebts)

TestLevel — Test confidence level
0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric value between 0 and 1.
Data Types: double

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio IDs, VaR IDs,
and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'MinBiasAbsolute' — Categorical array with categories'accept' and 'reject' that indicate

the result of the minBiasAbsolute test
• 'PValue'— p-value for the minBiasAbsolute test
• 'TestStatistic'— minBiasAbsolute test statistic
• 'CriticalValue'— Critical value for minBiasAbsolute test
• 'Observations'— Number of observations
• 'Scenarios' — Number of scenarios simulated to obtain p-values
• 'TestLevel' — Test confidence level

6 Functions

6-152

Note For the test results, the terms 'accept' and 'reject' are used for convenience. Technically,
a test does not accept a model; rather, a test fails to reject it.

SimTestStatistic — Simulated values of test statistic
numeric array

Simulated values of the test statistic, returned as a NumVaRs-by-NumScenarios numeric array.

More About
Minimally Biased Test, Absolute Version by Acerbi and Szekely

The absolute version of the Acerbi-Szekely test [1] computes the TestStatistic in the units of
data.

The absolute version of the minimally biased test statistic is given by

Zminbias
abs = 1

N ∑
t = 1

N
(ESt − VaRt −

1
pVaR

(Xt + VaRt)_)

where

Xt is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period t.

VaRt is the essential VaR for period t.

ESt is the expected shortfall for period t.

pVaR is the probability of VaR failure, defined as 1 - VaR level.

N is the number of periods in the test window (t = 1,...N).

(x)_ is the negative part function defined as (x)_ = max(0,-x).

Significance of the Test

Negative values of the test statistic indicate risk underestimation.

The minimally biased test is a one-sided test that rejects the model when there is evidence that the
model underestimates risk (for technical details, see Acerbi-Szekely [1] and [2]). The test rejects the
model when the p-value is less than 1 minus the test confidence level. For more information on the
steps to simulate the test statistics and details on the computation of the p-values and critical values,
see simulate.

ES backtests are necessarily approximated in that they are sensitive to errors in the predicted VaR.
However, the minimally biased test has only a small sensitivity to VaR errors and the sensitivity is
prudential, in the sense that VaR errors lead to a more punitive ES test. For details, see Acerbi-
Szekely ([1] and [2]). When distribution information is available using the minimally biased test is
recommended.

Version History
Introduced in R2020b

 minBiasAbsolute

6-153

References
[1] Acerbi, Carlo, and Balazs Szekely. "General Properties of Backtestable Statistics." SSRN

Electronic Journal. (January, 2017).

[2] Acerbi, Carlo, and Balazs Szekely. "The Minimally Biased Backtest for ES." Risk. (September,
2019).

[3] Acerbi, C. and D. Tasche. "On the Coherence of Expected Shortfall." Journal of Banking and
Finance. Vol. 26, 2002, pp. 1487-1503.

[4] Rockafellar, R. T. and S. Uryasev. "Conditional Value-at-Risk for General Loss Distributions."
Journal of Banking and Finance. Vol. 26, 2002, pp. 1443-1471.

See Also
summary | conditional | unconditional | quantile | simulate | minBiasRelative |
esbacktestbysim | esbacktestbyde

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-154

minBiasRelative
Minimally biased relative test for Expected Shortfall (ES) backtest by Acerbi-Szekely

Syntax
TestResults = minBiasRelative(ebts)
[TestResults,SimTestStatistic] = minBiasRelative(ebts,Name,Value)

Description
TestResults = minBiasRelative(ebts) runs the relative version of the minimally biased
Expected Shortfall (ES) back test by Acerbi-Szekely (2017) using the esbacktestbysim object.

[TestResults,SimTestStatistic] = minBiasRelative(ebts,Name,Value) specifies
options using one or more name-value pair arguments in addition to the input arguments in the
previous syntax.

Examples

Run minBiasRelative ES Backtest

Create an esbacktestbysim object.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
 'DegreesOfFreedom',10,...
 'Location',Mu,...
 'Scale',Sigma,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);

Generate the TestResults and the SimTestStatistic reports for the minBiasRelative ES
backtest.

[TestResults,SimTestStatistic] = minBiasRelative(ebts)

TestResults=3×10 table
 PortfolioID VaRID VaRLevel MinBiasRelative PValue TestStatistic CriticalValue Observations Scenarios TestLevel
 ___________ _____________ ________ _______________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 reject 0.003 -0.10509 -0.056072 1966 1000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject 0 -0.15603 -0.073324 1966 1000 0.95
 "S&P" "t(10) 99%" 0.99 reject 0 -0.26716 -0.104 1966 1000 0.95

SimTestStatistic = 3×1000

 0.0860 0.0284 -0.0480 0.0176 0.0262 0.0309 -0.0107 0.0361 -0.0171 -0.0154 -0.0247 0.0047 0.0055 0.0217 0.0073 0.0519 0.0388 0.1023 0.0516 -0.0326 -0.0203 0.0192 -0.0022 -0.0198 -0.0205 0.0036 0.0285 0.0462 -0.0134 -0.0335 -0.0301 0.0223 -0.0291 -0.0494 -0.0246 -0.0075 0.0060 0.0516 0.0498 -0.0020 -0.0008 -0.0060 -0.1238 -0.0222 0.0447 0.0352 -0.0422 -0.0667 0.0429 0.0079
 0.1145 0.0177 -0.0741 0.0357 0.0505 0.0275 -0.0136 0.0421 -0.0190 -0.0230 -0.0074 0.0098 0.0209 0.0229 -0.0012 0.0561 0.0421 0.1078 0.0530 -0.0306 -0.0167 0.0193 0.0014 -0.0214 -0.0214 -0.0224 0.0185 0.0730 -0.0089 -0.0278 -0.0458 0.0348 -0.0066 -0.0522 -0.0304 -0.0095 -0.0073 0.0490 0.0575 -0.0118 -0.0051 0.0058 -0.1318 -0.0280 0.0349 0.0473 -0.0522 -0.0894 0.0420 0.0120

 minBiasRelative

6-155

 0.1435 -0.0195 -0.0915 0.0478 0.0796 0.0397 -0.0022 0.0282 -0.0055 -0.0587 0.0631 0.0314 0.0446 0.0340 0.0034 0.0706 0.0652 0.1414 0.0783 0.0148 -0.0196 0.0057 0.0395 -0.0479 -0.0352 -0.0644 0.0034 0.0960 -0.0064 -0.0081 -0.0651 0.0436 0.0241 -0.0357 -0.0170 0.0242 -0.0282 0.0730 0.0449 -0.0388 0.0169 0.0506 -0.1160 -0.0663 0.0338 0.0610 -0.0815 -0.1285 0.0363 0.0209

Input Arguments
ebts — esbacktestbysim object
object

esbacktestbysim (ebts) object, which contains a copy of the given data (the PortfolioData,
VarData, ESData, and Distribution properties) and all combinations of portfolio IDs, VaR IDs,
and VaR levels to be tested. For more information on creating an esbacktestbysim object, see
esbacktestbysim.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: minBiasRelative(ebts,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric value between 0 and 1.
Data Types: double

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio IDs, VaR IDs,
and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'MinBiasRelative' — Categorical array with categories'accept' and 'reject' that indicate

the result of the minBiasRelative test
• 'PValue'— p-value for the minBiasRelative test
• 'TestStatistic'— minBiasRelative test statistic
• 'CriticalValue'— Critical value for minBiasRelative test
• 'Observations'— Number of observations
• 'Scenarios' — Number of scenarios simulated to obtain p-values
• 'TestLevel' — Test confidence level

6 Functions

6-156

Note For the test results, the terms 'accept' and 'reject' are used for convenience. Technically,
a test does not accept a model; rather, a test fails to reject it.

SimTestStatistic — Simulated values of test statistic
numeric array

Simulated values of the test statistic, returned as a NumVaRs-by-NumScenarios numeric array.

More About
Minimally Biased Test, Relative Version by Acerbi and Szekely

The relative version of the Acerbi-Szekely test ([1]) computes the TestStatistic in the units of
data.

The absolute version of the minimally biased test statistic is given by

Zminbias
rel = 1

N ∑
t = 1

N 1
ESt

(ESt − VaRt −
1

pVaR
(Xt + VaRt)_)

where

Xt is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period t.

VaRt is the essential VaR for period t.

ESt is the expected shortfall for period t.

pVaR is the probability of VaR failure, defined as 1 - VaR level.

N is the number of periods in the test window (t = 1,...N).

(x)_ is the negative part function defined as (x)_ = max(0,-x).

Significance of the Test

Negative values of the test statistic indicate risk underestimation.

The minimally biased test is a one-sided test that rejects the model when there is evidence that the
model underestimates risk (for technical details, see Acerbi-Szekely [1] and [2]). The test rejects the
model when the p-value is less than 1 minus the test confidence level. For more information on the
steps to simulate the test statistics and details on the computation of the p-values and critical values,
see simulate.

ES backtests are necessarily approximated in that they are sensitive to errors in the predicted VaR.
However, the minimally biased test has only a small sensitivity to VaR errors and the sensitivity is
prudential, in the sense that VaR errors lead to a more punitive ES test. For details, see Acerbi-
Szekely ([1] and [2]). When distribution information is available using the minimally biased test is
recommended.

Version History
Introduced in R2020b

 minBiasRelative

6-157

References
[1] Acerbi, Carlo, and Balazs Szekely. "General Properties of Backtestable Statistics." SSRN

Electronic Journal. (January, 2017).

[2] Acerbi, Carlo, and Balazs Szekely. "The Minimally Biased Backtest for ES." Risk. (September,
2019).

[3] Acerbi, C. and D. Tasche. "On the Coherence of Expected Shortfall." Journal of Banking and
Finance. Vol. 26, 2002, pp. 1487-1503.

[4] Rockafellar, R. T. and S. Uryasev. "Conditional Value-at-Risk for General Loss Distributions."
Journal of Banking and Finance. Vol. 26, 2002, pp. 1443-1471.

See Also
summary | conditional | unconditional | quantile | simulate | esbacktestbysim |
esbacktestbyde

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-158

modelAccuracy
Compute R-square, RMSE, correlation, and sample mean error of predicted and observed EADs

Note modelAccuracy is renamed to modelCalibration. modelAccuracy is not recommended.
Use modelCalibration instead.

Syntax
AccMeasure = modelAccuracy(eadModel,data)
[AccMeasure,AccData] = modelAccuracy(___ ,Name=Value)

Description
AccMeasure = modelAccuracy(eadModel,data) computes the R-square, root mean square
error (RMSE), correlation, and sample mean error of observed vs. predicted exposure at default
(EAD) data. modelAccuracy supports comparison against a reference model and also supports
different correlation types. By default, modelAccuracy computes the metrics in the EAD scale. You
can use the ModelLevel name-value argument to compute metrics using the underlying model's
transformed scale.

[AccMeasure,AccData] = modelAccuracy(___ ,Name=Value) specifies options using one or
more name-value arguments in addition to the input arguments in the previous syntax.

Input Arguments
eadModel — Exposure at default model
Regression object | Tobit object | Beta object

Loss given default model, specified as a previously created Regression, Tobit, or Beta object
using fitEADModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable
names and data types must be consistent with the underlying model.
Data Types: table

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: [AccMeasure,AccData] =
modelAccuracy(eadModel,data(TestInd,:),DataID='Testing',CorrelationType='spea
rman')

 modelAccuracy

6-159

CorrelationType — Correlation type
"pearson" (default) | character vector with value of 'pearson', 'spearman', or 'kendall' |
string with value of "pearson", "spearman", or "kendall"

Correlation type, specified as CorrelationType and a character vector or string.
Data Types: char | string

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as DataID and a character vector or string. The DataID is included in
the output for reporting purposes.
Data Types: char | string

ModelLevel — Model level
'ead' (default) | character vector with value 'ead', 'conversionMeasure', or
'conversionTransform' | string with value "ead", "conversionMeasure", or
"conversionTransform"

Model level, specified as ModelLevel and a character vector or string.

Note Regression models support all three model levels, but a Tobit or Beta model supports
model levels only for "ead" and "conversionMeasure".

Data Types: char | string

ReferenceEAD — EAD values predicted for data by reference model
[] (default) | numeric vector

EAD values predicted for data by the reference model, specified as ReferenceEAD and a NumRows-
by-1 numeric vector. The modelAccuracy output information is reported for both the eadModel
object and the reference model.
Data Types: double

ReferenceID — Identifier for the reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string.
ReferenceID is used in the modelAccuracy output for reporting purposes.
Data Types: char | string

Output Arguments
AccMeasure — Accuracy measure
table

Accuracy measure, returned as a table with columns 'RSquared', 'RMSE', 'Correlation', and
'SampleMeanError'. AccMeasure has one row if only the eadModel accuracy is measured and it
has two rows if reference model information is given. The row names of AccMeasure report the
model ID and data ID (if provided).

6 Functions

6-160

AccData — Accuracy data
table

Accuracy data, returned as a table with observed EAD values, predicted EAD values, and residuals
(observed minus predicted). Additional columns for predicted and residual values are included for the
reference model, if provided. The ModelID and ReferenceID labels are appended in the column
names.

More About
Model Accuracy

Model accuracy measures the accuracy of the predicted probability of EAD values using different
metrics.

• R-squared — To compute the R-squared metric, modelAccuracy fits a linear regression of the
observed EAD values against the predicted EAD values:

EADobs = a + b ∗ EADpred + ε

The R-square of this regression is reported. For more information, see “Coefficient of
Determination (R-Squared)”.

• RMSE — To compute the root mean square error (RMSE), modelAccuracy uses the following
formula where N is the number of observations:

RMSE = 1
N∑i = 1

N (EADi
obs− EADi

pred)2

• Correlation — This metric is the correlation between the observed and predicted EAD:

corr(EADobs, EADpred)

For more information and details about the different correlation types, see corr.
• Sample mean error — This metric is the difference between the mean observed EAD and the mean

predicted EAD or, equivalently, the mean of the residuals:

SampleMeanError = 1
N∑i = 1

N (EADi
obs− EADi

pred)

Version History
Introduced in R2021b

R2023a: modelAccuracy function is renamed to modelCalibration function
Not recommended starting in R2023a

The modelAccuracy function is renamed to modelCalibration function. The use of
modelAccuracy is not recommended, use modelCalibration instead.

R2022b: Support for Beta model
Behavior changed in R2022b

The eadModel input supports an option for a Beta model object that you can create using
fitEADModel.

 modelAccuracy

6-161

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory
and Applications. SAS Institute, 2014.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also
Regression | Tobit | Beta | fitEADModel | predict | modelDiscrimination |
modelDiscriminationPlot | modelAccuracyPlot

Topics
“Compare Results for Regression and Tobit EAD Models” on page 4-151
“Overview of Exposure at Default Models” on page 1-34

6 Functions

6-162

modelAccuracy
Compute R-square, RMSE, correlation, and sample mean error of predicted and observed LGDs

Note modelAccuracy is renamed to modelCalibration. modelAccuracy is not recommended.
Use modelCalibration instead.

Syntax
AccMeasure = modelAccuracy(lgdModel,data)
[AccMeasure,AccData] = modelAccuracy(___ ,Name,Value)

Description
AccMeasure = modelAccuracy(lgdModel,data) computes the R-square, root mean square
error (RMSE), correlation, and sample mean error of observed vs. predicted loss given default (LGD)
data. modelAccuracy supports comparison against a reference model and also supports different
correlation types. By default, modelAccuracy computes the metrics in the LGD scale. You can use
the ModelLevel name-value pair argument to compute metrics using the underlying model's
transformed scale.

[AccMeasure,AccData] = modelAccuracy(___ ,Name,Value) specifies options using one or
more name-value pair arguments in addition to the input arguments in the previous syntax.

Input Arguments
lgdModel — Loss given default model
Regression object | Tobit object | Beta object

Loss given default model, specified as a previously created Regression, Tobit, or Beta object
using fitLGDModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable
names and data types must be consistent with the underlying model.
Data Types: table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

 modelAccuracy

6-163

Example: [AccMeasure,AccData] =
modelAccuracy(lgdModel,data(TestInd,:),'DataID','Testing','CorrelationType','
spearman')

CorrelationType — Correlation type
"pearson" (default) | character vector with value of 'pearson', 'spearman', or 'kendall' |
string with value of "pearson", "spearman", or "kendall'"

Correlation type, specified as the comma-separated pair consisting of 'CorrelationType' and a
character vector or string.
Data Types: char | string

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as the comma-separated pair consisting of 'DataID' and a character
vector or string. The DataID is included in the output for reporting purposes.
Data Types: char | string

ModelLevel — Model level
'top' (default) | character vector with value 'top' or 'underlying' | string with value "top" or
"underlying"

Model level, specified as the comma-separated pair consisting of 'ModelLevel' and a character
vector or string.

• 'top' — The accuracy metrics are computed in the LGD scale at the top model level.
• 'underlying' — For a Regression model only, the metrics are computed in the underlying

model's transformed scale. The metrics are computed on the transformed LGD data.

Note ModelLevel has no effect for a Tobit or Beta model because there is no response
transformation.

Data Types: char | string

ReferenceLGD — LGD values predicted for data by reference model
[] (default) | numeric vector

LGD values predicted for data by the reference model, specified as the comma-separated pair
consisting of 'ReferenceLGD' and a NumRows-by-1 numeric vector. The modelAccuracy output
information is reported for both the lgdModel object and the reference model.
Data Types: double

ReferenceID — Identifier for the reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as the comma-separated pair consisting of
'ReferenceID' and a character vector or string. 'ReferenceID' is used in the modelAccuracy
output for reporting purposes.
Data Types: char | string

6 Functions

6-164

Output Arguments
AccMeasure — Accuracy measure
table

Accuracy measure, returned as a table with columns 'RSquared', 'RMSE', 'Correlation', and
'SampleMeanError'. AccMeasure has one row if only the lgdModel accuracy is measured and it
has two rows if reference model information is given. The row names of AccMeasure report the
model ID and data ID (if provided).

AccData — Accuracy data
table

Accuracy data, returned as a table with observed LGD values, predicted LGD values, and residuals
(observed minus predicted). Additional columns for predicted and residual values are included for the
reference model, if provided. The ModelID and ReferenceID labels are appended in the column
names.

More About
Model Accuracy

Model accuracy measures the accuracy of the predicted probability of LGD values using different
metrics.

• R-squared — To compute the R-squared metric, modelAccuracy fits a linear regression of the
observed LGD values against the predicted LGD values

LGDobs = a + b ∗ LGDpred + ε

The R-square of this regression is reported. For more information, see “Coefficient of
Determination (R-Squared)”.

• RMSE — To compute the root mean square error (RMSE), modelAccuracy uses the following
formula where N is the number of observations:

RMSE = 1
N∑i = 1

N (LGDi
obs− LGDi

pred)2

• Correlation — This is the correlation between the observed and predicted LGD:

corr(LGDobs, LGDpred)

For more information and details about the different correlation types, see corr.
• Sample mean error — This is the difference between the mean observed LGD and the mean

predicted LGD or, equivalently, the mean of the residuals:

SampleMeanError = 1
N∑i = 1

N (LGDi
obs− LGDi

pred)

Version History
Introduced in R2021a

 modelAccuracy

6-165

R2023a: modelAccuracy function is renamed to modelCalibration function
Not recommended starting in R2023a

The modelAccuracy function is renamed to modelCalibration function. The use of
modelAccuracy is not recommended, use modelCalibration instead.

R2022b: Support for Beta model
Behavior changed in R2022b

The lgdModel input supports an option for a Beta model object that you can create using
fitLGDModel.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

See Also
Tobit | Regression | Beta | modelAccuracyPlot | modelDiscriminationPlot |
modelDiscrimination | predict | fitLGDModel

Topics
“Model Loss Given Default” on page 4-90
“Basic Loss Given Default Model Validation” on page 4-131
“Compare Tobit LGD Model to Benchmark Model” on page 4-133
“Compare Loss Given Default Models Using Cross-Validation” on page 4-140
“Overview of Loss Given Default Models” on page 1-31

6 Functions

6-166

modelAccuracy
Compute RMSE of predicted and observed PDs on grouped data

Note modelAccuracy is renamed to modelCalibration. modelAccuracy is not recommended.
Use modelCalibration instead.

Syntax
AccMeasure = modelAccuracy(pdModel,data,GroupBy)
[AccMeasure,AccData] = modelAccuracy(___ ,Name,Value)

Description
AccMeasure = modelAccuracy(pdModel,data,GroupBy) computes the root mean squared
error (RMSE) of the observed compared to the predicted probabilities of default (PD). GroupBy is
required and can be any column in the data input (not necessarily a model variable). The
modelAccuracy function computes the observed PD as the default rate of each group and the
predicted PD as the average PD for each group. modelAccuracy supports comparison against a
reference model.

[AccMeasure,AccData] = modelAccuracy(___ ,Name,Value) specifies options using one or
more name-value pair arguments in addition to the input arguments in the previous syntax.

Input Arguments
pdModel — Probability of default model
Logistic object | Probit object | Cox object | customLifetimePDModel object

Probability of default model, specified as a previously created Logistic, Probit, or Cox object
using fitLifetimePDModel. Alternatively, you can create a custom probability of default model
using customLifetimePDModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime
predictions. The predictor names and data types must be consistent with the underlying model.
Data Types: table

GroupBy — Name of column in data input used to group the data
string | character vector

Name of column in the data input used to group the data, specified as a string or character vector.
GroupBy does not have to be a model variable name. For each group designated by GroupBy, the
modelAccuracy function computes the observed default rates and average predicted PDs are
computed to measure the RMSE.

 modelAccuracy

6-167

Data Types: string | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [AccMeasure,AccData] = modelAccuracy(pdModel,data(Ind,:),'GroupBy',
["YOB","ScoreGroup"],'DataID',"DataSetChoice")

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as the comma-separated pair consisting of 'DataID' and a character
vector or string. DataID is included in the modelAccuracy output for reporting purposes.
Data Types: char | string

ReferencePD — Conditional PD values predicted for data by reference model
[] (default) | numeric vector

Conditional PD values predicted for data by the reference model, specified as the comma-separated
pair consisting of 'ReferencePD' and a NumRows-by-1 numeric vector. The functions reports the
modelAccuracy output information for both the pdModel object and the reference model.
Data Types: double

ReferenceID — Identifier for reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as the comma-separated pair consisting of
'ReferenceID' and a character vector or string. ReferenceID is used in the modelAccuracy
output for reporting purposes.
Data Types: char | string

Output Arguments
AccMeasure — RMSE values
table

Accuracy measure, returned as a table.

RMSE values, returned as a single-column 'RMSE' table. The table has one row if only the pdModel
accuracy is measured and it has two rows if reference model information is given. The row names of
AccMeasure report the model IDs, grouping variables, and data ID.

Note The reported RMSE values depend on the grouping variable for the required GroupBy
argument.

AccData — Observed and predicted PD values for each group
table

6 Functions

6-168

Accuracy data, returned as a table.

Observed and predicted PD values for each group, returned as a table. The reported observed PD
values correspond to the observed default rate for each group. The reported predicted PD values are
the average PD values predicted by the pdModel object for each group, and similarly for the
reference model. The modelAccuracy function stacks the PD data, placing the observed values for
all groups first, then the predicted PDs for the pdModel, and then the predicted PDs for the reference
model, if given.

The column 'ModelID' identifies which rows correspond to the observed PD, pdModel, or reference
model. The table also has one column for each grouping variable showing the unique combinations of
grouping values. The 'PD' column of AccData is a the PD data. The last column of AccData is a
'GroupCount' column with the group counts data.

More About
Model Accuracy

Model accuracy measures the accuracy of the predicted probability of default (PD) values.

To measure model accuracy, also called model calibration, you must compare the predicted PD values
to the observed default rates. For example, if a group of customers is predicted to have an average
PD of 5%, then is the observed default rate for that group close to 5%?

The modelAccuracy function requires a grouping variable to compute average predicted PD values
within each group and the average observed default rate also within each group. modelAccuracy
uses the root mean squared error (RMSE) to measure the deviations between the observed and
predicted values across groups. For example, the grouping variable could be the calendar year, so
that rows corresponding to the same calendar year are grouped together. Then, for each year the
software computes the observed default rate and the average predicted PD. The modelAccuracy
function then applies the RMSE formula to obtain a single measure of the prediction error across all
years in the sample.

Suppose there are N observations in the data set, and there are M groups G1,...,GM. The default rate
for group Gi is

DRi =
Di
Ni

where:

Di is the number of defaults observed in group Gi.

Ni is the number of observations in group Gi.

The average predicted probability of default PDi for group Gi is

PDi = 1
Ni
∑ j ∈ GiPD(j)

where PD(j) is the probability of default for observation j. In other words, this is the average of the
predicted PDs within group Gi.

Therefore, the RMSE is computed as

 modelAccuracy

6-169

RMSE = ∑i = 1
M Ni

N (DRi− PDi)2

The RMSE, as defined, depends on the selected grouping variable. For example, grouping by calendar
year and grouping by years-on-books might result in different RSME values.

Use modelAccuracyPlot to visualize observed default rates and predicted PD values on grouped
data.

Version History
Introduced in R2020b

R2023a: modelAccuracy function is renamed to modelCalibration function
Not recommended starting in R2023a

The modelAccuracy function is renamed to modelCalibration function. The use of
modelAccuracy is not recommended, use modelCalibration instead.

R2022b: Support for customLifetimePDModel model

The pdModel input supports an option for a customLifetimePDModel model object that you can
create using customLifetimePDModel.

R2022a: Additional column for AccData for GroupCount

There is an additional column for AccData for GroupCount for PD models.

R2022a: GroupCount column automatically included in AccData outputs
Behavior changed in R2022a

Starting in R2022a, the AccData output of modelAccuracy contains an additional column for
GroupCount with the group counts data.

If you extract the end column from the AccData output using AccData{:,end}, the end column is
different than previous releases of modelAccuracy.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models
LLC, 2018.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python.
Independently published, 2020.

6 Functions

6-170

See Also
modelDiscrimination | modelDiscriminationPlot | modelAccuracyPlot |
predictLifetime | predict | fitLifetimePDModel | Logistic | Probit | Cox |
customLifetimePDModel

Topics
“Basic Lifetime PD Model Validation” on page 4-129
“Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
“Compare Lifetime PD Models Using Cross-Validation” on page 4-121
“Expected Credit Loss Computation” on page 4-124
“Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on page
4-144
“Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-75
“Overview of Lifetime Probability of Default Models” on page 1-25

 modelAccuracy

6-171

modelAccuracyPlot
Scatter plot of predicted and observed EADs

Note modelAccuracyPlot is renamed to modelCalibrationPlot. modelAccuracyPlot is not
recommended. Use modelCalibrationPlot instead.

Syntax
modelAccuracyPlot(eadModel,data)
modelAccuracyPlot(___ ,Name=Value)
h = modelAccuracyPlot(ax, ___ ,Name=Value)

Description
modelAccuracyPlot(eadModel,data) returns a scatter plot of observed vs. predicted exposure at
default (EAD) data with a linear fit. modelAccuracyPlot supports comparison against a reference
model. By default, modelAccuracyPlot plots in the EAD scale.

modelAccuracyPlot(___ ,Name=Value) specifies options using one or more name-value
arguments in addition to the input arguments in the previous syntax. You can use the ModelLevel
name-value argument to compute metrics using the underlying model's transformed scale.

h = modelAccuracyPlot(ax, ___ ,Name=Value) specifies options using one or more name-value
arguments in addition to the input arguments in the previous syntax and returns the figure handle h.

Input Arguments
eadModel — Exposure at default model
Regression object | Tobit | Beta object

Exposure at default model, specified as a previously created Regression, Tobit, or Beta object
using fitEADModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable
names and data types must be consistent with the underlying model.
Data Types: table

ax — Valid axis object
object

(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be
created in the axes specified by the optional ax argument instead of in the current axes (gca). The
optional argument ax must precede any of the input argument combinations.

6 Functions

6-172

Data Types: object

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
modelAccuracyPlot(eadModel,data(TestInd,:),DataID=Testing,XData='residuals',Y
Data='residuals')

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified DataID and a character vector or string. The DataID is included in the
output for reporting purposes.
Data Types: char | string

ModelLevel — Model level
'ead' (default) | character vector with value 'ead', 'conversionMeasure', or
'conversionTransform' | string with value "ead", "conversionMeasure", or
"conversionTransform"

Model level, specified as ModelLevel and a character vector or string.

Note Regression models support all three model levels, but a Tobit or Beta model supports
model levels only for "ead" and "conversionMeasure".

Data Types: char | string

ReferenceEAD — EAD values predicted for data by reference model
[] (default) | numeric vector

EAD values predicted for data by the reference model, specified as ReferenceEAD and a NumRows-
by-1 numeric vector. The scatter plot output is plotted for both the eadModel object and the
reference model.
Data Types: double

ReferenceID — Identifier for the reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string.
ReferenceID is used in the scatter plot output for reporting purposes.
Data Types: char | string

XData — Data to plot on x-axis
'predicted' (default) | character vector with value 'predicted', 'observed', 'residuals', or
VariableName | string with value | "predicted", "observed", "residuals", or VariableName

Data to plot on x-axis, specified as XData and a character vector or string for one of the following:

 modelAccuracyPlot

6-173

• 'predicted' — Plot the predicted EAD values in the x-axis.
• 'observed' — Plot the observed EAD values in the x-axis.
• 'residuals' — Plot the residuals in the x-axis.
• VariableName — Use the name of the variable in the data input, not necessarily a model variable,

to plot in the x-axis.

Data Types: char | string

YData — Data to plot on y-axis
'predicted' (default) | character vector with value 'predicted', 'observed', or 'residuals'
| string with value | "predicted", "observed", or "residuals"

Data to plot on y-axis, specified as YData and a character vector or string for one of the following:

• 'predicted' — Plot the predicted EAD values in the y-axis.
• 'observed' — Plot the observed EAD values in the y-axis.
• 'residuals' — Plot the residuals in the y-axis.

Data Types: char | string

Output Arguments
h — Figure handle
handle object

Figure handle for the scatter and line objects, returned as handle object.

More About
Model Accuracy Plot

The modelAccuracyPlot function returns a scatter plot of observed vs. predicted loss given default
(EAD) data with a linear fit and reports the R-square of the linear fit.

The XData name-value pair argument allows you to change the x values on the plot. By default,
predicted EAD values are plotted in the x-axis, but predicted EAD values, residuals, or any variable in
the data input, not necessarily a model variable, can be used as x values. If the selected XData is a
categorical variable, a swarm chart is used. For more information, see swarmchart.

The YData name-value pair argument allows users to change the y values on the plot. By default,
observed EAD values are plotted in the y-axis, but predicted EAD values or residuals can also be used
as y values. YData does not support table variables.

The linear fit and reported R-squared value always correspond to the linear regression model with the
plotted y values as response and the plotted x values as the only predictor.

Version History
Introduced in R2021b

R2023a: modelAccuracyPlot function is renamed to modelCalibrationPlot function
Not recommended starting in R2023a

6 Functions

6-174

The modelAccuracyPlot function is renamed to modelCalibrationPlot function. The use of
modelAccuracyPlot is not recommended, use modelCalibrationPlot instead.

R2022b: Support for Beta model
Behavior changed in R2022b

The eadModel input supports an option for a Beta model object that you can create using
fitEADModel.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory
and Applications. SAS Institute, 2014.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also
Regression | Tobit | Beta | fitEADModel | predict | modelDiscrimination |
modelDiscriminationPlot | modelAccuracy

Topics
“Compare Results for Regression and Tobit EAD Models” on page 4-151
“Overview of Exposure at Default Models” on page 1-34

 modelAccuracyPlot

6-175

modelAccuracyPlot
Scatter plot of predicted and observed LGDs

Note modelAccuracyPlot is renamed to modelCalibrationPlot. modelAccuracyPlot is not
recommended. Use modelCalibrationPlot instead.

Syntax
modelAccuracyPlot(lgdModel,data)
modelAccuracyPlot(___ ,Name,Value)
h = modelAccuracyPlot(ax, ___ ,Name,Value)

Description
modelAccuracyPlot(lgdModel,data) returns a scatter plot of observed vs. predicted loss given
default (LGD) data with a linear fit. modelAccuracyPlot supports comparison against a reference
model. By default, modelAccuracyPlot plots in the LGD scale.

modelAccuracyPlot(___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax. You can use the ModelLevel
name-value pair argument to compute metrics using the underlying model's transformed scale.

h = modelAccuracyPlot(ax, ___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input arguments in the previous syntax and returns the figure
handle h.

Input Arguments
lgdModel — Loss given default model
Regression object | Tobit object

Loss given default model, specified as a previously created Regression, Tobit, or Beta object
using fitLGDModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable
names and data types must be consistent with the underlying model.
Data Types: table

ax — Valid axis object
object

(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be
created in the axes specified by the optional ax argument instead of in the current axes (gca). The
optional argument ax must precede any of the input argument combinations.

6 Functions

6-176

Data Types: object

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
modelAccuracyPlot(lgdModel,data(TestInd,:),'DataID','Testing','YData','residu
als','XData','LTV')

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as the comma-separated pair consisting of 'DataID' and a character
vector or string. The DataID is included in the output for reporting purposes.
Data Types: char | string

ModelLevel — Model level
'top' (default) | character vector with value 'top' or 'underlying' | string with value "top" or
"underlying"

Model level, specified as the comma-separated pair consisting of 'ModelLevel' and a character
vector or string.

• 'top' — The accuracy metrics are computed in the LGD scale at the top model level.
• 'underlying' — For a Regression model only, the metrics are computed in the underlying

model's transformed scale. The metrics are computed on the transformed LGD data.

Note ModelLevel has no effect for a Tobit or Beta model because there is no response
transformation.

Data Types: char | string

ReferenceLGD — LGD values predicted for data by reference model
[] (default) | numeric vector

LGD values predicted for data by the reference model, specified as the comma-separated pair
consisting of 'ReferenceLGD' and a NumRows-by-1 numeric vector. The scatter plot output is
plotted for both the lgdModel object and the reference model.
Data Types: double

ReferenceID — Identifier for the reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as the comma-separated pair consisting of
'ReferenceID' and a character vector or string. 'ReferenceID' is used in the scatter plot output
for reporting purposes.
Data Types: char | string

 modelAccuracyPlot

6-177

XData — Data to plot on x-axis
'predicted' (default) | character vector with value 'predicted', 'observed', 'residuals', or
VariableName | string with value | "predicted", "observed", "residuals", or VariableName

Data to plot on x-axis, specified as the comma-separated pair consisting of 'XData' and a character
vector or string for one of the following:

• 'predicted' — Plot the predicted LGD values in the x-axis.
• 'observed' — Plot the observed LGD values in the x-axis.
• 'residuals' — Plot the residuals in the x-axis.
• VariableName — Use the name of the variable in the data input, not necessarily a model variable,

to plot in the x-axis.

Data Types: char | string

YData — Data to plot on y-axis
'predicted' (default) | character vector with value 'predicted', 'observed', or 'residuals'
| string with value | "predicted", "observed", or "residuals"

Data to plot on y-axis, specified as the comma-separated pair consisting of 'YData' and a character
vector or string for one of the following:

• 'predicted' — Plot the predicted LGD values in the y-axis.
• 'observed' — Plot the observed LGD values in the y-axis.
• 'residuals' — Plot the residuals in the y-axis.

Data Types: char | string

Output Arguments
h — Figure handle
handle object

Figure handle for the scatter and line objects, returned as handle object.

More About
Model Accuracy Plot

The modelAccuracyPlot function returns a scatter plot of observed vs. predicted loss given default
(LGD) data with a linear fit and reports the R-square of the linear fit.

The XData name-value pair argument allows you to change the x values on the plot. By default,
predicted LGD values are plotted in the x-axis, but predicted LGD values, residuals, or any variable in
the data input, not necessarily a model variable, can be used as x values. If the selected XData is a
categorical variable, a swarm chart is used. For more information, see swarmchart.

The YData name-value pair argument allows users to change the y values on the plot. By default,
observed LGD values are plotted in the y-axis, but predicted LGD values or residuals can also be used
as y values. YData does not support table variables.

6 Functions

6-178

For Regression models, if ModelLevel is set to 'underlying', the LGD data is transformed into
the underlying model's scale. The transformed data is shown on the plot. The ModelLevel name-
value pair argument has no effect for Tobit models.

The linear fit and reported R-squared value always correspond to the linear regression model with the
plotted y values as response and the plotted x values as the only predictor.

Version History
Introduced in R2021a

R2023a: modelAccuracyPlot function is renamed to modelCalibrationPlot function
Not recommended starting in R2023a

The modelAccuracyPlot function is renamed to modelCalibrationPlot function. The use of
modelAccuracyPlot is not recommended, use modelCalibrationPlot instead.

R2022b: Support for Beta model
Behavior changed in R2022b

The lgdModel input supports an option for a Beta model object that you can create using
fitLGDModel.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

See Also
Tobit | Regression | Beta | modelAccuracy | modelDiscriminationPlot |
modelDiscrimination | predict | fitLGDModel

Topics
“Model Loss Given Default” on page 4-90
“Basic Loss Given Default Model Validation” on page 4-131
“Compare Tobit LGD Model to Benchmark Model” on page 4-133
“Compare Loss Given Default Models Using Cross-Validation” on page 4-140
“Overview of Loss Given Default Models” on page 1-31

 modelAccuracyPlot

6-179

modelCalibration
Compute R-square, RMSE, correlation, and sample mean error of predicted and observed EADs

Syntax
CalMeasure = modelCalibration(eadModel,data)
[CalMeasure,CalData] = modelCalibration(___ ,Name=Value)

Description
CalMeasure = modelCalibration(eadModel,data) computes the R-square, root mean square
error (RMSE), correlation, and sample mean error of observed vs. predicted exposure at default
(EAD) data. modelCalibration supports comparison against a reference model and also supports
different correlation types. By default, modelCalibration computes the metrics in the EAD scale.
You can use the ModelLevel name-value argument to compute metrics using the underlying model's
transformed scale.

[CalMeasure,CalData] = modelCalibration(___ ,Name=Value) specifies options using one
or more name-value arguments in addition to the input arguments in the previous syntax.

Examples

Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed
Using a Tobit EAD Model

This example shows how to use fitEADModel to create a Tobit model and then use
modelCalibration to compute the R-Square, RMSE, correlation, and sample mean error of
predicted and observed EAD.

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

rng('default');
NumObs = height(EADData);

6 Functions

6-180

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Select Model Type

Select a model type for Tobit or Regression.

ModelType = ;

Select Conversion Measure

Select a conversion measure for the EAD response values.

ConversionMeasure = ;

Create Tobit EAD Model

Use fitEADModel to create a Tobit model using EADData.

eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);

 Tobit with properties:

 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the
EAD response data. Use the 'LimitVar' and 'DrwanVar' name-value arguments to modify the
transformation.

disp(eadModel.UnderlyingModel);

Tobit regression model:
 EAD_lcf = max(0,min(Y*,1))
 Y* ~ 1 + UtilizationRate + Age + Marriage

Estimated coefficients:
 Estimate SE tStat pValue
 __________ __________ ________ __________

 (Intercept) 0.22467 0.03134 7.1689 9.7855e-13
 UtilizationRate 0.4714 0.020722 22.749 0
 Age -0.0014209 0.00076326 -1.8616 0.062771
 Marriage_not married -0.010542 0.01578 -0.66807 0.50415
 (Sigma) 0.3618 0.0050022 72.33 0

 modelCalibration

6-181

Number of observations: 2627
Number of left-censored observations: 0
Number of uncensored observations: 2626
Number of right-censored observations: 1
Log-likelihood: -1057.9

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-value argument.

predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");

Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot,
modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

ModelLevel = ;

[DiscMeasure1,DiscData1] = modelDiscrimination(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel);
modelDiscriminationPlot(eadModel,EADData(TestInd, :),ModelLevel=ModelLevel,SegmentBy="Marriage");

6 Functions

6-182

Use modelCalibration, and modelCalibrationPlot to show a scatter plot of the predictions.

YData = ;

[CalMeasure1,CalData1] = modelCalibration(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel)

CalMeasure1=1×4 table
 RSquared RMSE Correlation SampleMeanError
 ________ _____ ___________ _______________

 Tobit 0.3919 42494 0.62602 -1240.7

CalData1=1751×3 table
 Observed Predicted_Tobit Residuals_Tobit
 __________ _______________ _______________

 44740 14893 29847
 54.175 8730.2 -8676
 987.39 13244 -12257
 9606.4 7367.5 2238.9
 83.809 27501 -27417
 73538 45726 27812
 96.949 5522.5 -5425.5
 873.21 4426.3 -3553.1
 328.35 5952.4 -5624.1
 55237 28040 27198
 30359 19047 11312
 39211 28368 10843
 2.0885e+05 1.0539e+05 1.0346e+05
 1921.7 19939 -18017
 15230 5427.4 9802.5
 20063 9359.6 10703
 ⋮

modelCalibrationPlot(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel,YData=YData);

 modelCalibration

6-183

Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed
Using a Beta EAD Model

This example shows how to use fitEADModel to create a Beta model and then use
modelCalibration to compute the R-Square, RMSE, correlation, and sample mean error of
predicted and observed EAD.

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

6 Functions

6-184

rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Select Model Type

Select a model type for Beta.

ModelType = ;

Select Conversion Measure

Select a conversion measure for the EAD response values.

ConversionMeasure = ;

Create Beta EAD Model

Use fitEADModel to create a Beta model using the TrainingInd data.

eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);

 Beta with properties:

 BoundaryTolerance: 1.0000e-07
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the
EAD response data. Use the 'LimitVar' and 'DrwanVar' name-value arguments to modify the
transformation.

disp(eadModel.UnderlyingModel);

Beta regression model:
 logit(EAD_lcf) ~ 1_mu + UtilizationRate_mu + Age_mu + Marriage_mu
 log(EAD_lcf) ~ 1_phi + UtilizationRate_phi + Age_phi + Marriage_phi

Estimated coefficients:
 Estimate SE tStat pValue
 __________ _________ ________ __________

 (Intercept)_mu -0.65566 0.11484 -5.7093 1.2616e-08
 UtilizationRate_mu 1.7014 0.078094 21.787 0
 Age_mu -0.0055901 0.0027603 -2.0252 0.042949
 Marriage_not married_mu -0.012577 0.052098 -0.24141 0.80926
 (Intercept)_phi -0.50131 0.094625 -5.2979 1.2686e-07

 modelCalibration

6-185

 UtilizationRate_phi 0.39731 0.066707 5.956 2.9303e-09
 Age_phi -0.001167 0.0023161 -0.50387 0.6144
 Marriage_not married_phi -0.013275 0.042627 -0.31143 0.7555

Number of observations: 2627
Log-likelihood: -3140.21

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-value argument.

predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");

Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot,
modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

ModelLevel = ;

[DiscMeasure1,DiscData1] = modelDiscrimination(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel);
modelDiscriminationPlot(eadModel,EADData(TestInd, :),ModelLevel=ModelLevel,SegmentBy="Marriage");

6 Functions

6-186

Use modelCalibration, and modelCalibrationPlot to show a scatter plot of the predictions.

YData = ;

[CalMeasure1,CalData1] = modelCalibration(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel)

CalMeasure1=1×4 table
 RSquared RMSE Correlation SampleMeanError
 ________ _____ ___________ _______________

 Beta 0.38655 43817 0.62173 -7393.4

CalData1=1751×3 table
 Observed Predicted_Beta Residuals_Beta
 __________ ______________ ______________

 44740 18039 26701
 54.175 10560 -10506
 987.39 15551 -14564
 9606.4 8407.7 1198.8
 83.809 33318 -33234
 73538 52120 21418
 96.949 6598.1 -6501.2
 873.21 5471.1 -4597.9
 328.35 7335 -7006.6
 55237 32580 22658
 30359 21563 8796.4
 39211 33177 6033.6
 2.0885e+05 1.2586e+05 82987
 1921.7 23319 -21397
 15230 6565.9 8664
 20063 11075 8987.5
 ⋮

modelCalibrationPlot(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel,YData=YData);

 modelCalibration

6-187

Input Arguments
eadModel — Exposure at default model
Regression object | Tobit object | Beta object

Loss given default model, specified as a previously created Regression, Tobit, or Beta object
using fitEADModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable
names and data types must be consistent with the underlying model.
Data Types: table

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: [CalMeasure,CalData] =
modelCalibration(eadModel,data(TestInd,:),DataID='Testing',CorrelationType='s
pearman')

6 Functions

6-188

CorrelationType — Correlation type
"pearson" (default) | character vector with value of 'pearson', 'spearman', or 'kendall' |
string with value of "pearson", "spearman", or "kendall"

Correlation type, specified as CorrelationType and a character vector or string.
Data Types: char | string

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as DataID and a character vector or string. The DataID is included in
the output for reporting purposes.
Data Types: char | string

ModelLevel — Model level
'ead' (default) | character vector with value 'ead', 'conversionMeasure', or
'conversionTransform' | string with value "ead", "conversionMeasure", or
"conversionTransform"

Model level, specified as ModelLevel and a character vector or string.

Note Regression models support all three model levels, but a Tobit or Beta model supports
model levels only for "ead" and "conversionMeasure".

Data Types: char | string

ReferenceEAD — EAD values predicted for data by reference model
[] (default) | numeric vector

EAD values predicted for data by the reference model, specified as ReferenceEAD and a NumRows-
by-1 numeric vector. The modelCalibration output information is reported for both the eadModel
object and the reference model.
Data Types: double

ReferenceID — Identifier for the reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string.
ReferenceID is used in the modelCalibration output for reporting purposes.
Data Types: char | string

Output Arguments
CalMeasure — Calibration measure
table

Calibration measure, returned as a table with columns 'RSquared', 'RMSE', 'Correlation', and
'SampleMeanError'. CalMeasure has one row if only the eadModel accuracy is measured and it
has two rows if reference model information is given. The row names of CalMeasure report the
model ID and data ID (if provided).

 modelCalibration

6-189

CalData — Calibration data
table

Calibration data, returned as a table with observed EAD values, predicted EAD values, and residuals
(observed minus predicted). Additional columns for predicted and residual values are included for the
reference model, if provided. The ModelID and ReferenceID labels are appended in the column
names.

More About
Model Calibration

Model calibration measures the accuracy of the predicted probability of EAD values using different
metrics.

• R-squared — To compute the R-squared metric, modelCalibration fits a linear regression of the
observed EAD values against the predicted EAD values:

EADobs = a + b ∗ EADpred + ε

The R-square of this regression is reported. For more information, see “Coefficient of
Determination (R-Squared)”.

• RMSE — To compute the root mean square error (RMSE), modelCalibration uses the following
formula where N is the number of observations:

RMSE = 1
N∑i = 1

N (EADi
obs− EADi

pred)2

• Correlation — This metric is the correlation between the observed and predicted EAD:

corr(EADobs, EADpred)

For more information and details about the different correlation types, see corr.
• Sample mean error — This metric is the difference between the mean observed EAD and the mean

predicted EAD or, equivalently, the mean of the residuals:

SampleMeanError = 1
N∑i = 1

N (EADi
obs− EADi

pred)

Version History
Introduced in R2023a

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory
and Applications. SAS Institute, 2014.

6 Functions

6-190

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also
Regression | Tobit | Beta | fitEADModel | predict | modelDiscrimination |
modelDiscriminationPlot | modelCalibrationPlot

Topics
“Compare Results for Regression and Tobit EAD Models” on page 4-151
“Overview of Exposure at Default Models” on page 1-34

 modelCalibration

6-191

modelCalibration
Compute R-square, RMSE, correlation, and sample mean error of predicted and observed LGDs

Syntax
CalMeasure = modelCalibration(lgdModel,data)
[CalMeasure,CalData] = modelCalibration(___ ,Name,Value)

Description
CalMeasure = modelCalibration(lgdModel,data) computes the R-square, root mean square
error (RMSE), correlation, and sample mean error of observed vs. predicted loss given default (LGD)
data. modelCalibration supports comparison against a reference model and also supports
different correlation types. By default, modelCalibration computes the metrics in the LGD scale.
You can use the ModelLevel name-value pair argument to compute metrics using the underlying
model's transformed scale.

[CalMeasure,CalData] = modelCalibration(___ ,Name,Value) specifies options using one
or more name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed
LGDs Using Regression LGD Model

This example shows how to use fitLGDModel to fit data with a Regression model and then use
modelCalibration to compute the R-Square, RMSE, correlation, and sample mean error of
predicted and observed LGDs.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

Partition Data

Separate the data into training and test partitions.

6 Functions

6-192

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create Regression LGD Model

Use fitLGDModel to create a Regression model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'regression');
disp(lgdModel)

 Regression with properties:

 ResponseTransform: "logit"
 BoundaryTolerance: 1.0000e-05
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

lgdModel.UnderlyingModel

ans =
Compact linear regression model:
 LGD_logit ~ 1 + LTV + Age + Type

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept) -4.7549 0.36041 -13.193 3.0997e-38
 LTV 2.8565 0.41777 6.8377 1.0531e-11
 Age -1.5397 0.085716 -17.963 3.3172e-67
 Type_investment 1.4358 0.2475 5.8012 7.587e-09

Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value = 2.42e-104

Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed
LGDs

Use modelCalibration to compute the RSquared, RMSE, Correlation, and SampleMeanError
of the predicted and observed LGDs for the test data set.

[CalMeasure,CalData] = modelCalibration(lgdModel,data(TestInd,:))

CalMeasure=1×4 table
 RSquared RMSE Correlation SampleMeanError
 ________ _______ ___________ _______________

 modelCalibration

6-193

 Regression 0.070867 0.25988 0.26621 0.10759

CalData=1394×3 table
 Observed Predicted_Regression Residuals_Regression
 _________ ____________________ ____________________

 0.0064766 0.00091169 0.0055649
 0.007947 0.0036758 0.0042713
 0.063182 0.18774 -0.12456
 0 0.0010877 -0.0010877
 0.10904 0.011213 0.097823
 0 0.041992 -0.041992
 0.89463 0.052947 0.84168
 0 3.7188e-06 -3.7188e-06
 0.072437 0.0090124 0.063425
 0.036006 0.023928 0.012078
 0 0.0034833 -0.0034833
 0.39549 0.0065253 0.38896
 0.057675 0.071956 -0.014281
 0.014439 0.0061499 0.008289
 0 0.0012183 -0.0012183
 0 0.0019828 -0.0019828
 ⋮

Generate a scatter plot of predicted and observed LGDs using modelCalibrationPlot.

modelCalibrationPlot(lgdModel,data(TestInd,:),ModelLevel="underlying")

6 Functions

6-194

Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed
LGDs Using Tobit LGD Model

This example shows how to use fitLGDModel to fit data with a Tobit model and then use
modelCalibration to compute R-Square, RMSE, correlation, and sample mean error of predicted
and observed LGDs.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

 modelCalibration

6-195

Partition Data

Separate the data into training and test partitions.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create Tobit LGD Model

Use fitLGDModel to create a Tobit model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'tobit');
disp(lgdModel)

 Tobit with properties:

 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(lgdModel.UnderlyingModel)

Tobit regression model:
 LGD = max(0,min(Y*,1))
 Y* ~ 1 + LTV + Age + Type

Estimated coefficients:
 Estimate SE tStat pValue
 _________ _________ _______ __________

 (Intercept) 0.058257 0.027265 2.1367 0.032737
 LTV 0.20126 0.031354 6.4189 1.6932e-10
 Age -0.095407 0.0072653 -13.132 0
 Type_investment 0.10208 0.018058 5.6531 1.7915e-08
 (Sigma) 0.29288 0.0057036 51.35 0

Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1521
Number of right-censored observations: 25
Log-likelihood: -698.383

Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed
LGDs

Use modelCalibration to compute RSquared, RMSE, Correlation, and SampleMeanError of
predicted and observed LGDs for the test data set.

6 Functions

6-196

[CalMeasure,CalData] = modelCalibration(lgdModel,data(TestInd,:),CorrelationType="kendall")

CalMeasure=1×4 table
 RSquared RMSE Correlation SampleMeanError
 ________ _______ ___________ _______________

 Tobit 0.08527 0.23712 0.29964 -0.034412

CalData=1394×3 table
 Observed Predicted_Tobit Residuals_Tobit
 _________ _______________ _______________

 0.0064766 0.087889 -0.081412
 0.007947 0.12432 -0.11638
 0.063182 0.32043 -0.25724
 0 0.093354 -0.093354
 0.10904 0.16718 -0.058144
 0 0.22382 -0.22382
 0.89463 0.23695 0.65768
 0 0.010234 -0.010234
 0.072437 0.1592 -0.086761
 0.036006 0.19893 -0.16292
 0 0.12764 -0.12764
 0.39549 0.14568 0.2498
 0.057675 0.26181 -0.20413
 0.014439 0.14483 -0.13039
 0 0.094123 -0.094123
 0 0.10944 -0.10944
 ⋮

Generate a scatter plot of the predicted and observed LGDs using modelCalibrationPlot.

modelCalibrationPlot(lgdModel,data(TestInd,:))

 modelCalibration

6-197

Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed
LGDs Using Beta LGD Model

This example shows how to use fitLGDModel to fit data with a Beta model and then use
modelCalibration to compute R-Square, RMSE, correlation, and sample mean error of predicted
and observed LGDs.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

6 Functions

6-198

Partition Data

Separate the data into training and test partitions.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create Beta LGD Model

Use fitLGDModel to create a Beta model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'Beta');
disp(lgdModel)

 Beta with properties:

 BoundaryTolerance: 1.0000e-05
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(lgdModel.UnderlyingModel)

Beta regression model:
 logit(LGD) ~ 1_mu + LTV_mu + Age_mu + Type_mu
 log(LGD) ~ 1_phi + LTV_phi + Age_phi + Type_phi

Estimated coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept)_mu -1.3772 0.13201 -10.433 0
 LTV_mu 0.60269 0.15087 3.9947 6.7023e-05
 Age_mu -0.47464 0.040264 -11.788 0
 Type_investment_mu 0.45372 0.085143 5.3289 1.094e-07
 (Intercept)_phi -0.16337 0.12591 -1.2975 0.19462
 LTV_phi 0.055892 0.14719 0.37973 0.70419
 Age_phi 0.22887 0.040335 5.6743 1.5863e-08
 Type_investment_phi -0.14102 0.078155 -1.8044 0.071311

Number of observations: 2093
Log-likelihood: -5291.04

Compute R-Square, RMSE, Correlation, and Sample Mean Error of Predicted and Observed
LGDs

Use modelCalibration to compute RSquared, RMSE, Correlation, and SampleMeanError of
predicted and observed LGDs for the test data set.

[CalMeasure,CalData] = modelCalibration(lgdModel,data(TestInd,:),CorrelationType="kendall")

 modelCalibration

6-199

CalMeasure=1×4 table
 RSquared RMSE Correlation SampleMeanError
 ________ _______ ___________ _______________

 Beta 0.080804 0.24112 0.29448 -0.052396

CalData=1394×3 table
 Observed Predicted_Beta Residuals_Beta
 _________ ______________ ______________

 0.0064766 0.093695 -0.087218
 0.007947 0.14915 -0.1412
 0.063182 0.35263 -0.28944
 0 0.096434 -0.096434
 0.10904 0.18858 -0.079542
 0 0.2595 -0.2595
 0.89463 0.26767 0.62696
 0 0.021315 -0.021315
 0.072437 0.17736 -0.10492
 0.036006 0.22556 -0.18955
 0 0.13369 -0.13369
 0.39549 0.16768 0.2278
 0.057675 0.29159 -0.23392
 0.014439 0.1617 -0.14726
 0 0.10506 -0.10506
 0 0.1161 -0.1161
 ⋮

Generate a scatter plot of the predicted and observed LGDs using modelCalibrationPlot.

modelCalibrationPlot(lgdModel,data(TestInd,:))

6 Functions

6-200

Input Arguments
lgdModel — Loss given default model
Regression object | Tobit object | Beta object

Loss given default model, specified as a previously created Regression, Tobit, or Beta object
using fitLGDModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable
names and data types must be consistent with the underlying model.
Data Types: table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: [CalMeasure,CalData] =
modelCalibration(lgdModel,data(TestInd,:),DataID='Testing',CorrelationType='s
pearman')

 modelCalibration

6-201

CorrelationType — Correlation type
"pearson" (default) | character vector with value of 'pearson', 'spearman', or 'kendall' |
string with value of "pearson", "spearman", or "kendall'"

Correlation type, specified as CorrelationType and a character vector or string.
Data Types: char | string

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as DataID and a character vector or string. The DataID is included in
the output for reporting purposes.
Data Types: char | string

ModelLevel — Model level
'top' (default) | character vector with value 'top' or 'underlying' | string with value "top" or
"underlying"

Model level, specified as ModelLevel and a character vector or string.

• 'top' — The accuracy metrics are computed in the LGD scale at the top model level.
• 'underlying' — For a Regression model only, the metrics are computed in the underlying

model's transformed scale. The metrics are computed on the transformed LGD data.

Note ModelLevel has no effect for a Tobit or Beta model because there is no response
transformation.

Data Types: char | string

ReferenceLGD — LGD values predicted for data by reference model
[] (default) | numeric vector

LGD values predicted for data by the reference model, specified as ReferenceLGD and a NumRows-
by-1 numeric vector. The modelCalibration output information is reported for both the lgdModel
object and the reference model.
Data Types: double

ReferenceID — Identifier for the reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string.
'ReferenceID' is used in the modelCalibration output for reporting purposes.
Data Types: char | string

Output Arguments
CalMeasure — Calibration measure
table

Calibration measure, returned as a table with columns 'RSquared', 'RMSE', 'Correlation', and
'SampleMeanError'. CalMeasure has one row if only the lgdModel accuracy is measured and it

6 Functions

6-202

has two rows if reference model information is given. The row names of CalMeasure report the
model ID and data ID (if provided).

CalData — Calibration data
table

Calibration data, returned as a table with observed LGD values, predicted LGD values, and residuals
(observed minus predicted). Additional columns for predicted and residual values are included for the
reference model, if provided. The ModelID and ReferenceID labels are appended in the column
names.

More About
Model Calibration

Model calibration measures the accuracy of the predicted probability of LGD values using different
metrics.

• R-squared — To compute the R-squared metric, modelCalibration fits a linear regression of the
observed LGD values against the predicted LGD values

LGDobs = a + b ∗ LGDpred + ε

The R-square of this regression is reported. For more information, see “Coefficient of
Determination (R-Squared)”.

• RMSE — To compute the root mean square error (RMSE), modelCalibration uses the following
formula where N is the number of observations:

RMSE = 1
N∑i = 1

N (LGDi
obs− LGDi

pred)2

• Correlation — This is the correlation between the observed and predicted LGD:

corr(LGDobs, LGDpred)

For more information and details about the different correlation types, see corr.
• Sample mean error — This is the difference between the mean observed LGD and the mean

predicted LGD or, equivalently, the mean of the residuals:

SampleMeanError = 1
N∑i = 1

N (LGDi
obs− LGDi

pred)

Version History
Introduced in R2023a

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

 modelCalibration

6-203

See Also
Tobit | Regression | Beta | modelCalibrationPlot | modelDiscriminationPlot |
modelDiscrimination | predict | fitLGDModel

Topics
“Model Loss Given Default” on page 4-90
“Basic Loss Given Default Model Validation” on page 4-131
“Compare Tobit LGD Model to Benchmark Model” on page 4-133
“Compare Loss Given Default Models Using Cross-Validation” on page 4-140
“Overview of Loss Given Default Models” on page 1-31

6 Functions

6-204

modelCalibration
Compute RMSE of predicted and observed PDs on grouped data

Syntax
CalMeasure = modelCalibration(pdModel,data,GroupBy)
[CalMeasure,CalData] = modelCalibration(___ ,Name,Value)

Description
CalMeasure = modelCalibration(pdModel,data,GroupBy) computes the root mean squared
error (RMSE) of the observed compared to the predicted probabilities of default (PD). GroupBy is
required and can be any column in the data input (not necessarily a model variable). The
modelCalibration function computes the observed PD as the default rate of each group and the
predicted PD as the average PD for each group. modelCalibration supports comparison against a
reference model.

[CalMeasure,CalData] = modelCalibration(___ ,Name,Value) specifies options using one
or more name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute Model Calibration for Logistic Lifetime PD Model

This example shows how to use fitLifetimePDModel to fit data with a Logistic model and then
use modelCalibration to compute the root mean squared error (RMSE) of the observed
probabilities of default (PDs) with respect to the predicted PDs.

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat
disp(head(data))

 ID ScoreGroup YOB Default Year
 __ __________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004

disp(head(dataMacro))

 Year GDP Market
 ____ _____ ______

 modelCalibration

6-205

 1997 2.72 7.61
 1998 3.57 26.24
 1999 2.86 18.1
 2000 2.43 3.19
 2001 1.26 -10.51
 2002 -0.59 -22.95
 2003 0.63 2.78
 2004 1.85 9.48

Join the two data components into a single data set.

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Partition Data

Separate the data into training and test partitions.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % For reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Create Logistic Lifetime PD Model

Use fitLifetimePDModel to create a Logistic model using the training data.

pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Logistic",...
 'AgeVar','YOB',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},...
 'ResponseVar','Default');
 disp(pdModel)

 Logistic with properties:

 ModelID: "Logistic"
 Description: ""

6 Functions

6-206

 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

Display the underlying model.

pdModel.UnderlyingModel

ans =
Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -2.7422 0.10136 -27.054 3.408e-161
 ScoreGroup_Medium Risk -0.68968 0.037286 -18.497 2.1894e-76
 ScoreGroup_Low Risk -1.2587 0.045451 -27.693 8.4736e-169
 YOB -0.30894 0.013587 -22.738 1.8738e-114
 GDP -0.11111 0.039673 -2.8006 0.0051008
 Market -0.0083659 0.0028358 -2.9502 0.0031761

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0

Compute Model Calibration

Model calibration measures the predicted probabilities of default. For example, if the model predicts
a 10% PD for a group, does the group end up showing an approximate 10% default rate, or is the
eventual rate much higher or lower? While model discrimination measures the risk ranking only,
model calibration measures the the predicted risk levels.

modelCalibration computes the root mean squared error (RMSE) of the observed PDs with
respect to the predicted PDs. A grouping variable is required and it can be any column in the data
input (not necessarily a model variable). The modelCalibration function computes the observed
PD as the default rate of each group and the predicted PD as the average PD for each group.

DataSetChoice = ;
 if DataSetChoice=="Training"
 Ind = TrainDataInd;
else
 Ind = TestDataInd;
 end

GroupingVar = ;
[CalMeasure,CalData] = modelCalibration(pdModel,data(Ind,:),GroupingVar,DataID=DataSetChoice)

CalMeasure=table
 RMSE

 modelCalibration

6-207

 Logistic, grouped by YOB, Training 0.0004142

CalData=16×4 table
 ModelID YOB PD GroupCount
 __________ ___ _________ __________

 "Observed" 1 0.017421 58092
 "Observed" 2 0.012305 56723
 "Observed" 3 0.011382 55524
 "Observed" 4 0.010741 54650
 "Observed" 5 0.00809 53770
 "Observed" 6 0.0066747 53186
 "Observed" 7 0.0032198 36959
 "Observed" 8 0.0018757 19193
 "Logistic" 1 0.017185 58092
 "Logistic" 2 0.012791 56723
 "Logistic" 3 0.01131 55524
 "Logistic" 4 0.010615 54650
 "Logistic" 5 0.0083982 53770
 "Logistic" 6 0.0058744 53186
 "Logistic" 7 0.0035872 36959
 "Logistic" 8 0.0023689 19193

Visualize the model calibration using modelCalibrationPlot.

modelCalibrationPlot(pdModel,data(Ind,:),GroupingVar,DataID=DataSetChoice);

6 Functions

6-208

You can use more than one variable for grouping. For this example, group by the variables YOB and
ScoreGroup.

CalMeasure = modelCalibration(pdModel,data(Ind,:),["YOB","ScoreGroup"],DataID=DataSetChoice);
disp(CalMeasure)

 RMSE

 Logistic, grouped by YOB, ScoreGroup, Training 0.00066239

Now visualize the two grouping variables using modelCalibrationPlot.

modelCalibrationPlot(pdModel,data(Ind,:),["YOB","ScoreGroup"],DataID=DataSetChoice);

 modelCalibration

6-209

Input Arguments
pdModel — Probability of default model
Logistic object | Probit object | Cox object | customLifetimePDModel object

Probability of default model, specified as a previously created Logistic, Probit, or Cox object
using fitLifetimePDModel. Alternatively, you can create a custom probability of default model
using customLifetimePDModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime
predictions. The predictor names and data types must be consistent with the underlying model.
Data Types: table

GroupBy — Name of column in data input used to group the data
string | character vector

Name of column in the data input used to group the data, specified as a string or character vector.
GroupBy does not have to be a model variable name. For each group designated by GroupBy, the
modelCalibration function computes the observed default rates and average predicted PDs are
computed to measure the RMSE.

6 Functions

6-210

Data Types: string | char

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: [CalMeasure,CalData] =
modelCalibration(pdModel,data(Ind,:),GroupBy=["YOB","ScoreGroup"],DataID="Dat
aSetChoice")

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as DataID and a character vector or string. DataID is included in the
modelCalibration output for reporting purposes.
Data Types: char | string

ReferencePD — Conditional PD values predicted for data by reference model
[] (default) | numeric vector

Conditional PD values predicted for data by the reference model, specified as ReferencePD and a
NumRows-by-1 numeric vector. The function reports the modelCalibration output information for
both the pdModel object and the reference model.
Data Types: double

ReferenceID — Identifier for reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string.
ReferenceID is used in the modelCalibration output for reporting purposes.
Data Types: char | string

Output Arguments
CalMeasure — Calibration measure
table

Calibration measure, returned as a single-column table of RMSE values.

This table has one row if only the pdModel accuracy is measured and it has two rows if reference
model information is given. The row names of CalMeasure report the model IDs, grouping variables,
and data ID.

Note The reported RMSE values depend on the grouping variable for the required GroupBy
argument.

CalData — Calibration data
table

Calibration data, returned as a table of observed and predicted PD values for each group.

 modelCalibration

6-211

The reported observed PD values correspond to the observed default rate for each group. The
reported predicted PD values are the average PD values predicted by the pdModel object for each
group, and similarly for the reference model. The modelCalibration function stacks the PD data,
placing the observed values for all groups first, then the predicted PDs for the pdModel, and then the
predicted PDs for the reference model, if given.

The column 'ModelID' identifies which rows correspond to the observed PD, pdModel, or reference
model. The table also has one column for each grouping variable showing the unique combinations of
grouping values. The 'PD' column of CalData is a the PD data. The last column of CalData is a
'GroupCount' column with the group counts data.

More About
Model Calibration

Model calibration measures the accuracy of the predicted probability of default (PD) values.

To measure model calibration, you must compare the predicted PD values to the observed default
rates. For example, if a group of customers is predicted to have an average PD of 5%, then is the
observed default rate for that group close to 5%?

The modelCalibration function requires a grouping variable to compute average predicted PD
values within each group and the average observed default rate also within each group.
modelCalibration uses the root mean squared error (RMSE) to measure the deviations between
the observed and predicted values across groups. For example, the grouping variable could be the
calendar year, so that rows corresponding to the same calendar year are grouped together. Then, for
each year the software computes the observed default rate and the average predicted PD. The
modelCalibration function then applies the RMSE formula to obtain a single measure of the
prediction error across all years in the sample.

Suppose there are N observations in the data set, and there are M groups G1,...,GM. The default rate
for group Gi is

DRi =
Di
Ni

where:

Di is the number of defaults observed in group Gi.

Ni is the number of observations in group Gi.

The average predicted probability of default PDi for group Gi is

PDi = 1
Ni
∑ j ∈ GiPD(j)

where PD(j) is the probability of default for observation j. In other words, this is the average of the
predicted PDs within group Gi.

Therefore, the RMSE is computed as

RMSE = ∑i = 1
M Ni

N (DRi− PDi)2

6 Functions

6-212

The RMSE, as defined, depends on the selected grouping variable. For example, grouping by calendar
year and grouping by years-on-books might result in different RSME values.

Use modelCalibrationPlot to visualize observed default rates and predicted PD values on
grouped data.

Version History
Introduced in R2023a

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models
LLC, 2018.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python.
Independently published, 2020.

See Also
modelDiscrimination | modelDiscriminationPlot | modelCalibrationPlot |
predictLifetime | predict | fitLifetimePDModel | Logistic | Probit | Cox |
customLifetimePDModel

Topics
“Basic Lifetime PD Model Validation” on page 4-129
“Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
“Compare Lifetime PD Models Using Cross-Validation” on page 4-121
“Expected Credit Loss Computation” on page 4-124
“Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on page
4-144
“Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-75
“Overview of Lifetime Probability of Default Models” on page 1-25

 modelCalibration

6-213

modelCalibrationPlot
Scatter plot of predicted and observed EADs

Syntax
modelCalibrationPlot(eadModel,data)
modelCalibrationPlot(___ ,Name=Value)
h = modelCalibrationPlot(ax, ___ ,Name=Value)

Description
modelCalibrationPlot(eadModel,data) returns a scatter plot of observed vs. predicted
exposure at default (EAD) data with a linear fit. modelCalibrationPlot supports comparison
against a reference model. By default, modelCalibrationPlot plots in the EAD scale.

modelCalibrationPlot(___ ,Name=Value) specifies options using one or more name-value
arguments in addition to the input arguments in the previous syntax. You can use the ModelLevel
name-value argument to compute metrics using the underlying model's transformed scale.

h = modelCalibrationPlot(ax, ___ ,Name=Value) specifies options using one or more name-
value arguments in addition to the input arguments in the previous syntax and returns the figure
handle h.

Examples

Generate Scatter Plot of Predicted and Observed EADs Using a Tobit EAD Model

This example shows how to use fitEADModel to create a Tobit model and then use
modelCalibrationPlot to generate a scatter plot for predicted and observed EADs.

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

rng('default');
NumObs = height(EADData);

6 Functions

6-214

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Select Model Type

Select a model type for Tobit or Regression.

ModelType = ;

Select Conversion Measure

Select a conversion measure for the EAD response values.

ConversionMeasure = ;

Create Tobit EAD Model

Use fitEADModel to create a Tobit model using the TrainingInd data.

eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);

 Tobit with properties:

 CensoringSide: "right"
 LeftLimit: NaN
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "ccf"

Display the underlying model. The underlying model's response variable is the transformation of the
EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the
transformation.

disp(eadModel.UnderlyingModel);

Tobit regression model, right-censored:
 EAD_ccf = min(Y*,1)
 Y* ~ 1 + UtilizationRate + Age + Marriage

Estimated coefficients:
 Estimate SE tStat pValue
 _________ ________ ________ ________

 (Intercept) 0.51514 0.88065 0.58496 0.55863
 UtilizationRate -1.5872 0.7043 -2.2535 0.024307
 Age -0.005808 0.017758 -0.32706 0.74365
 Marriage_not married 0.007784 0.11996 0.064888 0.94827
 (Sigma) 1.4689 0.025508 57.588 0

 modelCalibrationPlot

6-215

Number of observations: 2627
Number of left-censored observations: 0
Number of uncensored observations: 2626
Number of right-censored observations: 1
Log-likelihood: -6311.87

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-value argument.

predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");

Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot,
modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

ModelLevel = ;

[DiscMeasure1,DiscData1] = modelDiscrimination(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel);
modelDiscriminationPlot(eadModel,EADData(TestInd, :),ModelLevel=ModelLevel,SegmentBy="Marriage");

6 Functions

6-216

Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the
predictions.

YData = ;

[CalMeasure1,CalData1] = modelCalibration(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel)

CalMeasure1=1×4 table
 RSquared RMSE Correlation SampleMeanError
 ________ _____ ___________ _______________

 Tobit 0.33743 47299 0.58089 7285.1

CalData1=1751×3 table
 Observed Predicted_Tobit Residuals_Tobit
 __________ _______________ _______________

 44740 3337.3 41403
 54.175 1654.8 -1600.6
 987.39 11361 -10374
 9606.4 9702.4 -95.943
 83.809 2044.5 -1960.7
 73538 70963 2575.3
 96.949 846.22 -749.27
 873.21 640.46 232.75
 328.35 1357.3 -1028.9
 55237 21710 33527
 30359 29015 1344.2
 39211 27048 12163
 2.0885e+05 42571 1.6628e+05
 1921.7 11162 -9240.8
 15230 1542 13688
 20063 6298.9 13764
 ⋮

modelCalibrationPlot(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel,YData=YData);

 modelCalibrationPlot

6-217

Generate Scatter Plot of Predicted and Observed EADs Using a Beta EAD Model

This example shows how to use fitEADModel to create a Beta model and then use
modelCalibrationPlot to generate a scatter plot for predicted and observed EADs.

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

rng('default');
NumObs = height(EADData);

6 Functions

6-218

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Select Model Type

Select a model type for Beta.

ModelType = ;

Select Conversion Measure

Select a conversion measure for the EAD response values.

ConversionMeasure = ;

Create Beta EAD Model

Use fitEADModel to create a Beta model using the TrainingInd data.

eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);

 Beta with properties:

 BoundaryTolerance: 1.0000e-07
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the
EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the
transformation.

disp(eadModel.UnderlyingModel);

Beta regression model:
 logit(EAD_lcf) ~ 1_mu + UtilizationRate_mu + Age_mu + Marriage_mu
 log(EAD_lcf) ~ 1_phi + UtilizationRate_phi + Age_phi + Marriage_phi

Estimated coefficients:
 Estimate SE tStat pValue
 __________ _________ ________ __________

 (Intercept)_mu -0.65566 0.11484 -5.7093 1.2616e-08
 UtilizationRate_mu 1.7014 0.078094 21.787 0
 Age_mu -0.0055901 0.0027603 -2.0252 0.042949
 Marriage_not married_mu -0.012577 0.052098 -0.24141 0.80926
 (Intercept)_phi -0.50131 0.094625 -5.2979 1.2686e-07
 UtilizationRate_phi 0.39731 0.066707 5.956 2.9303e-09
 Age_phi -0.001167 0.0023161 -0.50387 0.6144

 modelCalibrationPlot

6-219

 Marriage_not married_phi -0.013275 0.042627 -0.31143 0.7555

Number of observations: 2627
Log-likelihood: -3140.21

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-value argument.

predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");

Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot,
modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

ModelLevel = ;

[DiscMeasure1,DiscData1] = modelDiscrimination(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel);
modelDiscriminationPlot(eadModel,EADData(TestInd, :),ModelLevel=ModelLevel,SegmentBy="Marriage");

6 Functions

6-220

Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the
predictions.

YData = ;

[CalMeasure1,CalData1] = modelCalibration(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel)

CalMeasure1=1×4 table
 RSquared RMSE Correlation SampleMeanError
 ________ _____ ___________ _______________

 Beta 0.38655 43817 0.62173 -7393.4

CalData1=1751×3 table
 Observed Predicted_Beta Residuals_Beta
 __________ ______________ ______________

 44740 18039 26701
 54.175 10560 -10506
 987.39 15551 -14564
 9606.4 8407.7 1198.8
 83.809 33318 -33234
 73538 52120 21418
 96.949 6598.1 -6501.2
 873.21 5471.1 -4597.9
 328.35 7335 -7006.6
 55237 32580 22658
 30359 21563 8796.4
 39211 33177 6033.6
 2.0885e+05 1.2586e+05 82987
 1921.7 23319 -21397
 15230 6565.9 8664
 20063 11075 8987.5
 ⋮

modelCalibrationPlot(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel,YData=YData);

 modelCalibrationPlot

6-221

Input Arguments
eadModel — Exposure at default model
Regression object | Tobit | Beta object

Exposure at default model, specified as a previously created Regression, Tobit, or Beta object
using fitEADModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable
names and data types must be consistent with the underlying model.
Data Types: table

ax — Valid axis object
object

(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be
created in the axes specified by the optional ax argument instead of in the current axes (gca). The
optional argument ax must precede any of the input argument combinations.
Data Types: object

6 Functions

6-222

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
modelCalibrationPlot(eadModel,data(TestInd,:),DataID=Testing,XData='residuals
',YData='residuals')

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified DataID and a character vector or string. The DataID is included in the
output for reporting purposes.
Data Types: char | string

ModelLevel — Model level
'ead' (default) | character vector with value 'ead', 'conversionMeasure', or
'conversionTransform' | string with value "ead", "conversionMeasure", or
"conversionTransform"

Model level, specified as ModelLevel and a character vector or string.

Note Regression models support all three model levels, but a Tobit or Beta model supports
model levels only for "ead" and "conversionMeasure".

Data Types: char | string

ReferenceEAD — EAD values predicted for data by reference model
[] (default) | numeric vector

EAD values predicted for data by the reference model, specified as ReferenceEAD and a NumRows-
by-1 numeric vector. The scatter plot output is plotted for both the eadModel object and the
reference model.
Data Types: double

ReferenceID — Identifier for the reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string.
ReferenceID is used in the scatter plot output for reporting purposes.
Data Types: char | string

XData — Data to plot on x-axis
'predicted' (default) | character vector with value 'predicted', 'observed', 'residuals', or
VariableName | string with value | "predicted", "observed", "residuals", or VariableName

Data to plot on x-axis, specified as XData and a character vector or string for one of the following:

• 'predicted' — Plot the predicted EAD values in the x-axis.

 modelCalibrationPlot

6-223

• 'observed' — Plot the observed EAD values in the x-axis.
• 'residuals' — Plot the residuals in the x-axis.
• VariableName — Use the name of the variable in the data input, not necessarily a model variable,

to plot in the x-axis.

Data Types: char | string

YData — Data to plot on y-axis
'predicted' (default) | character vector with value 'predicted', 'observed', or 'residuals'
| string with value | "predicted", "observed", or "residuals"

Data to plot on y-axis, specified as YData and a character vector or string for one of the following:

• 'predicted' — Plot the predicted EAD values in the y-axis.
• 'observed' — Plot the observed EAD values in the y-axis.
• 'residuals' — Plot the residuals in the y-axis.

Data Types: char | string

Output Arguments
h — Figure handle
handle object

Figure handle for the scatter and line objects, returned as handle object.

More About
Model Calibration Plot

The modelCalibrationPlot function returns a scatter plot of observed vs. predicted loss given
default (EAD) data with a linear fit and reports the R-square of the linear fit.

The XData name-value pair argument allows you to change the x values on the plot. By default,
predicted EAD values are plotted in the x-axis, but predicted EAD values, residuals, or any variable in
the data input, not necessarily a model variable, can be used as x values. If the selected XData is a
categorical variable, a swarm chart is used. For more information, see swarmchart.

The YData name-value pair argument allows users to change the y values on the plot. By default,
observed EAD values are plotted in the y-axis, but predicted EAD values or residuals can also be used
as y values. YData does not support table variables.

The linear fit and reported R-squared value always correspond to the linear regression model with the
plotted y values as response and the plotted x values as the only predictor.

Version History
Introduced in R2023a

6 Functions

6-224

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory
and Applications. SAS Institute, 2014.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also
Regression | Tobit | Beta | fitEADModel | predict | modelDiscrimination |
modelDiscriminationPlot | modelCalibration

Topics
“Compare Results for Regression and Tobit EAD Models” on page 4-151
“Overview of Exposure at Default Models” on page 1-34

 modelCalibrationPlot

6-225

modelCalibrationPlot
Scatter plot of predicted and observed LGDs

Syntax
modelCalibrationPlot(lgdModel,data)
modelCalibrationPlot(___ ,Name,Value)
h = modelCalibrationPlot(ax, ___ ,Name,Value)

Description
modelCalibrationPlot(lgdModel,data) returns a scatter plot of observed vs. predicted loss
given default (LGD) data with a linear fit. modelCalibrationPlot supports comparison against a
reference model. By default, modelCalibrationPlot plots in the LGD scale.

modelCalibrationPlot(___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax. You can use the ModelLevel
name-value pair argument to compute metrics using the underlying model's transformed scale.

h = modelCalibrationPlot(ax, ___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax and returns the figure
handle h.

Examples

Generate a Scatter Plot of Predicted and Observed LGDs Using Regression LGD Model

This example shows how to use fitLGDModel to fit data with a Regression model and then use
modelCalibrationPlot to generate a scatter plot for predicted and observed LGDs.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

6 Functions

6-226

Partition Data

Separate the data into training and test partitions.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create Regression LGD Model

Use fitLGDModel to create a Regression model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'regression');
disp(lgdModel)

 Regression with properties:

 ResponseTransform: "logit"
 BoundaryTolerance: 1.0000e-05
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

lgdModel.UnderlyingModel

ans =
Compact linear regression model:
 LGD_logit ~ 1 + LTV + Age + Type

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept) -4.7549 0.36041 -13.193 3.0997e-38
 LTV 2.8565 0.41777 6.8377 1.0531e-11
 Age -1.5397 0.085716 -17.963 3.3172e-67
 Type_investment 1.4358 0.2475 5.8012 7.587e-09

Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value = 2.42e-104

Generate Scatter Plot of Predicted and Observed LGDs

Use modelCalibrationPlot to generate a scatter plot of predicted and observed LGDs for the test
data set. The ModelLevel name-value pair argument modifies the output only for Regression
models, not Tobit models, because there are no response transformations for the Tobit model.

modelCalibrationPlot(lgdModel,data(TestInd,:),ModelLevel="underlying")

 modelCalibrationPlot

6-227

Generate Scatter Plot of Predicted and Observed LGDs Using Tobit LGD Model

This example shows how to use fitLGDModel to fit data with a Tobit model and then use
modelCalibrationPlot to generate a scatter plot of predicted and observed LGDs.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

6 Functions

6-228

Partition Data

Separate the data into training and test partitions.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create Tobit LGD Model

Use fitLGDModel to create a Tobit model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'tobit');
disp(lgdModel)

 Tobit with properties:

 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(lgdModel.UnderlyingModel)

Tobit regression model:
 LGD = max(0,min(Y*,1))
 Y* ~ 1 + LTV + Age + Type

Estimated coefficients:
 Estimate SE tStat pValue
 _________ _________ _______ __________

 (Intercept) 0.058257 0.027265 2.1367 0.032737
 LTV 0.20126 0.031354 6.4189 1.6932e-10
 Age -0.095407 0.0072653 -13.132 0
 Type_investment 0.10208 0.018058 5.6531 1.7915e-08
 (Sigma) 0.29288 0.0057036 51.35 0

Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1521
Number of right-censored observations: 25
Log-likelihood: -698.383

Generate Scatter Plot of Predicted and Observed LGDs

Use modelCalibrationPlot to generate a scatter plot of predicted and observed LGDs for the test
data set.

modelCalibrationPlot(lgdModel,data(TestInd,:))

 modelCalibrationPlot

6-229

Generate Scatter Plot of Predicted and Observed LGDs Using Beta LGD Model

This example shows how to use fitLGDModel to fit data with a Beta model and then use
modelCalibrationPlot to generate a scatter plot of predicted and observed LGDs.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

6 Functions

6-230

Partition Data

Separate the data into training and test partitions.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create Beta LGD Model

Use fitLGDModel to create a Beta model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'Beta');
disp(lgdModel)

 Beta with properties:

 BoundaryTolerance: 1.0000e-05
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(lgdModel.UnderlyingModel)

Beta regression model:
 logit(LGD) ~ 1_mu + LTV_mu + Age_mu + Type_mu
 log(LGD) ~ 1_phi + LTV_phi + Age_phi + Type_phi

Estimated coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept)_mu -1.3772 0.13201 -10.433 0
 LTV_mu 0.60269 0.15087 3.9947 6.7023e-05
 Age_mu -0.47464 0.040264 -11.788 0
 Type_investment_mu 0.45372 0.085143 5.3289 1.094e-07
 (Intercept)_phi -0.16337 0.12591 -1.2975 0.19462
 LTV_phi 0.055892 0.14719 0.37973 0.70419
 Age_phi 0.22887 0.040335 5.6743 1.5863e-08
 Type_investment_phi -0.14102 0.078155 -1.8044 0.071311

Number of observations: 2093
Log-likelihood: -5291.04

Generate Scatter Plot of Predicted and Observed LGDs

Use modelCalibrationPlot to generate a scatter plot of predicted and observed LGDs for the test
data set.

modelCalibrationPlot(lgdModel,data(TestInd,:))

 modelCalibrationPlot

6-231

Visualize Calibration for Residuals or Other Variables

modelCalibrationPlot generates a scatter plot of observed vs. predicted LGD values. The
'XData' and 'YData' name-value arguments allow you to visualize the residuals or generate a
scatter plot against a variable of interest.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

6 Functions

6-232

Partition Data

Separate the data into training and test partitions.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create Regression LGD Model

Use fitLGDModel to create a Regression model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'regression');
disp(lgdModel)

 Regression with properties:

 ResponseTransform: "logit"
 BoundaryTolerance: 1.0000e-05
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(lgdModel.UnderlyingModel)

Compact linear regression model:
 LGD_logit ~ 1 + LTV + Age + Type

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept) -4.7549 0.36041 -13.193 3.0997e-38
 LTV 2.8565 0.41777 6.8377 1.0531e-11
 Age -1.5397 0.085716 -17.963 3.3172e-67
 Type_investment 1.4358 0.2475 5.8012 7.587e-09

Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value = 2.42e-104

Generate Scatter Plot of Predicted and Observed LGDs

Use modelCalibrationPlot to generate a scatter plot of residuals against LTV values.

modelCalibrationPlot(lgdModel,data(TestInd,:),XData='LTV',YData='residuals')

 modelCalibrationPlot

6-233

For Regression models, the 'ModelLevel' name-value argument allows you to visualize the plot
using the underlying model scale.

modelCalibrationPlot(lgdModel,data(TestInd,:),XData='LTV',YData='residuals',ModelLevel='underlying')

6 Functions

6-234

For categorical variables, modelCalibrationPlot uses a swarm chart. For more information, see
swarmchart.

modelCalibrationPlot(lgdModel,data(TestInd,:),XData='Type',YData='residuals',ModelLevel='underlying')

 modelCalibrationPlot

6-235

Input Arguments
lgdModel — Loss given default model
Regression object | Tobit object

Loss given default model, specified as a previously created Regression, Tobit, or Beta object
using fitLGDModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable
names and data types must be consistent with the underlying model.
Data Types: table

ax — Valid axis object
object

(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be
created in the axes specified by the optional ax argument instead of in the current axes (gca). The
optional argument ax must precede any of the input argument combinations.
Data Types: object

6 Functions

6-236

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
modelCalibrationPlot(lgdModel,data(TestInd,:),DataID='Testing',YData=residual
s,XData='LTV')

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as DataID and a character vector or string. The DataID is included in
the output for reporting purposes.
Data Types: char | string

ModelLevel — Model level
'top' (default) | character vector with value 'top' or 'underlying' | string with value "top" or
"underlying"

Model level, specified as ModelLevel and a character vector or string.

• 'top' — The accuracy metrics are computed in the LGD scale at the top model level.
• 'underlying' — For a Regression model only, the metrics are computed in the underlying

model's transformed scale. The metrics are computed on the transformed LGD data.

Note ModelLevel has no effect for a Tobit or Beta model because there is no response
transformation.

Data Types: char | string

ReferenceLGD — LGD values predicted for data by reference model
[] (default) | numeric vector

LGD values predicted for data by the reference model, specified as ReferenceLGD and a NumRows-
by-1 numeric vector. The scatter plot output is plotted for both the lgdModel object and the
reference model.
Data Types: double

ReferenceID — Identifier for the reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string.
'ReferenceID' is used in the scatter plot output for reporting purposes.
Data Types: char | string

XData — Data to plot on x-axis
'predicted' (default) | character vector with value 'predicted', 'observed', 'residuals', or
VariableName | string with value | "predicted", "observed", "residuals", or VariableName

Data to plot on x-axis, specified as XData and a character vector or string for one of the following:

 modelCalibrationPlot

6-237

• 'predicted' — Plot the predicted LGD values in the x-axis.
• 'observed' — Plot the observed LGD values in the x-axis.
• 'residuals' — Plot the residuals in the x-axis.
• VariableName — Use the name of the variable in the data input, not necessarily a model variable,

to plot in the x-axis.

Data Types: char | string

YData — Data to plot on y-axis
'predicted' (default) | character vector with value 'predicted', 'observed', or 'residuals'
| string with value | "predicted", "observed", or "residuals"

Data to plot on y-axis, specified as YData and a character vector or string for one of the following:

• 'predicted' — Plot the predicted LGD values in the y-axis.
• 'observed' — Plot the observed LGD values in the y-axis.
• 'residuals' — Plot the residuals in the y-axis.

Data Types: char | string

Output Arguments
h — Figure handle
handle object

Figure handle for the scatter and line objects, returned as handle object.

More About
Model Calibration Plot

The modelCalibrationPlot function returns a scatter plot of observed vs. predicted loss given
default (LGD) data with a linear fit and reports the R-square of the linear fit.

The XData name-value pair argument allows you to change the x values on the plot. By default,
predicted LGD values are plotted in the x-axis, but predicted LGD values, residuals, or any variable in
the data input, not necessarily a model variable, can be used as x values. If the selected XData is a
categorical variable, a swarm chart is used. For more information, see swarmchart.

The YData name-value pair argument allows users to change the y values on the plot. By default,
observed LGD values are plotted in the y-axis, but predicted LGD values or residuals can also be used
as y values. YData does not support table variables.

For Regression models, if ModelLevel is set to 'underlying', the LGD data is transformed into
the underlying model's scale. The transformed data is shown on the plot. The ModelLevel name-
value pair argument has no effect for Tobit models.

The linear fit and reported R-squared value always correspond to the linear regression model with the
plotted y values as response and the plotted x values as the only predictor.

6 Functions

6-238

Version History
Introduced in R2023a

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

See Also
Tobit | Regression | Beta | modelCalibration | modelDiscriminationPlot |
modelDiscrimination | predict | fitLGDModel

Topics
“Model Loss Given Default” on page 4-90
“Basic Loss Given Default Model Validation” on page 4-131
“Compare Tobit LGD Model to Benchmark Model” on page 4-133
“Compare Loss Given Default Models Using Cross-Validation” on page 4-140
“Overview of Loss Given Default Models” on page 1-31

 modelCalibrationPlot

6-239

modelCalibrationPlot
Plot observed default rates compared to predicted PDs on grouped data

Syntax
modelCalibrationPlot(pdModel,data,GroupBy)
modelCalibrationPlot(___ ,Name,Value)
h = modelCalibrationPlot(ax, ___ ,Name,Value)

Description
modelCalibrationPlot(pdModel,data,GroupBy) plots the observed default rates compared to
the predicted probabilities of default (PD). GroupBy is required and can be any column in the data
input (not necessarily a model variable). The modelCalibrationPlot function computes the
observed PD as the default rate of each group and the predicted PD as the average PD for each
group. modelCalibrationPlot supports comparison against a reference model.

modelCalibrationPlot(___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax.

h = modelCalibrationPlot(ax, ___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax and returns the figure
handle h.

Examples

Plot RMSE of Observed Compared to Predicted Probabilities of Default

This example shows how to use modelCalibrationPlot to plot the root mean squared error
(RMSE) of the observed probabilities of default (PDs) with respect to the predicted PDs.

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat
disp(head(data))

 ID ScoreGroup YOB Default Year
 __ __________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004

disp(head(dataMacro))

6 Functions

6-240

 Year GDP Market
 ____ _____ ______

 1997 2.72 7.61
 1998 3.57 26.24
 1999 2.86 18.1
 2000 2.43 3.19
 2001 1.26 -10.51
 2002 -0.59 -22.95
 2003 0.63 2.78
 2004 1.85 9.48

Join the two data components into a single data set.

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Partition Data

Separate the data into training and test partitions.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % For reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Create Logistic Lifetime PD Model

Use fitLifetimePDModel to create a Logistic model using the training data.

pdModel = fitLifetimePDModel(data(TrainDataInd,:),'logistic',...
 'ModelID','Example',...
 'Description','Lifetime PD model using RetailCreditPanelData.',...
 'IDVar','ID',...
 'AgeVar','YOB',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP' 'Market'},...
 'ResponseVar','Default');
 disp(pdModel)

 modelCalibrationPlot

6-241

 Logistic with properties:

 ModelID: "Example"
 Description: "Lifetime PD model using RetailCreditPanelData."
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

 pdModel.UnderlyingModel

ans =
Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -2.7422 0.10136 -27.054 3.408e-161
 ScoreGroup_Medium Risk -0.68968 0.037286 -18.497 2.1894e-76
 ScoreGroup_Low Risk -1.2587 0.045451 -27.693 8.4736e-169
 YOB -0.30894 0.013587 -22.738 1.8738e-114
 GDP -0.11111 0.039673 -2.8006 0.0051008
 Market -0.0083659 0.0028358 -2.9502 0.0031761

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0

Visualize Model Calibration

Use modelCalibrationPlot to visualize the model calibration on test data, grouping by age.

modelCalibrationPlot(pdModel,data(TestDataInd,:),'YOB')

6 Functions

6-242

Input Arguments
pdModel — Probability of default model
Logistic object | Probit object | Cox object | customLifetimePDModel object

Probability of default model, specified as a Logistic, Probit, or Cox object previously created
using fitLifetimePDModel. Alternatively, you can create a custom probability of default model
using customLifetimePDModel.

Note The 'ModelID' property of the pdModel object is used as the identifier or tag for pdModel.

Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime
predictions. The predictor names and data types must be consistent with the underlying model.
Data Types: table

GroupBy — Name of column in data input used to group the data
string | character vector

 modelCalibrationPlot

6-243

Name of column in the data input used to group the data, specified as a string or character vector.
GroupBy does not have to be a model variable name. For each group designated by GroupBy, the
modelCalibrationPlot function computes the observed default rates and average predicted PDs
are computed to measure the RMSE. modelCalibrationPlot supports up to two grouping
variables.
Data Types: string | char

ax — Valid axis object
object

(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be
created in the axes specified by the optional ax argument instead of in the current axes (gca). The
optional argument ax must precede any of the input argument combinations.
Data Types: object

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
modelCalibrationPlot(pdModel,data(Ind,:),GroupBy=["YOB","ScoreGroup"],DataID=
"DataSetChoice")

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as DataID and a character vector or string. DataID is included in the
plot title for reporting purposes.
Data Types: char | string

ReferencePD — Conditional PD values predicted for data by reference model
[] (default) | numeric vector

Conditional PD values predicted for data by the reference model, specified as ReferencePD and a
NumRows-by-1 numeric vector. The predicted PD is plotted for both the pdModel object and the
reference model.
Data Types: double

ReferenceID — Identifier for reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string.
ReferenceID is used in the plot for reporting purposes.
Data Types: char | string

Output Arguments
h — Figure handle
handle object

6 Functions

6-244

Figure handle for the line objects, returned as handle object.

More About
Model Calibration

Model calibration measures the accuracy of the predicted probability of default (PD) values.

The modelCalibrationPlot function allows you to visually compare the predicted PD values to the
observed default rates. The modelCalibrationPlot function requires a grouping variable to
compute average predicted PD values within each group and the average observed default rate also
within each group. The predicted PD values and the observed default rates by group are plotted
against the grouping variable values.

Up to two grouping variables are supported in modelCalibrationPlot. When two grouping
variables are specified, the average predicted PD and default rates are computed for all the groups
defined by the combination of the two grouping variables. The data is plotted against the first
grouping variable, and the second variable is used to differentiate the data on the plot with different
colors.

The root mean square error (RMSE) of the grouped data is reported on the title of the plot. To get the
RMSE metric programmatically, use modelCalibration.

Version History
Introduced in R2023a

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models
LLC, 2018.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python.
Independently published, 2020.

See Also
modelDiscrimination | modelDiscriminationPlot | modelCalibration | predictLifetime
| predict | fitLifetimePDModel | Logistic | Probit | Cox | customLifetimePDModel

Topics
“Basic Lifetime PD Model Validation” on page 4-129
“Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
“Compare Lifetime PD Models Using Cross-Validation” on page 4-121
“Expected Credit Loss Computation” on page 4-124
“Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on page
4-144

 modelCalibrationPlot

6-245

“Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-75
“Overview of Lifetime Probability of Default Models” on page 1-25

6 Functions

6-246

modelAccuracyPlot
Plot observed default rates compared to predicted PDs on grouped data

Note modelAccuracyPlot is renamed to modelCalibrationPlot. modelAccuracyPlot is not
recommended. Use modelCalibrationPlot instead.

Syntax
modelAccuracyPlot(pdModel,data,GroupBy)
modelAccuracyPlot(___ ,Name,Value)
h = modelAccuracyPlot(ax, ___ ,Name,Value)

Description
modelAccuracyPlot(pdModel,data,GroupBy) plots the observed default rates compared to the
predicted probabilities of default (PD). GroupBy is required and can be any column in the data input
(not necessarily a model variable). The modelAccuracyPlot function computes the observed PD as
the default rate of each group and the predicted PD as the average PD for each group.
modelAccuracyPlot supports comparison against a reference model.

modelAccuracyPlot(___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in the previous syntax.

h = modelAccuracyPlot(ax, ___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input arguments in the previous syntax and returns the figure
handle h.

Input Arguments
pdModel — Probability of default model
Logistic object | Probit object | Cox object | customLifetimePDModel object

Probability of default model, specified as a Logistic, Probit, or Cox object previously created
using fitLifetimePDModel. Alternatively, you can create a custom probability of default model
using customLifetimePDModel.

Note The 'ModelID' property of the pdModel object is used as the identifier or tag for pdModel.

Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime
predictions. The predictor names and data types must be consistent with the underlying model.
Data Types: table

 modelAccuracyPlot

6-247

GroupBy — Name of column in data input used to group the data
string | character vector

Name of column in the data input used to group the data, specified as a string or character vector.
GroupBy does not have to be a model variable name. For each group designated by GroupBy, the
modelAccuracyPlot function computes the observed default rates and average predicted PDs are
computed to measure the RMSE. modelAccuracyPlot supports up to two grouping variables.
Data Types: string | char

ax — Valid axis object
object

(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be
created in the axes specified by the optional ax argument instead of in the current axes (gca). The
optional argument ax must precede any of the input argument combinations.
Data Types: object

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: modelAccuracyPlot(pdModel,data(Ind,:),'GroupBy',
["YOB","ScoreGroup"],'DataID',"DataSetChoice")

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as the comma-separated pair consisting of 'DataID' and a character
vector or string. DataID is included in the plot title for reporting purposes.
Data Types: char | string

ReferencePD — Conditional PD values predicted for data by reference model
[] (default) | numeric vector

Conditional PD values predicted for data by the reference model, specified as the comma-separated
pair consisting of 'ReferencePD' and a NumRows-by-1 numeric vector. The predicted PD is plotted
for both the pdModel object and the reference model.
Data Types: double

ReferenceID — Identifier for reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as the comma-separated pair consisting of
'ReferenceID' and a character vector or string. ReferenceID is used in the plot for reporting
purposes.
Data Types: char | string

6 Functions

6-248

Output Arguments
h — Figure handle
handle object

Figure handle for the line objects, returned as handle object.

More About
Model Accuracy

Model accuracy measures the accuracy of the predicted probability of default (PD) values.

The modelAccuracyPlot function allows you to visually compare the predicted PD values to the
observed default rates. The modelAccuracyPlot function requires a grouping variable to compute
average predicted PD values within each group and the average observed default rate also within
each group. The predicted PD values and the observed default rates by group are plotted against the
grouping variable values.

Up to two grouping variables are supported in modelAccuracyPlot. When two grouping variables
are specified, the average predicted PD and default rates are computed for all the groups defined by
the combination of the two grouping variables. The data is plotted against the first grouping variable,
and the second variable is used to differentiate the data on the plot with different colors.

The root mean square error (RMSE) of the grouped data is reported on the title of the plot. To get the
RMSE metric programmatically, use modelAccuracy.

Version History
Introduced in R2021a

R2023a: modelAccuracyPlot function is renamed to modelCalibrationPlot function
Not recommended starting in R2023a

The modelAccuracyPlot function is renamed to modelCalibrationPlot function. The use of
modelAccuracyPlot is not recommended, use modelCalibrationPlot instead.

R2022b: Support for customLifetimePDModel model

The pdModel input supports an option for a customLifetimePDModel model object that you can
create using customLifetimePDModel.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models
LLC, 2018.

 modelAccuracyPlot

6-249

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python.
Independently published, 2020.

See Also
modelDiscrimination | modelDiscriminationPlot | modelAccuracy | predictLifetime |
predict | fitLifetimePDModel | Logistic | Probit | Cox | customLifetimePDModel

Topics
“Basic Lifetime PD Model Validation” on page 4-129
“Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
“Compare Lifetime PD Models Using Cross-Validation” on page 4-121
“Expected Credit Loss Computation” on page 4-124
“Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on page
4-144
“Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-75
“Overview of Lifetime Probability of Default Models” on page 1-25

6 Functions

6-250

modelDiscrimination
Compute AUROC and ROC data

Syntax
DiscMeasure = modelDiscrimination(eadModel,data)
[DiscMeasure,DiscData] = modelDiscrimination(___ ,Name=Value)

Description
DiscMeasure = modelDiscrimination(eadModel,data) computes the area under the receiver
operating characteristic curve (AUROC). modelDiscrimination supports segmentation and
comparison against a reference model and alternative methods to discretize the EAD response into a
binary variable.

[DiscMeasure,DiscData] = modelDiscrimination(___ ,Name=Value) specifies options
using one or more name-value arguments in addition to the input arguments in the previous syntax.

Examples

Compute AUROC and ROC Using Tobit EAD Model

This example shows how to use fitEADModel to create a Tobit model and then use
modelDiscrimination to compute AUROC and ROC.

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

 modelDiscrimination

6-251

Select Model Type

Select a model type for Tobit or Regression.

ModelType = ;

Select Conversion Measure

Select a conversion measure for the EAD response values.

ConversionMeasure = ;

Create Tobit EAD Model

Use fitEADModel to create a Tobit model using the TrainingInd data.

eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);

 Tobit with properties:

 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the
EAD response data. Use the 'LiimitVar' and 'DrwanVar' name-value arguments to modify the
transformation.

disp(eadModel.UnderlyingModel);

Tobit regression model:
 EAD_lcf = max(0,min(Y*,1))
 Y* ~ 1 + UtilizationRate + Age + Marriage

Estimated coefficients:
 Estimate SE tStat pValue
 __________ __________ ________ __________

 (Intercept) 0.22467 0.03134 7.1689 9.7855e-13
 UtilizationRate 0.4714 0.020722 22.749 0
 Age -0.0014209 0.00076326 -1.8616 0.062771
 Marriage_not married -0.010542 0.01578 -0.66807 0.50415
 (Sigma) 0.3618 0.0050022 72.33 0

Number of observations: 2627
Number of left-censored observations: 0
Number of uncensored observations: 2626

6 Functions

6-252

Number of right-censored observations: 1
Log-likelihood: -1057.9

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-value argument.

predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");

Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot,
modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

ModelLevel = ;

[DiscMeasure1,DiscData1] = modelDiscrimination(eadModel,EADData(TestInd,:),ShowDetails=true,ModelLevel=ModelLevel)

DiscMeasure1=1×3 table
 AUROC Segment SegmentCount
 _______ __________ ____________

 Tobit 0.70893 "all_data" 1751

DiscData1=1534×3 table
 X Y T
 __________ _________ _______

 0 0 0.63602
 0 0.0027778 0.63602
 0 0.0041667 0.63489
 0.00096993 0.0055556 0.63377
 0.00096993 0.0069444 0.63265
 0.0019399 0.0083333 0.63152
 0.0029098 0.0097222 0.6304
 0.0029098 0.015278 0.62927
 0.0029098 0.016667 0.62922
 0.0029098 0.018056 0.6288
 0.0029098 0.019444 0.62864
 0.0038797 0.022222 0.62814
 0.0038797 0.025 0.62767
 0.0048497 0.026389 0.62701
 0.0048497 0.033333 0.62654
 0.0058196 0.033333 0.62618
 ⋮

modelDiscriminationPlot(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel,SegmentBy="Marriage");

 modelDiscrimination

6-253

Compute AUROC and ROC Using Beta EAD Model

This example shows how to use fitEADModel to create a Beta model and then use
modelDiscrimination to compute AUROC and ROC.

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

rng('default');
NumObs = height(EADData);

6 Functions

6-254

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Select Model Type

Select a model type for a Beta model.

ModelType = ;

Select Conversion Measure

Select a conversion measure for the EAD response values.

ConversionMeasure = ;

Create Beta EAD Model

Use fitEADModel to create a Beta model using the TrainingInd data.

eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);

 Beta with properties:

 BoundaryTolerance: 1.0000e-07
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the
EAD response data. Use the 'LiimitVar' and 'DrwanVar' name-value arguments to modify the
transformation.

disp(eadModel.UnderlyingModel);

Beta regression model:
 logit(EAD_lcf) ~ 1_mu + UtilizationRate_mu + Age_mu + Marriage_mu
 log(EAD_lcf) ~ 1_phi + UtilizationRate_phi + Age_phi + Marriage_phi

Estimated coefficients:
 Estimate SE tStat pValue
 __________ _________ ________ __________

 (Intercept)_mu -0.65566 0.11484 -5.7093 1.2616e-08
 UtilizationRate_mu 1.7014 0.078094 21.787 0
 Age_mu -0.0055901 0.0027603 -2.0252 0.042949
 Marriage_not married_mu -0.012577 0.052098 -0.24141 0.80926
 (Intercept)_phi -0.50131 0.094625 -5.2979 1.2686e-07
 UtilizationRate_phi 0.39731 0.066707 5.956 2.9303e-09
 Age_phi -0.001167 0.0023161 -0.50387 0.6144

 modelDiscrimination

6-255

 Marriage_not married_phi -0.013275 0.042627 -0.31143 0.7555

Number of observations: 2627
Log-likelihood: -3140.21

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-value argument.

predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");

Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot,
modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

ModelLevel = ;

[DiscMeasure1,DiscData1] = modelDiscrimination(eadModel,EADData(TestInd,:),ShowDetails=true,ModelLevel=ModelLevel)

DiscMeasure1=1×3 table
 AUROC Segment SegmentCount
 _______ __________ ____________

 Beta 0.70895 "all_data" 1751

DiscData1=1534×3 table
 X Y T
 __________ _________ _______

 0 0 0.71675
 0 0.0027778 0.71675
 0 0.0041667 0.71561
 0 0.0055556 0.71533
 0.00096993 0.0069444 0.71447
 0.00096993 0.0097222 0.71419
 0.00096993 0.011111 0.71333
 0.00096993 0.018056 0.71304
 0.0019399 0.018056 0.7128
 0.0029098 0.019444 0.71218
 0.0048497 0.019444 0.7119
 0.0058196 0.020833 0.71104
 0.0067895 0.020833 0.71075
 0.0067895 0.022222 0.71022
 0.0067895 0.027778 0.70989
 0.0067895 0.029167 0.70968
 ⋮

modelDiscriminationPlot(eadModel,EADData(TestInd, :),ModelLevel=ModelLevel,SegmentBy="Marriage");

6 Functions

6-256

Input Arguments
eadModel — Exposure at default model
Regression object | Tobit object | Beta object

Exposure at default model, specified as a previously created Regression, Tobit, or Beta object
using fitEADModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable
names and data types must be consistent with the underlying model.
Data Types: table

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: [DiscMeasure,DiscData] =
modelDiscrimination(eadModel,data(TestInd,:),DataID='Testing',DiscretizeBy='m
edian')

 modelDiscrimination

6-257

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as DataID and a character vector or string. The DataID is included in
the output for reporting purposes.
Data Types: char | string

DiscretizeBy — Discretization method for EAD data at defined ModelLevel
'mean' (default) | character vector with value 'mean' or 'median' | string with value "mean" or
"median"

Discretization method for EAD data at the defined ModelLevel, specified as DiscretizeBy and a
character vector or string.

• 'mean' — Discretized response is 1 if observed EAD is greater than or equal to the mean EAD, 0
otherwise.

• 'median' — Discretized response is 1 if observed EAD is greater than or equal to the median
EAD, 0 otherwise.

Data Types: char | string

SegmentBy — Name of column in data input used to segment data set
"" (default) | character vector | string

Name of a column in the data input, not necessarily a model variable, to be used to segment the data
set, specified as SegmentBy and a character vector or string. One AUROC is reported for each
segment, and the corresponding ROC data for each segment is returned in the optional output.
Data Types: char | string

ShowDetails — Indicates if output includes columns showing segment value and segment
count
false (default) | logical

Indicates if the output includes columns showing segment value and segment count, specified as the
comma-separated pair consisting of 'ShowDetails' and a scalar logical.
Data Types: logical

ModelLevel — Model level
"ead" (default) | character vector with value 'ead', 'conversionMeasure', or
'conversionTransform' | string with value "ead", "conversionMeasure", or
"conversionTransform"

Model level, specified as ModelLevel and a character vector or string.

Note Regression models support all three model levels, but a Tobit or Beta model supports only
a ModelLevel for "ead" and "conversionMeasure".

Data Types: char | string

ReferenceEAD — EAD values predicted for data by reference model
[] (default) | numeric vector

6 Functions

6-258

EAD values predicted for data by the reference model, specified as ReferenceEAD and a NumRows-
by-1 numeric vector. The modelDiscrimination output information is reported for both the
eadModel object and the reference model.
Data Types: double

ReferenceID — Identifier for the reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string.
'ReferenceID' is used in the modelDiscrimination output for reporting purposes.
Data Types: char | string

Output Arguments
DiscMeasure — AUROC information for each model and each segment
table

AUROC information for each model and each segment, returned as a table. DiscMeasure has a
single column named 'AUROC' and the number of rows depends on the number of segments and
whether you use a ReferenceID for a reference model . The row names of DiscMeasure report the
model IDs, segment, and data ID. If the optional ShowDetails name-value argument is true, the
DiscMeasure output displays Segment and SegmentCount columns.

Note If you do not specify SegmentBy and use ShowDetails to request the segment details, the
two columns are added and show the Segment column as "all_data" and the sample size (minus
missing values) for the SegmentCount column.

DiscData — ROC data for each model and each segment
table

ROC data for each model and each segment, returned as a table. There are three columns for the
ROC data, with column names 'X', 'Y', and 'T', where the first two are the X and Y coordinates of
the ROC curve, and T contains the corresponding thresholds. For more information, see “Model
Discrimination” on page 6-259 or perfcurve.

If you use SegmentBy, the function stacks the ROC data for all segments and DiscData has a
column with the segmentation values to indicate where each segment starts and ends.

If reference model data is given, the DiscData outputs for the main and reference models are
stacked, with an extra column 'ModelID' indicating where each model starts and ends.

More About
Model Discrimination

Model discrimination measures the risk ranking.

The modelDiscrimination function computes the area under the receiver operator characteristic
(AUROC) curve, sometimes called simply the area under the curve (AUC). This metric is between 0
and 1 and higher values indicate better discrimination.

 modelDiscrimination

6-259

To compute the AUROC, you need a numeric prediction and a binary response. For EAD models, the
predicted EAD is used directly as the prediction. However, the observed EAD must be discretized into
a binary variable. By default, observed EAD values greater than or equal to the mean observed EAD
are assigned a value of 1, and values below the mean are assigned a value of 0. This discretized
response is interpreted as "high EAD" vs. "low EAD." Therefore, the modelDiscrimination function
measures how well the predicted EAD separates the "high EAD" vs. the "low EAD" observations. You
can change the level to compute the model discrimination with the ModelLevel name-value pair
argument and the discretization criterion with the DiscretizeBy name-value pair argument.

To plot the receiver operator characteristic (ROC) curve, use the modelDiscriminationPlot
function. However, if you need the ROC curve data, use the optional DiscData output argument from
the modelDiscrimination function.

The ROC curve is a parametric curve that plots the proportion of

• High EAD cases with predicted EAD greater than or equal to a parameter t, or true positive rate
(TPR)

• Low EAD cases with predicted EAD greater than or equal to the same parameter t, or false
positive rate (FPR)

The parameter t sweeps through all the observed predicted EAD values for the given data. The
DiscData optional output contains the TPR in the 'X' column, the FPR in the 'Y' column, and the
corresponding parameters t in the 'T' column. For more information about ROC curves, see “ROC
Curve and Performance Metrics”.

Version History
Introduced in R2021b

R2022b: Support for Beta model
Behavior changed in R2022b

The eadModel input supports an option for a Beta model object that you can create using
fitEADModel.

R2022a: Additional option for ShowDetails
Behavior changed in R2022a

There is an additional name-value pair for ShowDetails to indicate if the DiscMeasure output
includes columns for Segment value and the SegmentCount.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory
and Applications. SAS Institute, 2014.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

6 Functions

6-260

See Also
Regression | Tobit | fitEADModel | predict | modelDiscriminationPlot |
modelCalibration | modelCalibrationPlot

Topics
“Compare Results for Regression and Tobit EAD Models” on page 4-151
“Overview of Exposure at Default Models” on page 1-34

 modelDiscrimination

6-261

modelDiscrimination
Compute AUROC and ROC data

Syntax
DiscMeasure = modelDiscrimination(lgdModel,data)
[DiscMeasure,DiscData] = modelDiscrimination(___ ,Name,Value)

Description
DiscMeasure = modelDiscrimination(lgdModel,data) computes the area under the receiver
operating characteristic curve (AUROC). modelDiscrimination supports segmentation and
comparison against a reference model and also alternative methods to discretize the LGD response
into a binary variable.

[DiscMeasure,DiscData] = modelDiscrimination(___ ,Name,Value) specifies options
using one or more name-value pair arguments in addition to the input arguments in the previous
syntax.

Examples

Compute AUROC and ROC Using a Regression LGD Model

This example shows how to use fitLGDModel to fit data with a Regression model and then use
modelDiscrimination to compute AUROC and ROC.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

Partition Data

Separate the data into training and test partitions.

rng('default'); % for reproducibility
NumObs = height(data);

6 Functions

6-262

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create a Regression LGD Model

Use fitLGDModel to create a Regression model using training data. You can also use
fitLGDModel to create a Tobit model by changing the lgdModel input argument to 'Tobit'.

lgdModel = fitLGDModel(data(TrainingInd,:),'Regression');
disp(lgdModel)

 Regression with properties:

 ResponseTransform: "logit"
 BoundaryTolerance: 1.0000e-05
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(lgdModel.UnderlyingModel)

Compact linear regression model:
 LGD_logit ~ 1 + LTV + Age + Type

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept) -4.7549 0.36041 -13.193 3.0997e-38
 LTV 2.8565 0.41777 6.8377 1.0531e-11
 Age -1.5397 0.085716 -17.963 3.3172e-67
 Type_investment 1.4358 0.2475 5.8012 7.587e-09

Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value = 2.42e-104

Compute AUROC and ROC Data

Use modelDiscrimination to compute the AUROC and ROC for the test data set.

[DiscMeasure,DiscData] = modelDiscrimination(lgdModel,data(TestInd,:),'ShowDetails',true)

DiscMeasure=1×3 table
 AUROC Segment SegmentCount
 _______ __________ ____________

 Regression 0.67897 "all_data" 1394

DiscData=1395×3 table
 X Y T

 modelDiscrimination

6-263

 __________ _________ _______

 0 0 0.87604
 0 0.0029326 0.87604
 0 0.0058651 0.7515
 0.00094967 0.0058651 0.44074
 0.0018993 0.0058651 0.43569
 0.0018993 0.0087977 0.40058
 0.002849 0.0087977 0.31703
 0.002849 0.01173 0.30375
 0.002849 0.014663 0.28789
 0.002849 0.017595 0.27996
 0.0037987 0.017595 0.27026
 0.0047483 0.017595 0.26868
 0.005698 0.017595 0.26854
 0.005698 0.020528 0.26682
 0.0066477 0.020528 0.26668
 0.0066477 0.02346 0.24923
 ⋮

You can visualize the ROC data using modelDiscriminationPlot.

modelDiscriminationPlot(lgdModel,data(TestInd,:))

6 Functions

6-264

Compute AUROC and ROC Using Tobit LGD Model

This example shows how to use fitLGDModel to fit data with a Tobit model and then use
modelDiscrimination to compute AUROC and ROC.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

Partition Data

Separate the data into training and test partitions.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create a Tobit LGD Model

Use fitLGDModel to create a Tobit model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'tobit');
disp(lgdModel)

 Tobit with properties:

 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(lgdModel.UnderlyingModel)

Tobit regression model:
 LGD = max(0,min(Y*,1))

 modelDiscrimination

6-265

 Y* ~ 1 + LTV + Age + Type

Estimated coefficients:
 Estimate SE tStat pValue
 _________ _________ _______ __________

 (Intercept) 0.058257 0.027265 2.1367 0.032737
 LTV 0.20126 0.031354 6.4189 1.6932e-10
 Age -0.095407 0.0072653 -13.132 0
 Type_investment 0.10208 0.018058 5.6531 1.7915e-08
 (Sigma) 0.29288 0.0057036 51.35 0

Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1521
Number of right-censored observations: 25
Log-likelihood: -698.383

Compute AUROC and ROC Data

Use modelDiscrimination to compute the AUROC and ROC for the test data set.

DiscMeasure = modelDiscrimination(lgdModel,data(TestInd,:),'ShowDetails',true,'SegmentBy',"Type",'DiscretizeBy',"median")

DiscMeasure=2×3 table
 AUROC Segment SegmentCount
 _______ _____________ ____________

 Tobit, Type=residential 0.70101 "residential" 1152
 Tobit, Type=investment 0.73252 "investment" 242

You can visualize the ROC using modelDiscriminationPlot.

modelDiscriminationPlot(lgdModel,data(TestInd,:),'SegmentBy',"Type",'DiscretizeBy',"median")

6 Functions

6-266

Compute AUROC and ROC Using Beta LGD Model

This example shows how to use fitLGDModel to fit data with a Beta model and then use
modelDiscrimination to compute AUROC and ROC.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

 modelDiscrimination

6-267

Partition Data

Separate the data into training and test partitions.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create a Beta LGD Model

Use fitLGDModel to create a risk_ug#object_model_beta_lgd model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'Beta');
disp(lgdModel)

 Beta with properties:

 BoundaryTolerance: 1.0000e-05
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(lgdModel.UnderlyingModel)

Beta regression model:
 logit(LGD) ~ 1_mu + LTV_mu + Age_mu + Type_mu
 log(LGD) ~ 1_phi + LTV_phi + Age_phi + Type_phi

Estimated coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept)_mu -1.3772 0.13201 -10.433 0
 LTV_mu 0.60269 0.15087 3.9947 6.7023e-05
 Age_mu -0.47464 0.040264 -11.788 0
 Type_investment_mu 0.45372 0.085143 5.3289 1.094e-07
 (Intercept)_phi -0.16337 0.12591 -1.2975 0.19462
 LTV_phi 0.055892 0.14719 0.37973 0.70419
 Age_phi 0.22887 0.040335 5.6743 1.5863e-08
 Type_investment_phi -0.14102 0.078155 -1.8044 0.071311

Number of observations: 2093
Log-likelihood: -5291.04

Compute AUROC and ROC Data

Use modelDiscrimination to compute the AUROC and ROC for the test data set.

DiscMeasure = modelDiscrimination(lgdModel,data(TestInd,:),'ShowDetails',true,'SegmentBy',"Type",'DiscretizeBy',"median")

DiscMeasure=2×3 table
 AUROC Segment SegmentCount

6 Functions

6-268

 _______ _____________ ____________

 Beta, Type=residential 0.70031 "residential" 1152
 Beta, Type=investment 0.73037 "investment" 242

You can visualize the ROC using modelDiscriminationPlot.

modelDiscriminationPlot(lgdModel,data(TestInd,:),'SegmentBy',"Type",'DiscretizeBy',"median")

Input Arguments
lgdModel — Loss given default model
Regression object | Tobit object | Beta object

Loss given default model, specified as a previously created Regression, Tobit, or Beta object
using fitLGDModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable
names and data types must be consistent with the underlying model.
Data Types: table

 modelDiscrimination

6-269

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [DiscMeasure,DiscData] =
modelDiscrimination(lgdModel,data(TestInd,:),'DataID','Testing','DiscretizeBy
','median')

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as the comma-separated pair consisting of 'DataID' and a character
vector or string. The DataID is included in the output for reporting purposes.
Data Types: char | string

DiscretizeBy — Discretization method for LGD data
'mean' (default) | character vector with value 'mean', 'median', 'positive', or 'total' | string
with value "mean", "median", "positive", or "total"

Discretization method for LGD data, specified as the comma-separated pair consisting of
'DiscretizeBy' and a character vector or string.

• 'mean' — Discretized response is 1 if observed LGD is greater than or equal to the mean LGD, 0
otherwise.

• 'median' — Discretized response is 1 if observed LGD is greater than or equal to the median
LGD, 0 otherwise.

• 'positive' — Discretized response is 1 if observed LGD is positive, 0 otherwise (full recovery).
• 'total' — Discretized response is 1 if observed LGD is greater than or equal to 1 (total loss), 0

otherwise.

Data Types: char | string

SegmentBy — Name of column in data input used to segment data set
"" (default) | character vector | string

Name of a column in the data input, not necessarily a model variable, to be used to segment the data
set, specified as the comma-separated pair consisting of 'SegmentBy' and a character vector or
string. One AUROC is reported for each segment, and the corresponding ROC data for each segment
is returned in the optional output.
Data Types: char | string

ShowDetails — Indicates if output includes columns showing segment value and segment
count
false (default) | logical

Indicates if the output includes columns showing segment value and segment count, specified as the
comma-separated pair consisting of 'ShowDetails' and a scalar logical.
Data Types: logical

6 Functions

6-270

ReferenceLGD — LGD values predicted for data by reference model
[] (default) | numeric vector

LGD values predicted for data by the reference model, specified as the comma-separated pair
consisting of 'ReferenceLGD' and a NumRows-by-1 numeric vector. The modelDiscrimination
output information is reported for both the lgdModel object and the reference model.
Data Types: double

ReferenceID — Identifier for the reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as the comma-separated pair consisting of
'ReferenceID' and a character vector or string. 'ReferenceID' is used in the
modelDiscrimination output for reporting purposes.
Data Types: char | string

Output Arguments
DiscMeasure — AUROC information for each model and each segment
table

AUROC information for each model and each segment, returned as a table. DiscMeasure has a
single column named 'AUROC' and the number of rows depends on the number of segments and
whether you use a ReferenceID for a reference model . The row names of DiscMeasure report the
model IDs, segment, and data ID. If the optional ShowDetails name-value argument is true, the
DiscMeasure output displays Segment and SegmentCount columns.

Note If you do not specify SegmentBy and use ShowDetails to request the segment details, the
two columns are added and show the Segment column as "all_data" and the sample size (minus
missing values) for the SegmentCount column.

DiscData — ROC data for each model and each segment
table

ROC data for each model and each segment, returned as a table. There are three columns for the
ROC data, with column names 'X', 'Y', and 'T', where the first two are the X and Y coordinates of
the ROC curve, and T contains the corresponding thresholds. For more information, see “Model
Discrimination” on page 6-271 or perfcurve.

If you use SegmentBy, the function stacks the ROC data for all segments and DiscData has a
column with the segmentation values to indicate where each segment starts and ends.

If reference model data is given, the DiscData outputs for the main and reference models are
stacked, with an extra column 'ModelID' indicating where each model starts and ends.

More About
Model Discrimination

Model discrimination measures the risk ranking.

 modelDiscrimination

6-271

The modelDiscrimination function computes the area under the receiver operator characteristic
(AUROC) curve, sometimes called simply the area under the curve (AUC). This metric is between 0
and 1 and higher values indicate better discrimination.

To compute the AUROC, you need a numeric prediction and a binary response. For loss given default
(LGD) models, the predicted LGD is used directly as the prediction. However, the observed LGD must
be discretized into a binary variable. By default, observed LGD values greater than or equal to the
mean observed LGD are assigned a value of 1, and values below the mean are assigned a value of 0.
This discretized response is interpreted as "high LGD" vs. "low LGD." Therefore, the
modelDiscrimination function measures how well the predicted LGD separates the "high LGD" vs.
the "low LGD" observations. You can change the discretization criterion with the DiscretizeBy
name-value pair argument.

To plot the receiver operator characteristic (ROC) curve, use the modelDiscriminationPlot
function. However, if the ROC curve data is needed, use the optional DiscData output argument
from the modelDiscrimination function.

The ROC curve is a parametric curve that plots the proportion of

• High LGD cases with predicted LGD greater than or equal to a parameter t, or true positive rate
(TPR)

• Low LGD cases with predicted LGD greater than or equal to the same parameter t, or false
positive rate (FPR)

The parameter t sweeps through all the observed predicted LGD values for the given data. The
DiscData optional output contains the TPR in the 'X' column, the FPR in the 'Y' column, and the
corresponding parameters t in the 'T' column. For more information about ROC curves, see “ROC
Curve and Performance Metrics”.

Version History
Introduced in R2021a

R2022b: Support for Beta model
Behavior changed in R2022b

The lgdModel input supports an option for a Beta model object that you can create using
fitLGDModel.

R2022a: Additional option for ShowDetails
Behavior changed in R2022a

There is an additional name-value pair for ShowDetails to indicate if the DiscMeasure output
includes columns for Segment value and the SegmentCount.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

6 Functions

6-272

See Also
Tobit | Regression | modelCalibration | modelCalibartionPlot |
modelDiscriminationPlot | predict | fitLGDModel

Topics
“Model Loss Given Default” on page 4-90
“Basic Loss Given Default Model Validation” on page 4-131
“Compare Tobit LGD Model to Benchmark Model” on page 4-133
“Compare Loss Given Default Models Using Cross-Validation” on page 4-140
“Overview of Loss Given Default Models” on page 1-31

 modelDiscrimination

6-273

modelDiscriminationPlot
Plot ROC curve

Syntax
modelDiscriminationPlot(pdModel,data)
modelDiscriminationPlot(___ ,Name,Value)
h = modelDiscriminationPlot(ax, ___ ,Name,Value)

Description
modelDiscriminationPlot(pdModel,data) plots the receiver operating characteristic curve
(ROC). modelDiscriminationPlot supports segmentation and comparison against a reference
model.

modelDiscriminationPlot(___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input arguments in the previous syntax.

h = modelDiscriminationPlot(ax, ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax and returns the
figure handle h.

Examples

Plot ROC Curve

This example shows how to use modelDiscriminationPlot to plot the ROC curve.

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat
disp(head(data))

 ID ScoreGroup YOB Default Year
 __ __________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004

disp(head(dataMacro))

 Year GDP Market
 ____ _____ ______

6 Functions

6-274

 1997 2.72 7.61
 1998 3.57 26.24
 1999 2.86 18.1
 2000 2.43 3.19
 2001 1.26 -10.51
 2002 -0.59 -22.95
 2003 0.63 2.78
 2004 1.85 9.48

Join the two data components into a single data set.

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Partition Data

Separate the data into training and test partitions.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % For reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Create Logistic Lifetime PD Model

Use fitLifetimePDModel to create a Logistic model using the training data.

pdModel = fitLifetimePDModel(data(TrainDataInd,:),'logistic',...
 'ModelID','Example',...
 'Description','Lifetime PD model using RetailCreditPanelData.',...
 'IDVar','ID',...
 'AgeVar','YOB',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP' 'Market'},...
 'ResponseVar','Default');
 disp(pdModel)

 Logistic with properties:

 modelDiscriminationPlot

6-275

 ModelID: "Example"
 Description: "Lifetime PD model using RetailCreditPanelData."
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

disp(pdModel.UnderlyingModel)

Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -2.7422 0.10136 -27.054 3.408e-161
 ScoreGroup_Medium Risk -0.68968 0.037286 -18.497 2.1894e-76
 ScoreGroup_Low Risk -1.2587 0.045451 -27.693 8.4736e-169
 YOB -0.30894 0.013587 -22.738 1.8738e-114
 GDP -0.11111 0.039673 -2.8006 0.0051008
 Market -0.0083659 0.0028358 -2.9502 0.0031761

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0

Visualize Model Discrimination

Use modelDiscriminationPlot to plot the ROC for the test data.

modelDiscriminationPlot(pdModel,data(TestDataInd,:))

6 Functions

6-276

Input Arguments
pdModel — Probability of default model
Logistic object | Probit object | Cox object | customLifetimePDModel object

Probability of default model, specified as a Logistic, Probit, or Cox object previously created
using fitLifetimePDModel. Alternatively, you can create a custom probability of default model
using customLifetimePDModel.

Note The 'ModelID' property of the pdModel object is used as the identifier or tag for pdModel.

Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime
predictions. The predictor names and data types must be consistent with the underlying model.
Data Types: table

ax — Valid axis object
object

 modelDiscriminationPlot

6-277

(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be
created in the axes specified by the optional ax argument instead of in the current axes (gca). The
optional argument ax must precede any of the input argument combinations.
Data Types: object

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: modelDiscriminationPlot(pdModel,data(Ind,:),'DataID',"DataSetChoice")

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as the comma-separated pair consisting of 'DataID' and a character
vector or string. The DataID is included in the plot title for reporting purposes.
Data Types: char | string

SegmentBy — Name of column in data input used to segment data set
"" (default) | character vector | string

Name of a column in the data input, not necessarily a model variable, to be used to segment the data
set, specified as the comma-separated pair consisting of 'SegmentBy' and a character vector or
string. modelDiscriminationPlot plots one ROC for each segment.
Data Types: char | string

ReferencePD — Conditional PD values predicted for data by reference model
[] (default) | numeric vector

Conditional PD values predicted for data by the reference model, specified as the comma-separated
pair consisting of 'ReferencePD' and a NumRows-by-1 numeric vector. The ROC curve output
information is plotted for both the pdModel object and the reference model.
Data Types: double

ReferenceID — Identifier for reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as the comma-separated pair consisting of
'ReferenceID' and a character vector or string. 'ReferenceID' is used in the plot for reporting
purposes.
Data Types: char | string

Output Arguments
h — Figure handle
handle object

Figure handle for the line objects, returned as handle object.

6 Functions

6-278

More About
Model Discrimination

Model discrimination measures the risk ranking.

Higher-risk loans should get higher predicted probability of default (PD) than lower-risk loans. The
modelDiscrimination function computes the area under the receiver operator characteristic curve
(AUROC), sometimes called simply the area under the curve (AUC). This metric is between 0 and 1
and higher values indicate better discrimination.

The receiver operator characteristic (ROC) curve is a parametric curve that plots the proportion of

• Defaulters with PD higher than or equal to a reference PD value p
• Nondefaulters with PD higher than or equal to the same reference PD value p

The reference PD value p parametizes the curve, and the software sweeps through the unique
predicted PD values observed in a data set. The proportion of actual defaulters are assigned a PD
higher than or equal to p is the true positive rate. The proportion of actual nondefaulters that are
assigned a PD higher than or equal to p is the false positive rate." For more information about ROC
curves, see “ROC Curve and Performance Metrics”.

The AUROC is reported on the plot created by modelDiscriminationPlot. To get the AUROC
metric programmatically, use modelDiscrimination.

Version History
Introduced in R2021a

R2022b: Support for customLifetimePDModel model

The pdModel input supports an option for a customLifetimePDModel model object that you can
create using customLifetimePDModel.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models
LLC, 2018.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python.
Independently published, 2020.

See Also
predictLifetime | predict | modelDiscrimination | modelCalibration |
modelCalibrationPlot | fitLifetimePDModel | Logistic | Probit | Cox |
customLifetimePDModel

 modelDiscriminationPlot

6-279

Topics
“Basic Lifetime PD Model Validation” on page 4-129
“Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
“Compare Lifetime PD Models Using Cross-Validation” on page 4-121
“Expected Credit Loss Computation” on page 4-124
“Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on page
4-144
“Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-75
“Overview of Lifetime Probability of Default Models” on page 1-25

6 Functions

6-280

modelDiscrimination
Compute AUROC and ROC data

Syntax
DiscMeasure = modelDiscrimination(pdModel,data)
[DiscMeasure,DiscData] = modelDiscrimination(___ ,Name,Value)

Description
DiscMeasure = modelDiscrimination(pdModel,data) computes the area under the receiver
operating characteristic curve (AUROC). modelDiscrimination supports segmentation and
comparison against a reference model.

[DiscMeasure,DiscData] = modelDiscrimination(___ ,Name,Value) specifies options
using one or more name-value pair arguments in addition to the input arguments in the previous
syntax.

Examples

Generate AUROC and ROC for Logistic Lifetime PD Model

This example shows how to use fitLifetimePDModel to fit data with a Logistic model and then
generate the area under the receiver operating characteristic curve (AUROC) and ROC curve.

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat
disp(head(data))

 ID ScoreGroup YOB Default Year
 __ __________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004

disp(head(dataMacro))

 Year GDP Market
 ____ _____ ______

 1997 2.72 7.61
 1998 3.57 26.24

 modelDiscrimination

6-281

 1999 2.86 18.1
 2000 2.43 3.19
 2001 1.26 -10.51
 2002 -0.59 -22.95
 2003 0.63 2.78
 2004 1.85 9.48

Join the two data components into a single data set.

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Partition Data

Separate the data into training and test partitions.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Create a Logistic Lifetime PD Model

Use fitLifetimePDModel to create a Logistic model.

pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Logistic",...
 'AgeVar','YOB',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},...
 'ResponseVar','Default');
 disp(pdModel)

 Logistic with properties:

 ModelID: "Logistic"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"

6 Functions

6-282

 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

Display the underlying model.

pdModel.UnderlyingModel

ans =
Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -2.7422 0.10136 -27.054 3.408e-161
 ScoreGroup_Medium Risk -0.68968 0.037286 -18.497 2.1894e-76
 ScoreGroup_Low Risk -1.2587 0.045451 -27.693 8.4736e-169
 YOB -0.30894 0.013587 -22.738 1.8738e-114
 GDP -0.11111 0.039673 -2.8006 0.0051008
 Market -0.0083659 0.0028358 -2.9502 0.0031761

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0

pdModel.UnderlyingModel.Coefficients

ans=6×4 table
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -2.7422 0.10136 -27.054 3.408e-161
 ScoreGroup_Medium Risk -0.68968 0.037286 -18.497 2.1894e-76
 ScoreGroup_Low Risk -1.2587 0.045451 -27.693 8.4736e-169
 YOB -0.30894 0.013587 -22.738 1.8738e-114
 GDP -0.11111 0.039673 -2.8006 0.0051008
 Market -0.0083659 0.0028358 -2.9502 0.0031761

Model Discrimination to Generate AUROC and ROC

Model "discrimination" measures how effectively a model ranks customers by risk. You can use the
AUROC and ROC outputs to determine whether customers with higher predicted PDs actually have
higher risk in the observed data.

DataSetChoice = ;
if DataSetChoice=="Training"
 Ind = TrainDataInd;
 else
 Ind = TestDataInd;
 end

DiscMeasure = modelDiscrimination(pdModel,data(TrainDataInd,:),'ShowDetails',true,'DataID',DataSetChoice);
disp(DiscMeasure)

 modelDiscrimination

6-283

 AUROC Segment SegmentCount
 _______ __________ ____________

 Logistic, Training 0.69377 "all_data" 3.881e+05

Visualize the ROC for the Logistic model using modelDiscriminationPlot.

modelDiscriminationPlot(pdModel,data(TrainDataInd,:));

Data can be segmented to get the AUROC per segment and the corresponding ROC data.

SegmentVar = ;
DiscMeasure = modelDiscrimination(pdModel,data(Ind,:),'ShowDetails',true,'SegmentBy',SegmentVar,'DataID',DataSetChoice);
disp(DiscMeasure)

 AUROC Segment SegmentCount
 _______ _______ ____________

 Logistic, YOB=1, Training 0.63989 1 58092
 Logistic, YOB=2, Training 0.64709 2 56723
 Logistic, YOB=3, Training 0.6534 3 55524
 Logistic, YOB=4, Training 0.6494 4 54650
 Logistic, YOB=5, Training 0.63479 5 53770
 Logistic, YOB=6, Training 0.66174 6 53186
 Logistic, YOB=7, Training 0.64328 7 36959
 Logistic, YOB=8, Training 0.63424 8 19193

Visualize the ROC segmented by YOB, ScoreGroup, or Year using modelDiscriminationPlot.

6 Functions

6-284

modelDiscriminationPlot(pdModel,data(Ind,:),'SegmentBy',SegmentVar,'DataID',DataSetChoice);

Input Arguments
pdModel — Probability of default model
Logistic object | Probit object | Cox object | customLifetimePDModel object

Probability of default model, specified as a Logistic, Probit, or Cox object previously created
using fitLifetimePDModel. Alternatively, you can create a custom probability of default model
using customLifetimePDModel.

Note The 'ModelID' property of the pdModel object is used as the identifier or tag for pdModel.

Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime
predictions. The predictor names and data types must be consistent with the underlying model.
Data Types: table

 modelDiscrimination

6-285

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [PerfMeasure,PerfData] =
modelDiscrimination(pdModel,data(Ind,:),'DataID',"DataSetChoice")

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as the comma-separated pair consisting of 'DataID' and a character
vector or string.
Data Types: char | string

SegmentBy — Name of column in data input used to segment data set
"" (default) | character vector | string

Name of a column in the data input, not necessarily a model variable, to be used to segment the data
set, specified as the comma-separated pair consisting of 'SegmentBy' and a character vector or
string.

One AUROC value is reported for each segment and the corresponding ROC data for each segment is
returned in the PerfData optional output.
Data Types: char | string

ShowDetails — Indicates if output includes columns showing segment value and segment
count
false (default) | logical

Indicates if the output includes columns showing segment value and segment count, specified as the
comma-separated pair consisting of 'ShowDetails' and a scalar logical.
Data Types: logical

ReferencePD — Conditional PD values predicted for data by reference model
[] (default) | numeric vector

Conditional PD values predicted for data by the reference model, specified as the comma-separated
pair consisting of 'ReferencePD' and a NumRows-by-1 numeric vector. The modelDiscrimination
output information is reported for both the pdModel object and the reference model.
Data Types: double

ReferenceID — Identifier for reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as the comma-separated pair consisting of
'ReferenceID' and a character vector or string. 'ReferenceID' is used in the
modelDiscrimination output for reporting purposes.
Data Types: char | string

6 Functions

6-286

Output Arguments
DiscMeasure — AUROC information for each model and each segment
table

AUROC information for each model and each segment., returned as a table. DiscMeasure has a
single column named 'AUROC' and the number of rows depends on the number of segments and
whether you use a ReferenceID for a reference model and ReferencePD for reference data. The
row names of DiscMeasure report the model IDs, segment, and data ID. If the optional
ShowDetails name-value argument is true, the DiscMeasure output displays Segment and
SegmentCount columns.

Note If you do not specify SegmentBy and use ShowDetails to request the segment details, the
two columns are added and show the Segment column as "all_data" and the sample size (minus
missing values) for the SegmentCount column.

DiscData — ROC data for each model and each segment
table

ROC data for each model and each segment, returned as a table. There are three columns for the
ROC data, with column names 'X', 'Y', and 'T', where the first two are the X and Y coordinates of
the ROC curve, and T contains the corresponding thresholds.

If you use SegmentBy, the function stacks the ROC data for all segments and DiscData has a
column with the segmentation values to indicate where each segment starts and ends.

If reference model data is given using ReferenceID and ReferencePD, the DiscData outputs for
the main and reference models are stacked, with an extra column 'ModelID' indicating where each
model starts and ends.

More About
Model Discrimination

Model discrimination measures the risk ranking.

Higher-risk loans should get higher predicted probability of default (PD) than lower-risk loans. The
modelDiscrimination function computes the Area Under the Receiver Operator Characteristic
curve (AUROC), sometimes called simply the Area Under the Curve (AUC). This metric is between 0
and 1 and higher values indicate better discrimination.

For more information about the Receiver Operator Characteristic (ROC) curve, see “Model
Discrimination” on page 6-279 and “ROC Curve and Performance Metrics”.

Version History
Introduced in R2020b

R2022b: Support for customLifetimePDModel model

 modelDiscrimination

6-287

The pdModel input supports an option for a customLifetimePDModel model object that you can
create using customLifetimePDModel.

R2022a: Additional option for ShowDetails

There is an additional name-value pair for ShowDetails to indicate if the DiscMeasure output
includes columns for Segment value and the SegmentCount.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models
LLC, 2018.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python.
Independently published, 2020.

See Also
predictLifetime | predict | modelDiscriminationPlot | modelCalibration |
modelCalibrationPlot | fitLifetimePDModel | Logistic | Probit | Cox |
customLifetimePDModel

Topics
“Basic Lifetime PD Model Validation” on page 4-129
“Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
“Compare Lifetime PD Models Using Cross-Validation” on page 4-121
“Expected Credit Loss Computation” on page 4-124
“Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on page
4-144
“Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-75
“Overview of Lifetime Probability of Default Models” on page 1-25

6 Functions

6-288

modelDiscriminationPlot
Plot ROC curve

Syntax
modelDiscriminationPlot(eadModel,data)
modelDiscriminationPlot(___ ,Name=Value)
h = modelDiscriminationPlot(ax, ___ ,Name=Value)

Description
modelDiscriminationPlot(eadModel,data) generates the receiver operating characteristic
(ROC) curve. modelDiscriminationPlot supports segmentation and comparison against a
reference model.

modelDiscriminationPlot(___ ,Name=Value) specifies options using one or more name-value
arguments in addition to the input arguments in the previous syntax.

h = modelDiscriminationPlot(ax, ___ ,Name=Value) specifies options using one or more
name-value arguments in addition to the input arguments in the previous syntax and returns the
figure handle h.

Examples

Plot ROC Using a Tobit EAD Model

This example shows how to use fitEADModel to create a Tobit model and then use
modelDiscriminationPlot to plot the ROC.

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

rng('default');
NumObs = height(EADData);

 modelDiscriminationPlot

6-289

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Select Model Type

Select a model type for Tobit or Regression.

ModelType = ;

Select Conversion Measure

Select a conversion measure for the EAD response values.

ConversionMeasure = ;

Create Tobit EAD Model

Use fitEADModel to create a Tobit model using the TrainingInd data.

eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);

 Tobit with properties:

 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the
EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the
transformation.

disp(eadModel.UnderlyingModel);

Tobit regression model:
 EAD_lcf = max(0,min(Y*,1))
 Y* ~ 1 + UtilizationRate + Age + Marriage

Estimated coefficients:
 Estimate SE tStat pValue
 __________ __________ ________ __________

 (Intercept) 0.22467 0.03134 7.1689 9.7855e-13
 UtilizationRate 0.4714 0.020722 22.749 0
 Age -0.0014209 0.00076326 -1.8616 0.062771
 Marriage_not married -0.010542 0.01578 -0.66807 0.50415
 (Sigma) 0.3618 0.0050022 72.33 0

6 Functions

6-290

Number of observations: 2627
Number of left-censored observations: 0
Number of uncensored observations: 2626
Number of right-censored observations: 1
Log-likelihood: -1057.9

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-value argument.

predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");

Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot,
modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

ModelLevel = ;

[DiscMeasure1,DiscData1] = modelDiscrimination(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel);
modelDiscriminationPlot(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel,SegmentBy="Marriage");

 modelDiscriminationPlot

6-291

Plot ROC Using a Beta EAD Model

This example shows how to use fitEADModel to create a Beta model and then use
modelDiscriminationPlot to plot the ROC.

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

rng('default');
NumObs = height(EADData);

6 Functions

6-292

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Select Model Type

Select a model type for Beta.

ModelType = ;

Select Conversion Measure

Select a conversion measure for the EAD response values.

ConversionMeasure = ;

Create Beta EAD Model

Use fitEADModel to create a Beta model using the TrainingInd data.

eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);

 Beta with properties:

 BoundaryTolerance: 1.0000e-07
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the
EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the
transformation.

disp(eadModel.UnderlyingModel);

Beta regression model:
 logit(EAD_lcf) ~ 1_mu + UtilizationRate_mu + Age_mu + Marriage_mu
 log(EAD_lcf) ~ 1_phi + UtilizationRate_phi + Age_phi + Marriage_phi

Estimated coefficients:
 Estimate SE tStat pValue
 __________ _________ ________ __________

 (Intercept)_mu -0.65566 0.11484 -5.7093 1.2616e-08
 UtilizationRate_mu 1.7014 0.078094 21.787 0
 Age_mu -0.0055901 0.0027603 -2.0252 0.042949
 Marriage_not married_mu -0.012577 0.052098 -0.24141 0.80926
 (Intercept)_phi -0.50131 0.094625 -5.2979 1.2686e-07
 UtilizationRate_phi 0.39731 0.066707 5.956 2.9303e-09
 Age_phi -0.001167 0.0023161 -0.50387 0.6144

 modelDiscriminationPlot

6-293

 Marriage_not married_phi -0.013275 0.042627 -0.31143 0.7555

Number of observations: 2627
Log-likelihood: -3140.21

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-value argument.

predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");

Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot,
modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

ModelLevel = ;

[DiscMeasure1,DiscData1] = modelDiscrimination(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel);
modelDiscriminationPlot(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel,SegmentBy="Marriage");

6 Functions

6-294

Input Arguments
eadModel — Exposure at model
Regression object | Tobit object | Beta object

Exposure at default model, specified as a previously created Regression, Tobit, or Beta object
using fitEADModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable
names and data types must be consistent with the underlying model.
Data Types: table

ax — Valid axis object
object

(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be
created in the axes specified by the optional ax argument instead of in the current axes (gca). The
optional argument ax must precede any of the input argument combinations.
Data Types: object

 modelDiscriminationPlot

6-295

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
modelDiscriminationPlot(eadModel,data(TestInd,:),DataID='Testing',DiscretizeB
y='median')

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as DataID and a character vector or string. The DataID is included in
the output for reporting purposes.
Data Types: char | string

DiscretizeBy — Discretization method for EAD data at defined ModelLevel
'mean' (default) | character vector with value 'mean' or 'median' | string with value "mean" or
"median"

Discretization method for EAD data at the defined ModelLevel, specified as DiscretizeBy and a
character vector or string.

• 'mean' — Discretized response is 1 if observed EAD is greater than or equal to the mean EAD, 0
otherwise.

• 'median' — Discretized response is 1 if observed EAD is greater than or equal to the median
EAD, 0 otherwise.

Data Types: char | string

SegmentBy — Name of column in data input used to segment data set
"" (default) | character vector | string

Name of a column in the data input, not necessarily a model variable, to be used to segment the data
set, specified as SegmentBy and a character vector or string. One AUROC is reported for each
segment, and the corresponding ROC data for each segment is returned in the optional output.
Data Types: char | string

ModelLevel — Model level
"ead" (default) | character vector with value 'ead', 'conversionMeasure', or
'conversionTransform' | string with value "ead", "conversionMeasure", or
"conversionTransform"

Model level, specified as ModelLevel and a character vector or string.

Note Regression models support all three model levels, but a Tobit or Beta model supports
model levels only for "ead" and "conversionMeasure".

Data Types: char | string

ReferenceEAD — EAD values predicted for data by reference model
[] (default) | numeric vector

6 Functions

6-296

EAD values predicted for data by the reference model, specified as ReferenceEAD and a NumRows-
by-1 numeric vector. The ROC curve is plotted for both the eadModel object and the reference
model.
Data Types: double

ReferenceID — Identifier for the reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as ReferenceID and a character vector or string.
'ReferenceID' is used in the plot for reporting purposes.
Data Types: char | string

Output Arguments
h — Figure handle
handle object

Figure handle for the line objects, returned as handle object.

More About
Model Discrimination Plot

The modelDiscriminationPlot function plots the receiver operator characteristic (ROC) curve.

The modelDiscriminationPlot function also shows the area under the receiver operator
characteristic (AUROC) curve, sometimes called simply the area under the curve (AUC). This metric
is between 0 and 1 and higher values indicate better discrimination.

A numeric prediction and a binary response are needed to plot the ROC and compute the AUROC. For
EAD models, the predicted EAD is used directly as the prediction. However, the observed EAD must
be discretized into a binary variable. By default, observed EAD values greater than or equal to the
mean observed EAD are assigned a value of 1, and values below the mean are assigned a value of 0.
This discretized response is interpreted as "high EAD" vs. "low EAD." The ROC curve and the AUROC
curve measure how well the predicted EAD separates the "high EAD" vs. the "low EAD" observations.
You can change the level to compute the model discrimination with the ModelLevel name-value pair
argument and the discretization criterion with the DiscretizeBy name-value pair argument.

The ROC curve is a parametric curve that plots the proportion of

• High EAD cases with predicted EAD greater than or equal to a parameter t, or true positive rate
(TPR)

• Low EAD cases with predicted EAD greater than or equal to the same parameter t, or false
positive rate (FPR)

The parameter t sweeps through all the observed predicted EAD values for the given data. If the
AUROC value or the ROC curve data are needed programmatically, use the modelDiscrimination
function. For more information about ROC curves, see “ROC Curve and Performance Metrics”.

Version History
Introduced in R2021b

 modelDiscriminationPlot

6-297

R2022b: Support for Beta model
Behavior changed in R2022b

The eadModel input supports an option for a Beta model object that you can create using
fitEADModel.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory
and Applications. SAS Institute, 2014.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also
Regression | Tobit | fitEADModel | predict | modelDiscrimination | modelCalibration |
modelCalibrationPlot

Topics
“Compare Results for Regression and Tobit EAD Models” on page 4-151
“Overview of Exposure at Default Models” on page 1-34

6 Functions

6-298

modelDiscriminationPlot
Plot ROC curve

Syntax
modelDiscriminationPlot(lgdModel,data)
modelDiscriminationPlot(___ ,Name,Value)
h = modelDiscriminationPlot(ax, ___ ,Name,Value)

Description
modelDiscriminationPlot(lgdModel,data) generates the receiver operating characteristic
(ROC) curve. modelDiscriminationPlot supports segmentation and comparison against a
reference model.

modelDiscriminationPlot(___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input arguments in the previous syntax.

h = modelDiscriminationPlot(ax, ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax and returns the
figure handle h.

Examples

Plot ROC Using Regression LGD Model

This example shows how to use fitLGDModel to fit data with a Regression model and then use
modelDiscriminationPlot to plot the ROC.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

Partition Data

Separate the data into training and test partitions.

 modelDiscriminationPlot

6-299

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create a Regression LGD Model

Use fitLGDModel to create a Regression model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'regression');
disp(lgdModel)

 Regression with properties:

 ResponseTransform: "logit"
 BoundaryTolerance: 1.0000e-05
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(lgdModel.UnderlyingModel)

Compact linear regression model:
 LGD_logit ~ 1 + LTV + Age + Type

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept) -4.7549 0.36041 -13.193 3.0997e-38
 LTV 2.8565 0.41777 6.8377 1.0531e-11
 Age -1.5397 0.085716 -17.963 3.3172e-67
 Type_investment 1.4358 0.2475 5.8012 7.587e-09

Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value = 2.42e-104

Plot ROC Data

Use modelDiscriminationPlot to plot the ROC for the test data set.

modelDiscriminationPlot(lgdModel,data(TestInd,:))

6 Functions

6-300

Plot ROC Using Tobit LGD Model

This example shows how to use fitLGDModel to fit data with a Tobit model and then use
modelDiscriminationPlot to plot the ROC.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

 modelDiscriminationPlot

6-301

Partition Data

Separate the data into training and test partitions.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create a Tobit LGD Model

Use fitLGDModel to create a Tobit model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'tobit');
disp(lgdModel)

 Tobit with properties:

 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(lgdModel.UnderlyingModel)

Tobit regression model:
 LGD = max(0,min(Y*,1))
 Y* ~ 1 + LTV + Age + Type

Estimated coefficients:
 Estimate SE tStat pValue
 _________ _________ _______ __________

 (Intercept) 0.058257 0.027265 2.1367 0.032737
 LTV 0.20126 0.031354 6.4189 1.6932e-10
 Age -0.095407 0.0072653 -13.132 0
 Type_investment 0.10208 0.018058 5.6531 1.7915e-08
 (Sigma) 0.29288 0.0057036 51.35 0

Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1521
Number of right-censored observations: 25
Log-likelihood: -698.383

Plot ROC Data

Use modelDiscriminationPlot to plot the ROC for the test data set.

modelDiscriminationPlot(lgdModel,data(TestInd,:),"SegmentBy","Type","DiscretizeBy","median")

6 Functions

6-302

Plot ROC Using Beta LGD Model

This example shows how to use fitLGDModel to fit data with a Beta model and then use
modelDiscriminationPlot to plot the ROC.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

 modelDiscriminationPlot

6-303

Partition Data

Separate the data into training and test partitions.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create a Beta LGD Model

Use fitLGDModel to create a Beta model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'Beta');
disp(lgdModel)

 Beta with properties:

 BoundaryTolerance: 1.0000e-05
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(lgdModel.UnderlyingModel)

Beta regression model:
 logit(LGD) ~ 1_mu + LTV_mu + Age_mu + Type_mu
 log(LGD) ~ 1_phi + LTV_phi + Age_phi + Type_phi

Estimated coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept)_mu -1.3772 0.13201 -10.433 0
 LTV_mu 0.60269 0.15087 3.9947 6.7023e-05
 Age_mu -0.47464 0.040264 -11.788 0
 Type_investment_mu 0.45372 0.085143 5.3289 1.094e-07
 (Intercept)_phi -0.16337 0.12591 -1.2975 0.19462
 LTV_phi 0.055892 0.14719 0.37973 0.70419
 Age_phi 0.22887 0.040335 5.6743 1.5863e-08
 Type_investment_phi -0.14102 0.078155 -1.8044 0.071311

Number of observations: 2093
Log-likelihood: -5291.04

Plot ROC Data

Use modelDiscriminationPlot to plot the ROC for the test data set.

modelDiscriminationPlot(lgdModel,data(TestInd,:),"SegmentBy","Type","DiscretizeBy","median")

6 Functions

6-304

Input Arguments
lgdModel — Loss given default model
Regression object | Tobit object | Beta object

Loss given default model, specified as a previously created Regression, Tobit, or Beta object
using fitLGDModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable
names and data types must be consistent with the underlying model.
Data Types: table

ax — Valid axis object
object

(Optional) Valid axis object, specified as an ax object that is created using axes. The plot will be
created in the axes specified by the optional ax argument instead of in the current axes (gca). The
optional argument ax must precede any of the input argument combinations.
Data Types: object

 modelDiscriminationPlot

6-305

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:
modelDiscriminationPlot(lgdModel,data(TestInd,:),'DataID','Testing','Discreti
zeBy','median')

DataID — Data set identifier
"" (default) | character vector | string

Data set identifier, specified as the comma-separated pair consisting of 'DataID' and a character
vector or string. The DataID is included in the output for reporting purposes.
Data Types: char | string

DiscretizeBy — Discretization method for LGD data
'mean' (default) | character vector with value 'mean', 'median', 'positive', or 'total' | string
with value "mean", "median", "positive", or "total"

Discretization method for LGD data, specified as the comma-separated pair consisting of
'DiscretizeBy' and a character vector or string.

• 'mean' — Discretized response is 1 if observed LGD is greater than or equal to the mean LGD, 0
otherwise.

• 'median' — Discretized response is 1 if observed LGD is greater than or equal to the median
LGD, 0 otherwise.

• 'positive' — Discretized response is 1 if observed LGD is positive, 0 otherwise (full recovery).
• 'total' — Discretized response is 1 if observed LGD is greater than or equal to 1 (total loss), 0

otherwise.

Data Types: char | string

SegmentBy — Name of column in data input used to segment data set
"" (default) | character vector | string

Name of a column in the data input, not necessarily a model variable, to be used to segment the data
set, specified as the comma-separated pair consisting of 'SegmentBy' and a character vector or
string. One AUROC is reported for each segment, and the corresponding ROC data for each segment
is returned in the optional output.
Data Types: char | string

ReferenceLGD — LGD values predicted for data by reference model
[] (default) | numeric vector

LGD values predicted for data by the reference model, specified as the comma-separated pair
consisting of 'ReferenceLGD' and a NumRows-by-1 numeric vector. The ROC curve is plotted for
both the lgdModel object and the reference model.
Data Types: double

6 Functions

6-306

ReferenceID — Identifier for the reference model
'Reference' (default) | character vector | string

Identifier for the reference model, specified as the comma-separated pair consisting of
'ReferenceID' and a character vector or string. 'ReferenceID' is used in the plot for reporting
purposes.
Data Types: char | string

Output Arguments
h — Figure handle
handle object

Figure handle for the line objects, returned as handle object.

More About
Model Discrimination Plot

The modelDiscriminationPlot function plots the receiver operator characteristic (ROC) curve.

The modelDiscriminationPlot function also shows the area under the receiver operator
characteristic (AUROC) curve, sometimes called simply the area under the curve (AUC). This metric
is between 0 and 1 and higher values indicate better discrimination.

A numeric prediction and a binary response are needed to plot the ROC and compute the AUROC. For
LGD models, the predicted LGD is used directly as the prediction. However, the observed LGD must
be discretized into a binary variable. By default, observed LGD values greater than or equal to the
mean observed LGD are assigned a value of 1, and values below the mean are assigned a value of 0.
This discretized response is interpreted as "high LGD" vs. "low LGD." The ROC curve and the AUROC
curve measure how well the predicted LGD separates the "high LGD" vs. the "low LGD" observations.
The discretization criterion can be changed with the DiscretizeBy name-value pair argument for
modelDiscriminationPlot.

The ROC curve is a parametric curve that plots the proportion of

• High LGD cases with predicted LGD greater than or equal to a parameter t, or true positive rate
(TPR)

• Low LGD cases with predicted LGD greater than or equal to the same parameter t, or false
positive rate (FPR)

The parameter t sweeps through all the observed predicted LGD values for the given data. If the
AUROC value or the ROC curve data are needed programmatically, use the modelDiscrimination
function. For more information about ROC curves, see “ROC Curve and Performance Metrics”.

Version History
Introduced in R2021a

R2022b: Support for Beta model
Behavior changed in R2022b

 modelDiscriminationPlot

6-307

The lgdModel input supports an option for a Beta model object that you can create using
fitLGDModel.

R2022a: Support for reference LGD outside of [0,1] range
Behavior changed in R2022a

The Regression and Tobit LGD models support a reference LGD outside of the [0,1] range.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

See Also
Tobit | Regression | modelCalibration | modelCalibartionPlot | modelDiscrimination |
predict | fitLGDModel

Topics
“Model Loss Given Default” on page 4-90
“Basic Loss Given Default Model Validation” on page 4-131
“Compare Tobit LGD Model to Benchmark Model” on page 4-133
“Compare Loss Given Default Models Using Cross-Validation” on page 4-140
“Overview of Loss Given Default Models” on page 1-31

6 Functions

6-308

pof
Proportion of failures test for value-at-risk (VaR) backtesting

Syntax
TestResults = pof(vbt)
TestResults = pof(vbt,Name,Value)

Description
TestResults = pof(vbt) generates the proportion of failures (POF) test for value-at-risk (VaR)
backtesting.

TestResults = pof(vbt,Name,Value) adds an optional name-value pair argument for
TestLevel.

Examples

Generate POF Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9500

Generate the pof test results.

TestResults = pof(vbt,'TestLevel',0.99)

TestResults=1×9 table
 PortfolioID VaRID VaRLevel POF LRatioPOF PValuePOF Observations Failures TestLevel
 ___________ _____ ________ ______ _________ _________ ____________ ________ _________

 "Portfolio" "VaR" 0.95 accept 0.46147 0.49694 1043 57 0.99

Run the POF Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.

 pof

6-309

load VaRBacktestData
 vbt = varbacktest(EquityIndex,...
 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
 'PortfolioID','Equity',...
 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x6 double]
 PortfolioID: "Equity"
 VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95" "EWMA99"]
 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the pof test results using the TestLevel optional input.

TestResults = pof(vbt,'TestLevel',0.90)

TestResults=6×9 table
 PortfolioID VaRID VaRLevel POF LRatioPOF PValuePOF Observations Failures TestLevel
 ___________ ______________ ________ ______ _________ _________ ____________ ________ _________

 "Equity" "Normal95" 0.95 accept 0.46147 0.49694 1043 57 0.9
 "Equity" "Normal99" 0.99 reject 3.5118 0.060933 1043 17 0.9
 "Equity" "Historical95" 0.95 accept 0.91023 0.34005 1043 59 0.9
 "Equity" "Historical99" 0.99 accept 0.22768 0.63325 1043 12 0.9
 "Equity" "EWMA95" 0.95 accept 0.91023 0.34005 1043 59 0.9
 "Equity" "EWMA99" 0.99 reject 9.8298 0.0017171 1043 22 0.9

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData
properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more
information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = pof(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric between 0 and 1.

6 Functions

6-310

Data Types: double

Output Arguments
TestResults — pof test results
table

pof test results, returned as a table where the rows correspond to all combinations of portfolio ID,
VaR ID, and VaR level to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'POF' — Categorical array with the categories accept and reject that indicate the result of the

pof test
• 'LRatioPOF' — Likelihood ratio of the pof test
• 'PValuePOF' — P-value of the pof test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'TestLevel' — Test confidence level

Note For pof test results, the terms accept and reject are used for convenience, technically a
pof test does not accept a model. Rather, the test fails to reject it.

More About
Proportion of Failures (POF) Test

The pof function performs Kupiec's proportion of failures test.

The POF test is a likelihood ratio test proposed by Kupiec (1995) to assess if the proportion of failures
(number of failures divided by number of observations) is consistent with the VaR confidence level.

Algorithms
The likelihood ratio (test statistic) of the pof test is given by

LRatioPOF = − 2log 1− pVaR N − xpVaRx

1− x
N

N − x x
N

x = − 2 (N − x)log N(1− pVaR)
N − x + xlog NpVaR

x

where N is the number of observations, x is the number of failures, and pVaR = 1 - VaRLevel. This
test statistic is asymptotically distributed as a chi-square distribution with 1 degree of freedom. By
the properties of the logarithm,

LRatioPOF = − 2Nlog(1− pVar) if x = 0.

and

 pof

6-311

LRatioPOF = − 2Nlog(pVar) if x = N .

The p-value of the POF test is the probability that a chi-square distribution with 1 degree of freedom
exceeds the likelihood ratio LRatioPOF

PValuePOF = 1− F(LRatioPOF)

where F is the cumulative distribution of a chi-square variable with 1 degree of freedom.

The result of the test is to accept if

PValuePOF < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with 1 degree of
freedom.

Version History
Introduced in R2016b

References
[1] Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal of

Derivatives. Vol. 3, 1995, pp. 73 – 84.

See Also
varbacktest | tl | tuff | bin | cc | cci | tbf | tbfi | summary | runtests

Topics
“VaR Backtesting Workflow” on page 2-6
“Value-at-Risk Estimation and Backtesting” on page 2-10
“Overview of VaR Backtesting” on page 2-2
“Kupiec’s POF and TUFF Tests” on page 2-3
“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-312

predict
Predict exposure at default

Syntax
predictedEAD = predict(eadModel,data)
predictedEAD = predict(___ ,Name=Value)

Description
predictedEAD = predict(eadModel,data) computes the exposure at default (EAD).

When using a Regression model, the predict function operates on the underlying compact
statistical model and then transforms the predicted values back to the EAD scale.

predictedEAD = predict(___ ,Name=Value) specifies options using one or more name-value
arguments in addition to the input arguments in the previous syntax.

Examples

Use Tobit EAD Model to Predict EAD

This example shows how to use fitEADModel to create a Tobit model and then predict exposure at
default (EAD) values.

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

 predict

6-313

Select Model Type

Select a model type for Tobit or Regression.

ModelType = ;

Select Conversion Measure

Select a conversion measure for the EAD response values.

ConversionMeasure = ;

Create Tobit EAD Model

Use fitEADModel to create a Tobit model using the TrainingInd data.

eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);

 Tobit with properties:

 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the
EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the
transformation.

disp(eadModel.UnderlyingModel);

Tobit regression model:
 EAD_lcf = max(0,min(Y*,1))
 Y* ~ 1 + UtilizationRate + Age + Marriage

Estimated coefficients:
 Estimate SE tStat pValue
 __________ __________ ________ __________

 (Intercept) 0.22467 0.03134 7.1689 9.7855e-13
 UtilizationRate 0.4714 0.020722 22.749 0
 Age -0.0014209 0.00076326 -1.8616 0.062771
 Marriage_not married -0.010542 0.01578 -0.66807 0.50415
 (Sigma) 0.3618 0.0050022 72.33 0

Number of observations: 2627
Number of left-censored observations: 0
Number of uncensored observations: 2626

6 Functions

6-314

Number of right-censored observations: 1
Log-likelihood: -1057.9

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-value argument.

predictedEAD = predict(eadModel, EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel, EADData(TestInd,:),ModelLevel="ConversionMeasure");

Use Beta EAD Model to Predict EAD

This example shows how to use fitEADModel to create a Beta model and then predict exposure at
default (EAD) values.

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Select Model Type

Select a model type for Beta.

ModelType = ;

Select Conversion Measure

Select a conversion measure for the EAD response values.

ConversionMeasure = ;

 predict

6-315

Create Beta EAD Model

Use fitEADModel to create a Beta model using EADData.

eadModel = fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);

 Beta with properties:

 BoundaryTolerance: 1.0000e-07
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the
EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the
transformation.

disp(eadModel.UnderlyingModel);

Beta regression model:
 logit(EAD_lcf) ~ 1_mu + UtilizationRate_mu + Age_mu + Marriage_mu
 log(EAD_lcf) ~ 1_phi + UtilizationRate_phi + Age_phi + Marriage_phi

Estimated coefficients:
 Estimate SE tStat pValue
 __________ _________ _________ __________

 (Intercept)_mu -0.6741 0.087775 -7.6799 1.954e-14
 UtilizationRate_mu 1.6974 0.060621 28 0
 Age_mu -0.0046006 0.0021317 -2.1582 0.030965
 Marriage_not married_mu -0.0020533 0.040397 -0.050827 0.95947
 (Intercept)_phi -0.43364 0.071602 -6.0562 1.5101e-09
 UtilizationRate_phi 0.42461 0.051852 8.1889 4.4409e-16
 Age_phi -0.0036089 0.0017592 -2.0514 0.040285
 Marriage_not married_phi -0.016663 0.032976 -0.50531 0.61337

Number of observations: 4378
Log-likelihood: -5255.12

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-value argument.

6 Functions

6-316

predictedEAD = predict(eadModel, EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel, EADData(TestInd,:),ModelLevel="ConversionMeasure");

Input Arguments
eadModel — Exposure at default model
Regression object | Tobit object | Beta object

Exposure at default model, specified as a previously created Regression, Tobit, or Beta object
using fitEADModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable
names and data types must be consistent with the underlying model.
Data Types: table

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel='ead')

ModelLevel — Model level
"ead" (default) | character vector with value 'ead', 'conversionMeasure', or
'conversionTransform' | string with value "ead", "conversionMeasure", or
"conversionTransform"

Model level, specified as ModelLevel and a character vector or string.

Note Regression models support all three model levels, but a Tobit or Beta model supports
model levels only for 'ead' and 'conversionMeasure'.

Data Types: char | string

Output Arguments
predictedEAD — Exposure at default predicted values
vector

Exposure at default predicted values, returned as a NumRows-by-1 numeric vector.

More About
Prediction with EAD Models

Use a Regression, Tobit, or Beta model to predict EAD.

 predict

6-317

Regression, Tobit, or Beta EAD models first predict on the transformed space using the
underlying linear regression model, and then apply the inverse transformation to return predictions
on the EAD scale.

Version History
Introduced in R2021b

R2022b: Support for Beta model
Behavior changed in R2022b

The eadModel input supports an option for a Beta model object that you can create using
fitEADModel.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory
and Applications. SAS Institute, 2014.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also
Regression | Tobit | Beta | fitEADModel | modelDiscrimination |
modelDiscriminationPlot | modelCalibration | modelCalibrationPlot

Topics
“Compare Results for Regression and Tobit EAD Models” on page 4-151
“Overview of Exposure at Default Models” on page 1-34

6 Functions

6-318

predict
Predict loss given default

Syntax
LGD = predict(lgdModel,data)

Description
LGD = predict(lgdModel,data) computes the loss given default (LGD).

When using a Regression model, the predict function operates on the underlying compact
statistical model and then transforms the predicted values back to the LGD scale.

When using a Tobit model, the predict function operates on the underlying Tobit regression
model and returns the unconditional expected value of the response, given the predictor values.

Examples

Use Regression LGD Model to Predict LGD

This example shows how to use fitLGDModel to fit data with a Regression model and then predict
the loss given default (LGD) values.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

Partition Data

Separate the data into training and test partitions.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);

 predict

6-319

TrainingInd = training(c);
TestInd = test(c);

Create Regression LGD Model

Use fitLGDModel to create a Regression model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'regression');
disp(lgdModel)

 Regression with properties:

 ResponseTransform: "logit"
 BoundaryTolerance: 1.0000e-05
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(lgdModel.UnderlyingModel)

Compact linear regression model:
 LGD_logit ~ 1 + LTV + Age + Type

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept) -4.7549 0.36041 -13.193 3.0997e-38
 LTV 2.8565 0.41777 6.8377 1.0531e-11
 Age -1.5397 0.085716 -17.963 3.3172e-67
 Type_investment 1.4358 0.2475 5.8012 7.587e-09

Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206, Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value = 2.42e-104

Predict LGD on Test Data

Use predict to predict the LGD for the test data set.

predictedLGD = predict(lgdModel,data(TestInd,:))

predictedLGD = 1394×1

 0.0009
 0.0037
 0.1877
 0.0011
 0.0112
 0.0420
 0.0529
 0.0000
 0.0090

6 Functions

6-320

 0.0239
 ⋮

You can analyze and validate these predictions using modelDiscrimination and
modelCalibration.

Use Tobit LGD Model to Predict LGD

This example shows how to use fitLGDModel to fit data with a Tobit model and then predict the
loss given default (LGD) values.

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

Partition Data

Separate the data into training and test partitions.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create Tobit LGD Model

Use fitLGDModel to create a Tobit model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'tobit');
disp(lgdModel)

 Tobit with properties:

 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]

 predict

6-321

 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(lgdModel.UnderlyingModel)

Tobit regression model:
 LGD = max(0,min(Y*,1))
 Y* ~ 1 + LTV + Age + Type

Estimated coefficients:
 Estimate SE tStat pValue
 _________ _________ _______ __________

 (Intercept) 0.058257 0.027265 2.1367 0.032737
 LTV 0.20126 0.031354 6.4189 1.6932e-10
 Age -0.095407 0.0072653 -13.132 0
 Type_investment 0.10208 0.018058 5.6531 1.7915e-08
 (Sigma) 0.29288 0.0057036 51.35 0

Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1521
Number of right-censored observations: 25
Log-likelihood: -698.383

Predict LGD on Test Data

Use predict to predict the LGD for the test data set.

predictedLGD = predict(lgdModel,data(TestInd,:))

predictedLGD = 1394×1

 0.0879
 0.1243
 0.3204
 0.0934
 0.1672
 0.2238
 0.2370
 0.0102
 0.1592
 0.1989
 ⋮

You can analyze and validate these predictions using modelDiscrimination and
modelCalibration.

Use Beta LGD Model to Predict LGD

This example shows how to use fitLGDModel to fit data with a Beta model and then predict the loss
given default (LGD) values.

6 Functions

6-322

Load Data

Load the loss given default data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

Partition Data

Separate the data into training and test partitions.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create Beta LGD Model

Use fitLGDModel to create a Beta model using training data.

lgdModel = fitLGDModel(data(TrainingInd,:),'Beta');
disp(lgdModel)

 Beta with properties:

 BoundaryTolerance: 1.0000e-05
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(lgdModel.UnderlyingModel)

Beta regression model:
 logit(LGD) ~ 1_mu + LTV_mu + Age_mu + Type_mu
 log(LGD) ~ 1_phi + LTV_phi + Age_phi + Type_phi

Estimated coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept)_mu -1.3772 0.13201 -10.433 0

 predict

6-323

 LTV_mu 0.60269 0.15087 3.9947 6.7023e-05
 Age_mu -0.47464 0.040264 -11.788 0
 Type_investment_mu 0.45372 0.085143 5.3289 1.094e-07
 (Intercept)_phi -0.16337 0.12591 -1.2975 0.19462
 LTV_phi 0.055892 0.14719 0.37973 0.70419
 Age_phi 0.22887 0.040335 5.6743 1.5863e-08
 Type_investment_phi -0.14102 0.078155 -1.8044 0.071311

Number of observations: 2093
Log-likelihood: -5291.04

Predict LGD on Test Data

Use predict to predict the LGD for the test data set.

predictedLGD = predict(lgdModel,data(TestInd,:))

predictedLGD = 1394×1

 0.0937
 0.1492
 0.3526
 0.0964
 0.1886
 0.2595
 0.2677
 0.0213
 0.1774
 0.2256
 ⋮

You can analyze and validate these predictions using modelDiscrimination and
modelCalibration.

Input Arguments
lgdModel — Loss given default model
Regression object | Tobit object | Beta object

Loss given default model, specified as a previously created Regression, Tobit, or Beta object
using fitLGDModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with predictor and response values. The variable
names and data types must be consistent with the underlying model.
Data Types: table

Output Arguments
LGD — Loss given default values
vector

6 Functions

6-324

Loss given default values, returned as a NumRows-by-1 numeric vector.

More About
Prediction with LGD Models

Use a Regression, Tobit, or Beta model to predict LGD.

Regression LGD models first predict on the transformed space using the underlying linear
regression model, and then apply the inverse transformation to return predictions on the LGD scale.
For more information on the supported transformations and their inverses, see “Loss Given Default
Regression Models” on page 6-677.

Tobit LGD models return the unconditional expected value of the response, given the predictor
values. For more information, see “Loss Given Default Tobit Models” on page 6-694.

Beta LGD models return the mean of the beta distribution, given the predictor values. For more
information, see “Beta Regression Models” on page 6-685.

Version History
Introduced in R2021a

R2022b: Support for Beta model
Behavior changed in R2022b

The lgdModel input supports an option for a Beta model object that you can create using
fitLGDModel.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

See Also
Tobit | Regression | Beta | modelCalibration | modelCalibartionPlot |
modelDiscriminationPlot | modelDiscrimination | fitLGDModel

Topics
“Model Loss Given Default” on page 4-90
“Basic Loss Given Default Model Validation” on page 4-131
“Compare Tobit LGD Model to Benchmark Model” on page 4-133
“Compare Loss Given Default Models Using Cross-Validation” on page 4-140
“Overview of Loss Given Default Models” on page 1-31

 predict

6-325

predict
Compute conditional PD

Syntax
conditionalPD = predict(pdModel,data)

Description
conditionalPD = predict(pdModel,data) computes the conditional probability of default (PD).

Examples

Use Probit Lifetime PD Model to Predict Conditional PD

This example shows how to use fitLifetimePDModel to fit data with a Probit model and then
predict the conditional probability of default (PD).

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat
disp(head(data))

 ID ScoreGroup YOB Default Year
 __ __________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004

disp(head(dataMacro))

 Year GDP Market
 ____ _____ ______

 1997 2.72 7.61
 1998 3.57 26.24
 1999 2.86 18.1
 2000 2.43 3.19
 2001 1.26 -10.51
 2002 -0.59 -22.95
 2003 0.63 2.78
 2004 1.85 9.48

Join the two data components into a single data set.

6 Functions

6-326

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Partition Data

Separate the data into training and test partitions.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Create a Probit Lifetime PD Model

Use fitLifetimePDModel to create a Probit model.

pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Probit",...
 'AgeVar','YOB',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},...
 'ResponseVar','Default');
disp(pdModel)

 Probit with properties:

 ModelID: "Probit"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

Display the underlying model.

pdModel.UnderlyingModel

ans =
Compact generalized linear regression model:

 predict

6-327

 probit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -1.6267 0.03811 -42.685 0
 ScoreGroup_Medium Risk -0.26542 0.01419 -18.704 4.5503e-78
 ScoreGroup_Low Risk -0.46794 0.016364 -28.595 7.775e-180
 YOB -0.11421 0.0049724 -22.969 9.6208e-117
 GDP -0.041537 0.014807 -2.8052 0.0050291
 Market -0.0029609 0.0010618 -2.7885 0.0052954

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0

Predict on Training and Test Data

Predict the PD for training or test data sets.

DataSetChoice = ;
if DataSetChoice=="Training"
 Ind = TrainDataInd;
 else
 Ind = TestDataInd;
 end

% Predict conditional PD
PD = predict(pdModel,data(Ind,:));
head(data(Ind,:))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

disp(PD(1:8))

 0.0095
 0.0054
 0.0045
 0.0039
 0.0036
 0.0036
 0.0017
 0.0009

6 Functions

6-328

You can analyze and validate these predictions using modelDiscrimination and
modelCalibration.

Use Cox Lifetime PD Model to Predict Conditional PD

This example shows how to use fitLifetimePDModel to fit data with a Cox model and then predict
the conditional probability of default (PD).

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat
disp(head(data))

 ID ScoreGroup YOB Default Year
 __ __________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004

disp(head(dataMacro))

 Year GDP Market
 ____ _____ ______

 1997 2.72 7.61
 1998 3.57 26.24
 1999 2.86 18.1
 2000 2.43 3.19
 2001 1.26 -10.51
 2002 -0.59 -22.95
 2003 0.63 2.78
 2004 1.85 9.48

Join the two data components into a single data set.

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

 predict

6-329

Partition Data

Separate the data into training and test partitions.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Create a Cox Lifetime PD Model

Use fitLifetimePDModel to create a Cox model.

ModelType = ;

pdModel = fitLifetimePDModel(data(TrainDataInd,:),ModelType,...
 'IDVar','ID','AgeVar','YOB',...
 'LoanVars','ScoreGroup','MacroVars',{'GDP' 'Market'},...
 'ResponseVar','Default');
disp(pdModel)

 Cox with properties:

 TimeInterval: 1
 ExtrapolationFactor: 1
 ModelID: "Cox"
 Description: ""
 UnderlyingModel: [1x1 CoxModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

Display the underlying model.

disp(pdModel.UnderlyingModel)

Cox Proportional Hazards regression model

 Beta SE zStat pValue
 __________ _________ _______ ___________

 ScoreGroup_Medium Risk -0.6794 0.037029 -18.348 3.4442e-75
 ScoreGroup_Low Risk -1.2442 0.045244 -27.501 1.7116e-166
 GDP -0.084533 0.043687 -1.935 0.052995
 Market -0.0084411 0.0032221 -2.6198 0.0087991

Log-likelihood: -41742.871

6 Functions

6-330

Predict on Age Values not Observed in the Training Data

Cox models make predictions for the range of age values observed in the training data. To extrapolate
for ages larger than the maximum age in the training data, an extrapolation rule is needed.

When using predict with a Cox model, you can set the ExtrapolationFactor property of the Cox
model. By default, the ExtrapolationFactor is set to 1. For age values (AgeVar) greater than the
maximum age observed in the training data, predict computes the conditional PD using the
maximum age observed in the training data. In particular, the predicted PD value is constant if the
predictor values do not change and only the age values change when the ExtrapolationFactor is
1.

To illustrate this, select the rows corresponding to a single ID and add new rows with new,
incremental age values beyond the maximum observed age in the training data. The maximum age
observed in the training data is 8; for illustration purposes, add rows with ages 9, 10, 11, and 12.

% Select rows corresponding to one ID
% ID 1 goes from row 1 through 8
% Only the ID, Age (YOB) and predictor variables are needed
dataNewAge = data(1:8,{'ID' 'YOB' 'ScoreGroup' 'GDP' 'Market'});
% Allocate more rows
% This line copies the same predictor values going forward
dataNewAge(9:12,:) = repmat(dataNewAge(8,:),4,1);
% Reset age values to 9, 10, 11, 12
dataNewAge.YOB(9:12) = (9:12)';
% Show the new dataset
disp(dataNewAge)

 ID YOB ScoreGroup GDP Market
 __ ___ __________ _____ ______

 1 1 Low Risk 2.72 7.61
 1 2 Low Risk 3.57 26.24
 1 3 Low Risk 2.86 18.1
 1 4 Low Risk 2.43 3.19
 1 5 Low Risk 1.26 -10.51
 1 6 Low Risk -0.59 -22.95
 1 7 Low Risk 0.63 2.78
 1 8 Low Risk 1.85 9.48
 1 9 Low Risk 1.85 9.48
 1 10 Low Risk 1.85 9.48
 1 11 Low Risk 1.85 9.48
 1 12 Low Risk 1.85 9.48

When the predictor values are constant in the rows with new age values and the extrapolation factor
is 1, the predicted PD values are constant. If the extrapolation factor is set to a value smaller than 1,
then the predicted PD values decrease more and more for larger age values and decrease towards
zero exponentially.

% Extrapolation factor can be adjusted

pdModel.ExtrapolationFactor = ;
% Store predicted conditional PD in the same table
dataNewAge.PD = predict(pdModel,dataNewAge);
disp(dataNewAge)

 ID YOB ScoreGroup GDP Market PD
 __ ___ __________ _____ ______ __________

 predict

6-331

 1 1 Low Risk 2.72 7.61 0.0092197
 1 2 Low Risk 3.57 26.24 0.005158
 1 3 Low Risk 2.86 18.1 0.0046079
 1 4 Low Risk 2.43 3.19 0.0041351
 1 5 Low Risk 1.26 -10.51 0.003645
 1 6 Low Risk -0.59 -22.95 0.0041128
 1 7 Low Risk 0.63 2.78 0.0017034
 1 8 Low Risk 1.85 9.48 0.00092551
 1 9 Low Risk 1.85 9.48 0.00092551
 1 10 Low Risk 1.85 9.48 0.00092551
 1 11 Low Risk 1.85 9.48 0.00092551
 1 12 Low Risk 1.85 9.48 0.00092551

Also, it is useful to see the effect of the extrapolation factor on the lifetime prediction.

Plot the predicted conditional PD values and the lifetime PD values to see the effect of the
extrapolation factor on both probabilities. The vertical dotted line separates the known age values (up
to, and including, the age value 8), from the age values not observed in the training data (anything
greater than 8). If the extrapolation factor is 1, the lifetime PD has a steady upward trend and the
conditional PDs are constant. If the extrapolation factor is set to a smaller value like 0.5, the lifetime
PD flattens quickly, as the conditional PD quickly drops towards zero.

dataNewAge.LifetimePD = predictLifetime(pdModel,dataNewAge);

figure;
yyaxis left
plot(dataNewAge.YOB,dataNewAge.PD,'*')
ylabel('Conditional PD')
yyaxis right
plot(dataNewAge.YOB,dataNewAge.LifetimePD)
ylabel('Lifetime PD')
title('Extrapolated PD for Unobserved Age Values')
xlabel('Age')
xline(8,':','Out-of-Sample')
grid on

6 Functions

6-332

Input Arguments
pdModel — Probability of default model
Logistic object | Probit object | Cox object | customLifetimePDModel object

Probability of default model, specified as a previously created Logistic, Probit, or Cox object
using fitLifetimePDModel. Alternatively, you can create a custom probability of default model
using customLifetimePDModel.
Data Types: object

data — Data
table

Data, specified as a NumRows-by-NumCols table with projected predictor values to make lifetime
predictions. The predictor names and data types must be consistent with the underlying model.
Data Types: table

Output Arguments
conditionalPD — Predicted conditional probability of default values
vector

Predicted conditional probability of default values, returned as a NumRows-by-1 numeric vector.

 predict

6-333

More About
Conditional PD

Conditional PD is the probability of defaulting, given no default yet.

For example, the predicted conditional PD for the second year is the probability that the borrower
defaults in the second year, given that the borrower did not default in the first year.

The formula for conditional PD is

PD(t) = P t − Δt < T ≤ t T > t − Δt

where

• T is the time to default.
• Δt is the "time interval" consistent with the periodicity of the panel training data (for example,

one row per year) and the definition of the default indicator values.

The default indicator is 1 if there is a default over a 1-year period. For more information on time
intervals, see “Time Interval for Logistic Models” on page 6-623, “Time Interval for Probit Models” on
page 6-634, and “Time Interval for Cox Models” on page 6-551.

In the formulas that follow for Logistic, Probit, and Cox models, the notation is:

• X(t) is the predictor data for the row corresponding to time t.
• β is the vector of coefficients of the underlying model.

For Logistic models, the conditional PD is computed as:

PDcond(t) = 1
1 + exp(− X(t)β)

For Probit models, the conditional PD is computed as:

PDcond(t) = ϕ(X(t)β)

For Cox models, the conditional PD is computed as

PDcond(t) = 1− S(t)
S(t − Δt)

where S is the survival function. The survival function depends on the predictor values through the
hazard ratio. For more information, see “Cox Proportional Hazards Models” on page 6-550. There are
different ways to represent the dependence of the PD on the predictors explicitly. The implementation
in the predict function uses the baseline cumulative hazard rate function given by

H0(t) =∫0 t
h0(u)du

where h0 is the baseline hazard rate. For more information, see “Cox Proportional Hazards Models”
on page 6-550. Using the baseline cumulative hazard rate, the PD formula for the Cox model is
written as:

PDcond(t) = 1− exp(− (H0(t)− H0(t − Δt))exp(X(t)β))

6 Functions

6-334

Extrapolation for Cox Models

The baseline cumulative hazard function H0 for Cox models is fitted to the observed age values (that
is, the observed "times-to-event") in a nonparametric way.

Therefore, some form of interpolation or extrapolation is needed to make predictions for age values
not observed in the training data. In the predict function, linear interpolation is used as follows:

• If the known age values are t1, t2,...,tN, with ti - ti -1 = Δt, and if t0 = t1 - Δt, then:

• H0(t) = 0, for all t ≤ t0.
• H0(t) is interpolated linearly for ti -1 ≤ t ≤ ti, for i = 0,...N.
• H0(t) is extrapolated linearly for t > tN, following the slope defined by the last two known

values H0(tN - 1) and H0(tN).

This implies the baseline hazard rate h0 is piecewise constant and remains constant after the last
fitted value. By default, after the last known age value, the PD is evaluated as follows

PDcond(t X(t)) = PDcond(tN X(t))

for t > tN. This behavior is adjusted with the ExtrapolationFactor property of the Cox model. For
more information, see “Use Cox Lifetime PD Model to Predict Conditional PD” on page 6-329.

Extrapolation Factor for Cox Models

The extrapolation formula implemented in the predict function includes the
ExtrapolationFactor property value

PDcond(tN + k X(tN + k)) = (ExtrapolationFactor)kPDcond(tN X(tN + k))

where tN + k is the time value k periods after the largest age observed in the training data tN, that is,
tN + k = tN + k* Δt.

By default, the extrapolation factor is 1, resulting in the formula in the “Extrapolation for Cox
Models” on page 6-335 section, where the PD values remain constant as the age increases — if the
predictor values do not change. If the extrapolation factor is set to a value smaller than 1, the
predicted PD values decrease exponentially towards 0. The smaller the factor, the faster the
conditional PD values decrease, and the faster the lifetime PD values flatten out.

In general, PD values tend to go down towards the end of the life of a loan, since the pool of
borrowers gets cured earlier on. How fast this happens depends on the product and must be
calibrated on a case-by-case basis.

Note that Logistic and Probit models need no special considerations regarding interpolation or
extrapolation. These models are fully parametric models and predict the conditional PD for any
values, in between, or beyond the numeric values observed in the dataset.

Version History
Introduced in R2020b

R2022b: Support for customLifetimePDModel model

 predict

6-335

The pdModel input supports an option for a customLifetimePDModel model object that you can
create using customLifetimePDModel.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models
LLC, 2018.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python.
Independently published, 2020.

See Also
modelDiscrimination | modelDiscriminationPlot | modelCalibration |
modelCalibrationPlot | predictLifetime | fitLifetimePDModel | Logistic | Probit | Cox
| customLifetimePDModel

Topics
“Basic Lifetime PD Model Validation” on page 4-129
“Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
“Compare Lifetime PD Models Using Cross-Validation” on page 4-121
“Expected Credit Loss Computation” on page 4-124
“Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on page
4-144
“Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-75
“Overview of Lifetime Probability of Default Models” on page 1-25

6 Functions

6-336

predictLifetime
Compute cumulative lifetime PD, marginal PD, and survival probability

Syntax
LifeTimePredictedPD = predictLifetime(pdModel,data)
LifeTimePredictedPD = predictLifetime(___ ,Name,Value)

Description
LifeTimePredictedPD = predictLifetime(pdModel,data) computes the cumulative lifetime
probability of default (PD), marginal PD, and survival probability.

LifeTimePredictedPD = predictLifetime(___ ,Name,Value) specifies options using one or
more name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Use Probit Lifetime PD Model to Predict Lifetime PD

This example shows how to use fitLifetimePDModel to fit data with a Probit model and then
predict the lifetime probability of default (PD).

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat
disp(head(data))

 ID ScoreGroup YOB Default Year
 __ __________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004

disp(head(dataMacro))

 Year GDP Market
 ____ _____ ______

 1997 2.72 7.61
 1998 3.57 26.24
 1999 2.86 18.1
 2000 2.43 3.19

 predictLifetime

6-337

 2001 1.26 -10.51
 2002 -0.59 -22.95
 2003 0.63 2.78
 2004 1.85 9.48

Join the two data components into a single data set.

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Partition Data

Separate the data into training and test partitions.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Create a Probit Lifetime PD Model

Use fitLifetimePDModel to create a Probit model using the training data.

pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Probit",...
 'AgeVar','YOB',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},...
 'ResponseVar','Default');
disp(pdModel)

 Probit with properties:

 ModelID: "Probit"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"

6 Functions

6-338

 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

Display the underlying model.

disp(pdModel.Model)

Compact generalized linear regression model:
 probit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -1.6267 0.03811 -42.685 0
 ScoreGroup_Medium Risk -0.26542 0.01419 -18.704 4.5503e-78
 ScoreGroup_Low Risk -0.46794 0.016364 -28.595 7.775e-180
 YOB -0.11421 0.0049724 -22.969 9.6208e-117
 GDP -0.041537 0.014807 -2.8052 0.0050291
 Market -0.0029609 0.0010618 -2.7885 0.0052954

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0

Predict Lifetime PD on Training and Test Data

Use the predictLifetime function to get lifetime PDs on the training or the test data. To get
conditional PDs, use the predict function. For model validation, use the modelDiscrimination
and modelCalibration functions on the training or test data.

DataSetChoice = ;
if DataSetChoice=="Training"
 Ind = TrainDataInd;
else
 Ind = TestDataInd;
end

% Predict lifetime PD
PD = predictLifetime(pdModel,data(Ind,:));
head(data(Ind,:))

 ID ScoreGroup YOB Default Year GDP Market
 __ ___________ ___ _______ ____ _____ ______

 2 Medium Risk 1 0 1997 2.72 7.61
 2 Medium Risk 2 0 1998 3.57 26.24
 2 Medium Risk 3 0 1999 2.86 18.1
 2 Medium Risk 4 0 2000 2.43 3.19
 2 Medium Risk 5 0 2001 1.26 -10.51
 2 Medium Risk 6 0 2002 -0.59 -22.95
 2 Medium Risk 7 0 2003 0.63 2.78
 2 Medium Risk 8 0 2004 1.85 9.48

 predictLifetime

6-339

Predict Lifetime PD on New Data

Lifetime PD models are used to make predictions on existing loans. The predictLifetime function
requires projected values for both the loan and macro predictors for the remainder of the life of the
loan.

The DataPredictLifetime.mat file contains projections for two loans and also for the macro
variables. One loan is three years old at the end of 2019, with a lifetime of 10 years, and the other
loan is six years old with a lifetime of 10 years. The ScoreGroup is constant and the age values are
incremental. For the macro variables, the forecasts for the macro predictors must span the longest
lifetime in the portfolio.

load DataPredictLifetime.mat
disp(LoanData)

 ID ScoreGroup YOB Year
 ____ _____________ ___ ____

 1304 "Medium Risk" 4 2020
 1304 "Medium Risk" 5 2021
 1304 "Medium Risk" 6 2022
 1304 "Medium Risk" 7 2023
 1304 "Medium Risk" 8 2024
 1304 "Medium Risk" 9 2025
 1304 "Medium Risk" 10 2026
 2067 "Low Risk" 7 2020
 2067 "Low Risk" 8 2021
 2067 "Low Risk" 9 2022
 2067 "Low Risk" 10 2023

disp(MacroScenario)

 Year GDP Market
 ____ ___ ______

 2020 1.1 4.5
 2021 0.9 1.5
 2022 1.2 5
 2023 1.4 5.5
 2024 1.6 6
 2025 1.8 6.5
 2026 1.8 6.5
 2027 1.8 6.5

LifetimeData = join(LoanData,MacroScenario);
disp(LifetimeData)

 ID ScoreGroup YOB Year GDP Market
 ____ _____________ ___ ____ ___ ______

 1304 "Medium Risk" 4 2020 1.1 4.5
 1304 "Medium Risk" 5 2021 0.9 1.5
 1304 "Medium Risk" 6 2022 1.2 5
 1304 "Medium Risk" 7 2023 1.4 5.5
 1304 "Medium Risk" 8 2024 1.6 6
 1304 "Medium Risk" 9 2025 1.8 6.5
 1304 "Medium Risk" 10 2026 1.8 6.5
 2067 "Low Risk" 7 2020 1.1 4.5

6 Functions

6-340

 2067 "Low Risk" 8 2021 0.9 1.5
 2067 "Low Risk" 9 2022 1.2 5
 2067 "Low Risk" 10 2023 1.4 5.5

Predict lifetime PDs and store the output as a new table column for convenience.

LifetimeData.PredictedPD = predictLifetime(pdModel,LifetimeData);
disp(LifetimeData)

 ID ScoreGroup YOB Year GDP Market PredictedPD
 ____ _____________ ___ ____ ___ ______ ___________

 1304 "Medium Risk" 4 2020 1.1 4.5 0.0080202
 1304 "Medium Risk" 5 2021 0.9 1.5 0.014093
 1304 "Medium Risk" 6 2022 1.2 5 0.018156
 1304 "Medium Risk" 7 2023 1.4 5.5 0.020941
 1304 "Medium Risk" 8 2024 1.6 6 0.022827
 1304 "Medium Risk" 9 2025 1.8 6.5 0.024086
 1304 "Medium Risk" 10 2026 1.8 6.5 0.024945
 2067 "Low Risk" 7 2020 1.1 4.5 0.0015728
 2067 "Low Risk" 8 2021 0.9 1.5 0.0027146
 2067 "Low Risk" 9 2022 1.2 5 0.003431
 2067 "Low Risk" 10 2023 1.4 5.5 0.0038939

Visualize the predicted lifetime PD for a company.

CompanyIDChoice = ;
CompanyID = str2double(CompanyIDChoice);
IndPlot = LifetimeData.ID==CompanyID;
plot(LifetimeData.YOB(IndPlot),LifetimeData.PredictedPD(IndPlot))
grid on
xlabel('YOB')
xticks(LifetimeData.YOB(IndPlot))
ylabel('Lifetime PD')
title(strcat("Company ",CompanyIDChoice))

 predictLifetime

6-341

Lifetime Prediction and Time Interval

This example shows how time interval plays an important role for lifetime prediction when using a
Logistic, Probit, or Cox model for probability of default (PD). Each PD value is a probability of
default for the given "time interval" (for example, a time interval of 1 year), The data rows passed in
for lifetime prediction must have the same periodicity as the time interval (that is, you can't pass a
row that represents a quarter, and then a row that represents a year, and then one that represents 5
years. You must pass data for periods 1, 2, 3, 4,..., but not 1, 3, 7, 10, 20. Or if the time interval is 3,
you must pass periods 3, 6, 9,... or 2, 5, 8,..., but not 3, 7, 15, 30.

Fit and Validate Model

load RetailCreditPanelData.mat
data = join(data,dataMacro);
head(data)

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95

6 Functions

6-342

 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Select a model type. The behavior of the data validation in predictLifetime depends on the model
type. For more information, see “Validation of Data Input for Lifetime Prediction” on page 6-349.

The time interval in this example is 1. This value is stored in Cox models as the TimeInterval
property and it is used for fitting and prediction.Logistic and Probit models do not store the time
interval information.

ModelType = ;

pdModel = fitLifetimePDModel(data,ModelType,...
 'IDVar','ID','AgeVar','YOB',...
 'LoanVars','ScoreGroup','MacroVars',{'GDP' 'Market'},...
 'ResponseVar','Default');
disp(pdModel)

 Cox with properties:

 TimeInterval: 1
 ExtrapolationFactor: 1
 ModelID: "Cox"
 Description: ""
 UnderlyingModel: [1x1 CoxModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

Conditional PD and Model Validation

The conditional PD values returned by predict are consistent with the time interval used for
training the model. In this example, all PD values returned by predict are 1-year probabilities of
default. There is no validation of the periodicity in the data input for predict.

dataPredictExample = data([1 2 6 10 15],:);
pdExample = predict(pdModel,dataPredictExample)

pdExample = 5×1

 0.0089
 0.0052
 0.0038
 0.0094
 0.0031

Model validation is done using the conditional PD returned by predict. Therefore, there is no row
periodicity validation in modelDiscrimination or modelCalibration. However, model validation
requires observed values of the response variable, and the definition of default used for the validation
response values must be consistent with the training data. In other words, if the training data uses
a time interval of 1, the validation response data cannot be defined with quarterly default data. There
are no row-periodicity checks for modelDiscrimination or modelCalibration, it is assumed that
the default definition in the validation data is consistent with the training data.

 predictLifetime

6-343

modelCalibrationPlot(pdModel,data,{'YOB','ScoreGroup'})

Lifetime PD

The predictLifetime function is used to compute lifetime PD. When making lifetime predictions:

• A different data set is likely used, not the data you used for training and validation, but a new data
set with forward-looking projections for different loans.

• The projected values in the lifetime prediction data set span several periods ahead, potentially
several years ahead.

Load the DataPredictLifetime.mat data for lifetime prediction. Note that for prediction, you
don't need to pass the response data, you only pass predictors. You only pass response values for
fitting or validation, not for prediction.

load DataPredictLifetime.mat
LifetimeData = join(LoanData,MacroScenario);
disp(LifetimeData)

 ID ScoreGroup YOB Year GDP Market
 ____ _____________ ___ ____ ___ ______

 1304 "Medium Risk" 4 2020 1.1 4.5
 1304 "Medium Risk" 5 2021 0.9 1.5
 1304 "Medium Risk" 6 2022 1.2 5
 1304 "Medium Risk" 7 2023 1.4 5.5
 1304 "Medium Risk" 8 2024 1.6 6

6 Functions

6-344

 1304 "Medium Risk" 9 2025 1.8 6.5
 1304 "Medium Risk" 10 2026 1.8 6.5
 2067 "Low Risk" 7 2020 1.1 4.5
 2067 "Low Risk" 8 2021 0.9 1.5
 2067 "Low Risk" 9 2022 1.2 5
 2067 "Low Risk" 10 2023 1.4 5.5

The rows have yearly data, consistent with the time interval used for training. You can see this in both
the Year variable and the YOB variable. There are no flags in this data set for lifetime predictions.

LifetimeData.PD = predict(pdModel,LifetimeData);
LifetimeData.LifetimePD = predictLifetime(pdModel,LifetimeData)

LifetimeData=11×8 table
 ID ScoreGroup YOB Year GDP Market PD LifetimePD
 ____ _____________ ___ ____ ___ ______ __________ __________

 1304 "Medium Risk" 4 2020 1.1 4.5 0.0081336 0.0081336
 1304 "Medium Risk" 5 2021 0.9 1.5 0.0063861 0.014468
 1304 "Medium Risk" 6 2022 1.2 5 0.0047416 0.019141
 1304 "Medium Risk" 7 2023 1.4 5.5 0.0028262 0.021913
 1304 "Medium Risk" 8 2024 1.6 6 0.0014844 0.023365
 1304 "Medium Risk" 9 2025 1.8 6.5 0.0014517 0.024783
 1304 "Medium Risk" 10 2026 1.8 6.5 0.0014517 0.026198
 2067 "Low Risk" 7 2020 1.1 4.5 0.0016091 0.0016091
 2067 "Low Risk" 8 2021 0.9 1.5 0.0009006 0.0025082
 2067 "Low Risk" 9 2022 1.2 5 0.00085273 0.0033588
 2067 "Low Risk" 10 2023 1.4 5.5 0.00083391 0.0041899

When the periodicity of the rows does not match the periodicity in the training data, the lifetime PD
values cannot be correctly computed.

Modify the selected rows using the SelectedRows variable in the code to see the behavior of
predictLifetime as the periodicity of the data changes. (Alternatively, the YOB values can be
manually modified to enter age increments inconsistent with the time interval of 1 year.)

RowSelection = ;
switch RowSelection
 case "All rows"
 SelectedRows = 1:11; % Selecting all rows 1:11 is the same as the output above, no warnings
 case "Every other row"
 SelectedRows = 1:2:11; % Regular age increments, but skipping one year
 case "Irregular"
 SelectedRows = [1 2 7 8 11]; % Irregular age increments
end
LifetimeData2 = LifetimeData(SelectedRows,{'ID','ScoreGroup','YOB','Year','GDP','Market'});
disp(LifetimeData2)

 ID ScoreGroup YOB Year GDP Market
 ____ _____________ ___ ____ ___ ______

 1304 "Medium Risk" 4 2020 1.1 4.5
 1304 "Medium Risk" 5 2021 0.9 1.5
 1304 "Medium Risk" 6 2022 1.2 5
 1304 "Medium Risk" 7 2023 1.4 5.5
 1304 "Medium Risk" 8 2024 1.6 6

 predictLifetime

6-345

 1304 "Medium Risk" 9 2025 1.8 6.5
 1304 "Medium Risk" 10 2026 1.8 6.5
 2067 "Low Risk" 7 2020 1.1 4.5
 2067 "Low Risk" 8 2021 0.9 1.5
 2067 "Low Risk" 9 2022 1.2 5
 2067 "Low Risk" 10 2023 1.4 5.5

LifetimeData2.PD = predict(pdModel,LifetimeData2);
LifetimeData2.LifetimePD = predictLifetime(pdModel,LifetimeData2);
disp(LifetimeData2)

 ID ScoreGroup YOB Year GDP Market PD LifetimePD
 ____ _____________ ___ ____ ___ ______ __________ __________

 1304 "Medium Risk" 4 2020 1.1 4.5 0.0081336 0.0081336
 1304 "Medium Risk" 5 2021 0.9 1.5 0.0063861 0.014468
 1304 "Medium Risk" 6 2022 1.2 5 0.0047416 0.019141
 1304 "Medium Risk" 7 2023 1.4 5.5 0.0028262 0.021913
 1304 "Medium Risk" 8 2024 1.6 6 0.0014844 0.023365
 1304 "Medium Risk" 9 2025 1.8 6.5 0.0014517 0.024783
 1304 "Medium Risk" 10 2026 1.8 6.5 0.0014517 0.026198
 2067 "Low Risk" 7 2020 1.1 4.5 0.0016091 0.0016091
 2067 "Low Risk" 8 2021 0.9 1.5 0.0009006 0.0025082
 2067 "Low Risk" 9 2022 1.2 5 0.00085273 0.0033588
 2067 "Low Risk" 10 2023 1.4 5.5 0.00083391 0.0041899

The differences in behavior depend on the model type and whether the age variable is part of the
model. You can change the model type in the fitting step to see the behavior for different model types.
Remove the age variable (AgeVar) for Logistic and Probit models to observe the behavior when
an age input argument is not part of the model. Note that an age input (AgeVar) argument is
required for a Cox model. For more information, see “Time Interval and Data Input for Lifetime
Prediction” on page 6-348.

Input Arguments
pdModel — Probability of default model
Logistic object | Probit object | Cox object | customLifetimePDModel object

Probability of default model, specified as a previously created Logistic, Probit, or Cox object
using fitLifetimePDModel. Alternatively, you can create a custom probability of default model
using customLifetimePDModel.
Data Types: object

data — Lifetime data
table

Lifetime data, specified as a NumRows-by-NumCols table with projected predictor values to make
lifetime predictions. The predictor names and data types must be consistent with the underlying
model. The IDVar property of the pdModel input is used to identify the column containing the ID
values in the table, and the IDs are used to identify rows corresponding to the different IDs and to
make lifetime predictions for each ID.

Note

6 Functions

6-346

• Rows passed in data for lifetime prediction must have the same periodicity as the time interval
used to fit the model. For example, if the time interval used for training was one year, the data
input for lifetime prediction cannot have quarterly data, or data for every five years.

• Consecutive rows for the same ID must correspond to consecutive periods. For example, if the
time interval used for training was one year, you cannot skip years and pass data for years 1, 2, 5,
and 10.

For more information, see “Data Input for Lifetime Prediction” on page 6-348 and “Time Interval and
Data Input for Lifetime Prediction” on page 6-348.

Data Types: table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: LifetimeData =
predictLifetime(pdModel,Data,'ProbabilityType','survival')

ProbabilityType — Probability type
'cumulative' (default) | character vector with value 'cumulative', 'marginal', or
'survival' | string with value "cumulative", "marginal", or "survival"

Probability type, specified as the comma-separated pair consisting of 'ProbabilityType' and a
character vector or string.
Data Types: char | string

Output Arguments
LifeTimePredictedPD — Predicted lifetime PD values
vector

Predicted lifetime PD values, returned as a NumRows-by-1 numeric vector.

More About
Lifetime PD

Lifetime PD is the probability of a default event over the lifetime of a financial asset.

Lifetime PD typically refers to the cumulative default probability, given by

PDcumulative(t) = P T ≤ t

where T is the time to default.

For example, the predicted lifetime, cumulative PD for the second year is the probability that the
borrower defaults any time between now and two years from now.

 predictLifetime

6-347

A closely related concept used for the computation of the lifetime Expected Credit Loss (ECL) is the
marginal PD, given by

PDmarginal = PDcumulative(t)− PDcumulative(t − 1)

A closely related probability is the survival probability, which is the complement of the cumulative
probability and is reported as

S(t) = P T > t = 1− PDcumulative(t)

The following recursive formula shows the relationship between the conditional PDs and the survival
probability:

S(t0) = 1
S(t1) = S(t0)(1− PD(t1))
...
S(tn) = S(tn− 1)(1− PD(tn))

Where ti - ti-1 = Δt for all i = 1,...,n, and Δt is the time interval used to fit the model. For more
information, see “Time Interval for Logistic Models” on page 6-623 and “Time Interval for Probit
Models” on page 6-634. In other words, because the PD values on the right-hand side of the formulas
are probabilities of default for a period of length Δt, the increments between consecutive times in the
recursion must always be of length Δt for all periods i = 1, 2,..., n.

The predictLifetime function calls the predict function to get the conditional PD and then
converts it to survival, marginal, or lifetime cumulative PD using the previous formulas.

Data Input for Lifetime Prediction

Lifetime PD is the cumulative probability of default over multiple periods.

The input for the predictLifetime function should contain multiple rows per ID, where rows
represent sequential time periods regularly spaced. In other words, the data should be in panel data
form. The time interval between adjacent rows must be consistent with the time interval used to
define the default binary variable in the training data. For more information, see “Time Interval and
Data Input for Lifetime Prediction” on page 6-348.

If a dataset with one row per ID is passed, the output of predictLifetime is the same as the output
of predict because the PD is predicted for one period only (see formulas in predict section). A
dataset with multiple rows per ID allows predictLifetime to aggregate the default probability over
multiple periods to get the cumulative PD.

The predictLifetime function is typically used for predictions on outstanding loans, where the
predictor variable values must be projected, period by period, for several periods into the future.
Although historical (training or testing) data sets in panel data form can be passed to
predictLifetime, the typical workflow requires data preparation. It starts out with outstanding
loans, where only the most recent values of the predictor variables are known. The data preparation
then projects the predictor variable values into the future for multiple time periods, typically until the
maturity of the loan for a lifetime analysis. For example, see “Create Custom Lifetime PD Model for
Decision Tree Model with Function Handle” on page 4-224.

Time Interval and Data Input for Lifetime Prediction

The time interval used for fitting the model plays an important role for lifetime prediction.

6 Functions

6-348

The data input for predictLifetime is in panel data form, with multiple rows for each ID. There is
an implicit or explicit time stamp for each row, and the time increments between consecutive rows
must be the same as the time interval used to fit the model. For more information on time intervals,
see “Time Interval for Cox Models” on page 6-551, “Time Interval for Logistic Models” on page 6-623,
and “Time Interval for Probit Models” on page 6-634.

Following the notation of the lifetime PD recursive formulas described in “Lifetime PD” on page 6-
347, the time stamps t1, t2,...,tn between consecutive rows must satisfy ti - ti-1 = Δt for all i = 1,...,n,
where Δt is the time interval used to fit the model. In other words:

• Rows passed in the data input for lifetime prediction must have the same periodicity as the time
interval used to fit the model. For example, if the time interval used for training was 1 year, the
data input for lifetime prediction cannot have quarterly data, or data for every 5 years.

• consecutive rows for the same ID must correspond to consecutive periods. For example, if the
time interval used for training was 1 year, you cannot skip years and pass data for years 1, 2, 5,
and 10.

Suppose, for concreteness, that the time interval Δt used to fit the model is 1 year. Then the PD
values on the right-hand side of the formulas in “Lifetime PD” on page 6-347 are 1-year PDs.
Therefore:

• Lifetime PD for quarterly data cannot be computed because S(1.25) ≄ S(1)(1 - PD(1.25)), since
PD(1.25) is a 1-year PD spanning the default over the interval going from 0.25 to 1.25.

• Lifetime PD for data every 5 years cannot be computed because S(10) ≄ S(5)(1 - PD(10)), since
PD(10) is a 1-year PD spanning the default over the interval going from 9 to 10.

• Lifetime PD for non-consecutive rows cannot be computed. For example, if the data input has
rows corresponding to years 1, 2, 5 and 10, then S(1) and S(2) can be computed correctly,
however S(5) ≄ S(2)(1-PD(5)) because PD(5) is a 1-year PD spanning the default over the interval
going from 4 to 5, and similarly for S(10).

Validation of Data Input for Lifetime Prediction

The validation of the row periodicity in the data input for predictLifetime depends on the model
type (ModelType) and whether the model contains an age variable (AgeVar).

Cox models can validate the periodicity of the data because the age variable (AgeVar) is a required
input argument and Cox models store the time interval (TimeInterval) used to fit the model. The
TimeInterval is used both to fit the model and to predict PD values. For more information on time
intervals for a Cox model, see “Time Interval for Cox Models” on page 6-551. The age variable
(AgeVar) is used as the time dimension. For each ID, if the periodicity of the data input, measured
by the increments in the age variable, does not match the time interval used to train the model, a
warning is displayed and the lifetime PD values are filled with NaNs.

Logistic and Probit models do not store the time interval value. However the predicted PD values
are still consistent with the (explicit or implicit) time interval in the training data. For more
information, see “Time Interval for Logistic Models” on page 6-623 and “Time Interval for Probit
Models” on page 6-634. Moreover, for Logistic and Probit models, the age variable (AgeVar) is
optional, and there is no other way to specify a time dimension in the model. Therefore:

• If the Logistic or Probit model has no age variable information, there is no way to validate the
periodicity of the data. The lifetime PD is computed using the recursion in “Lifetime PD” on page
6-347, assuming that the periodicity is correct. It is the responsibility of the caller to ensure that
the periodicity of the data rows is consistent with the time interval in the training data.

 predictLifetime

6-349

• If the Logistic or Probit model has an age variable (AgeVar), this is used as a time dimension.
However, because the time interval used to train the data is unknown for Logistic and Probit
models, these models can only validate that the age increments are regular as follows, but cannot
compare against a reference time interval.

• For each ID, when the age shows irregular age increments, there is a warning and the lifetime
PD values are set to NaNs.

• When the age increments are regular within each ID, but some IDs have different age
increments than others, a warning is displayed, but it is unknown which ID has the wrong
increments. The lifetime PD values are computed using the recursion in “Lifetime PD” on page
6-347 for all IDs. It is the responsibility of the caller to ensure that the periodicity of the data
rows for all IDs is consistent with the time interval in the training data.

For an example, see “Lifetime Prediction and Time Interval” on page 6-342.

Version History
Introduced in R2020b

R2022b: Support for customLifetimePDModel model

The pdModel input supports an option for a customLifetimePDModel model object that you can
create using customLifetimePDModel.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models
LLC, 2018.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python.
Independently published, 2020.

See Also
predict | modelDiscrimination | modelDiscriminationPlot | modelCalibration |
modelCalibrationPlot | fitLifetimePDModel | Logistic | Probit | Cox |
customLifetimePDModel

Topics
“Basic Lifetime PD Model Validation” on page 4-129
“Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
“Compare Lifetime PD Models Using Cross-Validation” on page 4-121
“Expected Credit Loss Computation” on page 4-124
“Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on page
4-144
“Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-75

6 Functions

6-350

“Create Custom Lifetime PD Model for Decision Tree Model with Function Handle” on page 4-224
“Overview of Lifetime Probability of Default Models” on page 1-25

 predictLifetime

6-351

probdefault
Likelihood of default for given dataset for a compactCreditScorecard object

Syntax
pd = probdefault(csc,data)

Description
pd = probdefault(csc,data) computes the probability of default for the
compactCreditScorecard (csc) based on the data.

Examples

Calculate the Probability of Default for a compactCreditScorecard Object with New Data

To create a compactCreditScorecard object, first create a creditscorecard object using the
CreditCardData.mat file to load the data (using a dataset from Refaat 2011).

load CreditCardData.mat
sc = creditscorecard(data)

sc =
 creditscorecard with properties:

 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ''
 VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'status'}
 NumericPredictors: {'CustID' 'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'}
 CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
 BinMissingData: 0
 IDVar: ''
 PredictorVars: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'}
 Data: [1200x11 table]

Before creating a compactCreditScorecard object, you must use autobinning and fitmodel
with the creditscorecard object.

sc = autobinning(sc);
sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

6 Functions

6-352

Generalized linear regression model:
 logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ______ __________

 (Intercept) 0.70239 0.064001 10.975 5.0538e-28
 CustAge 0.60833 0.24932 2.44 0.014687
 ResStatus 1.377 0.65272 2.1097 0.034888
 EmpStatus 0.88565 0.293 3.0227 0.0025055
 CustIncome 0.70164 0.21844 3.2121 0.0013179
 TmWBank 1.1074 0.23271 4.7589 1.9464e-06
 OtherCC 1.0883 0.52912 2.0569 0.039696
 AMBalance 1.045 0.32214 3.2439 0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Use the creditscorecard object with compactCreditScorecard to create a
compactCreditScorecard object.

csc = compactCreditScorecard(sc)

csc =
 compactCreditScorecard with properties:

 Description: ''
 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ''
 NumericPredictors: {'CustAge' 'CustIncome' 'TmWBank' 'AMBalance'}
 CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
 PredictorVars: {'CustAge' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance'}

Then use probdefault with the compactCreditScorecard object. For the purpose of illustration,
suppose that a few rows from the original data are our "new" data. Use the data input argument in
the probdefault function to obtain the probability of default using the newdata.

newdata = data(10:20,:);
pd = probdefault(csc,newdata)

pd = 11×1

 0.3047
 0.3418
 0.2237
 0.2793
 0.3615
 0.1653
 0.3799
 0.4055
 0.4269
 0.1915

 probdefault

6-353

 ⋮

Input Arguments
csc — Compact credit scorecard model
compactCreditScorecard object

Credit scorecard model, specified as a compactCreditScorecard object.

To create a compactCreditScorecard object, use compactCreditScorecard or compact from
Financial Toolbox.

data — Dataset to apply probability of default rules
table

Dataset to apply probability of default rules, specified as a MATLAB table, where each row
corresponds to individual observations. The data must contain columns for each of the predictors in
the compactCreditScorecard object.
Data Types: table

Output Arguments
pd — Probability of default
array

Probability of default, returned as a NumObs-by-1 numerical array of default probabilities.

More About
Default Probability

After the unscaled scores are computed (see “Algorithms for Computing and Scaling Scores”), the
probability of the points being “Good” is represented by the following formula:

ProbGood = 1./(1 + exp(-UnscaledScores))

Thus, the probability of default is

pd = 1 - ProbGood

Version History
Introduced in R2019a

References
[1] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also
compactCreditScorecard | score | displaypoints | validatemodel

6 Functions

6-354

Topics
“Case Study for Credit Scorecard Analysis”
“Credit Scorecard Modeling with Missing Values”
“Credit Scorecard Modeling Workflow”
“About Credit Scorecards”

 probdefault

6-355

quantile
Quantile expected shortfall (ES) backtest by Acerbi and Szekely

Syntax
TestResults = quantile(ebts)
[TestResults,SimTestStatistic] = quantile(ebts,Name,Value)

Description
TestResults = quantile(ebts) runs the quantile ES backtest of Acerbi-Szekely (2014).

[TestResults,SimTestStatistic] = quantile(ebts,Name,Value) adds an optional name-
value pair argument for TestLevel.

Examples

Run an ES Quantile Test

Create an esbacktestbysim object.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
 'DegreesOfFreedom',10,...
 'Location',Mu,...
 'Scale',Sigma,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);

Generate the ES quantile test report.

TestResults = quantile(ebts)

TestResults=3×10 table
 PortfolioID VaRID VaRLevel Quantile PValue TestStatistic CriticalValue Observations Scenarios TestLevel
 ___________ _____________ ________ ________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 reject 0.002 -0.10602 -0.055798 1966 1000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject 0 -0.15697 -0.073513 1966 1000 0.95
 "S&P" "t(10) 99%" 0.99 reject 0 -0.26561 -0.10117 1966 1000 0.95

Input Arguments
ebts — esbacktestbysim object
object

6 Functions

6-356

esbacktestbysim (ebts) object, which contains a copy of the given data (the PortfolioData,
VarData, ESData, and Distribution properties) and all combinations of portfolio ID, VaR ID, and
VaR levels to be tested. For more information on creating an esbacktestbysim object, see
esbacktestbysim.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [TestResults,SimTestStatistic] = quantile(ebts,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric with values between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric value between 0 and 1.
Data Types: double

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID,
and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'Quantile'— Categorical array with categories 'accept' and 'reject' indicating the result of the

quantile test
• 'PValue'— P-value of the quantile test
• 'TestStatistic'— Quantile test statistic
• 'CriticalValue'— Critical value for the quantile test
• 'Observations'— Number of observations
• 'Scenarios'— Number of scenarios simulated to get the p-values
• 'TestLevel'— Test confidence level

SimTestStatistic — Simulated values of test statistic
numeric array

Simulated values of the test statistic, returned as a NumVaRs-by-NumScenarios numeric array.

 quantile

6-357

More About
Quantile Test by Acerbi and Szekely

The quantile test (also known as the third Acerbi-Szekely test) uses a sample estimator of the
expected shortfall.

The expected shortfall for a sample Y1,...,YN is:

ES(Y) = − 1
NpVaR

∑
i = 1

NpVaR
Y i

where

N is the number of periods in the test window (t = 1,...,N).

PVaR is the probability of VaR failure defined as 1-VaR level.

Y[1],...,Y[N] are the sorted sample values (from smallest to largest), and NpVaR is the largest integer
less than or equal to NpVaR.

To compute the quantile test statistic, a sample of size N is created at each time t as follows. First,
convert the portfolio outcomes to Xt to ranks U1 = P1(X1), ..., UN = PN(XN) using the cumulative
distribution function Pt. If the distribution assumptions are correct, the rank values U1,...,UN are
uniformly distributed in the interval (0,1). Then at each time t:

• Invert the ranks U = (U1,...,UN) to get N quantiles Pt
−1(U) = (Pt

−1(U1), ..., Pt
−1(UN)).

• Compute the sample estimator ES(Pt
−1(U)).

• Compute the expected value of the sample estimator E ES(Pt
−1(V))

where V = (V1,...,VN is a sample of N independent uniform random variables in the interval (0,1).
This value can be computed analytically.

Define the quantile test statistic as

Zquantile = − 1
N ∑

t = 1

N ES(Pt
−1(U))

E[ES(Pt
−1(V))]

+ 1

The denominator inside the sum can be computed analytically as

E[ES(Pt
−1(V))] = − N

NpVaR
∫0 1

I1− p(N − NpVaR , NpVaR)Pt
−1(p)dp

where Ix(z,w) is the regularized incomplete beta function. For more information, see betainc.

Significance of the Test

Assuming that the distributional assumptions are correct, the expected value of the test statistic
Zquantile is 0.

This is expressed as:

6 Functions

6-358

E[Zquantile] = 0

Negative values of the test statistic indicate risk underestimation. The quantile test is a one-sided test
that rejects the model when there is evidence that the model underestimates risk. (For technical
details on the null and alternative hypotheses, see Acerbi-Szekely, 2014). The quantile test rejects the
model when the p-value is less than 1 minus the test confidence level.

For more information on simulating the test statistics and computing the p-values and critical values,
see simulate.

Edge Cases

The quantile test statistic is well-defined when there are no VaR failures in the data.

However, when the expected number of failures NpVaR is small, an adjustment is required. The sample
estimator of the expected shortfall takes the average of the smallest Ntail observations in the sample,
where Ntail = NpVaR . If NpVaR < 1, then Ntail = 0, the sample estimator of the expected shortfall
becomes an empty sum, and the quantile test statistic is undefined.

To account for this, whenever NpVaR < 1, the value of Ntail is set to 1. Thus, the sample estimator of the
expected shortfall has a single term and is equal to the minimum value of the sample. With this
adjustment, the quantile test statistic is then well-defined and the significance analysis is unchanged.

Version History
Introduced in R2017b

References
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

See Also
summary | runtests | conditional | unconditional | simulate | minBiasRelative |
minBiasAbsolute | esbacktestbysim | esbacktestbyde

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“Comparison of ES Backtesting Methods” on page 2-26

 quantile

6-359

runtests
Run all tests in varbacktest

Syntax
TestResults = runtests(vbt)
TestResults = runtests(vbt,Name,Value)

Description
TestResults = runtests(vbt) runs all the tests in the varbacktest object. runtests reports
only the final test result. For test details such as likelihood ratios, run individual tests:

• tl — Traffic light test
• bin — Binomial test
• pof — Proportion of failures
• tuff — Time until first failure
• cc — Conditional coverage mixed
• cci — Conditional coverage independence
• tbf — Time between failures mixed
• tbfi — Time between failures independence

TestResults = runtests(vbt,Name,Value) adds an optional name-value pair argument for
TestLevel.

Examples

Run All VaR Backtests

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9500

Generate the TestResults report for all VaR backtests.

TestResults = runtests(vbt,'TestLevel',0.99)

6 Functions

6-360

TestResults=1×11 table
 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI
 ___________ _____ ________ _____ ______ ______ ______ ______ ______ ______ ______

 "Portfolio" "VaR" 0.95 green accept accept accept accept accept reject reject

Generate the TestResults report for all VaR backtests using the name-value argument for
'ShowDetails' to display the test confidence level.

TestResults = runtests(vbt,'TestLevel',0.99,"ShowDetails",true)

TestResults=1×12 table
 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI TestLevel
 ___________ _____ ________ _____ ______ ______ ______ ______ ______ ______ ______ _________

 "Portfolio" "VaR" 0.95 green accept accept accept accept accept reject reject 0.99

Run All VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a varbacktest object
and run all tests.

load VaRBacktestData
 vbt = varbacktest(EquityIndex,...
 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
 'PortfolioID','Equity',...
 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);
 runtests(vbt)

ans=6×11 table
 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI
 ___________ ______________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "Equity" "Normal95" 0.95 green accept accept accept accept accept reject reject
 "Equity" "Normal99" 0.99 yellow reject accept accept accept accept accept accept
 "Equity" "Historical95" 0.95 green accept accept accept accept accept reject reject
 "Equity" "Historical99" 0.99 green accept accept accept accept accept accept accept
 "Equity" "EWMA95" 0.95 green accept accept accept accept accept accept accept
 "Equity" "EWMA99" 0.99 yellow reject reject accept reject accept reject accept

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData
properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more
information on creating a varbacktest object, see varbacktest.

 runtests

6-361

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = runtests(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric between 0 and 1.
Data Types: double

ShowDetails — Indicates if the output displays a column showing the test confidence level
false (default) | scalar logical with a value of true or false

Indicates if the output displays a column showing the test confidence level, specified as the comma-
separated pair consisting of 'ShowDetails' and a scalar logical value.
Data Types: logical

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID,
and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TL' — Categorical (ordinal) array with categories green, yellow, and red that indicate the

result of the traffic light (tl) test
• 'Bin' — Categorical array with categories accept and reject that indicate the result of the

bin test
• 'POF' — Categorical array with the categories accept and reject that indicate the result of the

pof test.
• 'TUFF' — Categorical array with the categories accept and reject that indicate the result of

the tuff test
• 'CC' — Categorical array with the categories accept and reject that indicate the result of the

cc test
• 'CCI' — Categorical array with the categories accept and reject that indicate the result of the

cci test
• 'TBF' — Categorical array with the categories accept and reject that indicate the result of the

tbf test

6 Functions

6-362

• 'TBFI' — Categorical array with the categories accept and reject that indicate the result of
the tbfi test

Note For the test results, the terms 'accept' and 'reject' are used for convenience, technically
a test does not accept a model. Rather, a test fails to reject it.

Version History
Introduced in R2016b

See Also
varbacktest | tl | pof | tuff | cc | cci | tbf | tbfi | summary

Topics
“VaR Backtesting Workflow” on page 2-6
“Value-at-Risk Estimation and Backtesting” on page 2-10
“Overview of VaR Backtesting” on page 2-2
“Comparison of ES Backtesting Methods” on page 2-26

 runtests

6-363

runtests
Run all expected shortfall (ES) backtests for esbacktest object

Syntax
TestResults = runtests(ebt)
TestResults = runtests(ebt,Name,Value)

Description
TestResults = runtests(ebt) runs all the tests for the esbacktest object. runtests reports
only the final test result. For test details, such as p-values, run the individual tests:

• unconditionalNormal
• unconditionalT

TestResults = runtests(ebt,Name,Value) adds an optional name-value pair argument for
TestLevel.

Examples

Run All ES Backtests

Create an esbacktest object.

load ESBacktestData
ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel',VaRLevel)

ebt =
 esbacktest with properties:

 PortfolioData: [1966x1 double]
 VaRData: [1966x1 double]
 ESData: [1966x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9750

Generate the TestResults report for all ES backtests.

TestResults = runtests(ebt,'TestLevel',0.99)

TestResults=1×5 table
 PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT
 ___________ _____ ________ ___________________ ______________

 "Portfolio" "VaR" 0.975 reject accept

6 Functions

6-364

Generate the TestResults report for all ES backtests using the name-value argument for
'ShowDetails' to display the test confidence level.

TestResults = runtests(ebt,'TestLevel',0.99,'ShowDetails',true)

TestResults=1×6 table
 PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT TestLevel
 ___________ _____ ________ ___________________ ______________ _________

 "Portfolio" "VaR" 0.975 reject accept 0.99

Input Arguments
ebt — esbacktest object
object

esbacktest (ebt) object, which contains a copy of the given data (the PortfolioData, VarData,
and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For
more information on creating an esbacktest object, see esbacktest.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = runtests(ebt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric value between 0.5 and 0.9999

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric value between 0.5 and 0.9999.
Data Types: double

ShowDetails — Indicates if the output displays a column showing the test confidence level
false (default) | scalar logical with a value of true or false

Indicates if the output displays a column showing the test confidence level, specified as the comma-
separated pair consisting of 'ShowDetails' and a scalar logical value.
Data Types: logical

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID,
and VaR levels to be tested. The columns correspond to the following information:

 runtests

6-365

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'UnconditionalNormal'— Categorical array with categories 'accept' and 'reject' that indicate

the result of the unconditional normal test
• 'UnconditionalT' — Categorical array with categories 'accept' and 'reject' that indicate the

result of the unconditional t test

Note For the test results, the terms 'accept' and 'reject' are used for convenience. Technically,
a test does not accept a model; rather, a test fails to reject it.

Version History
Introduced in R2017b

See Also
esbacktest | summary | unconditionalNormal | unconditionalT

Topics
“Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information” on page 2-30
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-366

runtests
Run all expected shortfall backtests (ES) for esbacktestbysim object

Syntax
TestResults = runtests(ebts)
TestResults = runtests(ebts,Name,Value)

Description
TestResults = runtests(ebts) runs all the tests for the esbacktestbysim object. runtests
reports only the final test result. For test details, such as p-values, run the individual tests:

• conditional
• unconditional
• quantile

TestResults = runtests(ebts,Name,Value) adds an optional name-value pair argument for
TestLevel.

Examples

Run All ES Backtests

Create an esbacktestbysim object.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
 'DegreesOfFreedom',10,...
 'Location',Mu,...
 'Scale',Sigma,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);

Generate the TestResults report for all ES backtests.

TestResults = runtests(ebts,'TestLevel',0.99)

TestResults=3×8 table
 PortfolioID VaRID VaRLevel Conditional Unconditional Quantile MinBiasAbsolute MinBiasRelative
 ___________ _____________ ________ ___________ _____________ ________ _______________ _______________

 "S&P" "t(10) 95%" 0.95 reject accept reject accept reject
 "S&P" "t(10) 97.5%" 0.975 reject accept reject accept reject
 "S&P" "t(10) 99%" 0.99 reject reject reject reject reject

Generate the TestResults report for all ES backtests using the name-value argument for
'ShowDetails' to display the test confidence level.

 runtests

6-367

TestResults = runtests(ebts,'TestLevel',0.99,'ShowDetails',true)

TestResults=3×9 table
 PortfolioID VaRID VaRLevel Conditional Unconditional Quantile MinBiasAbsolute MinBiasRelative TestLevel
 ___________ _____________ ________ ___________ _____________ ________ _______________ _______________ _________

 "S&P" "t(10) 95%" 0.95 reject accept reject accept reject 0.99
 "S&P" "t(10) 97.5%" 0.975 reject accept reject accept reject 0.99
 "S&P" "t(10) 99%" 0.99 reject reject reject reject reject 0.99

Input Arguments
ebts — esbacktestbysim object
object

esbacktestbysim (ebts) object, which contains a copy of the given data (the PortfolioData,
VarData, ESData, and Distribution properties) and all combinations of portfolio ID, VaR ID, and
VaR levels to be tested. For more information on creating an esbacktestbysim object, see
esbacktestbysim.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = runtests(ebts,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric value between 0 and 1.
Data Types: double

ShowDetails — Indicates if the output displays a column showing the test confidence level
false (default) | scalar logical with a value of true or false

Indicates if the output displays a column showing the test confidence level, specified as the comma-
separated pair consisting of 'ShowDetails' and a scalar logical value.
Data Types: logical

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID,
and VaR levels to be tested. The columns correspond to the following information:

6 Functions

6-368

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'Conditional'— Categorical array with categories 'accept' and 'reject' indicating the result of

the conditional test
• 'Unconditional' — Categorical array with categories 'accept' and 'reject' indicating the result

of the unconditional test
• 'Quantile' — Categorical array with categories 'accept' and 'reject' indicating the result of the

quantile test
• 'minBiasAbsolute' — Categorical array with categories 'accept' and 'reject' indicating the

result of the minBiasAbsolute test
• 'minBiasRelative' — Categorical array with categories 'accept' and 'reject' indicating the

result of the minBiasRelative test

Note If you request to show additional details by setting the ShowDetails optional input to true,
then the output also contains a TestLevel column for the confidence level.

For the test results, the terms 'accept' and 'reject' are used for convenience. Technically, a test
does not accept a model; rather, a test fails to reject it.

Version History
Introduced in R2017b

See Also
summary | conditional | unconditional | quantile | simulate | minBiasRelative |
minBiasAbsolute | esbacktestbysim | esbacktestbyde

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“Comparison of ES Backtesting Methods” on page 2-26

 runtests

6-369

runtests
Run all expected shortfall (ES) backtests for esbacktestbyde object

Syntax
TestResults = runtests(ebtde)
TestResults = runtests(___ ,Name,Value)

Description
TestResults = runtests(ebtde) runs all the tests for the esbacktestbyde object. runtests
reports only the final test result. For test details such as p-values, run the individual tests:

• unconditionalDE
• conditionalDE

TestResults = runtests(___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to the input argument in the previous syntax.

Examples

Create an esbacktestbyde Object and Run ES Backtests

Create an esbacktestbyde object for a t model with 10 degrees of freedom, and then run ES
backtests.

load ESBacktestDistributionData.mat
 rng('default'); % For reproducibility
 ebtde = esbacktestbyde(Returns,"t",...
 'DegreesOfFreedom',T10DoF,...
 'Location',T10Location,...
 'Scale',T10Scale,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);
 runtests(ebtde)

ans=3×5 table
 PortfolioID VaRID VaRLevel ConditionalDE UnconditionalDE
 ___________ _____________ ________ _____________ _______________

 "S&P" "t(10) 95%" 0.95 reject accept
 "S&P" "t(10) 97.5%" 0.975 reject accept
 "S&P" "t(10) 99%" 0.99 reject reject

To view complete details for the tests, use the name-value pair argument 'ShowDetails'.

runtests(ebtde,'ShowDetails',true)

ans=3×8 table
 PortfolioID VaRID VaRLevel ConditionalDE UnconditionalDE CriticalValueMethod NumLags TestLevel

6 Functions

6-370

 ___________ _____________ ________ _____________ _______________ ___________________ _______ _________

 "S&P" "t(10) 95%" 0.95 reject accept "large-sample" 1 0.95
 "S&P" "t(10) 97.5%" 0.975 reject accept "large-sample" 1 0.95
 "S&P" "t(10) 99%" 0.99 reject reject "large-sample" 1 0.95

Input Arguments
ebtde — esbacktestbyde object
object

esbacktestbyde object, which contains a copy of the data (the PortfolioData, VarData, and
ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more
information on creating an esbacktestbyde object, see esbacktestbyde.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults =
runtests(ebtde,'CriticalValueMethod','simulation','TestLevel',0.99,'ShowDetai
ls',true)

CriticalValueMethod — Method to compute critical values, confidence intervals, and p-
values
'large-sample' (default) | character vector with values of 'large-sample' or 'simulation' |
string with values of "large-sample" or "simulation"

Method to compute critical values, confidence intervals, and p-values, specified as the comma-
separated pair consisting of 'CriticalValueMethod' and character vector or string with a value of
'large-sample' or 'simulation'.
Data Types: char | string

NumLags — Number of lags in the conditionalDE test
1 (default) | positive integer

Number of lags in the conditionalDE test, specified as the comma-separated pair consisting of
'NumLags' and a positive integer.
Data Types: double

TestLevel — Test confidence level
0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric value between 0 and 1.
Data Types: double

 runtests

6-371

ShowDetails — Flag to display all details in output
false (default) | scalar logical with a value of true or false

Flag to display all details in output including the columns for critical-value method, number of lags
tested, and test confidence level, specified as the comma-separated pair consisting of
'ShowDetails' and a scalar logical value.
Data Types: logical

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID,
and VaR levels to be tested. The columns correspond to the following:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR levels
• 'VaRLevel' — VaR level
• 'ConditionalDE' — Categorical array with the categories'accept' and 'reject', which

indicate the result of the conditionalDE test
• 'UnconditionalDE'— Categorical array with the categories'accept' and 'reject', which

indicate the result of the unconditionalDE test

Note For the test results, the terms 'accept' and 'reject' are used for convenience. Technically,
a test does not accept a model; rather, a test fails to reject it.

If you set the ShowDetails optional name-value argument to true, the TestResults table also
includes 'CriticalValueMethod', 'NumLags', and 'TestLevel' columns.

Version History
Introduced in R2019b

References
[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk."

Management Science. Vol. 63, Issue 4, April 2017.

[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk".
January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also
esbacktestbyde | summary | unconditionalDE | conditionalDE | simulate |
esbacktestbysim

Topics
“Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano” on page 2-63

6 Functions

6-372

https://www.bis.org/bcbs/publ/d352.pdf

“Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and
Escanciano” on page 2-72
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information” on page 2-30
“Overview of Expected Shortfall Backtesting” on page 2-20
“ES Backtest Using Du-Escanciano Method” on page 2-24
“Comparison of ES Backtesting Methods” on page 2-26

 runtests

6-373

score
Compute credit scores for given dataset for a compactCreditScorecard object

Syntax
[Scores,Points] = score(csc,data)

Description
[Scores,Points] = score(csc,data) computes the credit scores and points for the
compactCreditScorecard object (csc) based on the data. Missing data translates into NaN
values for the corresponding points.

Examples

Obtain a Score for a compactCreditScorecard Object with New Data

To create a compactCreditScorecard object, first create a creditscorecard object using the
CreditCardData.mat file to load the data (using a dataset from Refaat 2011).

load CreditCardData.mat
sc = creditscorecard(data)

sc =
 creditscorecard with properties:

 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ''
 VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'status'}
 NumericPredictors: {'CustID' 'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'}
 CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
 BinMissingData: 0
 IDVar: ''
 PredictorVars: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'}
 Data: [1200x11 table]

Before creating a compactCreditScorecard object, you must use autobinning and fitmodel
with the creditscorecard object.

sc = autobinning(sc);
sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

6 Functions

6-374

Generalized linear regression model:
 logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ______ __________

 (Intercept) 0.70239 0.064001 10.975 5.0538e-28
 CustAge 0.60833 0.24932 2.44 0.014687
 ResStatus 1.377 0.65272 2.1097 0.034888
 EmpStatus 0.88565 0.293 3.0227 0.0025055
 CustIncome 0.70164 0.21844 3.2121 0.0013179
 TmWBank 1.1074 0.23271 4.7589 1.9464e-06
 OtherCC 1.0883 0.52912 2.0569 0.039696
 AMBalance 1.045 0.32214 3.2439 0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Use the creditscorecard object with compactCreditScorecard to create a
compactCreditScorecard object.

csc = compactCreditScorecard(sc)

csc =
 compactCreditScorecard with properties:

 Description: ''
 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ''
 NumericPredictors: {'CustAge' 'CustIncome' 'TmWBank' 'AMBalance'}
 CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
 PredictorVars: {'CustAge' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance'}

Then use score with the compactCreditScorecard object. For the purpose of illustration, suppose
that a few rows from the original data are our "new" data. Use the data input argument in the score
function to obtain the scores for the newdata.

newdata = data(10:20,:);
[Scores,Points] = score(csc,newdata)

Scores = 11×1

 0.8252
 0.6553
 1.2443
 0.9478
 0.5690
 1.6192
 0.4899
 0.3824
 0.2945

 score

6-375

 1.4401
 ⋮

Points=11×7 table
 CustAge ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance
 _________ _________ _________ __________ _________ ________ _________

 0.23039 0.12696 -0.076317 0.43693 -0.033752 0.15842 -0.017472
 0.23039 -0.031252 -0.076317 0.052329 -0.033752 0.15842 0.35551
 0.23039 0.37641 -0.076317 0.24473 -0.044811 0.15842 0.35551
 0.479 0.12696 -0.076317 0.43693 -0.18257 -0.19168 0.35551
 0.046408 0.37641 -0.076317 0.092433 -0.033752 -0.19168 0.35551
 0.21445 0.37641 0.31449 0.24473 -0.044811 0.15842 0.35551
 -0.14036 0.12696 0.31449 0.081611 -0.033752 0.15842 -0.017472
 -0.060323 -0.031252 0.31449 0.052329 -0.033752 0.15842 -0.017472
 -0.15894 0.12696 0.31449 -0.45716 -0.044811 0.15842 0.35551
 0.23039 0.12696 0.31449 0.43693 -0.18257 0.15842 0.35551
 0.23039 0.37641 -0.076317 0.24473 -0.044811 0.15842 -0.064636

Input Arguments
csc — Compact credit scorecard model
compactCreditScorecard object

Compact credit scorecard model, specified as a compactCreditScorecard object.

To create a compactCreditScorecard object, use compactCreditScorecard or compact from
Financial Toolbox.

data — Dataset to be scored
table

Dataset to be scored, specified as a MATLAB table where each row corresponds to individual
observations. The data must contain columns for each of the predictors in the
compactCreditScorecard object.

Output Arguments
Scores — Scores for each observation
vector

Scores for each observation, returned as a vector.

Points — Points per predictor for each observation
table

Points per predictor for each observation, returned as a table.

Algorithms
The score of an individual i is given by the formula

6 Functions

6-376

Score(i) = Shift + Slope*(b0 + b1*WOE1(i) + b2*WOE2(i)+ ... +bp*WOEp(i))

where bj is the coefficient of the j-th variable in the model, and WOEj(i) is the Weight of Evidence
(WOE) value for the i-th individual corresponding to the j-th model variable. Shift and Slope are
scaling constants that can be controlled with formatpoints.

If the data for individual i is in the i-th row of a given dataset, to compute a score, the data(i,j) is
binned using existing binning maps, and converted into a corresponding Weight of Evidence value
WOEj(i). Using the model coefficients, the unscaled score is computed as

 s = b0 + b1*WOE1(i) + ... +bp*WOEp(i).

For simplicity, assume in the description above that the j-th variable in the model is the j-th column in
the data input, although, in general, the order of variables in a given dataset does not have to match
the order of variables in the model, and the dataset could have additional variables that are not used
in the model.

The formatting options can be controlled using formatpoints.

Version History
Introduced in R2019a

References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also
compactCreditScorecard | probdefault | displaypoints | validatemodel

Topics
“compactCreditScorecard Object Workflow” on page 3-57
“Case Study for Credit Scorecard Analysis”
“Credit Scorecard Modeling with Missing Values”
“Credit Scorecard Modeling Workflow”
“About Credit Scorecards”

 score

6-377

screenpredictors
Screen credit scorecard predictors for predictive value

Syntax
metric_table = screenpredictors(data)
metric_table = screenpredictors(___ ,Name,Value)

Description
metric_table = screenpredictors(data) returns the output variable, metric_table, a
MATLAB table containing the calculated values for several measures of predictive power for each
predictor variable in the data.

Use the screenpredictors function as a preprocessing step in the “Credit Scorecard Modeling
Workflow” to reduce the number of predictor variables before you create the credit scorecard using
the creditscorecard function from Financial Toolbox. In addition, you can use Threshold
Predictors from Risk Management Toolboxto interactively set credit scorecard predictor thresholds
using the output from screenpredictors before you create the credit scorecard using the
creditscorecard.

metric_table = screenpredictors(___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Screen Predictors for a creditscorecard Object

Reduce the number of predictor variables by screening predictors before you create a credit
scorecard.

Use the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).

load CreditCardData.mat

Define 'IDVar' and 'ResponseVar'.

idvar = 'CustID';
responsevar = 'status';

Use screenpredictors to calculate the predictor screening metrics. The function returns a table
containing the metrics values. Each table row corresponds to a predictor from the input table data.

metric_table = screenpredictors(data,'IDVar', idvar,'ResponseVar', responsevar)

metric_table=9×7 table
 InfoValue AccuracyRatio AUROC Entropy Gini Chi2PValue PercentMissing
 _________ _____________ _______ _______ _______ __________ ______________

 CustAge 0.18863 0.17095 0.58547 0.88729 0.42626 0.00074524 0

6 Functions

6-378

 TmWBank 0.15719 0.13612 0.56806 0.89167 0.42864 0.0054591 0
 CustIncome 0.15572 0.17758 0.58879 0.891 0.42731 0.0018428 0
 TmAtAddress 0.094574 0.010421 0.50521 0.90089 0.43377 0.182 0
 UtilRate 0.075086 0.035914 0.51796 0.90405 0.43575 0.45546 0
 AMBalance 0.07159 0.087142 0.54357 0.90446 0.43592 0.48528 0
 EmpStatus 0.048038 0.10886 0.55443 0.90814 0.4381 0.00037823 0
 OtherCC 0.014301 0.044459 0.52223 0.91347 0.44132 0.047616 0
 ResStatus 0.0097738 0.05039 0.5252 0.91422 0.44182 0.27875 0

metric_table = sortrows(metric_table,'AccuracyRatio','descend')

metric_table=9×7 table
 InfoValue AccuracyRatio AUROC Entropy Gini Chi2PValue PercentMissing
 _________ _____________ _______ _______ _______ __________ ______________

 CustIncome 0.15572 0.17758 0.58879 0.891 0.42731 0.0018428 0
 CustAge 0.18863 0.17095 0.58547 0.88729 0.42626 0.00074524 0
 TmWBank 0.15719 0.13612 0.56806 0.89167 0.42864 0.0054591 0
 EmpStatus 0.048038 0.10886 0.55443 0.90814 0.4381 0.00037823 0
 AMBalance 0.07159 0.087142 0.54357 0.90446 0.43592 0.48528 0
 ResStatus 0.0097738 0.05039 0.5252 0.91422 0.44182 0.27875 0
 OtherCC 0.014301 0.044459 0.52223 0.91347 0.44132 0.047616 0
 UtilRate 0.075086 0.035914 0.51796 0.90405 0.43575 0.45546 0
 TmAtAddress 0.094574 0.010421 0.50521 0.90089 0.43377 0.182 0

Based on the AccuracyRatio metric, select the top predictors to use when you create the
creditscorecard object.

varlist = metric_table.Row(metric_table.AccuracyRatio > 0.09)

varlist = 4x1 cell
 {'CustIncome'}
 {'CustAge' }
 {'TmWBank' }
 {'EmpStatus' }

Use creditscorecard to create a createscorecard object based on only the "screened"
predictors.

sc = creditscorecard(data,'IDVar', idvar,'ResponseVar', responsevar, 'PredictorVars', varlist)

sc =
 creditscorecard with properties:

 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ''
 VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'status'}
 NumericPredictors: {'CustAge' 'CustIncome' 'TmWBank'}
 CategoricalPredictors: {'EmpStatus'}
 BinMissingData: 0
 IDVar: 'CustID'
 PredictorVars: {'CustAge' 'EmpStatus' 'CustIncome' 'TmWBank'}
 Data: [1200x11 table]

 screenpredictors

6-379

Input Arguments
data — Data for creditscorecard object
table | tall table | tall timetable

Data for the creditscorecard object, specified as a MATLAB table, tall table, or tall timetable,
where each column of data can be any one of the following data types:

• Numeric
• Logical
• Cell array of character vectors
• Character array
• Categorical
• String

Data Types: table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: metric_table =
screenpredictors(data,'IDVar','CustAge','ResponseVar','status','PredictorVars
',{'CustID','CustIncome'})

IDVar — Name of identifier variable
'' (default) | character vector

Name of identifier variable, specified as the comma-separated pair consisting of 'IDVar' and a case-
sensitive character vector. The 'IDVar' data can be ordinal numbers or Social Security numbers. By
specifying 'IDVar', you can omit the identifier variable from the predictor variables easily.
Data Types: char

ResponseVar — Response variable name for “Good” or “Bad” indicator
last column of the data input (default) | character vector

Response variable name for the “Good” or “Bad” indicator, specified as the comma-separated pair
consisting of 'ResponseVar' and a case-sensitive character vector. The response variable data must
be binary.

If not specified, 'ResponseVar' is set to the last column of the input data by default.
Data Types: char

PredictorVars — Names of predictor variables
set difference between VarNames and {IDVar,ResponseVar} (default) | cell array of character
vectors | string array

Names of predictor variables, specified as the comma-separated pair consisting of
'PredictorVars' and a case-sensitive cell array of character vectors or string array. By default,

6 Functions

6-380

when you create a creditscorecard object, all variables are predictors except for IDVar and
ResponseVar. Any name you specify using 'PredictorVars' must differ from the IDVar and
ResponseVar names.
Data Types: cell | string

WeightsVar — Name of weights variable
'' (default) | character vector

Name of weights variable, specified as the comma-separated pair consisting of 'WeightsVar' and a
case-sensitive character vector to indicate which column name in the data table contains the row
weights.

If you do not specify 'WeightsVar' when you create a creditscorecard object, then the function
uses the unit weights as the observation weights.
Data Types: char

NumBins — Number of (equal frequency) bins for numeric predictors
20 (default) | scalar numeric

Number of (equal frequency) bins for numeric predictors, specified as the comma-separated pair
consisting of 'NumBins' and a scalar numeric.
Data Types: double

FrequencyShift — Indicates small shift in frequency tables that contain zero entries
0.5 (default) | scalar numeric between 0 and 1

Small shift in frequency tables that contain zero entries, specified as the comma-separated pair
consisting of 'FrequencyShift' and a scalar numeric with a value between 0 and 1.

If the frequency table of a predictor contains any "pure" bins (containing all goods or all bads) after
you bin the data using autobinning, then the function adds the 'FrequencyShift' value to all
bins in the table. To avoid any perturbation, set 'FrequencyShift' to 0.
Data Types: double

Output Arguments
metric_table — Calculated values for predictor screening metrics
table

Calculated values for the predictor screening metrics, returned as table. Each table row corresponds
to a predictor from the input table data. The table columns contain calculated values for the following
metrics:

• 'InfoValue' — Information value. This metric measures the strength of a predictor in the fitting
model by determining the deviation between the distributions of "Goods" and "Bads".

• 'AccuracyRatio' — Accuracy ratio.
• 'AUROC' — Area under the ROC curve.
• 'Entropy' — Entropy. This metric measures the level of unpredictability in the bins. You can use

the entropy metric to validate a risk model.
• 'Gini' — Gini. This metric measures the statistical dispersion or inequality within a sample of

data.

 screenpredictors

6-381

• 'Chi2PValue' — Chi-square p-value. This metric is computed from the chi-square metric and is a
measure of the statistical difference and independence between groups.

• 'PercentMissing' — Percentage of missing values in the predictor. This metric is expressed in
decimal form.

Version History
Introduced in R2019a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports input data that is specified as a tall column vector, a tall table, or a tall
timetable. Note that the output for numeric predictors might be slightly different when using a tall
array. Categorical predictors return the same results for tables and tall arrays. For more information,
see tall and “Tall Arrays”.

See Also
creditscorecard | modifybins | modifypredictor | bininfo | Threshold Predictors

Topics
“Feature Screening with screenpredictors” on page 3-64

6 Functions

6-382

simulate
Simulate Du-Escanciano (DE) expected shortfall (ES) test statistics

Syntax
ebtde = simulate(ebtde)
ebtde = simulate(___ ,Name,Value)

Description
ebtde = simulate(ebtde) performs a simulation of the Du-Escanciano (DE) [1] expected shortfall
(ES) test statistics. simulate simulates scenarios and calculates the supported test statistics for
each scenario. The function uses the simulated test statistics to estimate the significance of the ES
backtests when the CriticalValueMethod name-value pair argument for unconditionalDE or
conditionalDE is set to 'simulation'.

ebtde = simulate(___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input argument in the previous syntax.

Examples

Create an esbacktestbyde Object and Run a Simulation

Create an esbacktestbyde object for a t model with 10 degrees of freedom. First, run a
conditionalDE test based on 1000 scenarios and then use the simulate function to run a second
simulation with 5000 scenarios.

load ESBacktestDistributionData.mat
 rng('default'); % For reproducibility
 % Constructor runs simulation with 1000 scenarios
 ebtde = esbacktestbyde(Returns,"t",...
 'DegreesOfFreedom',T10DoF,...
 'Location',T10Location,...
 'Scale',T10Scale,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);
% Run conditionalDE tests
conditionalDE(ebtde,'CriticalValueMethod','simulation')

ans=3×13 table
 PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic CriticalValue AutoCorrelation Observations CriticalValueMethod NumLags Scenarios TestLevel
 ___________ _____________ ________ _____________ ______ _____________ _____________ _______________ ____________ ___________________ _______ _________ _________

 "S&P" "t(10) 95%" 0.95 reject 0.003 15.285 3.2822 0.088175 1966 "simulation" 1 1000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject 0.006 16.177 3.9304 0.090711 1966 "simulation" 1 1000 0.95
 "S&P" "t(10) 99%" 0.99 reject 0.037 6.9975 4.1995 0.05966 1966 "simulation" 1 1000 0.95

The tests report 1000 scenarios, see the Scenarios column.

 simulate

6-383

Run a second simulation with 5000 scenarios

ebtde = simulate(ebtde,'NumScenarios',5000);
conditionalDE(ebtde,'CriticalValueMethod','simulation')

ans=3×13 table
 PortfolioID VaRID VaRLevel ConditionalDE PValue TestStatistic CriticalValue AutoCorrelation Observations CriticalValueMethod NumLags Scenarios TestLevel
 ___________ _____________ ________ _____________ ______ _____________ _____________ _______________ ____________ ___________________ _______ _________ _________

 "S&P" "t(10) 95%" 0.95 reject 0.0016 15.285 3.2535 0.088175 1966 "simulation" 1 5000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject 0.0046 16.177 3.7668 0.090711 1966 "simulation" 1 5000 0.95
 "S&P" "t(10) 99%" 0.99 reject 0.0362 6.9975 3.8144 0.05966 1966 "simulation" 1 5000 0.95

The tests show 5000 scenarios and updated p-values and critical values.

Input Arguments
ebtde — esbacktestbyde object
object

esbacktestbyde object, which contains a copy of the data (the PortfolioData, VarData,
ESData, and Distribution properties) and all combinations of portfolio ID, VaR ID, and VaR levels
to be tested. For more information on creating an esbacktestbyde object, see esbacktestbyde.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ebtde =
simulate(ebtde,'NumLags',10,'NumScenarios',1000000,'BlockSize',10000,'TestLis
t','conditionalDE')

NumLags — Number of lags in the conditionalDE test statistic
5 (default) | positive integer

Number of lags in the conditionalDE test statistic, specified as the comma-separated pair
consisting of 'NumLags' and a positive integer. The simulated test statistics are stored for all lags
from 1 to NumLags, so that the conditionalDE test results are available for any number of lags
between 1 and NumLags after running the simulate function.
Data Types: double

NumScenarios — Number of scenarios to simulate
1000 (default) | scalar positive integer

Number of scenarios to simulate, specified using the comma-separated pair consisting of
'NumScenarios' and a scalar positive integer.
Data Types: double

6 Functions

6-384

BlockSize — Number of scenarios to simulate in single simulation block
1000 (default) | scalar positive integer

Number of scenarios to simulate in a single simulation block, specified using the comma-separated
pair consisting of 'BlockSize' and a scalar positive integer.
Data Types: double

TestList — Indicator for which test statistics to simulate
["conditionalDE","unconditionalDE"] (default) | character vector with a value of
'conditionalDE' or 'unconditionalDE' | string with a value of "conditionalDE" or
"unconditionalDE"

Indicator for which test statistics to simulate, specified as the comma-separated pair consisting of
'TestList' and a cell array of character vectors or a string array with the value
'conditionalDE', 'unconditionalDE'.
Data Types: cell | string

Output Arguments
ebtde — Updated esbacktestbyde object
object

ebtde is returned as an updated esbacktestbyde object. After you run simulate, the updated
esbacktestbyde object stores the simulated test statistics, which unconditionalDE uses to
calculate p-values and generate test results.

For more information on the esbacktestbyde object, see esbacktestbyde.

More About
Simulation of Test Statistics

The simulation of test statistics requires simulating scenarios of returns, assuming the distribution of
returns Xt ~ Pt is correct (null hypothesis), and computing the corresponding tests statistics for each
scenario.

More specifically, the following steps describe the simulation process. The description uses the
conditional test statistic CES for concreteness, but the same steps apply to the unconditional test
statistic UES.

1 Simulate M scenarios of returns as

Xs = (X1
s, ..., XN

s), s = 1, ..., M .
2 Compute the corresponding test statistic as

CES
s = CES(X1

s, ..., XN
s), s = 1, ..., M .

3 Define PC as the empirical distribution of the simulated test statistic values as

PC = P CES ≤ x = 1
M I(CES

s ≤ x),

where I(.) is the indicator function.

 simulate

6-385

To compute the test statistic in step 2, the ranks or mapped returns Ut = Pt(Xt) need to be computed
(see the definition of the test statistics for unconditionalDE and conditionalDE). Assuming that
the model distribution is correct, the ranks Ut are always uniformly distributed in the unit interval.
Therefore, in practice, directly simulating ranks is more efficient than simulating returns and then
transforming the returns into ranks.

The simulate function implements the simulation process more efficiently as follows:

1 Simulated M scenarios of returns as

Us = (U1
s, ..., UN

s), s = 1, ..., M,

with Ut
s Uniform(0, 1) .

2 Compute the corresponding test statistic CES using the simulated ranks Us as

CES
s = CES(U1

s, ..., UN
s), s = 1, ..., M .

3 Define PC as the empirical distribution of the simulated test statistic values as

PC = P CES ≤ x = 1
M I(CES

s ≤ x) .

After you determine the empirical distribution of the test statistic PC in step 3, the significance of the
test follows the descriptions provided for unconditionalDE and conditionalDE. The same steps
apply to the unconditional test statistic UES and its distribution function PU.

Version History
Introduced in R2019b

References
[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk."

Management Science. Vol. 63, Issue 4, April 2017.

[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk".
January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also
esbacktestbyde | summary | runtests | unconditionalDE | conditionalDE |
esbacktestbysim

Topics
“Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano” on page 2-63
“Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and
Escanciano” on page 2-72
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“ES Backtest Using Du-Escanciano Method” on page 2-24
“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-386

https://www.bis.org/bcbs/publ/d352.pdf

simulate
Simulate expected shortfall (ES) test statistics

Syntax
ebts = simulate(ebts)
ebts = simulate(ebts,Name,Value)

Description
ebts = simulate(ebts) performs a simulation of ES test statistics. The simulate function
simulates portfolio outcomes according to the distribution assumptions indicated in the
esbacktestbysim object, and calculates all the supported test statistics under each scenario. The
simulated test statistics are used to estimate the significance of the ES backtests.

ebts = simulate(ebts,Name,Value) adds optional name-value pair arguments.

Examples

Simulate ES Test Statistics

Create an esbacktestbysim object and run a simulation of 1000 scenarios.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
 'DegreesOfFreedom',10,...
 'Location',Mu,...
 'Scale',Sigma,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);

The unconditional and minBiasAbsolute tests report 1000 scenarios (see the Scenarios
column in the report).

unconditional(ebts)

ans=3×10 table
 PortfolioID VaRID VaRLevel Unconditional PValue TestStatistic CriticalValue Observations Scenarios TestLevel
 ___________ _____________ ________ _____________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 accept 0.093 -0.13342 -0.16252 1966 1000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject 0.031 -0.25011 -0.2268 1966 1000 0.95
 "S&P" "t(10) 99%" 0.99 reject 0.008 -0.57396 -0.38264 1966 1000 0.95

minBiasAbsolute(ebts)

ans=3×10 table
 PortfolioID VaRID VaRLevel MinBiasAbsolute PValue TestStatistic CriticalValue Observations Scenarios TestLevel

 simulate

6-387

 ___________ _____________ ________ _______________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 accept 0.062 -0.0014247 -0.0015578 1966 1000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject 0.029 -0.0026674 -0.0023251 1966 1000 0.95
 "S&P" "t(10) 99%" 0.99 reject 0.005 -0.0060982 -0.0039004 1966 1000 0.95

Run a second simulation with 5000 scenarios using the simulate function. Rerun the
unconditional and minBiasAbsolute tests using the updated esbacktestbysim object. Notice
that the tests now show 5,000 scenarios along with updated p-values and critical values.

ebts = simulate(ebts,'BlockSize',10000,'NumScenarios',5000,'TestList',["conditional","unconditional","quantile","minBiasAbsolute","minBiasRelative"]);
unconditional(ebts)

ans=3×10 table
 PortfolioID VaRID VaRLevel Unconditional PValue TestStatistic CriticalValue Observations Scenarios TestLevel
 ___________ _____________ ________ _____________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 accept 0.0952 -0.13342 -0.17352 1966 5000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject 0.0456 -0.25011 -0.24318 1966 5000 0.95
 "S&P" "t(10) 99%" 0.99 reject 0.009 -0.57396 -0.38608 1966 5000 0.95

minBiasAbsolute(ebts,"TestLevel",0.99)

ans=3×10 table
 PortfolioID VaRID VaRLevel MinBiasAbsolute PValue TestStatistic CriticalValue Observations Scenarios TestLevel
 ___________ _____________ ________ _______________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 accept 0.0622 -0.0014247 -0.0021797 1966 5000 0.99
 "S&P" "t(10) 97.5%" 0.975 accept 0.026 -0.0026674 -0.0032702 1966 5000 0.99
 "S&P" "t(10) 99%" 0.99 reject 0.006 -0.0060982 -0.0054814 1966 5000 0.99

Input Arguments
ebts — esbacktestbysim object
object

esbacktestbysim (ebts) object, which contains a copy of the given data (the PortfolioData,
VarData, ESData, and Distribution properties) and all combinations of portfolio ID, VaR ID, and
VaR levels to be tested. For more information on creating an esbacktestbysim object, see
esbacktestbysim.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ebts =
simulate(ebts,'NumScenarios',1000000,'BlockSize',10000,'TestList','conditiona
l')

6 Functions

6-388

NumScenarios — Number of scenarios to simulate
1000 (default) | positive integer

Number of scenarios to simulate, specified using the comma-separated pair consisting of
'NumScenarios' and a positive integer.
Data Types: double

BlockSize — Number of scenarios to simulate in single simulation block
1000 (default) | positive integer

Number of scenarios to simulate in a single simulation block, specified using the comma-separated
pair consisting of 'BlockSize' and a positive integer.
Data Types: double

TestList — Indicator for which test statistics to simulate
["conditional","unconditional","quantile","minBiasAbsolute","minBiasRelative"
] (default) | character vector with value of 'conditional', 'unconditional', 'quantile',
'minBiasAbsolute', or 'minBiasRelative' | string with value of "conditional",
"unconditional", "quantile", "minBiasAbsolute", or "minBiasRelative"

Indicator for which test statistics to simulate, specified as the comma-separated pair consisting of
'TestList' and a cell array of character vectors or a string array with the value conditional,
unconditional, quantile, minBiasAbsolute or minBiasRelative.
Data Types: char | cell | string

Output Arguments
ebts — Updated esbacktestbysim object
object

esbacktestbysim (ebts), returned as an updated object. After running simulate, the updated
esbacktestbysim object stores the simulated test statistics, which are used to calculate p-values
and generate test results.

For more information on an esbacktestbysim object, see esbacktestbysim.

More About
Simulation of Test Statistics and Significance of the Tests

The VaR and ES models assume that for each period t, the portfolio outcomes Xt have a cumulative
probability distribution Pt.

Under the assumption that the distributions Pt are correct (the null hypothesis), test statistics are
simulated by:

• Simulating M scenarios of N observations each, for example, Xs = (X1
s, ..., Xt

s, ..., XN
s), with Xt

s Pt, t
= 1,…,N, and s = 1,…,M.

• For each simulated scenario Xs, compute the test statistic of interest Zs = Z(Xs), s = 1,…,M.
• The resulting M simulated test statistic values Z1,…,ZM from a distribution of the test statistic

assuming the probability distributions Pt are correct.

 simulate

6-389

The p-value is defined as the proportion of scenarios for which the simulated test statistic is smaller
than the test statistic evaluated at the observed portfolio outcomes: Zobs = Z(X1, ...XN):

Pvalue = 1
M ∑

s = 1

M
I(Zs ≤ Zobs)

where I(Zs ≤ Zobs) is an indicator function with a value of 1 if Zs ≤ Zobs, and 0 otherwise. If Ptest is 1
minus the test confidence level, the test result is to 'reject' if Pvalue < Ptest.

The critical value is defined as the minimum simulated test statistic Zcritwith a p-value greater than or
equal to Ptest.

Version History
Introduced in R2017b

References
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

See Also
summary | runtests | conditional | unconditional | quantile | minBiasRelative |
minBiasAbsolute | esbacktestbysim | esbacktestbyde

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-390

summary
Report on varbacktest data

Syntax
S = summary(vbt)

Description
S = summary(vbt) returns a basic report on the given varbacktest data, including the number of
observations, the number of failures, the observed confidence level, and so on (see S for details).

Examples

Generate a Summary Report

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9500

Generate the summary report.

S = summary(vbt)

S=1×10 table
 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected Ratio FirstFailure Missing
 ___________ _____ ________ _____________ ____________ ________ ________ _____ ____________ _______

 "Portfolio" "VaR" 0.95 0.94535 1043 57 52.15 1.093 58 0

Run a Summary Report for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a varbacktest object
and generate a summary report.

load VaRBacktestData
 vbt = varbacktest(EquityIndex,...

 summary

6-391

 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
 'PortfolioID','Equity',...
 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);
S = summary(vbt)

S=6×10 table
 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected Ratio FirstFailure Missing
 ___________ ______________ ________ _____________ ____________ ________ ________ ______ ____________ _______

 "Equity" "Normal95" 0.95 0.94535 1043 57 52.15 1.093 58 0
 "Equity" "Normal99" 0.99 0.9837 1043 17 10.43 1.6299 173 0
 "Equity" "Historical95" 0.95 0.94343 1043 59 52.15 1.1314 55 0
 "Equity" "Historical99" 0.99 0.98849 1043 12 10.43 1.1505 173 0
 "Equity" "EWMA95" 0.95 0.94343 1043 59 52.15 1.1314 28 0
 "Equity" "EWMA99" 0.99 0.97891 1043 22 10.43 2.1093 143 0

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData
properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more
information on creating a varbacktest object, see varbacktest.

Output Arguments
S — Summary report
table

Summary report, returned as a table. The table rows correspond to all combinations of portfolio ID,
VaR ID, and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'ObservedLevel' — Observed confidence level, defined as number of periods without failures

divided by number of observations
• 'Observations' — Number of observations, where missing values are removed from the data
• 'Failures' — Number of failures, where a failure occurs whenever the loss (negative of

portfolio data) exceeds the VaR
• 'Expected' — Expected number of failures, defined as the number of observations multiplied by

one minus the VaR level
• 'Ratio' — Ratio of the number of failures to expected number of failures
• 'FirstFailure' — Number of periods until first failure
• 'Missing' — Number of periods with missing values removed from the sample

6 Functions

6-392

Version History
Introduced in R2016b

See Also
varbacktest | tl | pof | tuff | cc | cci | tbf | tbfi | runtests

Topics
“VaR Backtesting Workflow” on page 2-6
“Value-at-Risk Estimation and Backtesting” on page 2-10
“Overview of VaR Backtesting” on page 2-2
“Comparison of ES Backtesting Methods” on page 2-26

 summary

6-393

summary
Display summary report for Bornhuetter-Ferguson analysis

Syntax
unpaidClaimsEstimateTable = summary(bf)

Description
unpaidClaimsEstimateTable = summary(bf) displays a summary report of different claims
estimates using the Bornhuetter-Ferguson technique. The report displays the latest diagonal of both
reported and paid development triangles, projected ultimate claims, cases outstanding, IBNR claims,
and total unpaid claims estimates.

Examples

Generate Summary Report for bornhuetterFerguson Object

Generate a summary report for a bornhuetterFerguson object containing simulated insurance
claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1

6 Functions

6-394

 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create an expectedClaims object where the first input argument is the reported development
triangle and the second input argument is the paid development triangle.

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)

ec =
 expectedClaims with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 InitialClaims: [10x1 double]
 CaseOutstanding: [10x1 double]
 EstimatedClaimsRatios: [10x1 double]
 SelectedClaimsRatios: [10x1 double]

Create a bornhuetterFerguson object with reported claims, paid claims, and expected claims to
calculate ultimate claims, cases outstanding, IBNR claims, and unpaid claims estimates.

bf = bornhuetterFerguson(dT_reported, dT_paid, ec.ultimateClaims)

bf =
 bornhuetterFerguson with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 ExpectedClaims: [10x1 double]
 PercentUnreported: [10x1 double]
 PercentUnpaid: [10x1 double]
 CaseOutstanding: [10x1 double]

Use summary to display the latest diagonal of both reported and paid development triangles,
projected ultimate claims, cases outstanding, IBNR claims, and total unpaid claims estimates for a
bornhuetterFerguson object.

unpaidClaimsEstimateTable = summary(bf)

 summary

6-395

unpaidClaimsEstimateTable=11×9 table
 Reported Claims Paid Claims Projected Ultimate Reported Claims Projected Ultimate Paid Claims Case Outstanding IBNR with Reported Claims IBNR with Paid Claims Total with Reported Claims Total with Paid Claims
 _______________ ___________ __________________________________ ______________________________ ________________ _________________________ _____________________ __________________________ ______________________

 2010 5089.4 4892.6 5089.4 4892.6 196.79 0 -196.79 196.79 0
 2011 5179.9 5134.4 5185.1 5139.6 45.46 5.1629 -40.311 50.623 5.149
 2012 5625.4 5512.3 5642.1 5529 113.15 16.72 -96.432 129.87 16.718
 2013 5803.7 5728.9 5838.4 5775 74.83 34.696 -28.65 109.53 46.18
 2014 5878.7 5759.1 5935.8 5862.5 119.58 57.155 -16.162 176.74 103.42
 2015 5772.8 5763.6 5861.7 5979.3 9.2 88.864 206.43 98.064 215.63
 2016 5714.3 5472.4 5863.9 5913.9 241.88 149.62 199.61 391.5 441.49
 2017 5854.4 5171.2 6155 6105.6 683.23 300.57 251.12 983.8 934.35
 2018 5495.1 4386.1 6106.9 6161.4 1109 611.8 666.3 1720.8 1775.3
 2019 4945.9 2764.8 6496.8 6660.6 2181.1 1550.9 1714.7 3732 3895.8
 Total 55360 50585 58175 58019 4774.2 2815.4 2659.8 7589.7 7434

Input Arguments
bf — Bornhuetter-Ferguson
bornhuetterFerguson object

Bornhuetter-Ferguson object, specified as a previously created bornhuetterFerguson object.
Data Types: object

Output Arguments
unpaidClaimsEstimateTable — Report of claims estimates obtained using the
Bornhuetter-Ferguson technique
table

Report of claims estimates obtained using the Bornhuetter-Ferguson technique, returned as a table.

Version History
Introduced in R2020b

See Also
ultimateClaims | ibnr | unpaidClaims

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

6 Functions

6-396

summary
Display summary report for Cape Cod analysis

Syntax
unpaidClaimsEstimateTable = summary(cc)

Description
unpaidClaimsEstimateTable = summary(cc) displays a summary report of different claims
estimates using the Cape Cod technique. The report displays the latest diagonal of both reported and
paid development triangles, projected ultimate claims, cases outstanding, IBNR claims, and total
unpaid claims estimates.

Examples

Generate Summary Report for capeCod Object

This example shows how to generate a summary report for a capeCod object for simulated insurance
claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1

 summary

6-397

 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create a capeCod object where the first input argument is the reported development triangle, the
second input argument is the paid development triangle, and the third input is the earned premium.

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
cc = capeCod(dT_reported, dT_paid,earnedPremium)

cc =
 capeCod with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 UsedUpPremium: [10x1 double]
 EstimatedClaimRatios: [10x1 double]
 ExpectedClaimRatio: 0.4258
 EstimatedExpectedClaims: [10x1 double]
 PercentUnreported: [10x1 double]
 CaseOutstanding: [10x1 double]

Use summary to generate a summary report for the different claims estimates.

unpaidClaimsEstimateTable = summary(cc)

unpaidClaimsEstimateTable=11×6 table
 Reported Claims Paid Claims Ultimate Claims Case Outstanding IBNR Total Unpaid Claim Estimate
 _______________ ___________ _______________ ________________ ______ ___________________________

 2010 5089.4 4892.6 5089.4 196.79 0 196.79
 2011 5179.9 5134.4 5187.6 45.46 7.665 53.125
 2012 5625.4 5512.3 5638.2 113.15 12.745 125.9
 2013 5803.7 5728.9 5852 74.83 48.338 123.17
 2014 5878.7 5759.1 5944.7 119.58 66.006 185.59
 2015 5772.8 5763.6 5836.7 9.2 63.901 73.101
 2016 5714.3 5472.4 5833.2 241.88 118.98 360.86
 2017 5854.4 5171.2 6063.2 683.23 208.81 892.04
 2018 5495.1 4386.1 6089.3 1109 594.21 1703.2
 2019 4945.9 2764.8 5945.9 2181.1 999.98 3181.1
 Total 55360 50585 57480 4774.2 2120.6 6894.9

6 Functions

6-398

Input Arguments
cc — Cape Cod object
capeCod object

Cape Cod object, specified as a previously created capeCod object.
Data Types: object

Output Arguments
unpaidClaimsEstimateTable — Report of claims estimates obtained using the Cape Cod
technique
table

Report of claims estimates obtained using the Cape Cod technique, returned as a table.

Version History
Introduced in R2021a

See Also
ibnr | unpaidClaims | ultimateClaims

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 summary

6-399

summary
Display summary report for different claims estimates

Syntax
unpaidClaimsEstimateTable = summary(cl)

Description
unpaidClaimsEstimateTable = summary(cl) displays the latest diagonal of both reported and
paid development triangles, projected ultimate claims, case outstanding, IBNR claims, and the total
unpaid claims estimates.

Examples

Generate Summary Report for Different Claims Estimates Using chainLadder

Generate the summary report for a chainLadder object containing simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

6 Functions

6-400

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create a chainLadder object where the first input argument is the reported development triangle
and the second input argument is the paid development triangle.

cl = chainLadder(dT_reported, dT_paid)

cl =
 chainLadder with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 CaseOutstanding: [10x1 double]

Use ibnr to compute the incurred-but-not-reported (IBNR).

ibnrClaims = ibnr(cl,'reported')

ibnrClaims = 10×1
103 ×

 0
 0.0052
 0.0169
 0.0349
 0.0575
 0.0880
 0.1489
 0.3019
 0.6084
 1.5181

Use unpaidClaims to compute the unpaid claims.

unpaidClaimsEstimate = unpaidClaims(cl,'reported')

unpaidClaimsEstimate = 10×1
103 ×

 0.1968
 0.0506
 0.1300
 0.1097
 0.1771

 summary

6-401

 0.0972
 0.3908
 0.9851
 1.7175
 3.6992

Use summary to display the latest diagonal of both reported and paid development triangles,
projected ultimate claims, cases outstanding, IBNR claims, and total unpaid claims estimates.

unpaidClaimsEstimateTable = summary(cl)

unpaidClaimsEstimateTable=11×9 table
 Reported Claims Paid Claims Projected Ultimate Reported Claims Projected Ultimate Paid Claims Case Outstanding IBNR with Reported Claims IBNR with Paid Claims Total with Reported Claims Total with Paid Claims
 _______________ ___________ __________________________________ ______________________________ ________________ _________________________ _____________________ __________________________ ______________________

 2010 5089.4 4892.6 5089.4 4892.6 196.79 0 -196.79 196.79 0
 2011 5179.9 5134.4 5185.1 5139.6 45.46 5.1857 -40.334 50.646 5.1263
 2012 5625.4 5512.3 5642.3 5528.8 113.15 16.89 -96.602 130.04 16.548
 2013 5803.7 5728.9 5838.6 5774.8 74.83 34.887 -28.904 109.72 45.926
 2014 5878.7 5759.1 5936.2 5861.9 119.58 57.515 -16.814 177.1 102.77
 2015 5772.8 5763.6 5860.8 5981.4 9.2 87.959 208.63 97.159 217.83
 2016 5714.3 5472.4 5863.2 5915.8 241.88 148.95 201.58 390.83 443.46
 2017 5854.4 5171.2 6156.4 6101.4 683.23 301.91 246.93 985.14 930.16
 2018 5495.1 4386.1 6103.5 6171.2 1109 608.43 676.08 1717.5 1785.1
 2019 4945.9 2764.8 6464 6742.8 2181.1 1518.1 1796.9 3699.2 3978
 Total 55360 50585 58139 58110 4774.2 2779.9 2750.7 7554.1 7524.9

Input Arguments
cl — Chain ladder
chainLadder object

Chain ladder, specified as a previously created chainLadder object.
Data Types: object

Output Arguments
unpaidClaimsEstimateTable — Different claims estimates using chain ladder technique
table

Different claims estimates obtained using the chain ladder technique, returned as a table.

Version History
Introduced in R2020b

See Also
ibnr | unpaidClaims

6 Functions

6-402

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 summary

6-403

summary
Basic expected shortfall (ES) report on failures and severity

Syntax
S = summary(ebt)

Description
S = summary(ebt) returns a basic report on the given esbacktest data, including the number of
observations, number of failures, observed confidence level, and so on (see S for details).

Examples

Generate an ES Summary Report

Create an esbacktest object.

load ESBacktestData
ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel',VaRLevel)

ebt =
 esbacktest with properties:

 PortfolioData: [1966x1 double]
 VaRData: [1966x1 double]
 ESData: [1966x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9750

Generate the ES summary report.

S = summary(ebt)

S=1×11 table
 PortfolioID VaRID VaRLevel ObservedLevel ExpectedSeverity ObservedSeverity Observations Failures Expected Ratio Missing
 ___________ _____ ________ _____________ ________________ ________________ ____________ ________ ________ ______ _______

 "Portfolio" "VaR" 0.975 0.97101 1.1928 1.4221 1966 57 49.15 1.1597 0

Input Arguments
ebt — esbacktest object
object

6 Functions

6-404

esbacktest (ebt) object, contains a copy of the given data (the PortfolioData, VarData, and
ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more
information on creating an esbacktest object, see esbacktest.

Output Arguments
S — Summary report
table

Summary report, returned as a table. The table rows correspond to all combinations of portfolio ID,
VaR ID, and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'ObservedLevel' — Observed confidence level, defined as the number of periods without

failures divided by number of observations
• 'ExpectedSeverity' — Expected average severity ratio, that is, the average ratio of ES to VaR

over the periods with VaR failures
• 'ObservedSeverity' — Observed average severity ratio, that is, the average ratio of loss to VaR

over the periods with VaR failures
• 'Observations' — Number of observations, where missing values are removed from the data
• 'Failures' — Number of failures, where a failure occurs whenever the loss (negative of

portfolio data) exceeds the VaR
• 'Expected' — Expected number of failures, defined as the number of observations multiplied by

1 minus the VaR level
• 'Ratio' — Ratio of number of failures to expected number of failures
• 'Missing' — Number of periods with missing values removed from the sample

Note The 'ExpectedSeverity' and 'ObservedSeverity' ratios are undefined (NaN) when
there are no VaR failures in the data.

Version History
Introduced in R2017b

See Also
esbacktest | runtests | unconditionalNormal | unconditionalT

Topics
“Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information” on page 2-30
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“Comparison of ES Backtesting Methods” on page 2-26

 summary

6-405

summary
Basic expected shortfall (ES) report on failures and severity

Syntax
S = summary(ebts)

Description
S = summary(ebts) returns a basic report on the given esbacktestbysim data, including the
number of observations, number of failures, observed confidence level, and so on (see S for details).

Examples

Generate an ES Summary Report

Create an esbacktestbysim object.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
 'DegreesOfFreedom',10,...
 'Location',Mu,...
 'Scale',Sigma,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);

Generate the ES summary report.

S = summary(ebts)

S=3×11 table
 PortfolioID VaRID VaRLevel ObservedLevel ExpectedSeverity ObservedSeverity Observations Failures Expected Ratio Missing
 ___________ _____________ ________ _____________ ________________ ________________ ____________ ________ ________ ______ _______

 "S&P" "t(10) 95%" 0.95 0.94812 1.3288 1.4515 1966 102 98.3 1.0376 0
 "S&P" "t(10) 97.5%" 0.975 0.97202 1.2652 1.4134 1966 55 49.15 1.119 0
 "S&P" "t(10) 99%" 0.99 0.98627 1.2169 1.3947 1966 27 19.66 1.3733 0

Input Arguments
ebts — esbacktestbysim object
object

esbacktestbysim (ebts) object, which contains a copy of the given data (the PortfolioData,
VarData, ESData, and Distribution properties) and all combinations of portfolio ID, VaR ID, and
VaR levels to be tested. For more information on creating an esbacktestbysim object, see
esbacktestbysim.

6 Functions

6-406

Output Arguments
S — Summary report
table

Summary report, returned as a table. The table rows correspond to all combinations of portfolio ID,
VaR ID, and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'ObservedLevel' — Observed confidence level, defined as the number of periods without

failures divided by number of observations
• 'ExpectedSeverity' — Expected average severity ratio, that is, the average ratio of ES to VaR

over the periods with VaR failures
• 'ObservedSeverity' — Observed average severity ratio, that is, the average ratio of loss to VaR

over the periods with VaR failures
• 'Observations' — Number of observations, where missing values are removed from the data
• 'Failures' — Number of failures, where a failure occurs whenever the loss (negative of

portfolio data) exceeds the VaR
• 'Expected' — Expected number of failures, defined as the number of observations multiplied by

1 minus the VaR level
• 'Ratio' — Ratio of number of failures to expected number of failures
• 'Missing' — Number of periods with missing values removed from the sample

Note The 'ExpectedSeverity' and 'ObservedSeverity' ratios are undefined (NaN) when
there are no VaR failures in the data.

Version History
Introduced in R2017b

See Also
runtests | conditional | unconditional | quantile | simulate | minBiasRelative |
minBiasAbsolute | esbacktestbysim | esbacktestbyde

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“Comparison of ES Backtesting Methods” on page 2-26

 summary

6-407

summary
Basic expected shortfall (ES) report on failures and severity

Syntax
S = summary(ebtde)

Description
S = summary(ebtde) returns a basic report on the given esbacktestbyde data. The report
includes the number of observations, number of failures, observed confidence level, and so on. See S
for details.

Unlike other ES backtesting classes, the esbacktestbyde object does not require VaR data or ES
data inputs. esbacktestbyde internally computes VaR and ES data based on distribution
information to determine the severity information reported by the summary function.

Examples

Create an esbacktestbyde Object and Run ES Backtest Summary Report

Create an esbacktestbyde object for a t model with 10 degrees of freedom, and then run a basic
ES backtest summary report.

load ESBacktestDistributionData.mat
 rng('default'); % For reproducibility
 ebtde = esbacktestbyde(Returns,"t",...
 'DegreesOfFreedom',T10DoF,...
 'Location',T10Location,...
 'Scale',T10Scale,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);
 summary(ebtde)

ans=3×11 table
 PortfolioID VaRID VaRLevel ObservedLevel ExpectedSeverity ObservedSeverity Observations Failures Expected Ratio Missing
 ___________ _____________ ________ _____________ ________________ ________________ ____________ ________ ________ ______ _______

 "S&P" "t(10) 95%" 0.95 0.94812 1.3288 1.4515 1966 102 98.3 1.0376 0
 "S&P" "t(10) 97.5%" 0.975 0.97202 1.2652 1.4134 1966 55 49.15 1.119 0
 "S&P" "t(10) 99%" 0.99 0.98627 1.2169 1.3947 1966 27 19.66 1.3733 0

Input Arguments
ebtde — esbacktestbyde object
object

6 Functions

6-408

esbacktestbyde object contains a copy of the data (the PortfolioData, VaRData, and ESData
properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested.

Note Unlike other ES backtesting classes, esbacktestbyde does not require VaR data or ES data
inputs. esbacktestbyde internally computes VaR and ES data based on distribution information to
determine the severity information reported by summary. For more information on creating an
esbacktestbyde object, see esbacktestbyde.

Output Arguments
S — Summary report
table

Summary report, returned as a table. The table rows correspond to all combinations of portfolio ID,
VaR ID, and VaR levels to be tested. The columns correspond to the following:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR levels
• 'VaRLevel' — VaR level
• 'ObservedLevel' — Observed confidence level, defined as the number of periods without

failures divided by number of observations
• 'ExpectedSeverity' — Expected average severity ratio, that is, the average ratio of ES to VaR

over the periods with VaR failures
• 'ObservedSeverity' — Observed average severity ratio, that is, the average ratio of loss to VaR

over the periods with VaR failures
• 'Observations' — Number of observations, where missing values are removed from the data
• 'Failures' — Number of failures, where a failure occurs whenever the loss (negative of

portfolio data) exceeds the VaR
• 'Expected' — Expected number of failures, defined as the number of observations multiplied by

1 minus the VaR level
• 'Ratio' — Ratio of number of failures to expected number of failures
• 'Missing' — Number of periods with missing values removed from the sample

Note The 'ExpectedSeverity' and 'ObservedSeverity' ratios are undefined (NaN) when
there are no VaR failures in the data.

Version History
Introduced in R2019b

References
[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk."

Management Science. Vol. 63, Issue 4, April 2017.

[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk".
January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

 summary

6-409

https://www.bis.org/bcbs/publ/d352.pdf

See Also
esbacktestbyde | runtests | unconditionalDE | conditionalDE | simulate |
esbacktestbysim

Topics
“Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano” on page 2-63
“Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and
Escanciano” on page 2-72
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“ES Backtest Using Du-Escanciano Method” on page 2-24
“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-410

summary
Display summary report for different claims estimates

Syntax
unpaidClaimsEstimateTable = summary(ec)

Description
unpaidClaimsEstimateTable = summary(ec) displays the summary report for the latest
diagonal of both reported and paid development triangles, projected ultimate claims, cases
outstanding, IBNR claims, and total unpaid claims estimates.

Examples

Generate Summary Report for expectedClaims Object

Generate the summary report for different claims estimates for an expectedClaims object
containing simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]

 summary

6-411

 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create an expectedClaims object where the first input argument is the reported development
triangle and the second input argument is the paid development triangle.

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)

ec =
 expectedClaims with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 InitialClaims: [10x1 double]
 CaseOutstanding: [10x1 double]
 EstimatedClaimsRatios: [10x1 double]
 SelectedClaimsRatios: [10x1 double]

Use summary to display the report for the latest diagonal of both reported and paid development
triangles, projected ultimate claims, cases outstanding, IBNR claims, and total unpaid claims
estimates.

unpaidClaimsEstimateTable = summary(ec)

unpaidClaimsEstimateTable=11×6 table
 Reported Claims Paid Claims Ultimate Claims Case Outstanding IBNR Total Unpaid Claim Estimate
 _______________ ___________ _______________ ________________ _______ ___________________________

 2010 5089.4 4892.6 4991 196.79 -98.395 98.395
 2011 5179.9 5134.4 5162.3 45.46 -17.574 27.886
 2012 5625.4 5512.3 5585.6 113.15 -39.856 73.294
 2013 5803.7 5728.9 5806.7 74.83 2.9912 77.821
 2014 5878.7 5759.1 5899 119.58 20.351 139.93
 2015 5772.8 5763.6 5921.1 9.2 148.29 157.49
 2016 5714.3 5472.4 5889.5 241.88 175.26 417.14
 2017 5854.4 5171.2 6128.9 683.23 274.42 957.65
 2018 5495.1 4386.1 6137.4 1109 642.25 1751.3
 2019 4945.9 2764.8 6603.4 2181.1 1657.5 3838.6
 Total 55360 50585 58125 4774.2 2765.3 7539.5

6 Functions

6-412

Input Arguments
ec — Expected claims
expectedClaims object

Expected claims, specified as a previously created expectedClaims object.
Data Types: object

Output Arguments
unpaidClaimsEstimateTable — Displays different claims estimates using the expected
claims technique
table

Displays different claims estimates using the expected claims technique, returned as a table.

Version History
Introduced in R2020b

See Also
ultimateClaims | ibnr | unpaidClaims

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 summary

6-413

tbf
Time between failures mixed test for value-at-risk (VaR) backtesting

Syntax
TestResults = tbf(vbt)
TestResults = tbf(vbt,Name,Value)

Description
TestResults = tbf(vbt) generates the time between failures mixed test (TBF) for value-at-risk
(VaR) backtesting.

TestResults = tbf(vbt,Name,Value) adds an optional name-value pair argument for
TestLevel.

Examples

Generate TBF Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9500

Generate the tbf test results.

TestResults = tbf(vbt)

TestResults=1×20 table
 PortfolioID VaRID VaRLevel TBF LRatioTBF PValueTBF POF LRatioPOF PValuePOF TBFI LRatioTBFI PValueTBFI Observations Failures TBFMin TBFQ1 TBFQ2 TBFQ3 TBFMax TestLevel
 ___________ _____ ________ ______ _________ _________ ______ _________ _________ ______ __________ __________ ____________ ________ ______ _____ _____ _____ ______ _________

 "Portfolio" "VaR" 0.95 reject 88.952 0.0055565 accept 0.46147 0.49694 reject 88.491 0.0047475 1043 57 1 3 9 25.25 85 0.95

Run the TBF Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.

6 Functions

6-414

load VaRBacktestData
 vbt = varbacktest(EquityIndex,...
 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
 'PortfolioID','Equity',...
 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x6 double]
 PortfolioID: "Equity"
 VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95" "EWMA99"]
 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tbf test results using the TestLevel optional input.

TestResults = tbf(vbt,'TestLevel',0.90)

TestResults=6×20 table
 PortfolioID VaRID VaRLevel TBF LRatioTBF PValueTBF POF LRatioPOF PValuePOF TBFI LRatioTBFI PValueTBFI Observations Failures TBFMin TBFQ1 TBFQ2 TBFQ3 TBFMax TestLevel
 ___________ ______________ ________ ______ _________ _________ ______ _________ _________ ______ __________ __________ ____________ ________ ______ _____ _____ _____ ______ _________

 "Equity" "Normal95" 0.95 reject 88.952 0.0055565 accept 0.46147 0.49694 reject 88.491 0.0047475 1043 57 1 3 9 25.25 85 0.9
 "Equity" "Normal99" 0.99 reject 26.441 0.090095 reject 3.5118 0.060933 accept 22.929 0.15157 1043 17 3 21.25 48 78.25 215 0.9
 "Equity" "Historical95" 0.95 reject 83.63 0.023609 accept 0.91023 0.34005 reject 82.719 0.022513 1043 59 1 3 13 25 85 0.9
 "Equity" "Historical99" 0.99 accept 16.456 0.22539 accept 0.22768 0.63325 accept 16.228 0.18101 1043 12 3 19.5 45 152.5 200 0.9
 "Equity" "EWMA95" 0.95 accept 72.545 0.12844 accept 0.91023 0.34005 accept 71.635 0.12517 1043 59 1 4 13 25.75 82 0.9
 "Equity" "EWMA99" 0.99 reject 41.66 0.0099428 reject 9.8298 0.0017171 reject 31.83 0.080339 1043 22 2 16 40 56 143 0.9

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData
properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more
information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = tbf(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric between 0 and 1.

 tbf

6-415

Data Types: double

Output Arguments
TestResults — tbf test results
table

tbf test results, returned as a table where the rows correspond to all combinations of portfolio ID,
VaR ID, and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TBF' — Categorical array with categories accept and reject that indicate the result of the

tbf test
• 'LRatioTBF' — Likelihood ratio of the tbf test
• 'PValueTBF' — P-value of the tbf test
• 'POF' — Categorical array with the categories accept and reject that indicate the result of the

POF test
• 'LRatioPOF' — Likelihood ratio of the pof test
• 'PValuePOF' — P-value of the pof test
• 'TBFI' — Categorical array with the categories accept and reject that indicate the result of

the tbfi test
• 'LRatioTBFI' — Likelihood ratio of the tbfi test
• 'PValueTBFI' — P-value of the tbfi test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'TBFMin' — Minimum value of observed times between failures
• 'TBFQ1' — First quartile of observed times between failures
• 'TBFQ2' — Second quartile of observed times between failures
• 'TBFQ3' — Third quartile of observed times between failures
• 'TBFMax' — Maximum value of observed times between failures
• 'TestLevel' — Test confidence level

Note For tbf test results, the terms accept and reject are used for convenience, technically a
tbf test does not accept a model. Rather, the test fails to reject it.

More About
Time Between Failures (TBF) Mixed Test

The tbf function performs the time between failures mixed test, also known as the Haas mixed
Kupiec test.

'Mixed' means that it combines a frequency and an independence test. The frequency test is Kupiec's
proportion of failures (POF) test. The independence test is the time between failures independence

6 Functions

6-416

(TBFI) test. The TBF test is an extension of Kupiec's time until first failure (TUFF) test, proposed by
Haas (2001), to take into account not only the time until the first failure, but also the time between all
failures. The tbf function combines the pof test and the tbfi test.

Algorithms
The likelihood ratio (test statistic) of the TBF test is the sum of the likelihood ratios of the POF and
TBFI tests

LRatioTBF = LRatioPOF + LRatioTBFI

which is asymptotically distributed as a chi-square distribution with x+1 degrees of freedom, wherex
is the number of failures. See the Algorithms sections for pof and tbfi for the definitions of their
likelihood ratios.

The p-value of the tbf test is the probability that a chi-square distribution with x+1 degrees of
freedom exceeds the likelihood ratio LRatioTBF

PValueTBF = 1− F(LRatioTBF)

where F is the cumulative distribution of a chi-square variable with x+1 degrees of freedom and x is
the number of failures.

The result of the test is to accept if

F(LRatioTBF) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with x+1
degrees of freedom and x is the number of failures. If the likelihood ratio (LRatioTBF) is undefined,
that is, with no failures yet, the TBF result is to accept only when both POF and TBFI tests accept.

Version History
Introduced in R2016b

References
[1] Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar, Bonn,

2001.

See Also
varbacktest | tl | tuff | bin | pof | cc | cci | tbfi | summary | runtests

Topics
“VaR Backtesting Workflow” on page 2-6
“Value-at-Risk Estimation and Backtesting” on page 2-10
“Overview of VaR Backtesting” on page 2-2
“Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-4
“Comparison of ES Backtesting Methods” on page 2-26

 tbf

6-417

tbfi
Time between failures independence test for value-at-risk (VaR) backtesting

Syntax
TestResults = tbfi(vbt)
TestResults = tbfi(vbt,Name,Value)

Description
TestResults = tbfi(vbt) generates the time between failures independence (TBFI) test for
value-at-risk (VaR) backtesting.

TestResults = tbfi(vbt,Name,Value) adds an optional name-value pair argument for
TestLevel.

Examples

Generate TBFI Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9500

Generate the tbfi test results.

TestResults = tbfi(vbt)

TestResults=1×14 table
 PortfolioID VaRID VaRLevel TBFI LRatioTBFI PValueTBFI Observations Failures TBFMin TBFQ1 TBFQ2 TBFQ3 TBFMax TestLevel
 ___________ _____ ________ ______ __________ __________ ____________ ________ ______ _____ _____ _____ ______ _________

 "Portfolio" "VaR" 0.95 reject 88.491 0.0047475 1043 57 1 3 9 25.25 85 0.95

Run the TBFI Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.

6 Functions

6-418

load VaRBacktestData
 vbt = varbacktest(EquityIndex,...
 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
 'PortfolioID','Equity',...
 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x6 double]
 PortfolioID: "Equity"
 VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95" "EWMA99"]
 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tbfi test results using the TestLevel optional input.

TestResults = tbfi(vbt,'TestLevel',0.90)

TestResults=6×14 table
 PortfolioID VaRID VaRLevel TBFI LRatioTBFI PValueTBFI Observations Failures TBFMin TBFQ1 TBFQ2 TBFQ3 TBFMax TestLevel
 ___________ ______________ ________ ______ __________ __________ ____________ ________ ______ _____ _____ _____ ______ _________

 "Equity" "Normal95" 0.95 reject 88.491 0.0047475 1043 57 1 3 9 25.25 85 0.9
 "Equity" "Normal99" 0.99 accept 22.929 0.15157 1043 17 3 21.25 48 78.25 215 0.9
 "Equity" "Historical95" 0.95 reject 82.719 0.022513 1043 59 1 3 13 25 85 0.9
 "Equity" "Historical99" 0.99 accept 16.228 0.18101 1043 12 3 19.5 45 152.5 200 0.9
 "Equity" "EWMA95" 0.95 accept 71.635 0.12517 1043 59 1 4 13 25.75 82 0.9
 "Equity" "EWMA99" 0.99 reject 31.83 0.080339 1043 22 2 16 40 56 143 0.9

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData
properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more
information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = tbfi(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric between 0 and 1.

 tbfi

6-419

Data Types: double

Output Arguments
TestResults — tbfi test results
table

tbfi test results, returned as a table where the rows correspond to all combinations of portfolio ID,
VaR ID, and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TBFI' — Categorical array with the categories accept and reject that indicate the result of

the tbfi test
• 'LRatioTBFI' — Likelihood ratio of the tbfi test
• 'PValueTBFI' — P-value of the tbfi test
• 'Observations' — Number of observations
• 'Failures' — Number of failures
• 'TBFMin' — Minimum value of observed times between failures
• 'TBFQ1' — First quartile of observed times between failures
• 'TBFQ2' — Second quartile of observed times between failures
• 'TBFQ3' — Third quartile of observed times between failures
• 'TBFMax' — Maximum value of observed times between failures
• 'TestLevel' — Test confidence level

Note For tbfi test results, the terms accept and reject are used for convenience, technically a
tbfi test does not accept a model. Rather, the test fails to reject it.

More About
Time Between Failures Independence (TBIF) Test

The tbfi function performs the time between failures independence test. This test is an extension of
Kupiec's time until first failure (TUFF) test.

TBFI was proposed by Haas (2001) to test for independence. It takes into account not only the time
until the first failure, but also the time between all failures. For the time between failures mixed test,
see the tbf function.

Algorithms
The likelihood ratio (test statistic) of the TBFI test is the sum of TUFF likelihood ratios for each time
between failures. If x is the number of failures, and n1 is the number of periods until the first failure,
n2 the number of periods between the first and the second failure, and, in general, ni is the number of
periods between failure i - 1 and failure i, then a likelihood ratio LRatioTBFIi for each ni is based on
the TUFF formula

6 Functions

6-420

LRatioTBFIi = LRatioTUFF(ni) = − 2∑i = 1
x log pVaR 1− pVaR ni− 1

1
ni

1− 1
ni

ni− 1

= − 2(log(pVaR) + (ni− 1)log(1− pVaR) + nilog(ni)− (ni− 1)log(ni− 1))

As with the tuff test, LRatioTBFIi = -2log(pVaR) if ni = 1.

The TBFI likelihood ratio LRatioTBFI is then the sum of the individual likelihood ratios for all times
between failures

LRatioTBFI = ∑
i = 1

x
LRatioTBFIi

which is asymptotically distributed as a chi-square distribution with x degrees of freedom, where x is
the number of failures.

The p-value of the tbfi test is the probability that a chi-square distribution with x degrees of
freedom exceeds the likelihood ratio LRatioTBFI

PValueTBFI = 1− F(LRatioTBFI)

where F is the cumulative distribution of a chi-square variable with x degrees of freedom and x is the
number of failures.

The result of the test is to accept if

F(LRatioTBFI) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with x degrees of
freedom and x is the number of failures.

If there are no failures in the sample, the test statistic is not defined. This is handled the same as a
TUFF test with no failures. For more information, see tuff.

Version History
Introduced in R2016b

References
[1] Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar, Bonn,

2001.

See Also
varbacktest | tl | tuff | bin | pof | cc | cci | tbf | summary | runtests

Topics
“VaR Backtesting Workflow” on page 2-6
“Value-at-Risk Estimation and Backtesting” on page 2-10
“Overview of VaR Backtesting” on page 2-2
“Haas’s Time Between Failures or Mixed Kupiec’s Test” on page 2-4

 tbfi

6-421

“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-422

tl
Traffic light test for value-at-risk (VaR) backtesting

Syntax
TestResults = tl(vbt)

Description
TestResults = tl(vbt) generates the traffic light (TL) test for value-at-risk (VaR) backtesting.

Examples

Generate Traffic Light Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9500

Generate the tl test results.

TestResults = tl(vbt)

TestResults=1×9 table
 PortfolioID VaRID VaRLevel TL Probability TypeI Increase Observations Failures
 ___________ _____ ________ _____ ___________ _______ ________ ____________ ________

 "Portfolio" "VaR" 0.95 green 0.77913 0.26396 0 1043 57

Run the TL Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.

load VaRBacktestData
 vbt = varbacktest(EquityIndex,...
 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
 'PortfolioID','Equity',...

 tl

6-423

 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x6 double]
 PortfolioID: "Equity"
 VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95" "EWMA99"]
 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tl test results.

TestResults = tl(vbt)

TestResults=6×9 table
 PortfolioID VaRID VaRLevel TL Probability TypeI Increase Observations Failures
 ___________ ______________ ________ ______ ___________ _________ ________ ____________ ________

 "Equity" "Normal95" 0.95 green 0.77913 0.26396 0 1043 57
 "Equity" "Normal99" 0.99 yellow 0.97991 0.03686 0.26582 1043 17
 "Equity" "Historical95" 0.95 green 0.85155 0.18232 0 1043 59
 "Equity" "Historical99" 0.99 green 0.74996 0.35269 0 1043 12
 "Equity" "EWMA95" 0.95 green 0.85155 0.18232 0 1043 59
 "Equity" "EWMA99" 0.99 yellow 0.99952 0.0011122 0.43511 1043 22

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData
properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more
information on creating a varbacktest object, see varbacktest.

Output Arguments
TestResults — tl test results
table

tl test results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR
ID, and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TL' — Categorical (ordinal) array with the categories green, yellow, and red that indicate the

result of the traffic light tl test
• 'Probability' — Cumulative probability of observing up to the corresponding number of

failures

6 Functions

6-424

• 'TypeI' — Probability of observing the corresponding number of failures or more if the model is
correct

• 'Increase' — Increase in the scaling factor
• 'Observations' — Number of observations
• 'Failures' — Number of failures

More About
Traffic Light Test

The tl function performs Basel's traffic light test, also known as three-zone test. Basel's methodology
can be applied to any number of time periods and VaR confidence levels, as explained in “Algorithms”
on page 6-425.

The Basel Committee reports, as an example, a table of the three zones for 250 time periods and a
VaR confidence level of 0.99. The increase in scaling factor in the table reported by Basel has some
ad-hoc adjustments (rounding, and so on) not explicitly described in the Basel document. The
following table compares the increase in scaling factor reported in the Basel document for the case of
250 periods and 0.99% VaR confidence level, and the increase in the factors reported by the TL test.

Failures Zone Increase Basel Increase TL
0 Green 0 0
1 Green 0 0
2 Green 0 0
3 Green 0 0
4 Green 0 0
5 Yellow 0.40 0.3982
6 Yellow 0.50 0.5295
7 Yellow 0.65 0.6520
8 Yellow 0.75 0.7680
9 Yellow 0.85 0.8791
10 Red 1 1

The tl function computes the scaling factor following the methodology described in the Basel
document (see “References” on page 6-426) and is explained in the “Algorithms” on page 6-425
section. The tl function does not apply any ad-hoc adjustments.

Algorithms
The traffic light test is based on a binomial distribution. Suppose N is the number of observations, p =
1 - VaRLevel is the probability of observing a failure if the model is correct, and x is the number of
failures.

The test computes the cumulative probability of observing up to x failures, reported in the
'Probability' column,

Probability = Probability(X ≤ x N, p) = F(x N, p)

 tl

6-425

where F(x N, p) is the cumulative distribution of a binomial variable with parameters N and p, with p
= 1 - VaRLevel. The three zones are defined based on this cumulative probability:

• Green: F(x N, p) ≤ 0.95
• Yellow: 0.95 < F(x N, p) ≤ 0.9999
• Red: 0.9999 < F(x N, p)

The probability of a Type-I error, reported in the 'TypeI' column, is
TypeI = TypeI(x N, p) = 1− F(X ≥ x N, p).

This probability corresponds to the probability of mistakenly rejecting the model if the model were
correct. Probability and TypeI do not sum up to 1, they exceed 1 by exactly the probability of having x
failures.

The increase in scaling factor, reported in the 'Increase' column, is always 0 for the green zone
and always 1 for the red zone. For the yellow zone, it is an adjustment based on the relative
difference between the assumed VaR confidence level (VaRLevel) and the observed confidence level
(x / N), where N is the number of observations andx is the number of failures. To find the increase
under the assumption of a normal distribution, compute the critical values zAssumed and zObserved.

The increase to the baseline scaling factor is given by

Increase = Baseline × zAssumed
zObserved − 1

with the restriction that the increase cannot be negative or greater than 1. The baseline scaling
factor in the Basel rules is 3.

The tl function computes the scaling factor following this methodology, which is also described in
the Basel document (see “References” on page 6-426). The tl function does not apply any ad-hoc
adjustments.

Version History
Introduced in R2016b

References
[1] Basel Committee on Banking Supervision, Supervisory Framework for the Use of 'Backtesting' in

Conjunction with the Internal Models Approach to Market Risk Capital Requirements.
January, 1996, https://www.bis.org/publ/bcbs22.htm.

See Also
varbacktest | bin | pof | tuff | cc | cci | tbf | tbfi | summary | runtests

Topics
“VaR Backtesting Workflow” on page 2-6
“Value-at-Risk Estimation and Backtesting” on page 2-10
“Overview of VaR Backtesting” on page 2-2
“Traffic Light Test” on page 2-3
“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-426

https://www.bis.org/publ/bcbs22.htm

tuff
Time until first failure test for value-at-risk (VaR) backtesting

Syntax
TestResults = tuff(vbt)
TestResults = tuff(vbt,Name,Value)

Description
TestResults = tuff(vbt) generates the time until first failure (TUFF) test for value-at-risk (VaR)
backtesting.

TestResults = tuff(vbt,Name,Value) adds an optional name-value pair argument for
TestLevel.

Examples

Generate TUFF Test Results

Create a varbacktest object.

load VaRBacktestData
vbt = varbacktest(EquityIndex,Normal95)

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9500

Generate the tuff test results.

TestResults = tuff(vbt)

TestResults=1×9 table
 PortfolioID VaRID VaRLevel TUFF LRatioTUFF PValueTUFF FirstFailure Observations TestLevel
 ___________ _____ ________ ______ __________ __________ ____________ ____________ _________

 "Portfolio" "VaR" 0.95 accept 1.7354 0.18773 58 1043 0.95

Run the TUFF Test for VaR Backtests for Multiple VaRs at Different Confidence Levels

Use the varbacktest constructor with name-value pair arguments to create a varbacktest object.

 tuff

6-427

load VaRBacktestData
 vbt = varbacktest(EquityIndex,...
 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
 'PortfolioID','Equity',...
 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99])

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x6 double]
 PortfolioID: "Equity"
 VaRID: ["Normal95" "Normal99" "Historical95" "Historical99" "EWMA95" "EWMA99"]
 VaRLevel: [0.9500 0.9900 0.9500 0.9900 0.9500 0.9900]

Generate the tuff test results using the TestLevel optional input.

TestResults = tuff(vbt,'TestLevel',0.90)

TestResults=6×9 table
 PortfolioID VaRID VaRLevel TUFF LRatioTUFF PValueTUFF FirstFailure Observations TestLevel
 ___________ ______________ ________ ______ __________ __________ ____________ ____________ _________

 "Equity" "Normal95" 0.95 accept 1.7354 0.18773 58 1043 0.9
 "Equity" "Normal99" 0.99 accept 0.36686 0.54472 173 1043 0.9
 "Equity" "Historical95" 0.95 accept 1.5348 0.2154 55 1043 0.9
 "Equity" "Historical99" 0.99 accept 0.36686 0.54472 173 1043 0.9
 "Equity" "EWMA95" 0.95 accept 0.13304 0.7153 28 1043 0.9
 "Equity" "EWMA99" 0.99 accept 0.14596 0.70243 143 1043 0.9

Input Arguments
vbt — varbacktest object
object

varbacktest (vbt) object, contains a copy of the given data (the PortfolioData and VarData
properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For more
information on creating a varbacktest object, see varbacktest.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = tuff(vbt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric between 0 and 1.

6 Functions

6-428

Data Types: double

Output Arguments
TestResults — tuff test results
table

tuff test results, returned as a table where the rows correspond to all combinations of portfolio ID,
VaR ID, and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'TUFF' — Categorical array with the categories accept and reject that indicate the result of

the tuff test
• 'LRatioTUFF' — Likelihood ratio of the tuff test
• 'PValueTUFF' — P-value of the tuff test
• 'FirstFailure' — Number of periods until the first failure
• 'Observations' — Number of observations
• 'TestLevel' — Test confidence level

Note For tuff test results, the terms accept and reject are used for convenience, technically a
tuff test does not accept a model. Rather, the test fails to reject it.

More About
Time Until First Failure (TUFF) Test

The tuff function performs Kupiec's time until first failure test.

The TUFF test is a likelihood ratio test proposed by Kupiec (1995) to assess if the number of periods
until the first failure is consistent with the VaR confidence level.

Algorithms
The likelihood ratio (test statistic) of the tuff test is given by

LRatioTUFF = − 2log pVaR 1− pVaR n− 1

1
n 1− 1

n
n− 1 = − 2(log(pVaR) + (n− 1)log(1− pVaR) + nlog(n)

− (n− 1)log(n− 1))

where n is the number of periods until the first failure and pVaR = 1 - VaRLevel. By the properties of
the logarithm (if n = 1),

LRatioTUFF = − 2log(pVaR)

 tuff

6-429

This is asymptotically distributed as a chi-square distribution with 1 degree of freedom.

The p-value of the tuff test is the probability that a chi-square distribution with 1 degree of freedom
exceeds the likelihood ratio LRatioTUFF

PValueTUFF = 1− F(LRatioTUFF)

where F is the cumulative distribution of a chi-square variable with 1 degree of freedom.

The result of the test is to accept if

F(LRatioTUFF) < F(TestLevel)

and reject otherwise, where F is the cumulative distribution of a chi-square variable with 1 degree of
freedom.

If the sample has no failures, the test statistic is not defined. However, there are two cases
distinguished here:

• If the number of observations is large enough that no matter when the first failure occurred it
would be too late to pass the test, then the model is rejected. Technically, this happens if the
number of observations N is larger than 1/pVaR (large enough relative to the VaR confidence
level) and if the test fails when n = N + 1 (the earliest observation for the first VaR failure). In this
case, the likelihood ratio is reported for n = N + 1, and the corresponding p-value.

• In all other cases, it is not possible to tell with certainty whether the result of the test would
eventually be to accept or reject the model. There are ranges of possible first failure values that
would result in accepting or rejecting the model. In these cases, the tuff function accepts the
model and reports undefined (NaN) values for the likelihood ratio and p-value.

Version History
Introduced in R2016b

References
[1] Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal of

Derivatives. Vol. 3, 1995, pp. 73 – 84.

See Also
varbacktest | tl | pof | bin | cc | cci | tbf | tbfi | summary | runtests

Topics
“VaR Backtesting Workflow” on page 2-6
“Value-at-Risk Estimation and Backtesting” on page 2-10
“Overview of VaR Backtesting” on page 2-2
“Kupiec’s POF and TUFF Tests” on page 2-3
“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-430

ultimateClaims
Compute projected ultimate claims for expectedClaims object

Syntax
projectedUltimateClaims = ultimateClaims(ec)

Description
projectedUltimateClaims = ultimateClaims(ec) computes the projected ultimate claims for
each origin period, based on the earned premium and the selected claims ratios for an
expectedClaims object.

Examples

Compute Ultimate Claims for expectedClaims Object

Compute the projected ultimate claims for an expectedClaims object containing simulated
insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]

 ultimateClaims

6-431

 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create an expectedClaims object where the first input argument is the reported development
triangle and the second input argument is the paid development triangle.

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)

ec =
 expectedClaims with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 InitialClaims: [10x1 double]
 CaseOutstanding: [10x1 double]
 EstimatedClaimsRatios: [10x1 double]
 SelectedClaimsRatios: [10x1 double]

Use ultimateClaims to compute the projected ultimate claims using Expected Claims Technique.

projectedUltimateClaims = ultimateClaims(ec)

projectedUltimateClaims = 10×1
103 ×

 4.9910
 5.1623
 5.5856
 5.8067
 5.8990
 5.9211
 5.8895
 6.1289
 6.1374
 6.6034

6 Functions

6-432

Input Arguments
ec — Expected claims
expectedClaims object

Expected claims, specified as a previously created expectedClaims object.
Data Types: object

Output Arguments
projectedUltimateClaims — Projected ultimate claims obtained using expected claims
technique
vector

Projected ultimate claims obtained using the expected claims technique, returned as a vector.

Version History
Introduced in R2020b

See Also
ibnr | unpaidClaims | summary

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 ultimateClaims

6-433

ultimateClaims
Compute projected ultimate claims for bornhuetterFerguson object

Syntax
projectedUltimateClaims = ultimateClaims(bf)
projectedUltimateClaims = ultimateClaims(___ ,referenceClaimsType)

Description
projectedUltimateClaims = ultimateClaims(bf) computes the projected ultimate claims for
each origin period, based on the earned premium and the selected claims ratios for a
bornhuetterFerguson object.

projectedUltimateClaims = ultimateClaims(___ ,referenceClaimsType) additionally
specifies the type of claims data. Specify this argument after the input argument in the previous
syntax.

Examples

Compute Projected Ultimate Claims for bornhuetterFerguson Object

This example shows how to compute the projected ultimate claims for a bornhuetterFerguson
object for simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}

6 Functions

6-434

 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create an expectedClaims object where the first input argument is the reported development
triangle and the second input argument is the paid development triangle.

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)

ec =
 expectedClaims with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 InitialClaims: [10x1 double]
 CaseOutstanding: [10x1 double]
 EstimatedClaimsRatios: [10x1 double]
 SelectedClaimsRatios: [10x1 double]

Create a bornhuetterFerguson object with reported claims, paid claims, and expected claims to
calculate ultimate claims, case outstanding, IBNR, and unpaid claims estimates.

bf = bornhuetterFerguson(dT_reported, dT_paid, ec.ultimateClaims)

bf =
 bornhuetterFerguson with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 ExpectedClaims: [10x1 double]
 PercentUnreported: [10x1 double]
 PercentUnpaid: [10x1 double]
 CaseOutstanding: [10x1 double]

Use ultimateClaims to compute the projected ultimate claims for each origin period, based on the
earned premium and the selected claims ratios.

 ultimateClaims

6-435

projectedUltimateClaims = ultimateClaims(bf,"reported")

projectedUltimateClaims = 10×1
103 ×

 5.0894
 5.1851
 5.6421
 5.8384
 5.9358
 5.8617
 5.8639
 6.1550
 6.1069
 6.4968

Input Arguments
bf — Bornhuetter-Ferguson
bornhuetterFerguson object

Bornhuetter-Ferguson object, specified as a previously created bornhuetterFerguson object.
Data Types: object

referenceClaimsType — Type of claims data
'reported' (default) | character vector with value 'reported' or 'paid' | string with value
"reported" or "paid"

(Optional) Type of claims data, specified as a character vector or a string.
Data Types: char | string

Output Arguments
projectedUltimateClaims — Projected ultimate claims obtained using Bornhuetter-
Ferguson technique
vector

Projected ultimate claims obtained using the Bornhuetter-Ferguson technique, returned as a vector.

More About
Ultimate Claims

Ultimate claims are the total sum the insured, its insurer, and/or its reinsurer pay for a fully
developed loss. A fully developed loss is the paid losses plus outstanding reported losses and incurred
but not reported (IBNR) losses.

Knowing the exact value of ultimate losses might not be possible for a long time after the end of a
policy period. Actuaries assist with these projections for purposes of financial modeling and year-end
reserve determinations.

6 Functions

6-436

Version History
Introduced in R2020b

See Also
ibnr | unpaidClaims | summary

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 ultimateClaims

6-437

ultimateClaims
Compute projected ultimate claims for capeCod object

Syntax
projectedUltimateClaims = ultimateClaims(cc)

Description
projectedUltimateClaims = ultimateClaims(cc) computes the projected ultimate claims for
each origin period, based on the earned premium and the selected claims ratios for a capeCod
object.

Examples

Compute Projected Ultimate Claims for capeCod Object

This example shows how to compute the projected ultimate claims for a capeCod object for simulated
insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]

6 Functions

6-438

 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create a capeCod object where the first input argument is the reported development triangle, the
second input argument is the paid development triangle, and the third input is the earned premium.

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
cc = capeCod(dT_reported, dT_paid,earnedPremium)

cc =
 capeCod with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 UsedUpPremium: [10x1 double]
 EstimatedClaimRatios: [10x1 double]
 ExpectedClaimRatio: 0.4258
 EstimatedExpectedClaims: [10x1 double]
 PercentUnreported: [10x1 double]
 CaseOutstanding: [10x1 double]

Use ultimateClaims to compute the projected ultimate claims.

projectedUltimateClaims = ultimateClaims(cc)

projectedUltimateClaims = 10×1
103 ×

 5.0894
 5.1876
 5.6382
 5.8520
 5.9447
 5.8367
 5.8332
 6.0632
 6.0893
 5.9459

 ultimateClaims

6-439

Input Arguments
cc — Cape Cod object
capeCod object

Cape Cod object, specified as a previously created capeCod object.
Data Types: object

Output Arguments
projectedUltimateClaims — Projected ultimate claims obtained using Cape Cod technique
vector

Projected ultimate claims obtained using the Cape Cod technique, returned as a vector.

More About
Ultimate Claims

Ultimate claims are the total sum the insured, its insurer, and/or its reinsurer pay for a fully
developed loss. A fully developed loss is the paid losses plus outstanding reported losses and
incurred-but-not-reported (IBNR) losses.

Knowing the exact value of ultimate losses might not be possible for a long time after the end of a
policy period. Actuaries assist with these projections for purposes of financial modeling and year-end
reserve determinations.

Version History
Introduced in R2021a

See Also
ibnr | unpaidClaims | summary

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

6 Functions

6-440

ultimateClaims
Compute ultimate claims for developmentTriangle object

Syntax
projectedUltimateClaims = ultimateClaims(dT)

Description
projectedUltimateClaims = ultimateClaims(dT) calculates the projected ultimate claims for
each origin period, based on the observed claims and the cumulative development factors.

Examples

Calculate the Projected Ultimate Claims for Development Triangle

Calculate the projected ultimate claims for a developmentTriangle object containing simulated
insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle which, is the standard
form for representing claims data.

dT = developmentTriangle(data)

dT =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

 ultimateClaims

6-441

Use the cdfSummary function to calculate CDFs and the percentage of total claims and return a table
with the selected link ratios, CDFs, and percentage of total claims.

dT.SelectedLinkRatio = [1.1755, 1.0577, 1.0273, 1.0104, 1.0044, 1.0026, 1.0016, 1.0006, 1.0004];
selectedLinkRatiosTable = cdfSummary(dT)

selectedLinkRatiosTable=3×10 table
 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120 Ultimate
 _______ _______ _______ _______ _______ _______ ______ ______ _______ ________

 Selected 1.1755 1.0577 1.0273 1.0104 1.0044 1.0026 1.0016 1.0006 1.0004 1
 CDF to Ultimate 1.303 1.1084 1.048 1.0201 1.0096 1.0052 1.0026 1.001 1.0004 1
 Percent of Total Claims 0.76747 0.90216 0.95422 0.98027 0.99046 0.99482 0.9974 0.999 0.9996 1

Use the ultimateClaims function to calculate the projected ultimate claims for each origin period,
based on the observed claims and the cumulative development factors.

projectedUltimateClaims = ultimateClaims(dT)

projectedUltimateClaims = 10×1
103 ×

 5.0894
 5.1820
 5.6310
 5.8188
 5.9093
 5.8284
 5.8293
 6.1353
 6.0911
 6.4444

Input Arguments
dT — Development triangle
developmentTriangle object

Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

Output Arguments
projectedUltimateClaims — Projected ultimate claims obtained using development
technique
vector

Projected ultimate claims obtained using the development technique, returned as a vector.

Version History
Introduced in R2020b

6 Functions

6-442

See Also
view | linkRatios | linkRatioAverages | cdfSummary | fullTriangle | linkRatiosPlot |
claimsPlot

Topics
“Mean Square Error of Prediction for Estimated Ultimate Claims” on page 4-161
“Bootstrap Using Chain Ladder Method” on page 4-168
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 ultimateClaims

6-443

unconditional
Unconditional expected shortfall backtest by Acerbi and Szekely

Syntax
TestResults = unconditional(ebts)
[TestResults,SimTestStatistic] = unconditional(ebts,Name,Value)

Description
TestResults = unconditional(ebts) runs the unconditional expected shortfall (ES) backtest of
Acerbi-Szekely (2014).

[TestResults,SimTestStatistic] = unconditional(ebts,Name,Value) adds an optional
name-value pair argument for TestLevel.

Examples

Run an ES Unconditional Test

Create an esbacktestbysim object.

load ESBacktestBySimData
rng('default'); % for reproducibility
ebts = esbacktestbysim(Returns,VaR,ES,"t",...
 'DegreesOfFreedom',10,...
 'Location',Mu,...
 'Scale',Sigma,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);

Generate the ES unconditional test report.

TestResults = unconditional(ebts)

TestResults=3×10 table
 PortfolioID VaRID VaRLevel Unconditional PValue TestStatistic CriticalValue Observations Scenarios TestLevel
 ___________ _____________ ________ _____________ ______ _____________ _____________ ____________ _________ _________

 "S&P" "t(10) 95%" 0.95 accept 0.093 -0.13342 -0.16252 1966 1000 0.95
 "S&P" "t(10) 97.5%" 0.975 reject 0.031 -0.25011 -0.2268 1966 1000 0.95
 "S&P" "t(10) 99%" 0.99 reject 0.008 -0.57396 -0.38264 1966 1000 0.95

Input Arguments
ebts — esbacktestbysim object
object

6 Functions

6-444

esbacktestbysim (ebts) object, contains a copy of the given data (the PortfolioData, VarData,
ESData, and Distribution properties) and all combinations of portfolio ID, VaR ID, and VaR levels
to be tested. For more information on creating an esbacktestbysim object, see esbacktestbysim.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [TestResults,SimTestStatistic] = unconditional(ebts,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric with values between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric value between 0 and 1.
Data Types: double

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID,
and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR data columns provided
• 'VaRLevel' — VaR level for the corresponding VaR data column
• 'Unconditional'— Categorical array with categories 'accept' and 'reject' that indicate the

result of the unconditional test
• 'PValue'— P-value of the unconditional test
• 'TestStatistic'— Unconditional test statistic
• 'CriticalValue'— Critical value for the unconditional test
• 'Observations'— Number of observations
• 'Scenarios'— Number of scenarios simulated to get the p-values
• 'TestLevel'— Test confidence level

SimTestStatistic — Simulated values of the test statistic
numeric array

Simulated values of the test statistic, returned as a NumVaRs-by-NumScenarios numeric array.

More About
Unconditional Test by Acerbi and Szekely

The unconditional test is also known as the second Acerbi-Szekely test.

 unconditional

6-445

The unconditional test is based on the unconditional relationship

ESt = − Et
XtIt

pVaR

where

Xt is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period t.

PVaR is the probability of VaR failure defined as 1-VaR level.

ESt is the estimated expected shortfall for period t.

It is the VaR failure indicator on period t with a value of 1 if Xt < -VaR, and 0 otherwise.

The unconditional test statistic is defined as:

Zuncond = 1
NpVaR

∑
t = 1

N XtIt
ESt

+ 1

Significance of the Test

Under the assumption that the distributional assumptions are correct, the expected value of the test
statistic Zuncond is 0.

This is expressed as

E[Zuncond] = 0

Negative values of the test statistic indicate risk underestimation. The unconditional test is a one-
sided test that rejects when there is evidence that the model underestimates risk (for technical
details on the null and alternative hypotheses, see Acerbi-Szekely, 2014). The unconditional test
rejects the model when the p-value is less than 1 minus the test confidence level.

For more information on the steps to simulate the test statistics and the details for the computation of
thep-values and critical values, see simulate.

Edge Cases

The unconditional test statistic takes a value of 1 when there are no VaR failures in the data or in a
simulated scenario.

1 is also the maximum possible value for the test statistic. When the expected number of failures
NpVaR is small, the distribution of the unconditional test statistic has a discrete probability jump at
Zuncond = 1, and the probability that Zuncond ≤ 1 is 1. The p-value is set to 1 in these cases, and the test
result is to 'accept', because there is no evidence of risk underestimation. Scenarios with no
failures are more likely as the expected number of failures NpVaR gets smaller.

Version History
Introduced in R2017b

6 Functions

6-446

References
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

See Also
summary | runtests | conditional | quantile | minBiasRelative | minBiasAbsolute |
simulate | esbacktestbysim | esbacktestbyde

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“Comparison of ES Backtesting Methods” on page 2-26

 unconditional

6-447

unconditionalDE
Unconditional Du-Escanciano (DE) expected shortfall (ES) backtest

Syntax
TestResults = unconditionalDE(ebtde)
[TestResults,SimTestStatistic] = unconditionalDE(___ ,Name,Value)

Description
TestResults = unconditionalDE(ebtde) runs the unconditional Du-Escanciano (DE) expected
shortfall (ES) backtest [1] . The unconditional test supports critical values by large-scale
approximation and by finite-sample simulation.

[TestResults,SimTestStatistic] = unconditionalDE(___ ,Name,Value) specifies
options using one or more name-value pair arguments in addition to the input argument in the
previous syntax.

Examples

Create an esbacktestbyde Object and Run an UnconditionalDE Test

Create an esbacktestbyde object for a t model with 10 degrees of freedom, and then run an
unconditionalDE test.

load ESBacktestDistributionData.mat
 rng('default'); % For reproducibility
 ebtde = esbacktestbyde(Returns,"t",...
 'DegreesOfFreedom',T10DoF,...
 'Location',T10Location,...
 'Scale',T10Scale,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);
 unconditionalDE(ebtde)

ans=3×14 table
 PortfolioID VaRID VaRLevel UnconditionalDE PValue TestStatistic LowerCI UpperCI Observations CriticalValueMethod MeanLS StdLS Scenarios TestLevel
 ___________ _____________ ________ _______________ ________ _____________ _________ _________ ____________ ___________________ ______ _________ _________ _________

 "S&P" "t(10) 95%" 0.95 accept 0.181 0.028821 0.019401 0.030599 1966 "large-sample" 0.025 0.0028565 NaN 0.95
 "S&P" "t(10) 97.5%" 0.975 accept 0.086278 0.015998 0.0085028 0.016497 1966 "large-sample" 0.0125 0.0020394 NaN 0.95
 "S&P" "t(10) 99%" 0.99 reject 0.016871 0.0080997 0.0024575 0.0075425 1966 "large-sample" 0.005 0.0012972 NaN 0.95

Input Arguments
ebtde — esbacktestbyde object
object

6 Functions

6-448

esbacktestbyde (ebtde) object, which contains a copy of the data (the PortfolioData, VarData,
and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For
more information on creating an esbacktestbyde object, see esbacktestbyde.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = unconditionalDE(ebtde,'CriticalValueMethod','large-
sample','TestLevel',0.99)

CriticalValueMethod — Method to compute critical values, confidence intervals, and p-
values
'large-sample' (default) | character vector with values of 'large-sample' or 'simulation' |
string with values of "large-sample" or "simulation"

Method to compute critical values, confidence intervals, and p-values, specified as the comma-
separated pair consisting of 'CriticalValueMethod' and a character vector or string with a value
of 'large-sample' or 'simulation'.
Data Types: char | string

TestLevel — Test confidence level
0.95 (default) | numeric value between 0 and 1

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric value between 0 and 1.
Data Types: double

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID,
and VaR levels to be tested. The columns correspond to the following:

• 'PortfolioID' — Portfolio ID for the given data
• 'VaRID' — VaR ID for each of the VaR levels
• 'VaRLevel' — VaR level
• 'UnconditionalDE'— Categorical array with the categories 'accept' and 'reject', which

indicate the result of the unconditional DE test
• 'PValue'— P-value of the unconditional DE test
• 'TestStatistic'— Unconditional DE test statistic
• 'LowerCI'— Confidence-interval lower limit for the unconditional DE test statistic
• 'UpperCI'— Confidence-interval upper limit for the unconditional DE test statistic
• 'Observations'— Number of observations

 unconditionalDE

6-449

• 'CriticalValueMethod'— Method for computing confidence intervals and p-values
• 'MeanLS'— Mean of the large-sample normal distribution; if CriticalValueMethod is

'simulation', 'MeanLS' is reported as NaN
• 'StdLS'— Standard deviation of the large-sample normal distribution; if

CriticalValueMethod is 'simulation', 'StdLS' is reported as NaN
• 'Scenarios'— Number of scenarios simulated to get the p-values; if CriticalValueMethod is

'large-sample', the number of scenarios is reported as NaN
• 'TestLevel'— Test confidence level

Note For the test results, the terms 'accept' and 'reject' are used for convenience. Technically,
a test does not accept a model; rather, a test fails to reject it.

SimTestStatistic — Simulated values of the test statistics
numeric array

Simulated values of the test statistics, returned as a NumVaRs-by-NumScenarios numeric array.

More About
Unconditional DE Test

The unconditional DE test is a two-sided test to check if the test statistic is close to an expected value
of ɑ/2, where ɑ = 1- VaRLevel.

The test statistic for the unconditional DE test is

UES = 1
N∑t = 1

N Ht

where

• Ht is the cumulative failures or violations process; Ht = (ɑ - Ut)I(Ut < ɑ) / ɑ, where I(x) is the
indicator function.

• Ut are the ranks or mapped returns Ut = Pt(Xt), where Pt(Xt) = P(Xt | θt) is the cumulative
distribution of the portfolio outcomes or returns Xt over a given test window t = 1,...N and θt are
the parameters of the distribution. For simplicity, the subindex t is both the return and the
parameters, understanding that the parameters are those used on date t, even though those
parameters are estimated on the previous date t-1, or even prior to that.

Significance of the Test

The test statistic UES is a random variable and a function of random return sequences:

UES = UES(X1, ..., XN) .

For returns observed in the test window 1,...,N, the test statistic attains a fixed value:

UES
obs = UES(X1

obs, ..., XN
obs) .

In general, for unknown returns that follow a distribution of Pt, the value of UES is uncertain and
follows a cumulative distribution function:

6 Functions

6-450

PU(x) = P UES ≤ x .

This distribution function computes a confidence interval and a p-value. To determine the distribution
PU, the esbacktestbyde class supports the large-sample approximation and simulation methods.
You can specify one of these methods by using the optional name-value pair argument
CriticalValueMethod.

For the large-sample approximation method, the distribution PU is derived from an asymptotic
analysis. If the number of observations N is large, the test statistic UES is distributed as

UES dist N α
2, α(1/3− α/4)

N = PU

where N(μ,σ2) is the normal distribution with mean μ and variance σ2.

Because the test statistic cannot be smaller than 0 or greater than 1, the analytical confidence
interval limits are clipped to the interval [0,1]. Therefore, if the analytical value is negative, the test
statistic is reset to 0, and if the analytical value is greater than 1, it is reset to 1.

The p-value is

pvalue = 2 ∗min PU(UES
obs), 1− PU(UES

obs) .

The test rejects if pvalue < ɑtest.

For the simulation method, the distribution PUis estimated as follows

1 Simulate M scenarios of returns as

Xs = (X1
s, ..., XN

s), s = 1, ..., M .
2 Compute the corresponding test statistic as

UES
s = UES

s (X1
s, ..., XN

s), s = 1, ..., M .
3 Define PU as the empirical distribution of the simulated test statistic values as

PU = P UES ≤ x = 1
M I(UES

s ≤ x),

where I(.) is the indicator function.

In practice, simulating ranks is more efficient than simulating returns and then transforming the
returns into ranks. For more information, see simulate.

For the empirical distribution, the value of 1-PU(x) can differ from the value of P[UES ≥ x] because the
distribution may have nontrivial jumps (simulated tied values). Use the latter probability for the
estimation of confidence levels and p-values.

If ɑtest = 1 - test confidence level, then the confidence intervals levels CIlower and CIupper are the values
that satisfy equations:

PU(CIlower) = P CIlower ≤ UES =
αtest

2 ,

P UES ≥ CIupper =
αtest

2 .

 unconditionalDE

6-451

The reported confidence interval limits CIlower and CIupper are simulated test statistic values Us
ES that

approximately solve the preceding equations.

The p-value is determined as

pvalue = 2 ∗min P UES ≤ UES
obs , P UES ≥ UES

obs .

The test rejects if pvalue < ɑtest.

Version History
Introduced in R2019b

References
[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk."

Management Science. Vol. 63, Issue 4, April 2017.

[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk".
January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also
esbacktestbyde | summary | runtests | conditionalDE | simulate | esbacktestbysim

Topics
“Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano” on page 2-63
“Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and
Escanciano” on page 2-72
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“ES Backtest Using Du-Escanciano Method” on page 2-24
“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-452

https://www.bis.org/bcbs/publ/d352.pdf

unconditionalNormal
Unconditional expected shortfall (ES) backtest by Acerbi-Szekely with critical values for normal
distributions

Syntax
TestResults = unconditionalNormal(ebt)
TestResults = unconditionalNormal(ebt,Name,Value)

Description
TestResults = unconditionalNormal(ebt) runs the unconditional expected shortfall (ES)
backtest by Acerbi-Szekely (2014) using precomputed critical values and assuming that the returns
distribution is standard normal.

TestResults = unconditionalNormal(ebt,Name,Value) adds an optional name-value pair
argument for TestLevel.

Examples

Run an Unconditional ES Backtest

Create an esbacktest object.

load ESBacktestData
ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel',VaRLevel)

ebt =
 esbacktest with properties:

 PortfolioData: [1966x1 double]
 VaRData: [1966x1 double]
 ESData: [1966x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9750

Generate the TestResults report for the unconditional ES backtest that assumes the returns
distribution is standard normal.

TestResults = unconditionalNormal(ebt,'TestLevel',0.99)

TestResults=1×9 table
 PortfolioID VaRID VaRLevel UnconditionalNormal PValue TestStatistic CriticalValue Observations TestLevel
 ___________ _____ ________ ___________________ _________ _____________ _____________ ____________ _________

 "Portfolio" "VaR" 0.975 reject 0.0054099 -0.38265 -0.34639 1966 0.99

 unconditionalNormal

6-453

Input Arguments
ebt — esbacktest object
object

esbacktest (ebt) object, which contains a copy of the given data (the PortfolioData, VarData,
and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For
more information on creating an esbacktest object, see esbacktest.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = unconditionalNormal(ebt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric value between 0.5 and 0.9999

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric value between 0.5 and 0.9999.
Data Types: double

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID,
and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data.
• 'VaRID' — VaR ID for each of the VaR data columns provided.
• 'VaRLevel' — VaR level for the corresponding VaR data column.
• 'UnconditionalNormal'— Categorical array with categories 'accept' and 'reject' that indicate

the result of the unconditional normal test.
• 'PValue'— P-value of the unconditional normal test, interpolated from the precomputed critical

values under the assumption that the returns follow a standard normal distribution.

Note p-values < 0.0001 are truncated to the minimum (0.0001) and p-values > 0.5 are
displayed as a maximum (0.5).

• 'TestStatistic'— Unconditional normal test statistic.
• 'CriticalValue'— Precomputed critical value for the corresponding test level and number of

observations. Critical values are obtained under the assumption that the returns follow a standard
normal distribution.

• 'Observations'— Number of observations.

6 Functions

6-454

• 'TestLevel'— Test confidence level.

Note For the test results, the terms 'accept' and 'reject' are used for convenience. Technically,
a test does not accept a model; rather, a test fails to reject it.

More About
Unconditional Test by Acerbi and Szekely

The unconditional test (also known as the second Acerbi-Szekely test) scales the losses by the
corresponding ES value.

The unconditional test statistic is based on the unconditional relationship

ESt = − Et
XtIt

pVaR

where

Xt is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period t.

PVaR is the probability of VaR failure defined as 1-VaR level.

ESt is the estimated expected shortfall for period t.

It is the VaR failure indicator on period t with a value of 1 if Xt < -VaR, and 0 otherwise.

The unconditional test statistic is defined as

Zuncond = 1
NpVaR

∑
t = 1

N XtIt
ESt

+ 1

The critical values for the unconditional test statistic, which form the basis for table-based tests, are
stable across a range of distributions. The esbacktest class runs the unconditional test against
precomputed critical values under two distributional assumptions: normal distribution (thin tails)
using unconditionalNormal and t distribution with 3 degrees of freedom (heavy tails) using
unconditionalT).

Version History
Introduced in R2017b

References
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

See Also
esbacktest | summary | runtests | unconditionalT

Topics
“Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information” on page 2-30

 unconditionalNormal

6-455

“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-456

unconditionalT
Unconditional expected shortfall (ES) backtest by Acerbi-Szekely with critical values for t
distributions

Syntax
TestResults = unconditionalT(ebt)
TestResults = unconditionalT(ebt,Name,Value)

Description
TestResults = unconditionalT(ebt) runs the unconditional expected shortfall (ES) backtest by
Acerbi-Szekely (2014) using precomputed critical values and assuming that the returns distribution is
t with 3 degrees of freedom.

TestResults = unconditionalT(ebt,Name,Value) adds an optional name-value pair argument
for TestLevel.

Examples

Run an Unconditional t ES Backtest

Create an esbacktest object.

load ESBacktestData
ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel',VaRLevel)

ebt =
 esbacktest with properties:

 PortfolioData: [1966x1 double]
 VaRData: [1966x1 double]
 ESData: [1966x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9750

Generate the TestResults report for the unconditional t ES backtest that assumes the returns
distribution is t with 3 degrees of freedom.

TestResults = unconditionalT(ebt,'TestLevel',0.99)

TestResults=1×9 table
 PortfolioID VaRID VaRLevel UnconditionalT PValue TestStatistic CriticalValue Observations TestLevel
 ___________ _____ ________ ______________ ________ _____________ _____________ ____________ _________

 "Portfolio" "VaR" 0.975 accept 0.018566 -0.38265 -0.42986 1966 0.99

 unconditionalT

6-457

Input Arguments
ebt — esbacktest object
object

esbacktest (ebt) object, which contains a copy of the given data (the PortfolioData, VarData,
and ESData properties) and all combinations of portfolio ID, VaR ID, and VaR levels to be tested. For
more information on creating an esbacktest object, see esbacktest.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: TestResults = unconditionalT(ebt,'TestLevel',0.99)

TestLevel — Test confidence level
0.95 (default) | numeric value between 0.5 and 0.9999

Test confidence level, specified as the comma-separated pair consisting of 'TestLevel' and a
numeric value between 0.5 and 0.9999.
Data Types: double

Output Arguments
TestResults — Results
table

Results, returned as a table where the rows correspond to all combinations of portfolio ID, VaR ID,
and VaR levels to be tested. The columns correspond to the following information:

• 'PortfolioID' — Portfolio ID for the given data.
• 'VaRID' — VaR ID for each of the VaR data columns provided.
• 'VaRLevel' — VaR level for the corresponding VaR data column.
• 'UnconditionalT'— Categorical array with categories 'accept' and 'reject' indicating the result

of the unconditional t test.
• 'PValue'— P-value of the unconditional t test, interpolated from the precomputed critical values

under the assumption that the returns follow a standard normal distribution.

Note p-values < 0.0001 are truncated to the minimum (0.0001) and p-values > 0.5 are
displayed as a maximum (0.5).

• 'TestStatistic'— Unconditional t test statistic.
• 'CriticalValue'— Precomputed critical value for the corresponding test level and number of

observations. Critical values are obtained under the assumption that the returns follow a t
distribution with 3 degrees of freedom.

• 'Observations'— Number of observations.

6 Functions

6-458

• 'TestLevel'— Test confidence level.

Note For the test results, the terms 'accept' and 'reject' are used for convenience. Technically,
a test does not accept a model; rather, a test fails to reject it.

More About
Unconditional Test by Acerbi and Szekely

The unconditional test (also known as the second Acerbi-Szekely test) scales the losses by the
corresponding ES value.

The unconditional test statistic is based on the unconditional relationship

ESt = − Et
XtIt

pVaR

where

Xt is the portfolio outcome, that is, the portfolio return or portfolio profit and loss for period t.

PVaR is the probability of VaR failure defined as 1-VaR level.

ESt is the estimated expected shortfall for period t.

It is the VaR failure indicator on period t with a value of 1 if Xt < -VaR, and 0 otherwise.

The unconditional test statistic is defined as:

Zuncond = 1
NpVaR

∑
t = 1

N XtIt
ESt

+ 1

The critical values for the unconditional test statistic, which form the basis for table-based tests, are
stable across a range of distributions. The esbacktest class runs the unconditional test against
precomputed critical values under two distributional assumptions: normal distribution (thin tails)
using unconditionalNormal and t distribution with 3 degrees of freedom (heavy tails) using
unconditionalT.

Version History
Introduced in R2017b

References
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

See Also
esbacktest | summary | runtests | unconditionalNormal

Topics
“Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information” on page 2-30

 unconditionalT

6-459

“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-460

unpaidClaims
Compute unpaid claims estimates for bornhuetterFerguson object

Syntax
unpaidClaimsEstimate = unpaidClaims(bf)
unpaidClaimsEstimate = unpaidClaims(___ ,referenceClaimsType)

Description
unpaidClaimsEstimate = unpaidClaims(bf) computes unpaid claims estimates for a
bornhuetterFerguson object.

unpaidClaimsEstimate = unpaidClaims(___ ,referenceClaimsType) additionally specifies
the type of claims data. Specify this argument after the input argument in the previous syntax.

Examples

Compute Unpaid Claims Estimates for bornhuetterFerguson Object

Compute unpaid claims estimates for a bornhuetterFerguson object for simulated insurance
claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]

 unpaidClaims

6-461

 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create an expectedClaims object where the first input argument is the reported development
triangle and the second input argument is the paid development triangle.

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)

ec =
 expectedClaims with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 InitialClaims: [10x1 double]
 CaseOutstanding: [10x1 double]
 EstimatedClaimsRatios: [10x1 double]
 SelectedClaimsRatios: [10x1 double]

Create a bornhuetterFerguson object with reported claims, paid claims, and expected claims to
calculate the ultimate claims, cases outstanding, IBNR claims, and unpaid claims estimates.

bf = bornhuetterFerguson(dT_reported, dT_paid, ec.ultimateClaims)

bf =
 bornhuetterFerguson with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 ExpectedClaims: [10x1 double]
 PercentUnreported: [10x1 double]
 PercentUnpaid: [10x1 double]
 CaseOutstanding: [10x1 double]

Use unpaidClaims to to compute the unpaid claims estimates for the bornhuetterFerguson
object.

unpaidClaimsEstimate = unpaidClaims(bf,"reported")

6 Functions

6-462

unpaidClaimsEstimate = 10×1
103 ×

 0.1968
 0.0506
 0.1299
 0.1095
 0.1767
 0.0981
 0.3915
 0.9838
 1.7208
 3.7320

Input Arguments
bf — Bornhuetter-Ferguson
bornhuetterFerguson object

Bornhuetter-Ferguson object, specified as a previously created bornhuetterFerguson object.
Data Types: object

referenceClaimsType — Type of claims data
'reported' (default) | character vector with value 'reported' or 'paid' | string with value
"reported" or "paid"

Type of claims data, specified as a character vector or a string.
Data Types: char | string

Output Arguments
unpaidClaimsEstimate — Unpaid claims estimates
array

Unpaid claims estimates, returned as an array.

More About
Unpaid Claims

Unpaid claims are claims reserves for events that have occurred, including both reported and
incurred-but-not-reported (IBNR) reserves, as well as the expenses of settling such claims.

Version History
Introduced in R2020b

See Also
ultimateClaims | ibnr | summary

 unpaidClaims

6-463

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

6 Functions

6-464

unpaidClaims
Compute unpaid claims estimates for capeCod object

Syntax
unpaidClaimsEstimate = unpaidClaims(cc)

Description
unpaidClaimsEstimate = unpaidClaims(cc) computes unpaid claims estimates for a capeCod
object.

Examples

Compute Unpaid Claims Estimate for capeCod Object

This example shows how to compute the unpaid claims estimates for a capeCod object for simulated
insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

 unpaidClaims

6-465

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create a capeCod object where the first input argument is the reported development triangle, the
second input argument is the paid development triangle, and the third input is the earned premium.

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
cc = capeCod(dT_reported, dT_paid,earnedPremium)

cc =
 capeCod with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 UsedUpPremium: [10x1 double]
 EstimatedClaimRatios: [10x1 double]
 ExpectedClaimRatio: 0.4258
 EstimatedExpectedClaims: [10x1 double]
 PercentUnreported: [10x1 double]
 CaseOutstanding: [10x1 double]

Use unpaidClaims to compute the unpaid claims estimates.

unpaidClaimsEstimate = unpaidClaims(cc)

unpaidClaimsEstimate = 10×1
103 ×

 0.1968
 0.0531
 0.1259
 0.1232
 0.1856
 0.0731
 0.3609
 0.8920
 1.7032
 3.1811

6 Functions

6-466

Input Arguments
cc — Cape Cod object
capeCod object

Cape Cod object, specified as a previously created capeCod object.
Data Types: object

Output Arguments
unpaidClaimsEstimate — Unpaid claims estimates
array

Unpaid claims estimates, returned as an array.

More About
Unpaid Claims

Unpaid claims are claims reserves for events that have occurred, including both reported and
incurred-but-not-reported (IBNR) reserves, as well as the expenses of settling such claims.

Version History
Introduced in R2021a

See Also
ibnr | ultimateClaims | summary

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 unpaidClaims

6-467

unpaidClaims
Compute unpaid claims for chainLadder object

Syntax
unpaidClaimsEstimate = unpaidClaims(cl)
unpaidClaimsEstimate = unpaidClaims(___ ,referenceClaimsType)

Description
unpaidClaimsEstimate = unpaidClaims(cl) computes unpaid claims for the chainLadder
object.

unpaidClaimsEstimate = unpaidClaims(___ ,referenceClaimsType) specifies options
using one or more optional arguments in addition to the input argument in the previous syntax.

Examples

Calculate the Unpaid Claims for chainLadder

Calculate the unpaid claims for a chainLadder object containing simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""

6 Functions

6-468

 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create a chainLadder object where the first input argument is the reported development triangle
and the second input argument is the paid development triangle.

cl = chainLadder(dT_reported, dT_paid)

cl =
 chainLadder with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 CaseOutstanding: [10x1 double]

Use ibnr to compute the incurred-but-not-reported (IBNR).

ibnrClaims = ibnr(cl,'reported')

ibnrClaims = 10×1
103 ×

 0
 0.0052
 0.0169
 0.0349
 0.0575
 0.0880
 0.1489
 0.3019
 0.6084
 1.5181

Use unpaidClaims to compute the unpaid claims.

unpaidClaimsEstimate = unpaidClaims(cl,'reported')

unpaidClaimsEstimate = 10×1
103 ×

 unpaidClaims

6-469

 0.1968
 0.0506
 0.1300
 0.1097
 0.1771
 0.0972
 0.3908
 0.9851
 1.7175
 3.6992

Input Arguments
cl — Chain ladder
chainLadder object

Chain ladder, specified as a previously created chainLadder object.
Data Types: object

referenceClaimsType — Type of claims data
'reported' (default) | character vector with value 'reported' or 'paid' | string with value
"reported" or "paid"

(Optional) Type of claims data, specified as a character vector or string.
Data Types: char | string

Output Arguments
unpaidClaimsEstimate — Unpaid claims estimates
array

Unpaid claims estimates, returned as an array.

More About
Unpaid Claims

Unpaid claims are claims reserves for events that have occurred, including both reported and
incurred-but-not-reported (IBNR) reserves, as well as the expenses of settling such claims.

Version History
Introduced in R2020b

See Also
ibnr | summary

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

6 Functions

6-470

unpaidClaims
Compute unpaid claims estimates for expectedClaims object

Syntax
unpaidClaimsEstimate = unpaidClaims(ec)

Description
unpaidClaimsEstimate = unpaidClaims(ec) computes unpaid claims estimates for an
expectedClaims object.

Examples

Compute Unpaid Claims Estimates for expectedClaims Object

Compute unpaid claims estimates for an expectedClaims object containing simulated insurance
claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

 unpaidClaims

6-471

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create an expectedClaims object where the first input argument is the reported development
triangle and the second input argument is the paid development triangle.

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)

ec =
 expectedClaims with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 InitialClaims: [10x1 double]
 CaseOutstanding: [10x1 double]
 EstimatedClaimsRatios: [10x1 double]
 SelectedClaimsRatios: [10x1 double]

Use unpaidClaims to compute the unpaid claims estimates.

unpaidClaimsEstimate = unpaidClaims(ec)

unpaidClaimsEstimate = 10×1
103 ×

 0.0984
 0.0279
 0.0733
 0.0778
 0.1399
 0.1575
 0.4171
 0.9577
 1.7513
 3.8386

Input Arguments
ec — Expected claims
expectedClaims object

6 Functions

6-472

Expected claims, specified as a previously created expectedClaims object.
Data Types: object

Output Arguments
unpaidClaimsEstimate — Unpaid claims estimates
array

Unpaid claims estimates, returned as an array.

More About
Unpaid Claims

Unpaid claims are claims reserves for events that have occurred, including both reported and
incurred-but-not-reported (IBNR) reserves, as well as the expenses of settling such claims.

Version History
Introduced in R2020b

See Also
ultimateClaims | ibnr | summary

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 unpaidClaims

6-473

validatemodel
Validate quality of compact credit scorecard model

Syntax
Stats = validatemodel(csc,data)
[Stats,T] = validatemodel(___ ,Name,Value)
[Stats,T,hf] = validatemodel(___ ,Name,Value)

Description
Stats = validatemodel(csc,data) validates the quality of the compactCreditScorecard
model for the data set specified using the argument data.

[Stats,T] = validatemodel(___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax and returns the
outputs Stats and T.

[Stats,T,hf] = validatemodel(___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax and returns the
outputs Stats and T and the figure handle hf to the CAP, ROC, and KS plots.

Examples

Validate a Compact Credit Scorecard Model

Compute model validation statistics for a compact credit scorecard model.

To create a compactCreditScorecard object, you must first develop a credit scorecard model
using a creditscorecard object.

Create a creditscorecard object using the CreditCardData.mat file to load the data (using a
dataset from Refaat 2011).

load CreditCardData.mat
sc = creditscorecard(data, 'IDVar','CustID')

sc =
 creditscorecard with properties:

 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ''
 VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'status'}
 NumericPredictors: {'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'}
 CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
 BinMissingData: 0
 IDVar: 'CustID'
 PredictorVars: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'}
 Data: [1200x11 table]

6 Functions

6-474

Perform automatic binning using the default options. By default, autobinning uses the Monotone
algorithm.

sc = autobinning(sc);

Fit the model.

sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
 logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ______ __________

 (Intercept) 0.70239 0.064001 10.975 5.0538e-28
 CustAge 0.60833 0.24932 2.44 0.014687
 ResStatus 1.377 0.65272 2.1097 0.034888
 EmpStatus 0.88565 0.293 3.0227 0.0025055
 CustIncome 0.70164 0.21844 3.2121 0.0013179
 TmWBank 1.1074 0.23271 4.7589 1.9464e-06
 OtherCC 1.0883 0.52912 2.0569 0.039696
 AMBalance 1.045 0.32214 3.2439 0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Format the unscaled points.

sc = formatpoints(sc, 'PointsOddsAndPDO',[500,2,50]);

Convert the creditscorecard object into a compactCreditScorecard object. A
compactCreditScorecard object is a lightweight version of a creditscorecard object that is
used for deployment purposes.

csc = compactCreditScorecard(sc);

Validate the compact credit scorecard model by generating the CAP, ROC, and KS plots. This example
uses the training data. However, you can use any validation data, as long as:

• The data has the same predictor names and predictor types as the data used to create the initial
creditscorecard object.

• The data has a response column with the same name as the 'ResponseVar' property in the
initial creditscorecard object.

• The data has a weights column (if weights were used to train the model) with the same name as
'WeightsVar' property in the initial creditscorecard object.

 validatemodel

6-475

[Stats,T] = validatemodel(csc,data,'Plot',{'CAP','ROC','KS'});

6 Functions

6-476

 validatemodel

6-477

disp(Stats)

 Measure Value
 ________________________ _______

 {'Accuracy Ratio' } 0.32258
 {'Area under ROC curve'} 0.66129
 {'KS statistic' } 0.2246
 {'KS score' } 499.62

disp(T(1:15,:))

 Scores ProbDefault TrueBads FalseBads TrueGoods FalseGoods Sensitivity FalseAlarm PctObs
 ______ ___________ ________ _________ _________ __________ ___________ __________ __________

 369.54 0.75313 0 1 802 397 0 0.0012453 0.00083333
 378.19 0.73016 1 1 802 396 0.0025189 0.0012453 0.0016667
 380.28 0.72444 2 1 802 395 0.0050378 0.0012453 0.0025
 391.49 0.69234 3 1 802 394 0.0075567 0.0012453 0.0033333
 395.57 0.68017 4 1 802 393 0.010076 0.0012453 0.0041667
 396.14 0.67846 4 2 801 393 0.010076 0.0024907 0.005
 396.45 0.67752 5 2 801 392 0.012594 0.0024907 0.0058333
 398.61 0.67094 6 2 801 391 0.015113 0.0024907 0.0066667
 398.68 0.67072 7 2 801 390 0.017632 0.0024907 0.0075
 401.33 0.66255 8 2 801 389 0.020151 0.0024907 0.0083333
 402.66 0.65842 8 3 800 389 0.020151 0.003736 0.0091667
 404.25 0.65346 9 3 800 388 0.02267 0.003736 0.01
 404.73 0.65193 9 4 799 388 0.02267 0.0049813 0.010833

6 Functions

6-478

 405.53 0.64941 11 4 799 386 0.027708 0.0049813 0.0125
 405.7 0.64887 11 5 798 386 0.027708 0.0062267 0.013333

Validate a Compact Credit Scorecard Model with Weights

Compute model validation statistics for a compact credit scorecard model with weights.

To create a compactCreditScorecard object, you must first develop a credit scorecard model
using a creditscorecard object.

Use the CreditCardData.mat file to load the data (dataWeights) that contains a column
(RowWeights) for the weights (using a dataset from Refaat 2011).

load CreditCardData.mat

Create a creditscorecard object using the optional name-value pair argument 'WeightsVar'.

sc = creditscorecard(dataWeights,'IDVar','CustID','WeightsVar','RowWeights')

sc =
 creditscorecard with properties:

 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: 'RowWeights'
 VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'RowWeights' 'status'}
 NumericPredictors: {'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'}
 CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
 BinMissingData: 0
 IDVar: 'CustID'
 PredictorVars: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'}
 Data: [1200x12 table]

Perform automatic binning. By default, autobinning uses the Monotone algorithm.

sc = autobinning(sc)

sc =
 creditscorecard with properties:

 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: 'RowWeights'
 VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'RowWeights' 'status'}
 NumericPredictors: {'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'}
 CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
 BinMissingData: 0
 IDVar: 'CustID'
 PredictorVars: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'}
 Data: [1200x12 table]

Fit the model.

sc = fitmodel(sc);

 validatemodel

6-479

1. Adding CustIncome, Deviance = 764.3187, Chi2Stat = 15.81927, PValue = 6.968927e-05
2. Adding TmWBank, Deviance = 751.0215, Chi2Stat = 13.29726, PValue = 0.0002657942
3. Adding AMBalance, Deviance = 743.7581, Chi2Stat = 7.263384, PValue = 0.007037455

Generalized linear regression model:
 logit(status) ~ 1 + CustIncome + TmWBank + AMBalance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ______ __________

 (Intercept) 0.70642 0.088702 7.964 1.6653e-15
 CustIncome 1.0268 0.25758 3.9862 6.7132e-05
 TmWBank 1.0973 0.31294 3.5063 0.0004543
 AMBalance 1.0039 0.37576 2.6717 0.0075464

1200 observations, 1196 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 36.4, p-value = 6.22e-08

Format the unscaled points.

sc = formatpoints(sc,'PointsOddsAndPDO',[500,2,50]);

Convert the creditscorecard object into a compactCreditScorecard object. A
compactCreditScorecard object is a lightweight version of a creditscorecard object that is
used for deployment purposes.

csc = compactCreditScorecard(sc);

Validate the compact credit scorecard model by generating the CAP, ROC, and KS plots. When you
use the optional name-value pair argument 'WeightsVar' to specify observation (sample) weights in
the original creditscorecard object, the T table for validatemodel uses statistics, sums, and
cumulative sums that are weighted counts.

This example uses the training data (dataWeights). However, you can use any validation data, as
long as:

• The data has the same predictor names and predictor types as the data used to create the initial
creditscorecard object.

• The data has a response column with the same name as the 'ResponseVar' property in the
initial creditscorecard object.

• The data has a weights column (if weights were used to train the model) with the same name as
the 'WeightsVar' property in the initial creditscorecard object.

[Stats,T] = validatemodel(csc,dataWeights,'Plot',{'CAP','ROC','KS'});

6 Functions

6-480

 validatemodel

6-481

6 Functions

6-482

Stats

Stats=4×2 table
 Measure Value
 ________________________ _______

 {'Accuracy Ratio' } 0.28972
 {'Area under ROC curve'} 0.64486
 {'KS statistic' } 0.23215
 {'KS score' } 505.41

T(1:10,:)

ans=10×9 table
 Scores ProbDefault TrueBads FalseBads TrueGoods FalseGoods Sensitivity FalseAlarm PctObs
 ______ ___________ ________ _________ _________ __________ ___________ __________ _________

 401.34 0.66253 1.0788 0 411.95 201.95 0.0053135 0 0.0017542
 407.59 0.64289 4.8363 1.2768 410.67 198.19 0.023821 0.0030995 0.0099405
 413.79 0.62292 6.9469 4.6942 407.25 196.08 0.034216 0.011395 0.018929
 420.04 0.60236 18.459 9.3899 402.56 184.57 0.090918 0.022794 0.045285
 437.27 0.544 18.459 10.514 401.43 184.57 0.090918 0.025523 0.047113
 442.83 0.52481 18.973 12.794 399.15 184.06 0.093448 0.031057 0.051655
 446.19 0.51319 22.396 14.15 397.8 180.64 0.11031 0.034349 0.059426
 449.08 0.50317 24.325 14.405 397.54 178.71 0.11981 0.034968 0.062978
 449.73 0.50095 28.246 18.049 393.9 174.78 0.13912 0.043813 0.075279

 validatemodel

6-483

 452.44 0.49153 31.511 23.565 388.38 171.52 0.1552 0.057204 0.089557

Validate a Compact Credit Score Card Model When Using the 'BinMissingData' Option

Compute model validation statistics and assign points for missing data when using the
'BinMissingData' option.

• Predictors in a creditscorecard object that have missing data in the training set have an
explicit bin for <missing> with corresponding points in the final scorecard. These points are
computed from the Weight-of-Evidence (WOE) value for the <missing> bin and the logistic model
coefficients. For scoring purposes, these points are assigned to missing values and to out-of-range
values, and after you convert the creditscorecard object to a compactCreditScorecard
object, you can use the final score to compute model validation statistics with validatemodel.

• Predictors in a creditscorecard object with no missing data in the training set have no
<missing> bin, so no WOE can be estimated from the training data. By default, the points for
missing and out-of-range values are set to NaN resulting in a score of NaN when running score.
For predictors in a creditscorecard object that have no explicit <missing> bin, use the name-
value argument 'Missing' in formatpoints to specify how the function treats missing data for
scoring purposes. After converting the creditscorecard object to a
compactCreditScorecard object, you can use the final score to compute model validation
statistics with validatemodel.

To create a compactCreditScorecard object, you must first develop a credit scorecard model
using a creditscorecard object.

Create a creditscorecard object using the CreditCardData.mat file to load dataMissing, a
table that contains missing values.

load CreditCardData.mat
head(dataMissing,5)

 CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status
 ______ _______ ___________ ___________ _________ __________ _______ _______ _________ ________ ______

 1 53 62 <undefined> Unknown 50000 55 Yes 1055.9 0.22 0
 2 61 22 Home Owner Employed 52000 25 Yes 1161.6 0.24 0
 3 47 30 Tenant Employed 37000 61 No 877.23 0.29 0
 4 NaN 75 Home Owner Employed 53000 20 Yes 157.37 0.08 0
 5 68 56 Home Owner Employed 53000 14 Yes 561.84 0.11 0

Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the
missing numeric or categorical data in a separate bin. Apply automatic binning.

sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true);
sc = autobinning(sc);

disp(sc)

 creditscorecard with properties:

 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ''

6 Functions

6-484

 VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'status'}
 NumericPredictors: {'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'}
 CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
 BinMissingData: 1
 IDVar: 'CustID'
 PredictorVars: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'}
 Data: [1200x11 table]

To make any negative age or income information invalid or "out of range," set a minimum value of
zero for 'CustAge' and 'CustIncome'. For scoring and probability-of-default computations, out-of-
range values are given the same points as missing values.

sc = modifybins(sc,'CustAge','MinValue',0);
sc = modifybins(sc,'CustIncome','MinValue',0);

Display bin information for numeric data for 'CustAge' that includes missing data in a separate bin
labelled <missing>.

bi = bininfo(sc,'CustAge');
disp(bi)

 Bin Good Bad Odds WOE InfoValue
 _____________ ____ ___ ______ ________ __________

 {'[0,33)' } 69 52 1.3269 -0.42156 0.018993
 {'[33,37)' } 63 45 1.4 -0.36795 0.012839
 {'[37,40)' } 72 47 1.5319 -0.2779 0.0079824
 {'[40,46)' } 172 89 1.9326 -0.04556 0.0004549
 {'[46,48)' } 59 25 2.36 0.15424 0.0016199
 {'[48,51)' } 99 41 2.4146 0.17713 0.0035449
 {'[51,58)' } 157 62 2.5323 0.22469 0.0088407
 {'[58,Inf]' } 93 25 3.72 0.60931 0.032198
 {'<missing>'} 19 11 1.7273 -0.15787 0.00063885
 {'Totals' } 803 397 2.0227 NaN 0.087112

Display bin information for categorical data for 'ResStatus' that includes missing data in a
separate bin labelled <missing>.

bi = bininfo(sc,'ResStatus');
disp(bi)

 Bin Good Bad Odds WOE InfoValue
 ______________ ____ ___ ______ _________ __________

 {'Tenant' } 296 161 1.8385 -0.095463 0.0035249
 {'Home Owner'} 352 171 2.0585 0.017549 0.00013382
 {'Other' } 128 52 2.4615 0.19637 0.0055808
 {'<missing>' } 27 13 2.0769 0.026469 2.3248e-05
 {'Totals' } 803 397 2.0227 NaN 0.0092627

For the 'CustAge' and 'ResStatus' predictors, the training data contains missing data (NaNs and
<undefined> values. For missing data in these predictors, the binning process estimates WOE
values of -0.15787 and 0.026469, respectively.

Because the training data contains no missing values for the 'EmpStatus' and 'CustIncome'
predictors, neither predictor has an explicit bin for missing values.

bi = bininfo(sc,'EmpStatus');
disp(bi)

 validatemodel

6-485

 Bin Good Bad Odds WOE InfoValue
 ____________ ____ ___ ______ ________ _________

 {'Unknown' } 396 239 1.6569 -0.19947 0.021715
 {'Employed'} 407 158 2.5759 0.2418 0.026323
 {'Totals' } 803 397 2.0227 NaN 0.048038

bi = bininfo(sc,'CustIncome');
disp(bi)

 Bin Good Bad Odds WOE InfoValue
 _________________ ____ ___ _______ _________ __________

 {'[0,29000)' } 53 58 0.91379 -0.79457 0.06364
 {'[29000,33000)'} 74 49 1.5102 -0.29217 0.0091366
 {'[33000,35000)'} 68 36 1.8889 -0.06843 0.00041042
 {'[35000,40000)'} 193 98 1.9694 -0.026696 0.00017359
 {'[40000,42000)'} 68 34 2 -0.011271 1.0819e-05
 {'[42000,47000)'} 164 66 2.4848 0.20579 0.0078175
 {'[47000,Inf]' } 183 56 3.2679 0.47972 0.041657
 {'Totals' } 803 397 2.0227 NaN 0.12285

Use fitmodel to fit a logistic regression model using Weight of Evidence (WOE) data. fitmodel
internally transforms all the predictor variables into WOE values by using the bins found in the
automatic binning process. fitmodel then fits a logistic regression model using a stepwise method
(by default). For predictors that have missing data, there is an explicit <missing> bin, with a
corresponding WOE value computed from the data. When you use fitmodel, the function applies the
corresponding WOE value for the <missing> bin when performing the WOE transformation.

[sc,mdl] = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1442.8477, Chi2Stat = 4.4974731, PValue = 0.033944979
6. Adding ResStatus, Deviance = 1438.9783, Chi2Stat = 3.86941, PValue = 0.049173805
7. Adding OtherCC, Deviance = 1434.9751, Chi2Stat = 4.0031966, PValue = 0.045414057

Generalized linear regression model:
 logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ______ __________

 (Intercept) 0.70229 0.063959 10.98 4.7498e-28
 CustAge 0.57421 0.25708 2.2335 0.025513
 ResStatus 1.3629 0.66952 2.0356 0.04179
 EmpStatus 0.88373 0.2929 3.0172 0.002551
 CustIncome 0.73535 0.2159 3.406 0.00065929
 TmWBank 1.1065 0.23267 4.7556 1.9783e-06
 OtherCC 1.0648 0.52826 2.0156 0.043841
 AMBalance 1.0446 0.32197 3.2443 0.0011775

1200 observations, 1192 error degrees of freedom

6 Functions

6-486

Dispersion: 1
Chi^2-statistic vs. constant model: 88.5, p-value = 2.55e-16

Scale the scorecard points by the "points, odds, and points to double the odds (PDO)" method using
the 'PointsOddsAndPDO' argument of formatpoints. Suppose that you want a score of 500
points to have odds of 2 (twice as likely to be good than to be bad) and that the odds double every 50
points (so that 550 points would have odds of 4).

Display the scorecard showing the scaled points for predictors retained in the fitting model.

sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
PointsInfo = displaypoints(sc)

PointsInfo=38×3 table
 Predictors Bin Points
 _____________ ______________ ______

 {'CustAge' } {'[0,33)' } 54.062
 {'CustAge' } {'[33,37)' } 56.282
 {'CustAge' } {'[37,40)' } 60.012
 {'CustAge' } {'[40,46)' } 69.636
 {'CustAge' } {'[46,48)' } 77.912
 {'CustAge' } {'[48,51)' } 78.86
 {'CustAge' } {'[51,58)' } 80.83
 {'CustAge' } {'[58,Inf]' } 96.76
 {'CustAge' } {'<missing>' } 64.984
 {'ResStatus'} {'Tenant' } 62.138
 {'ResStatus'} {'Home Owner'} 73.248
 {'ResStatus'} {'Other' } 90.828
 {'ResStatus'} {'<missing>' } 74.125
 {'EmpStatus'} {'Unknown' } 58.807
 {'EmpStatus'} {'Employed' } 86.937
 {'EmpStatus'} {'<missing>' } NaN
 ⋮

Notice that points for the <missing> bin for 'CustAge' and 'ResStatus' are explicitly shown (as
64.9836 and 74.1250, respectively). The function computes these points from the WOE value for
the <missing> bin and the logistic model coefficients.

For predictors that have no missing data in the training set, there is no explicit <missing> bin
during the training of the model. By default, displaypoints reports the points as NaN for missing
data resulting in a score of NaN when you use score. For these predictors, use the name-value pair
argument 'Missing' in formatpoints to indicate how missing data should be treated for scoring
purposes.

Use compactCreditScorecard to convert the creditscorecard object into a
compactCreditScorecard object. A compactCreditScorecard object is a lightweight version of
a creditscorecard object that is used for deployment purposes.

csc = compactCreditScorecard(sc);

For the purpose of illustration, take a few rows from the original data as test data and introduce some
missing data. Also introduce some invalid, or out-of-range, values. For numeric data, values below the
minimum (or above the maximum) are considered invalid, such as a negative value for age (recall that
in a previous step, you set 'MinValue' to 0 for 'CustAge' and 'CustIncome'). For categorical
data, invalid values are categories not explicitly included in the scorecard, for example, a residential

 validatemodel

6-487

status not previously mapped to scorecard categories, such as "House", or a meaningless string such
as "abc123."

This example uses a very small validation data set only to illustrate the scoring of rows with missing
and out-of-range values and the relationship between scoring and model validation.

tdata = dataMissing(11:200,mdl.PredictorNames); % Keep only the predictors retained in the model
tdata.status = dataMissing.status(11:200); % Copy the response variable value, needed for validation purposes
% Set some missing values
tdata.CustAge(1) = NaN;
tdata.ResStatus(2) = '<undefined>';
tdata.EmpStatus(3) = '<undefined>';
tdata.CustIncome(4) = NaN;
% Set some invalid values
tdata.CustAge(5) = -100;
tdata.ResStatus(6) = 'House';
tdata.EmpStatus(7) = 'Freelancer';
tdata.CustIncome(8) = -1;
disp(tdata(1:10,:))

 CustAge ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance status
 _______ ___________ ___________ __________ _______ _______ _________ ______

 NaN Tenant Unknown 34000 44 Yes 119.8 1
 48 <undefined> Unknown 44000 14 Yes 403.62 0
 65 Home Owner <undefined> 48000 6 No 111.88 0
 44 Other Unknown NaN 35 No 436.41 0
 -100 Other Employed 46000 16 Yes 162.21 0
 33 House Employed 36000 36 Yes 845.02 0
 39 Tenant Freelancer 34000 40 Yes 756.26 1
 24 Home Owner Employed -1 19 Yes 449.61 0
 NaN Home Owner Employed 51000 11 Yes 519.46 1
 52 Other Unknown 42000 12 Yes 1269.2 0

Use validatemodel for a compactCreditScorecard object with the validation data set (tdata).

[ValStats,ValTable] = validatemodel(csc,tdata,'Plot',{'CAP','ROC','KS'});

6 Functions

6-488

 validatemodel

6-489

6 Functions

6-490

disp(ValStats)

 Measure Value
 ________________________ _______

 {'Accuracy Ratio' } 0.35376
 {'Area under ROC curve'} 0.67688
 {'KS statistic' } 0.32462
 {'KS score' } 493.35

disp(ValTable(1:10,:))

 Scores ProbDefault TrueBads FalseBads TrueGoods FalseGoods Sensitivity FalseAlarm PctObs
 ______ ___________ ________ _________ _________ __________ ___________ __________ _________

 597.33 NaN 0 1 135 54 0 0.0073529 0.0052632
 598.54 NaN 0 2 134 54 0 0.014706 0.010526
 601.18 NaN 1 2 134 53 0.018519 0.014706 0.015789
 637.3 NaN 1 3 133 53 0.018519 0.022059 0.021053
 NaN 0.69421 2 3 133 52 0.037037 0.022059 0.026316
 NaN 0.65394 2 4 132 52 0.037037 0.029412 0.031579
 NaN 0.64441 2 5 131 52 0.037037 0.036765 0.036842
 NaN 0.62799 3 5 131 51 0.055556 0.036765 0.042105
 390.86 0.58964 4 5 131 50 0.074074 0.036765 0.047368
 404.09 0.57902 6 5 131 48 0.11111 0.036765 0.057895

 validatemodel

6-491

Input Arguments
csc — Compact credit scorecard model
compactCreditScorecard object

Compact credit scorecard model, specified as a compactCreditScorecard object.

To create a compactCreditScorecard object, use compactCreditScorecard or compact from
Financial Toolbox.

data — Validation data
table

Validation data, specified as a MATLAB table, where each table row corresponds to individual
observations. The data must contain columns for each of the predictors in the credit scorecard
model. The columns of data can be any one of the following data types:

• Numeric
• Logical
• Cell array of character vectors
• Character array
• Categorical
• String
• String array

In addition, the table must contain a binary response variable and the name of this column must
match the name of the ResponseVar property in the compactCreditScorecard object. (The
ResponseVar property in the compactCreditScorecard is copied from the ResponseVar
property of the original creditscorecard object.)

Note If a different validation data set is provided using the optional data input, observation weights
for the validation data must be included in a column whose name matches WeightsVar from the
original creditscorecard object, otherwise unit weights are used for the validation data. For more
information, see “Using validatemodel with Weights”.

Data Types: table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: csc = validatemodel(csc,data,'Plot','CAP')

Plot — Type of plot
'None' (default) | character vector with values 'None', 'CAP', 'ROC','KS' | cell array of character
vectors with values 'None', 'CAP', 'ROC','KS'

6 Functions

6-492

Type of plot, specified as the comma-separated pair consisting of 'Plot' and a character vector with
one of the following values:

• 'None' — No plot is displayed.
• 'CAP' — Cumulative Accuracy Profile. Plots the fraction of borrowers up to score “s” against the

fraction of defaulters up to score “s” ('PctObs' against 'Sensitivity' columns of T optional
output argument). For details, see “Cumulative Accuracy Profile (CAP)”.

• 'ROC' — Receiver Operating Characteristic. Plots the fraction of non-defaulters up to score “s”
against the fraction of defaulters up to score “s” ('FalseAlarm' against 'Sensitivity'
columns of T optional output argument). For details, see “Receiver Operating Characteristic
(ROC)”.

• 'KS' — Kolmogorov-Smirnov. Plots each score “s” against the fraction of defaulters up to score
“s,” and also against the fraction of nondefaulters up to score “s” ('Scores' against both
'Sensitivity' and 'FalseAlarm' columns of the optional output argument T). For details, see
“Kolmogorov-Smirnov statistic (KS)”.

Tip For the Kolmogorov-Smirnov statistic option, you can enter either 'KS' or 'K-S'.

Data Types: char | cell

Output Arguments
Stats — Validation measures
table

Validation measures, returned as a 4-by-2 table. The first column, 'Measure', contains the names of
the following measures:

• Accuracy ratio (AR)
• Area under the ROC curve (AUROC)
• The KS statistic
• KS score

The second column, 'Value', contains the values corresponding to these measures.

T — Validation statistics data
array

Validation statistics data, returned as an N-by-9 table of validation statistics data, sorted by score
from riskiest to safest. N is equal to the total number of unique scores, that is, scores without
duplicates.

The table T contains the following nine columns, in this order:

• 'Scores' — Scores sorted from riskiest to safest. The data in this row corresponds to all
observations up to and including the score in this row.

• 'ProbDefault' — Probability of default for observations in this row. For deciles, the average
probability of default for all observations in the given decile is reported.

• 'TrueBads' — Cumulative number of “bads” up to and including the corresponding score.

 validatemodel

6-493

• 'FalseBads' — Cumulative number of “goods” up to and including the corresponding score.
• 'TrueGoods' — Cumulative number of “goods” above the corresponding score.
• 'FalseGoods' — Cumulative number of “bads” above the corresponding score.
• 'Sensitivity' — Fraction of defaulters (or the cumulative number of “bads” divided by total

number of “bads”). This is the distribution of “bads” up to and including the corresponding score.
• 'FalseAlarm' — Fraction of nondefaulters (or the cumulative number of “goods” divided by total

number of “goods”). This is the distribution of “goods” up to and including the corresponding
score.

• 'PctObs' — Fraction of borrowers, or the cumulative number of observations, divided by total
number of observations up to and including the corresponding score.

Note When creating the creditscorecard object with creditscorecard, if the optional name-
value pair argument WeightsVar was used to specify observation (sample) weights, then the T table
uses statistics, sums, and cumulative sums that are weighted counts.

hf — Handle to the plotted measures
figure handle

Figure handle to plotted measures, returned as a figure handle or array of handles. When Plot is set
to 'None', hf is an empty array.

More About
Cumulative Accuracy Profile (CAP)

CAP is generally a concave curve and is also known as the Gini curve, Power curve, or Lorenz curve.

The scores of given observations are sorted from riskiest to safest. For a given fraction M (0% to
100%) of the total borrowers, the height of the CAP curve is the fraction of defaulters whose scores
are less than or equal to the maximum score of the fraction M. This fraction of defaulters is also
known as the “Sensitivity.”.

The area under the CAP curve, known as the AUCAP, is then compared to that of the perfect or
“ideal” model, leading to the definition of a summary index known as the accuracy ratio (AR) or the
Gini coefficient:

AR =
AR
AP

where AR is the area between the CAP curve and the diagonal, and AP is the area between the perfect
model and the diagonal. This represents a “random” model, where scores are assigned randomly and
therefore the proportion of defaulters and nondefaulters is independent of the score. The perfect
model is the model for which all defaulters are assigned the lowest scores, and therefore perfectly
discriminates between defaulters and nondefaulters. Thus, the closer to unity AR is, the better the
scoring model.

Receiver Operating Characteristic (ROC)

To find the receiver operating characteristic (ROC) curve, the proportion of defaulters up to a given
score “s,” or “Sensitivity,” is computed.

6 Functions

6-494

This proportion is known as the true positive rate (TPR). Also, the proportion of nondefaulters up to
score “s,“ or “False Alarm Rate,” is also computed. This proportion is also known as the false positive
rate (FPR). The ROC curve is the plot of the “Sensitivity” vs. the “False Alarm Rate.” Computing the
ROC curve is similar to computing the equivalent of a confusion matrix at each score level.

Similar to the CAP, the ROC has a summary statistic known as the area under the ROC curve
(AUROC). The closer to unity, the better the scoring model. The accuracy ratio (AR) is related to the
area under the curve by the following formula:

AR = 2(AUROC)− 1

Kolmogorov-Smirnov Statistic (KS)

The Kolmogorov-Smirnov (KS) plot, also known as the fish-eye graph, is a common statistic for
measuring the predictive power of scorecards.

The KS plot shows the distribution of defaulters and the distribution of nondefaulters on the same
plot. For the distribution of defaulters, each score “s” is plotted against the proportion of defaulters
up to “s," or “Sensitivity." For the distribution of non-defaulters, each score “s” is plotted against the
proportion of nondefaulters up to "s," or "False Alarm." The statistic of interest is called the KS
statistic and is the maximum difference between these two distributions (“Sensitivity” minus “False
Alarm”). The score at which this maximum is attained is also of interest.

Use validatemodel with Weights

If you provide observation weights, the validatemodel function incorporates the observation
weights when calculating model validation statistics.

If you do not provide weights, the validation statistics are based on how many good and bad
observations fall below a particular score. If you do provide weights, the weight (not the count) is
accumulated for the good and the bad observations that fall below a particular score.

When you define observation weights using the optional WeightsVar name-value pair argument
when creating a creditscorecard object, the weights stored in the WeightsVar column are used
when validating the model on the training data. When a different validation data set is provided using
the optional data input, observation weights for the validation data must be included in a column
whose name matches WeightsVar. Otherwise, the unit weights are used for the validation data set.

The observation weights of the training data affect not only the validation statistics but also the credit
scorecard scores themselves. For more information, see “Using fitmodel with Weights” and “Credit
Scorecard Modeling Using Observation Weights”.

Version History
Introduced in R2019b

References
[1] “Basel Committee on Banking Supervision: Studies on the Validation of Internal Rating Systems.”

Working Paper No. 14, February 2005.

[2] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

[3] Loeffler, G. and P. N. Posch. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.

 validatemodel

6-495

See Also
compactCreditScorecard | probdefault | displaypoints | score

Topics
“compactCreditScorecard Object Workflow” on page 3-57
“Case Study for Credit Scorecard Analysis”
“Credit Scorecard Modeling with Missing Values”
“Credit Scorecard Modeling Workflow”
“About Credit Scorecards”

6 Functions

6-496

portfolioECL
Compute the lifetime ECL at individual or portfolio level

Syntax
[totalECL,ECLByID,ECLByPeriod] = portfolioECL(MarginalPD,LGD,EAD)
[totalECL,ECLByID,ECLByPeriod] = portfolioECL(___ ,Name=Value)

Description
[totalECL,ECLByID,ECLByPeriod] = portfolioECL(MarginalPD,LGD,EAD), given the
MarginalPD, LGD, and EAD values for a portfolio of loans, computes the lifetime expected credit loss
(ECL) at the individual or portfolio level.

[totalECL,ECLByID,ECLByPeriod] = portfolioECL(___ ,Name=Value) adds optional name-
value pair arguments for ScenarioProbabilities, InterestRate, Periodicity, IDVar, and
ScenarioNames.

Examples

Calculate ECL Based on Marginal PD, LGD, and EAD Predictions

This example shows how to calculate the expected credit loss (ECL) based on marginal probability of
default (PD), loss given default (LGD), and exposure at default (EAD).

• Marginal PD — Expectation of a credit default event over a given time frame.
• LGD — Portion of a nonrecovered credit in the case of default.
• EAD — Balance at the time of default.

IFRS 9 requires multiple economic scenarios to be modeled while computing ECL. This example
considers five macroeconomic scenarios: severe, adverse, baseline, favorable, and excellent.

Load Data

Load the credit data for company IDs 1304 and 2067 and the associated macroeconomic scenarios.

load DataPredictLifetime.mat
disp(LoanData)

 ID ScoreGroup YOB Year
 ____ _____________ ___ ____

 1304 "Medium Risk" 4 2020
 1304 "Medium Risk" 5 2021
 1304 "Medium Risk" 6 2022
 1304 "Medium Risk" 7 2023
 1304 "Medium Risk" 8 2024
 1304 "Medium Risk" 9 2025
 1304 "Medium Risk" 10 2026
 2067 "Low Risk" 7 2020

 portfolioECL

6-497

 2067 "Low Risk" 8 2021
 2067 "Low Risk" 9 2022
 2067 "Low Risk" 10 2023

disp(head(MultipleScenarios,10))

 ScenarioID Year GDP Market
 __________ ____ ____ ______

 "Severe" 2020 -0.9 -5.5
 "Severe" 2021 -0.5 -6.5
 "Severe" 2022 0.2 -1
 "Severe" 2023 0.8 1.5
 "Severe" 2024 1.4 4
 "Severe" 2025 1.8 6.5
 "Severe" 2026 1.8 6.5
 "Severe" 2027 1.8 6.5
 "Adverse" 2020 0.1 -0.5
 "Adverse" 2021 0.2 -2.5

disp(ScenarioProbabilities)

 Probability

 Severe 0.1
 Adverse 0.2
 Baseline 0.3
 Favorable 0.2
 Excellent 0.2

Load the pdModel that was created using fitLifetimePDModel with a Probit model.

load LifetimeChampionModel.mat
disp(pdModel)

 Probit with properties:

 ModelID: "Champion"
 Description: "A sample model used as champion model for illustration purposes."
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

Define the interest rate to discount future losses back to present.

EffRate = 0.045;

Create Scenarios

Compute marginal lifetime PDs for the two companies.

CompanyID = 1304;
IndCompany = LoanData.ID == CompanyID;
Years = LoanData.Year(IndCompany);
NumYears = length(Years);

6 Functions

6-498

ScenarioID = unique(MultipleScenarios.ScenarioID,'stable');
NumScenarios = length(ScenarioID);

PD1 = zeros(NumYears,NumScenarios);
for ii=1:NumScenarios
 IndScenario = MultipleScenarios.ScenarioID==ScenarioID(ii);
 data = join(LoanData(IndCompany,:),MultipleScenarios(IndScenario,:));
 PD1(:,ii) = predictLifetime(pdModel,data,ProbabilityType="marginal");
end

DiscTimes = Years-Years(1)+1;
DiscFactors = 1./(1+EffRate).^DiscTimes;

ProbScenario = ScenarioProbabilities.Probability;

CompanyID = 2067;
IndCompany = LoanData.ID == CompanyID;
Years = LoanData.Year(IndCompany);
NumYears = length(Years);

PD4 = zeros(NumYears,NumScenarios);
for ii=1:NumScenarios
 IndScenario = MultipleScenarios.ScenarioID==ScenarioID(ii);
 data = join(LoanData(IndCompany,:),MultipleScenarios(IndScenario,:));
 PD4(:,ii) = predictLifetime(pdModel,data,ProbabilityType="marginal");
end

Calculate Marginal PD for Multiple IDs

Create a table for the portfolio PD that contains the PD for the two companies.

PD = array2table([PD1; PD4]);
PD.Properties.VariableNames = {'Severe','Adverse','Baseline','Favorable','Excellent'};
PD.ID = [repmat(1304,7,1);repmat(2067,4,1)];
PD = movevars(PD, 'ID', 'Before', 'Severe');
disp(PD)

 ID Severe Adverse Baseline Favorable Excellent
 ____ __________ __________ __________ __________ __________

 1304 0.011316 0.0096361 0.0081783 0.006918 0.0058324
 1304 0.0078277 0.0069482 0.0061554 0.0054425 0.0048028
 1304 0.0048869 0.0044693 0.0040823 0.0037243 0.0033938
 1304 0.0031017 0.0029321 0.0027698 0.0026147 0.0024668
 1304 0.0019309 0.0018923 0.0018538 0.0018153 0.001777
 1304 0.0012157 0.0012197 0.0012233 0.0012264 0.0012293
 1304 0.00082053 0.00082322 0.00082562 0.00082775 0.00082964
 2067 0.0022199 0.001832 0.0015067 0.001235 0.0010088
 2067 0.0014464 0.0012534 0.0010841 0.00093599 0.00080662
 2067 0.0008343 0.00074897 0.00067168 0.00060175 0.00053857
 2067 0.00049107 0.00045839 0.00042769 0.00039887 0.00037183

Calculate LGD for Multiple IDs

Create a table for the portfolio LGD that contains the LGD for the two companies.

 portfolioECL

6-499

LGD = array2table([0.25, 0.23, 0.21, 0.19, 0.17; 0.24, 0.22, 0.2, 0.18, 0.16]);
LGD.Properties.VariableNames = {'S1','S2','S3','S4','S5'};
LGD.ID = [1304;2067];
LGD = movevars(LGD, 'ID', 'Before', 'S1');
disp(LGD)

 ID S1 S2 S3 S4 S5
 ____ ____ ____ ____ ____ ____

 1304 0.25 0.23 0.21 0.19 0.17
 2067 0.24 0.22 0.2 0.18 0.16

Calculate EAD for Multiple IDs

Create a table for the portfolio EAD that contains the EAD for the two companies 1304 and 2067.

EAD = array2table(horzcat([repmat(1304,7,1);repmat(2067,4,1)],vertcat((100000:-10000:40000)',(120000:-10000:90000)')));
EAD.Properties.VariableNames = {'ID','EAD'};
disp(EAD)

 ID EAD
 ____ _______

 1304 1e+05
 1304 90000
 1304 80000
 1304 70000
 1304 60000
 1304 50000
 1304 40000
 2067 1.2e+05
 2067 1.1e+05
 2067 1e+05
 2067 90000

Use portfolioECL with PD, LGD, and EAD Tables

Compute the lifetime ECL using portfolioECL.

[totalECL, ECLByID, ECLByPeriod] = portfolioECL(PD, LGD, EAD,ScenarioProbabilities=[0.1 0.2 0.3 0.2 0.2], ...
InterestRate = EffRate, Periodicity="monthly",ScenarioNames={'Severe','Adverse','Baseline','Favorable','Excellent'});

Display the total portfolio ECL.

disp(totalECL);

 510.5860

Display the scenario weighted ECLs for each individual loan.

disp(ECLByID);

 ID ECL
 ____ ______

 1304 430.68
 2067 79.905

Display the ECL for each individual loan per time period and per scenario.

6 Functions

6-500

disp(ECLByPeriod);

 ID TimePeriod Severe Adverse Baseline Favorable Excellent
 ____ __________ ______ _______ ________ _________ _________

 1304 1 281.84 220.8 171.1 130.95 98.781
 1304 2 174.81 142.76 115.47 92.372 72.935
 1304 3 96.647 81.317 67.817 55.978 45.64
 1304 4 53.474 46.505 40.111 34.259 28.918
 1304 5 28.426 25.63 22.924 20.311 17.79
 1304 6 14.859 13.715 12.559 11.393 10.217
 1304 7 7.9931 7.3777 6.7558 6.1282 5.4957
 2067 1 63.693 48.183 36.026 26.576 19.296
 2067 2 37.901 30.106 23.673 18.394 14.091
 2067 3 19.8 16.293 13.284 10.711 8.5209
 2067 4 10.449 8.9412 7.5839 6.3656 5.2748

Input Arguments
MarginalPD — Marginal PD values
table

Marginal PD values, specified as a table with a column for IDs that is defined by IDVar.

Note The MarginalPD table column name for IDs and the order of IDs must be the same as the ID
columns of the LGD and EAD tables.

You can use fitLifetimePDModel to create a PD model and predict to create a vector that can be
converted to a table using array2table.
Data Types: table

LGD — LGD values
table

LGD value, specified as a table with a column for IDs that is defined by IDVar.

Note The LGD table column name for lDs and the order of IDs must be the same as the ID columns of
the MarginalPD and EAD tables.

You can use fitLGDModel to create a LGD model and predict to create a vector that can be
converted to a table using array2table.
Data Types: table

EAD — EAD values
table

EAD value, specified as a table with a column for IDs that is defined by IDVar.

Note The EAD table column name for IDs and the order of IDs must be the same as the ID columns of
the MarginalPD and LGD tables.

 portfolioECL

6-501

You can use fitEADModel to create a EAD model and predict to create a vector that can be
converted to a table using array2table.
Data Types: table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: [totalECL,ECLByID,ECLByPeriod] =
portfolioECL(MarginalPD,LGD,EAD,InterestRate=0.045,Periodicity="annual")

ScenarioProbabilities — Probabilities assigning weights to corresponding scenarios
equal weighted (default) | numeric vector

Probabilities assigning weights to corresponding scenarios, specified as ScenarioProbabilities
and a numeric vector. The ScenarioProbabilities values must be greater than or equal to 0 and
sum to 1.
Data Types: double

InterestRate — Interest rate to discount future losses back to present
0 (default) | scalar positive or negative decimal | table

Interest rate to discount future losses back to present, specified as InterestRate and a scalar
positive or negative decimal or a table.

• If you specify a scalar, the interest-rate value applies to the entire portfolio.
• If you specify a table, there must be exactly two columns in the interest-rate table, one for IDs and

the other for the interest-rate value for each loan. Each row must have an ID that cannot be
repeated on another row in the table. The IDs must match and be in the same order as the IDs
used by MarginalPD, LGD, and EAD tables.

Data Types: double | table

Periodicity — Time period of input data
"quarterly" (default) | character vector with value of 'quarterly', 'monthly', 'semiannual',
or 'annual' | string with value of "quarterly", "monthly", "semiannual", or "annual"

Time period of input data, specified as Periodicity and a character vector or string.
Data Types: char | string

IDVar — Column name for ID in MarginalPD, LGD, EAD tables
1st column in MarginalPD, LGD, EAD tables (default) | character vector | string

Column name for ID in MarginalPD, LGD, and EAD tables, specified as IDVar and a character vector
or string.
Data Types: char | string

ScenarioNames — User-defined scenario names
Scenario(n) (where n=1:numScenarios) (default) | cell array of character vectors | string array

6 Functions

6-502

User-defined scenario names with one name per scenario, specified as ScenarioNames and a cell
array of character vectors or string array. The ScenarioNames must all be unique and nonempty.
Data Types: cell | string

Output Arguments
totalECL — Total portfolio ECL
scalar

Total portfolio ECL, returned as a scalar. The total portfolio ECL is computed as a sum of the ECLs of
each loan weighted by the scenario probabilities and discounted to the present.

ECLByID — Scenario weighted ECLs for each individual loan
table

Scenario weighted ECLs for each individual loan, returned as a table.

ECLByPeriod — ECL for each individual loan per time period and per scenario
table

ECL for each individual loan per time period and per scenario, returned as a table.

More About
Expected Credit Losses

The expected credit losses (ECLs) model adopts a forward-looking approach to estimation of
impairment losses.

• The discounted ECL at time t for scenario s is defined as

ECLi(t; s) = PDmarginal, i(t; s)LGDi(t; s)EADi(t; s)Disci(t)

where

t denotes a time period.

s denotes a scenario.

i denotes a loan.

PDmarginal,i(t;s) is the marginal probability of default (PD) (see predictLifetime) for loan i at
time period t, given scenario s.

LGDi(t;s) is the loss given default (LGD) for loan i at time period t, given scenario s.

EADi(t;s) is the exposure at default (EAD) for loan i at time period t, given scenario s.

Disci(t) is the discount factor for loan i at time period t, based on the loan's effective interest rate.

The ECLi(t;s) quantities are computed for each time period in the remaining life of a loan and for
each scenario. These quantities are reported in the ECLByPeriod output of portfolioECL for all
loans in the portfolio.

 portfolioECL

6-503

• The lifetime ECL for loan i is computed as

ECLi = ∑s = 1
M ∑t = 1

Ni ECLi(t; s) ∗ P(s)

where

Ni is the number of periods in the remaining life of loan i.

M is the number of scenarios.

P(s) denotes the scenario probabilities.

The ECLi quantity is reported in the ECLByID output of portfolioECL for all loans in the
portfolio.

• The total portfolio lifetime ECL is

ECL = ∑i = 1
L ECLi

where

L is the number of loans in the portfolio.

The total ECL value for the portfolio is reported in the totalECL output of the portfolioECL
function.

To compute an ECL spanning only 1-year ahead (as opposed to a lifetime ECL), the inputs to
portfolioECL must only include time periods within the 1-year period of interest. For more
information, see “Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL
Calculations” on page 4-195.

Version History
Introduced in R2022a

See Also
fitLifetimePDModel | fitLGDModel | fitEADModel

Topics
“Expected Credit Loss Computation” on page 4-124
“Modeling Probabilities of Default with Cox Proportional Hazards” on page 4-28
“Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations” on page 4-195

6 Functions

6-504

view
Display developmentTriangle object

Syntax
developmentTriangleTable = view(developmentTriangle)

Description
developmentTriangleTable = view(developmentTriangle) displays a
developmentTriangle object in table form. Each row represents an origin period and each column
represents a development period.

Examples

Display developmentTriangle Object in Table Form

Display a developmentTriangle object using simulated insurance claims data in table form.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data.

dT = developmentTriangle(data)

dT =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

 view

6-505

Use the view function to display the developmentTriangle contents in table form. In the table,
each row represents an origin period and each column represents a development period.

developmentTriangleTable = view(dT)

developmentTriangleTable=10×10 table
 12 24 36 48 60 72 84 96 108 120
 ______ ______ ______ ______ ______ ______ ______ ______ ______ ______

 2010 3995.7 4635 4866.8 4964.1 5013.7 5038.8 5059 5074.1 5084.3 5089.4
 2011 3968 4682.3 4963.2 5062.5 5113.1 5138.7 5154.1 5169.6 5179.9 NaN
 2012 4217 5060.4 5364 5508.9 5558.4 5586.2 5608.6 5625.4 NaN NaN
 2013 4374.2 5205.3 5517.7 5661.1 5740.4 5780.6 5803.7 NaN NaN NaN
 2014 4499.7 5309.6 5628.2 5785.8 5849.4 5878.7 NaN NaN NaN NaN
 2015 4530.2 5300.4 5565.4 5715.7 5772.8 NaN NaN NaN NaN NaN
 2016 4572.6 5304.2 5569.5 5714.3 NaN NaN NaN NaN NaN NaN
 2017 4680.6 5523.1 5854.4 NaN NaN NaN NaN NaN NaN NaN
 2018 4696.7 5495.1 NaN NaN NaN NaN NaN NaN NaN NaN
 2019 4945.9 NaN NaN NaN NaN NaN NaN NaN NaN NaN

Input Arguments
developmentTriangle — Development triangle
object

Development triangle, specified as a previously created developmentTriangle object.
Data Types: object

Output Arguments
developmentTriangleTable — Development triangle in table form
table

Development triangle in table form, returned as a table. In the table, each row represents an origin
period and each column represents a development period.

Version History
Introduced in R2020b

See Also
linkRatios | linkRatioAverages | cdfSummary | ultimateClaims | fullTriangle |
linkRatiosPlot | claimsPlot

Topics
“Mean Square Error of Prediction for Estimated Ultimate Claims” on page 4-161
“Bootstrap Using Chain Ladder Method” on page 4-168
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

6 Functions

6-506

Threshold Predictors
Select thresholds for predictor risk metrics in the Live Editor

Description
The Threshold Predictors task lets you interactively set credit scorecard predictor thresholds for
one or more risk metrics computed for a set of predictors, or features. Risk metric thresholds are part
of the feature selection process before building a credit scorecard. The task automatically generates
MATLAB code for your live script.

Using this task, you can:

• Select risk metrics from the columns of a table of risk metric data.
• Specify thresholds for the risk metrics, separating the rows of predictors into color-coded Pass,

Fail, or Undecided regions.
• Visualize the labeled and color-coded risk metric values for each thresholded metric.

For general information about Live Editor tasks, see “Add Interactive Tasks to a Live Script”.

Open the Task
To add the Threshold Predictors task to a live script in the MATLAB Editor:

 Threshold Predictors

6-507

• On the Live Editor tab, select Task > Threshold Predictors.

• In a code block in the script, type a relevant keyword, such as screenpredictors. Select
Threshold Predictors from the suggested command completions.

Parameters
Predictor metrics — Table of risk metrics
table of risk metrics calculated for a set of predictors

The Predictor metrics table must be a numeric MATLAB table. The columns of the Predictor
metrics table contain the values for a particular risk metric (for example, information value or
accuracy ratio) for a set of model predictors. The rows of the table contain the values of each risk
metric for a particular predictor. The Predictor metrics table must have defined row names.

Typically, you create the Predictor metrics table using the screenpredictors function.
screenpredictors takes a creditscorecard input data set and calculates the risk metrics table.
Example: metric_table =
screenpredictors(data,'IDVar',idvar,'ResponseVar',responsevar)

Select thresholded metrics — List of metrics with defined thresholds
list box containing metrics with thresholds

The Select thresholded metrics list shows which metrics have thresholds specified. The Select
thresholded metrics drop-down box contains the risk metrics defined in the columns of the
Predictor metrics table.

To specify a threshold:

1 Select a risk metric from the Select thresholded metrics drop-down box and click the plus
button. The metric is added to the Select thresholded metrics list box and the Predictors plot
displays with a default threshold and region labels.

6 Functions

6-508

2 To adjust a threshold, drag the associated threshold line or use the Thresholds and Labels
spinner controls.

3 Set additional thresholds by clicking the Predictors plot at the desired value.
4 Select a different metric from the Select thresholded metrics list box. The Predictors plot

updates to show the associated metric bar chart with its overlayed threshold lines.

To remove a threshold:

• Select the threshold line or the associated Thresholds and Labels spinner and click the line

delete button on the Predictors plot. You can remove all thresholds for the selected risk
metric by clicking the minus button next to the Select thresholded metrics list box.

When using a Predictor metrics table that is created using the screenpredictors function, you
can set thresholds for any of the following metrics:

• InfoValue
• Entropy
• Accuracy Ratio
• AUROC
• Gini
• Chi2PValue
• PercentMissing

For more information on the metrics for screenpredictors, see “metric_table” on page 6-0 .

Thresholds and Labels — Thresholds and region labels
drop-down box and spinners specifying labeled regions

The Thresholds and Labels controls are composed of spinners for each specified threshold of the
currently selected risk metric and drop-down boxes that set the labels for the surrounding regions to
Pass, Fail, or Undecided.

The Thresholds and Labels spinners are sorted in descending order from top to bottom. The region
labels can be set to Pass, Fail, or Undecided where the region label defines the label for all metric
values that lie on a particular side of a threshold.

Display results — Display table of labeled metrics
check box to toggle display of label table

Check the Display label table check box to display the current set of labeled metric values. The
label table contains the columns from the Predictor metrics table for which there are specified
thresholds. The entries in the label table are categorical labels (Pass, Fail, or Undecided) based on
which region each metric value is found.

Tips
• To sort the predictors in the Predictors plot, click Sort.To revert to the original sort order, click

Revert.
• Each time you add a new threshold by clicking the Predictors plot, a new set of controls is added

to the Thresholds and Labels section. Use the spinner to fine tune the threshold value. Use the

 Threshold Predictors

6-509

label drop-down box to set the appropriate label (Pass, Fail, or Undecided) for the newly defined
region of metric values.

Version History
Introduced in R2021b

R2022b: Support for non-standard column names in Predictor metrics table
Behavior changed in R2022b

The Predictor metrics table supports non-standard MATLAB variable names containing spaces or
Unicode characters.

See Also
Functions
screenpredictors

Topics
“Feature Screening with screenpredictors” on page 3-64

6 Functions

6-510

bornhuetterFerguson
Create bornhuetterFerguson object

Description
Use this workflow to generate unpaid claims for a bornhuetterFerguson:

1 Load or generate the data for the Bornhuetter-Ferguson technique.
2 Create a developmentTriangle object.
3 Create an expectedClaims object.
4 Create a bornhuetterFerguson object.
5 Use the ultimateClaims function to calculate the ultimate claims.
6 Use the ibnr function to calculate the incurred-but-not-reported (IBNR) claims.
7 Use the unpaidClaims function to calculate the unpaid claims.
8 Use the summary function to generate a summary report for the Bornhuetter-Ferguson

technique.

Creation

Syntax
bf = bornhuetterFerguson(dT_reported,dT_paid,expectedClaims)

Description

bf = bornhuetterFerguson(dT_reported,dT_paid,expectedClaims) creates a
bornhuetterFerguson object using the developmentTriangle objects for reported claims
(dT_reported) and paid claims (dT_paid) and the expectedClaims.

Input Arguments

dT_reported — Development triangle for reported claims
developmentTriangle object

Development triangle for reported claims, specified as a previously created developmentTriangle
object.
Data Types: object

dT_paid — Development triangle for paid claims
developmentTriangle object

Development triangle for paid claims, specified as a previously created developmentTriangle
object.
Data Types: object

 bornhuetterFerguson

6-511

expectedClaims — Expected claims estimates for each Origin period
array

Expected claims estimates for each Origin period, specified as an array.
Data Types: double

Properties
ReportedTriangle — Development triangle for reported claims
developmentTriangle object

Development triangle for reported claims, returned as a developmentTriangle object containing
the origin years, development years, and claims.
Data Types: object

PaidTriangle — Development triangle for paid claims
developmentTriangle object

Development triangle for paid claims, returned as a developmentTriangle object containing the
origin years, development years, and claims.
Data Types: object

expectedClaims — Expected claims estimates for each Origin period
array

Expected claims estimates for each Origin period, returned as an array.
Data Types: double

Object Functions
ultimateClaims Compute projected ultimate claims for bornhuetterFerguson object
ibnr Compute IBNR claims for bornhuetterFerguson object
unpaidClaims Compute unpaid claims estimates for bornhuetterFerguson object
summary Display summary report for Bornhuetter-Ferguson analysis

Examples

Create bornhuetterFerguson Object

Create a bornhuetterFerguson object containing simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487

6 Functions

6-512

 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create an expectedClaims object where the first input argument is the reported development
triangle and the second input argument is the paid development triangle.

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)

ec =
 expectedClaims with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 InitialClaims: [10x1 double]
 CaseOutstanding: [10x1 double]
 EstimatedClaimsRatios: [10x1 double]
 SelectedClaimsRatios: [10x1 double]

Create a bornhuetterFerguson object with reported claims, paid claims, and expected claims to
calculate ultimate claims, case outstanding, IBNR claims, and unpaid claims estimates.

 bornhuetterFerguson

6-513

bf = bornhuetterFerguson(dT_reported, dT_paid, ec.InitialClaims)

bf =
 bornhuetterFerguson with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 ExpectedClaims: [10x1 double]
 PercentUnreported: [10x1 double]
 PercentUnpaid: [10x1 double]
 CaseOutstanding: [10x1 double]

Version History
Introduced in R2020b

See Also
developmentTriangle | chainLadder | expectedClaims

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

6 Functions

6-514

capeCod
Create capeCod object

Description
Use this workflow to generate unpaid claims for a capeCod object:

1 Load or generate the data for the development triangle.
2 Create two developmentTriangle objects — one for the reported development triangle and

one for the paid development triangle.
3 Create a capeCod object.
4 Use the ibnr function to calculate the incurred-but-not-reported (IBNR) claims.
5 Use the ultimateClaims function to calculate the ultimate claims.
6 Use the unpaidClaims function to calculate the unpaid claims.
7 Use the summary function to display the chain ladder summary report.

Creation

Syntax
cc = capeCod(dT_reported,dT_paid,earnedPremium)

Description

cc = capeCod(dT_reported,dT_paid,earnedPremium) creates a capeCod object using the
developmentTriangle objects for reported claims (dT_reported) and paid claims (dT_paid) and
the earnedPremium.

Input Arguments

dT_reported — Development triangle for reported claims
developmentTriangle object

Development triangle for reported claims, specified as a previously created developmentTriangle
object.
Data Types: object

dT_paid — Development triangle for paid claims
developmentTriangle object

Development triangle for paid claims, specified as a previously created developmentTriangle
object.
Data Types: object

 capeCod

6-515

earnedPremium — Earned premium
vector

Earned premium, specified as a vector.
Data Types: double

Properties
ReportedTriangle — Development triangle for reported claims
developmentTriangle object

Development triangle for reported claims, returned as a developmentTriangle object containing
the origin years, development years, and claims.
Data Types: object

PaidTriangle — Development triangle for paid claims
developmentTriangle object

Development triangle for paid claims, returned as a developmentTriangle object containing the
origin years, development years, and claims.
Data Types: object

EarnedPremium — Earned premium
vector

Earned premium, returned as a vector.
Data Types: double

UsedUpPremium — Used up premium
vector

This property is read-only.

Used up premium, calculated by multiplying the initial claims with the percent of ultimate claims that
are reported, returned as a vector.
Data Types: double

EstimatedClaimsRatio — Estimated claims ratio
vector

This property is read-only.

Estimated claims ratio, calculated by dividing the initial claims by the used up premium, returned as
a vector.
Data Types: double

ExpectedClaimRatio — Expected claim ration
vector

This property is read-only.

Expected claim ratio, weighted average claim ratio from all the time periods, returned as a vector.

6 Functions

6-516

Data Types: double

EstimatedExpectedClaims — Estimated expected claims
vector

This property is read-only.

Estimated expected claims, that is, the earned premium multiplied by the expected claim ratio,
returned as a vector.
Data Types: double

PercentUnreported — Percentage of unreported claims
vector

This property is read-only.

Percentage of unreported claims, returned as a vector.
Data Types: double

CaseOutstanding — Difference of the latest diagonals of the reported and paid
development triangles
vector

This property is read-only.

Difference of the latest diagonals of the reported and paid development triangles, returned as a
vector.
Data Types: double

Object Functions
ibnr Compute IBNR claims for capeCod object
unpaidClaims Compute unpaid claims estimates for capeCod object
ultimateClaims Compute projected ultimate claims for capeCod object
summary Display summary report for Cape Cod analysis

Examples

Create capeCod Object

Create a capeCod object containing simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4

 capeCod

6-517

 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];

Create a capeCod object where the first input argument is the reported development triangle, the
second input argument is the paid development triangle, and the third argument is the earned
premium.

cc = capeCod(dT_reported, dT_paid, earnedPremium)

cc =
 capeCod with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 UsedUpPremium: [10x1 double]
 EstimatedClaimRatios: [10x1 double]
 ExpectedClaimRatio: 0.4258
 EstimatedExpectedClaims: [10x1 double]
 PercentUnreported: [10x1 double]
 CaseOutstanding: [10x1 double]

6 Functions

6-518

Version History
Introduced in R2021a

See Also
developmentTriangle | expectedClaims | bornhuetterFerguson

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 capeCod

6-519

chainLadder
Create chainLadder object

Description
Use this workflow to generate unpaid claims for a chainLadder:

1 Load or generate the data for the development triangle.
2 Create two developmentTriangle objects — one for the reported development triangle and

one for the paid development triangle.
3 Create a chainLadder object.
4 Use the ibnr function to calculate the incurred-but-not-reported (IBNR) claims.
5 Use the unpaidClaims function to calculate the unpaid claims.
6 Use the summary function to display the chain ladder summary report.

Creation

Syntax
cl = chainladder(dT_reported,dT_paid)

Description

cl = chainladder(dT_reported,dT_paid) creates a chainLadder object using the
developmentTriangle objects for reported claims (dT_reported) and paid claims (dT_paid).

Input Arguments

dT_reported — Development triangle for reported claims
developmentTriangle object

Development triangle for reported claims, specified as a previously created developmentTriangle
object.
Data Types: object

dT_paid — Development triangle for paid claims
developmentTriangle object

Development triangle for paid claims, specified as a previously created developmentTriangle
object.
Data Types: object

6 Functions

6-520

Properties
ReportedTriangle — Development triangle for reported claims
developmentTriangle object

Development triangle for reported claims, returned as a developmentTriangle object containing
the origin years, development years, and claims.
Data Types: object

PaidTriangle — Development triangle for paid claims
developmentTriangle object

Development triangle for paid claims, returned as a developmentTriangle object containing the
origin years, development years, and claims.
Data Types: object

CaseOutstanding — Difference of the latest diagonals of the reported and paid
development triangles
vector

Difference of the latest diagonals of the reported and paid development triangles, returned as a
vector.
Data Types: double

Object Functions
ibnr Compute IBNR claims for chainLadder object
unpaidClaims Compute unpaid claims for chainLadder object
summary Display summary report for different claims estimates

Examples

Create chainLadder Object

Create a chainLadder object containing simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

 chainLadder

6-521

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create a chainLadder object where the first input argument is the reported development triangle
and the second input argument is the paid development triangle.

cl = chainLadder(dT_reported, dT_paid)

cl =
 chainLadder with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 CaseOutstanding: [10x1 double]

Version History
Introduced in R2020b

See Also
developmentTriangle | expectedClaims | bornhuetterFerguson

6 Functions

6-522

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 chainLadder

6-523

compactCreditScorecard
Create compactCreditScorecard object for a credit scorecard model

Description
Build a compact credit scorecard model by creating a compactCreditScorecard object from an
existing creditscorecard object.

After creating a compactCreditScorecard object, you can use the associated object functions to
display points (displaypoints), calculate the probability of default (probdefault), or compute
scores (score).

Note You cannot directly modify a compactCreditScorecard object. To change a
compactCreditScorecard object, you must modify the existing creditscorecard object that you
used to create the compactCreditScorecard object. You must then use
compactCreditScorecard to create a new compactCreditScorecard object.

Creation

Syntax
csc = compactCreditScorecard(sc)

Description

csc = compactCreditScorecard(sc) creates a compactCreditScorecard object from an
existing creditscorecard. You can then use the compactCreditScorecard object with the
displaypoints, score, and probdefault functions.

Note You cannot use a compactCreditScorecard object with the Binning Explorer app.

Input Arguments

sc — creditscorecard object
object

creditscorecard object, specified using an existing creditscorecard object.

Note To use a creditscorecard object for input, you must first process the object using the
autobinning and fitmodel functions. Optionally, you can also use formatpoints for processing.

Data Types: object

6 Functions

6-524

Properties
PredictorVars — Names of predictor variables
cell array of character vectors

Names of the predictor variables used in the input creditscorecard object, returned as a cell array
of character vectors. The PredictorVars property includes only the predictor variable names in the
fitted creditscorecard object.
Data Types: cell

NumericPredictors — Numeric predictors
cell array of character vectors

Numeric predictors in the input creditscorecard object, returned as a cell array of character
vectors. The NumericPredictors property includes only the numeric predictors in the fitted
creditscorecard object.
Data Types: cell

CategoricalPredictors — Names of categorical predictors
cell array of character vectors

Names of categorical predictors used in the input creditscorecard object, returned as a cell array
of character vectors. The CategoricalPredictors property includes only the categorical
predictors in the fitted creditscorecard object.
Data Types: cell

Description — User-defined description
character vector | string

User-defined description, returned as a character vector or string.
Data Types: char | string

Object Functions
displaypoints Return points per predictor per bin for a compactCreditScorecard object
score Compute credit scores for given dataset for a compactCreditScorecard object
probdefault Likelihood of default for given dataset for a compactCreditScorecard object
validatemodel Validate quality of compact credit scorecard model

Examples

Create compactCreditScorecard Object

To create a compactCreditScorecard object, first create a creditscorecard object using the
CreditCardData.mat file to load the data (using a dataset from Refaat 2011).

load CreditCardData.mat
sc = creditscorecard(data)

sc =
 creditscorecard with properties:

 compactCreditScorecard

6-525

 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ''
 VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'status'}
 NumericPredictors: {'CustID' 'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'}
 CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
 BinMissingData: 0
 IDVar: ''
 PredictorVars: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'}
 Data: [1200x11 table]

Before creating a compactCreditScorecard object, you must use autobinning and fitmodel
with the creditscorecard object.

sc = autobinning(sc);
sc = fitmodel(sc);

1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769

Generalized linear regression model:
 logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ ______ __________

 (Intercept) 0.70239 0.064001 10.975 5.0538e-28
 CustAge 0.60833 0.24932 2.44 0.014687
 ResStatus 1.377 0.65272 2.1097 0.034888
 EmpStatus 0.88565 0.293 3.0227 0.0025055
 CustIncome 0.70164 0.21844 3.2121 0.0013179
 TmWBank 1.1074 0.23271 4.7589 1.9464e-06
 OtherCC 1.0883 0.52912 2.0569 0.039696
 AMBalance 1.045 0.32214 3.2439 0.0011792

1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16

Use the creditscorecard object with compactCreditScorecard to create a
compactCreditScorecard object.

csc = compactCreditScorecard(sc)

csc =
 compactCreditScorecard with properties:

 Description: ''

6 Functions

6-526

 GoodLabel: 0
 ResponseVar: 'status'
 WeightsVar: ''
 NumericPredictors: {'CustAge' 'CustIncome' 'TmWBank' 'AMBalance'}
 CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
 PredictorVars: {'CustAge' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance'}

You can then use displaypoints, score, and probdefault with the compactCreditScorecard
object.

Version History
Introduced in R2019a

References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.

[2] Refaat, M. Data Preparation for Data Mining Using SAS. Morgan Kaufmann, 2006.

[3] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.

See Also
Functions
displaypoints | score | probdefault | validatemodel

Apps
Binning Explorer

Topics
“compactCreditScorecard Object Workflow” on page 3-57
“Case Study for Credit Scorecard Analysis”
“Credit Scorecard Modeling Workflow”
“About Credit Scorecards”

External Websites
Credit Risk Modeling with MATLAB (53 min 10 sec)

 compactCreditScorecard

6-527

https://www.mathworks.com/videos/credit-risk-modeling-with-matlab-81728.html

creditDefaultCopula
Create creditDefaultCopula object to simulate and analyze multifactor credit default model

Description
The creditDefaultCopula class simulates portfolio losses due to counterparty defaults using a
multifactor model. creditDefaultCopula associates each counterparty with a random variable,
called a latent variable, which is mapped to default/non-default outcomes for each scenario such that
defaults occur with probability PD. In the event of default, a loss for that scenario is recorded equal to
EAD * LGD for the counterparty. These latent variables are simulated using a multi-factor model,
where systemic credit fluctuations are modeled with a series of risk factors. These factors can be
based on industry sectors (such as financial, aerospace), geographical regions (such as USA,
Eurozone), or any other underlying driver of credit risk. Each counterparty is assigned a series of
weights which determine their sensitivity to each underlying credit factors.

The inputs to the model describe the credit-sensitive portfolio of exposures:

• EAD — Exposure at default
• PD — Probability of default
• LGD — Loss given default (1 âˆ’ Recovery)
• Weights — Factor and idiosyncratic model weights

After the creditDefaultCopula object is created (see “Create creditDefaultCopula” on page 6-
528 and “Properties” on page 6-531), use the simulate function to simulate credit defaults using
the multifactor model. The results are stored in the form of a distribution of losses at the portfolio
and counterparty level. Several risk measures at the portfolio level are calculated, and the risk
contributions from individual obligors. The model calculates:

• Full simulated distribution of portfolio losses across scenarios
• Losses on each counterparty across scenarios
• Several risk measures (VaR, CVaR, EL, Std) with confidence intervals
• Risk contributions per counterparty (for EL and CVaR)

Creation

Syntax
cdc = creditDefaultCopula(EAD,PD,LGD,Weights)
cdc = creditDefaultCopula(___ ,Name,Value)

Description

cdc = creditDefaultCopula(EAD,PD,LGD,Weights) creates a creditDefaultCopula object.
The creditDefaultCopula object has the following properties:

6 Functions

6-528

• Portfolio on page 6-0 :

A table with the following variables (each row of the table represents one counterparty):

• ID — ID to identify each counterparty
• EAD — Exposure at default
• PD — Probability of default
• LGD — Loss given default
• Weights — Factor and idiosyncratic weights for counterparties

• FactorCorrelation on page 6-0 :

Factor correlation matrix, a NumFactors-by-NumFactors matrix that defines the correlation
between the risk factors.

• VaRLevel on page 6-0 :

The value-at-risk level, used when reporting VaR and CVaR.
• PortfolioLosses on page 6-0

Portfolio losses, a NumScenarios-by-1 vector of portfolio losses. This property is empty until the
simulate function is used.

cdc = creditDefaultCopula(___ ,Name,Value) sets Properties on page 6-531 using name-
value pairs and any of the arguments in the previous syntax. For example, cdc =
creditDefaultCopula(EAD,PD,LGD,Weights,'VaRLevel',0.99). You can specify multiple
name-value pairs as optional name-value pair arguments.

Input Arguments

EAD — Exposure at default
numeric vector

Exposure at default, specified as a NumCounterparties-by-1 vector of credit exposures. The EAD
input sets the Portfolio on page 6-0 property.

Note The creditDefaultCopula model simulates defaults and losses over some fixed time period
(for example, one year). The counterparty exposures (EAD) and default probabilities (PD) must both
be specific to a particular time.

Data Types: double

PD — Probability of default
numeric vector with elements from 0 through 1

Probability of default, specified as a NumCounterparties-by-1 numeric vector with elements from 0
through 1, representing the default probabilities for the counterparties. The PD input sets the
Portfolio on page 6-0 property.

Note The creditDefaultCopula model simulates defaults and losses over a fixed time period (for
example, one year). The counterparty exposures (EAD) and default probabilities (PD) must both be
specific to a particular time.

 creditDefaultCopula

6-529

Data Types: double

LGD — Loss given default
numeric vector with elements from 0 through 1

Loss given default, specified as a NumCounterparties-by-1 numeric vector with elements from 0
through 1, representing the fraction of exposure that is lost when a counterparty defaults. LGD is
defined as (1 âˆ’ Recovery). For example, an LGD of 0.6 implies a 40% recovery rate in the event of a
default. The LGD input sets the Portfolio on page 6-0 property.

LGD can alternatively be specified as a NumCounterparties-by-2 matrix, where the first column
holds the LGD mean values and the 2nd column holds the LGD standard deviations. Valid open
intervals for LGD mean and standard deviation are:

• For the first column, the mean values are between 0 and 1.
• For the second column, the LGD standard deviations are between 0 and sqrt(m*(1-m)).

Then, in the case of default, LGD values are drawn randomly from a beta distribution with provided
parameters for the defaulting counterparty.
Data Types: double

Weights — Factor and idiosyncratic weights
array of factor and idiosyncratic weights

Factor and idiosyncratic weights, specified as a NumCounterparties-by-(NumFactors + 1) array.
Each row contains the factor weights for a particular counterparty. Each column contains the weights
for an underlying risk factor. The last column in Weights contains the idiosyncratic risk weight for
each counterparty. The idiosyncratic weight represents the company-specific credit risk. The total of
the weights for each counterparty (that is, each row) must sum to 1. The Weights input sets the
Portfolio on page 6-0 property.

For example, if a counterparty's creditworthiness is composed of 60% US, 20% European, and 20%
idiosyncratic, then the Weights vector would be [0.6 0.2 0.2].
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: cdc = creditDefaultCopula(EAD,PD,LGD,Weights,'VaRLevel',0.99)

ID — User-defined IDs for counterparties
1:NumCounterparties (default) | vector

User-defined IDs for counterparties, specified as the comma-separated pair consisting of 'ID' and a
NumCounterparties-by-1 vector of IDs for each counterparty. ID is used to identify exposures in
the Portfolio table and the risk contribution table. ID must be a numeric, a string array, or a cell
array of character vectors. The ID name-value pair argument sets the Portfolio on page 6-0
property.

6 Functions

6-530

If unspecified, ID defaults to a numeric vector 1:NumCounterparties.
Data Types: double | string | cell

VaRLevel — Value at risk level
0.95 (default) | numeric between 0 and 1

Value at risk level (used for reporting VaR and CVaR), specified as the comma-separated pair
consisting of 'VaRLevel' and a numeric between 0 and 1. The VaRLevel name-value pair argument
sets the VaRLevel on page 6-0 property.
Data Types: double

FactorCorrelation — Factor correlation matrix
identity matrix (default) | correlation matrix

Factor correlation matrix, specified as the comma-separated pair consisting of
'FactorCorrelation' and a NumFactors-by-NumFactors matrix that defines the correlation
between the risk factors. The FactorCorrelation name-value pair argument sets the
FactorCorrelation on page 6-0 property.

If not specified, the factor correlation matrix defaults to an identity matrix, meaning that factors are
not correlated.
Data Types: double

UseParallel — Flag to use parallel processing for simulations
false (default) | logical with value of true or false

Flag to use parallel processing for simulations, specified as the comma-separated pair consisting of
'UseParallel' and a scalar value of true or false. The UseParallel name-value pair argument
sets the UseParallel on page 6-0 property.

Note The 'UseParallel' property can only be set when creating a creditDefaultCopula object
if you have Parallel Computing Toolbox. Once the 'UseParallel' property is set, parallel
processing is used with riskContribution or simulate.

Data Types: logical

Properties
Portfolio — Details of credit portfolio
table

Details of credit portfolio, specified as a MATLAB table that contains all the portfolio data that was
passed as input into creditDefaultCopula.

The Portfolio table has a column for each of the constructor inputs (EAD, PD, LGD, Weights, and
ID). Each row of the table represents one counterparty.

For example:

 ID EAD PD LGD Weights
 __ ______ _________ _______ _________

 creditDefaultCopula

6-531

 1 122.43 0.064853 0.68024 0.3 0.7
 2 70.386 0.073957 0.59256 0.3 0.7
 3 79.281 0.066235 0.52383 0.3 0.7
 4 113.42 0.01466 0.43977 0.3 0.7
 5 100.46 0.0042036 0.41838 0.3 0.7

Data Types: table

FactorCorrelation — Correlation matrix for credit factors
matrix

Correlation matrix for credit factors, specified as a NumFactors-by-NumFactors matrix. Specify the
correlation matrix using the optional name-value pair argument 'FactorCorrelation' when you
create a creditDefaultCopula object.
Data Types: double

VaRLevel — Value at Risk Level
numeric between 0 and 1

Value at risk level used when reporting VaR and CVaR, specified using an optional name-value pair
argument 'VaRLevel' when you create a creditDefaultCopula object.
Data Types: double

PortfolioLosses — Total portfolio losses
vector

Total portfolio losses, specified as a 1-by-NumScenarios vector. The PortfolioLosses property is
empty after you create a creditDefaultCopula object. After the simulate function is invoked, the
PortfolioLosses property is populated with the vector of portfolio losses.
Data Types: double

UseParallel — Flag to use parallel processing for simulations
false (default) | logical with value of true or false

Flag to use parallel processing for simulations, specified using an optional name-value pair argument
'UseParallel' when you create a creditDefaultCopula object. The UseParallel name-value
pair argument sets the UseParallel property.

Note The 'UseParallel' property can only be set when creating a creditDefaultCopula object
if you have Parallel Computing Toolbox. Once the 'UseParallel' property is set, parallel
processing is used with riskContribution or simulate.

Data Types: logical

Object Functions
simulate Simulate credit defaults using a creditDefaultCopula object
portfolioRisk Generate portfolio-level risk measurements
riskContribution Generate risk contributions for each counterparty in portfolio
confidenceBands Confidence interval bands
getScenarios Counterparty scenarios

6 Functions

6-532

Examples

Create a creditDefaultCopula Object and Simulate Credit Portfolio Losses

Load saved portfolio data.

load CreditPortfolioData.mat;

Create a creditDefaultCopula object with a two-factor model.

cdc = creditDefaultCopula(EAD,PD,LGD,Weights2F,'FactorCorrelation',FactorCorr2F)

cdc =
 creditDefaultCopula with properties:

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioLosses: []

Set the VaRLevel to 99%.

cdc.VaRLevel = 0.99;

Simulate 100,000 scenarios, and view the portfolio risk measures.

 cdc = simulate(cdc,1e5)

cdc =
 creditDefaultCopula with properties:

 Portfolio: [100x5 table]
 FactorCorrelation: [2x2 double]
 VaRLevel: 0.9900
 UseParallel: 0
 PortfolioLosses: [30.1008 3.6910 3.2895 19.2151 7.5761 44.5088 19.5419 1.7909 72.1443 12.6933 36.0228 1.7909 4.8512 23.0230 54.0877 35.9298 35.3757 26.1678 36.8868 24.6242 2.9770 15.3030 0 0 10.5546 61.2268 32.5802 42.5504 10.2981 4.8318 ...]

 portRisk = portfolioRisk(cdc)

portRisk=1×4 table
 EL Std VaR CVaR
 ______ ______ _____ ______

 24.876 23.778 102.4 121.28

View a histogram of the portfolio losses.

histogram(cdc.PortfolioLosses);
title('Distribution of Portfolio Losses');

 creditDefaultCopula

6-533

For further analysis, use the simulate, portfolioRisk, riskContribution, and getScenarios
functions with the creditDefaultCopula object.

Version History
Introduced in R2017a

References
[1] Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk Models.”

Journal of Banking and Finance. Vol. 24, 2000, pp. 59 – 117.

[2] Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and Finance. Vol.
24, 2000, pp. 119 – 149.

[3] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P. Morgan, New
York, 1997.

[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.

[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and
Tools. Princeton University Press, 2005.

6 Functions

6-534

See Also
table | simulate | portfolioRisk | riskContribution | confidenceBands | getScenarios |
creditMigrationCopula | nearcorr

Topics
“Modeling Correlated Defaults with Copulas” on page 4-18
“creditDefaultCopula Simulation Workflow” on page 4-5
“Modeling Correlated Defaults with Copulas” on page 4-18
“One-Factor Model Calibration” on page 4-64
“Corporate Credit Risk” on page 1-3
“Credit Simulation Using Copulas” on page 4-2

External Websites
Parallel Computing with MATLAB (53 min 27 sec)

 creditDefaultCopula

6-535

https://www.mathworks.com/videos/parallel-computing-with-matlab-81694.html

Cox
Create Cox model object for lifetime probability of default

Description
Create and analyze a Cox model object to calculate lifetime probability of default (PD) using this
workflow:

1 Use fitLifetimePDModel to create a Cox model object.
2 Optionally, use discardResiduals to remove residual information from the Cox model object.
3 Use predict to predict the conditional PD and predictLifetime to predict the lifetime PD.
4 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using

modelDiscriminationPlot.
5 Use modelCalibration to return the root mean square error (RMSE) of observed and

predicted PD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax
CoxPDModel = fitLifetimePDModel(data,ModelType,AgeVar=agevar_value)
CoxPDModel = fitLifetimePDModel(___ ,Name=Value)

Description

CoxPDModel = fitLifetimePDModel(data,ModelType,AgeVar=agevar_value) creates a
Cox PD model object.

If you do not specify variable information for IDVar, LoanVars, MacroVars, and ResponseVar,
then:

• IDVar is set to the first column in the data input.
• LoanVars is set to include all columns from the second to the second-to-last columns of the data

input.
• ResponseVar is set to the last column in the data input.

CoxPDModel = fitLifetimePDModel(___ ,Name=Value) sets optional properties on page 6-
539 using additional name-value arguments in addition to the required arguments in the previous
syntax. For example, CoxPDModel =
fitLifetimePDModel(data(TrainDataInd,:),"Cox",ModelID="Cox_A",Descripion="Cox
_model",AgeVar="YOB",IDVar="ID",LoanVars="ScoreGroup",MacroVars={'GDP','Marke
t'},ResponseVar="Default",TimeInterval=1,TieBreakMethod='Efron') creates a
CoxPDModel using a Cox model type. You can specify multiple name-value arguments.

6 Functions

6-536

Input Arguments

data — Data
table

Data, specified as a table, in panel data form. The data must contain an ID column and an Age
column. The response variable must be a binary variable with the value 0 or 1, with 1 indicating
default.
Data Types: table

ModelType — Model type
string with value "Cox" | character vector with value 'Cox'

Model type, specified as a string with the value "Cox" or a character vector with the value 'Cox'.
Data Types: char | string

Cox Name-Value Arguments

Specify required and optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is the corresponding value. Name-value arguments must
appear after other arguments, but the order of the pairs does not matter.
Example: CoxPDModel =
fitLifetimePDModel(data(TrainDataInd,:),"Cox",ModelID="Cox_A",Descripion="Cox
_model",AgeVar="YOB",IDVar="ID",LoanVars="ScoreGroup",MacroVars={'GDP','Marke
t'},ResponseVar="Default",TimeInterval=1)

Required Cox Name-Value Argument

AgeVar — Age variable indicating which column in data contains loan age information
string | character vector

Age variable indicating which column in data contains the loan age information, specified as AgeVar
and a string or character vector.

Note The required name-value argument AgeVar is not treated as a predictor in the Cox lifetime PD
model. When using a Cox model, you must specify predictor variables using LoanVars or
MacroVars. The AgeVar values are the event times for the underlying Cox proportional hazards
model.

AgeVar values for each ID should be increasing. If there are nonpositive age increments,
fitLifetimePDModel warns when you create a Cox model and removes the IDs with nonpositive
age increments. By default, the TimeInterval value is set to the most common age increment in the
training data.

Data Types: string | char

Optional Cox Name-Value Arguments

ModelID — User-defined model ID
Cox (default) | string | character vector

User-defined model ID, specified as ModelID and a string or character vector. The software uses the
ModelID to format outputs and is expected to be short.

 Cox

6-537

Data Types: string | char

Description — User-defined description for model
"" (default) | string | character vector

User-defined description for model, specified as Description and a string or character vector.
Data Types: string | char

IDVar — ID variable indicating which column in data contains loan or borrower ID
1st column of data (default) | string | character vector

ID variable indicating which column in data contains the loan or borrower ID, specified as IDVar
and a string or character vector.
Data Types: string | char

LoanVars — Loan variables indicating which column in data contains loan-specific
information
all columns of data that are not the first or last column (default) | string array | cell array of
character vectors

Loan variables indicating which column in data contains the loan-specific information, such as
origination score or loan-to-value ratio, specified as LoanVars and a string array or cell array of
character vectors.
Data Types: string | cell

MacroVars — Macro variables indicating which column in data contains macroeconomic
information
"" (default) | string array | cell array of character vectors

Macro variables indicating which column in data contains the macroeconomic information, such as
gross domestic product (GDP) growth or unemployment rate, specified as MacroVars and a string
array or cell array of character vectors.
Data Types: string | cell

ResponseVar — Variable indicating which column in data contains response variable
string | character vector

Variable indicating which column in data contains the response variable, specified as ResponseVar
and a logical value.

Note The response variable values in the data must be a binary variable with 0 or 1 values, with 1
indicating default.

In Cox lifetime PD models, the ResponseVar values define the censoring information for the
underlying Cox proportional hazards model.

Data Types: string | char

TimeInterval — Distance between age values in panel data input
set to most common AgeVar increment in the training data (default) | positive numeric

6 Functions

6-538

Distance between age values in training data in the panel data input, specified as TimeInterval
and a positive numeric scalar.

Use the TimeInterval name-value argument to fit time-dependent models and also as the time
interval for the PD computation when you use the predict function. For example, if the age data
(AgeVar) is 1, 2, 3, ..., then the TimeInterval is 1; if the age data is 0.25, 0.5, 0.75,..., then the
TimeInterval is 0.25. For more information, see “Time Interval for Cox Models” on page 6-551
and “Lifetime Prediction and Time Interval” on page 6-342.

Note Unlike Logistic and Probit models, a Cox model requires an AgeVar variable. By default, if
you do not specify a TimeInterval when creating a Cox model, the TimeInterval is inferred from
the increments in the AgeVar values in the training data.

Data Types: double

TieBreakMethod — Method to handle tied default times
"breslow" (default) | string with value "breslow" or "efron" | character vector with value
'breslow' or 'efron'

Method to handle tied default times, specified as a string or character vector with one of the
following tie-break methods:

• breslow — Breslow's approximation to the partial likelihood
• efron — Efron's approximation to the partial likelihood

For credit applications, the time to default comes discretized and there are many "ties." This means
that are multiple borrowers that may default at the same (discretized) time (such as, in the second
year of their loan). TieBreakMethod supports the breslow or efron methods to handle this
scenario.
Data Types: string | char

Properties
ModelID — User-defined model ID
Probit (default) | string

User-defined model ID, returned as a string.
Data Types: string

Description — User-defined description
"" (default) | string

User-defined description, returned as a string.
Data Types: string

UnderlyingModel — Underlying statistical model
Cox model

Underlying statistical model, returned as a returned as a Cox proportional hazards model object. For
more information, see fitcox and CoxModel.

 Cox

6-539

Data Types: CoxModel

IDVar — ID variable indicating which column in data contains loan or borrower ID
1st column of data (default) | string

ID variable indicating which column in data contains the loan or borrower ID, returned as a string.
Data Types: string

AgeVar — Age variable indicating which column in data contains loan age information
string

Age variable indicating which column in data contains the loan age information, returned as a string.
Data Types: string

LoanVars — Loan variables indicating which column in data contains loan-specific
information
all columns of data that are not the first or last column (default) | string array

Loan variables indicating which column in data contains the loan-specific information, returned as a
string array.
Data Types: string

MacroVars — Macro variables indicating which column in data contains macroeconomic
information
"" (default) | string array

Macro variables indicating which column in data contains the macroeconomic information, returned
as a string array.
Data Types: string

ResponseVar — Variable indicating which column in data contains response variable
string

Variable indicating which column in data contains the response variable, returned as a string.
Data Types: string

TimeInterval — Distance between age values in panel data input
set to most common AgeVar increment in the training data (default) | positive numeric

This property is read-only.

Distance between age values in panel data input, returned as a scalar positive numeric.
Data Types: double

ExtrapolationFactor — Extrapolation factor
1 (default) | positive numeric between 0 and 1

Extrapolation factor, returned as a positive numeric scalar between 0 and 1.

By default, the ExtrapolationFactor is set to 1. For age values (AgeVar) greater than the
maximum age observed in the training data, the conditional PD, computed with predict, uses the
maximum age observed in the training data. In particular, the predicted PD value is constant if the

6 Functions

6-540

predictor values do not change and only the age values change when the ExtrapolationFactor is
1. For more information, see “Extrapolation for Cox Models” on page 6-335, “Extrapolation Factor for
Cox Models” on page 6-335, and “Use Cox Lifetime PD Model to Predict Conditional PD” on page 6-
329.
Data Types: double

TieBreakMethod — Method to handle tied default times
"breslow" (default) | string with value "breslow" or "efron"

Method to handle tied default times, returned as a string.
Data Types: string

Object Functions
predict Compute conditional PD
predictLifetime Compute cumulative lifetime PD, marginal PD, and survival probability
modelDiscrimination Compute AUROC and ROC data
modelCalibration Compute RMSE of predicted and observed PDs on grouped data
modelDiscriminationPlot Plot ROC curve
modelCalibrationPlot Plot observed default rates compared to predicted PDs on grouped data
discardResiduals Discard residual information of underlying Cox model

Examples

Create Cox Lifetime PD Model

This example shows how to use fitLifetimePDModel to create a Cox model using credit and
macroeconomic data.

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat
disp(head(data))

 ID ScoreGroup YOB Default Year
 __ __________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004

disp(head(dataMacro))

 Year GDP Market
 ____ _____ ______

 1997 2.72 7.61

 Cox

6-541

 1998 3.57 26.24
 1999 2.86 18.1
 2000 2.43 3.19
 2001 1.26 -10.51
 2002 -0.59 -22.95
 2003 0.63 2.78
 2004 1.85 9.48

Join the two data components into a single data set.

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Partition Data

Separate the data into training and test partitions.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % For reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Create a Cox Lifetime PD Model

Use fitLifetimePDModel to create a Cox model using the training data.

pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Cox",...
 AgeVar="YOB", ...
 IDVar="ID", ...
 LoanVars="ScoreGroup", ...
 MacroVars={'GDP','Market'}, ...
 ResponseVar="Default");
disp(pdModel)

 Cox with properties:

 TimeInterval: 1
 ExtrapolationFactor: 1
 ModelID: "Cox"
 Description: ""

6 Functions

6-542

 UnderlyingModel: [1x1 CoxModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

Display the underlying model.

disp(pdModel.UnderlyingModel)

Cox Proportional Hazards regression model

 Beta SE zStat pValue
 __________ _________ _______ ___________

 ScoreGroup_Medium Risk -0.6794 0.037029 -18.348 3.4442e-75
 ScoreGroup_Low Risk -1.2442 0.045244 -27.501 1.7116e-166
 GDP -0.084533 0.043687 -1.935 0.052995
 Market -0.0084411 0.0032221 -2.6198 0.0087991

Log-likelihood: -41742.871

Validate Model

Use modelDiscrimination to measure the ranking of customers by PD.

DataSetChoice = ;
if DataSetChoice=="Training"
 Ind = TrainDataInd;
else
 Ind = TestDataInd;
end

DiscMeasure = modelDiscrimination(pdModel,data(Ind,:),SegmentBy="ScoreGroup")

DiscMeasure=3×1 table
 AUROC

 Cox, ScoreGroup=High Risk 0.64112
 Cox, ScoreGroup=Medium Risk 0.61989
 Cox, ScoreGroup=Low Risk 0.6314

disp(DiscMeasure)

 AUROC

 Cox, ScoreGroup=High Risk 0.64112
 Cox, ScoreGroup=Medium Risk 0.61989
 Cox, ScoreGroup=Low Risk 0.6314

Use modelDiscriminationPlot to visualize the ROC curve.

modelDiscriminationPlot(pdModel,data(Ind,:),SegmentBy="ScoreGroup")

 Cox

6-543

Use modelCalibration to measure the calibration of the predicted PD values. The
modelCalibration function requires a grouping variable and compares the accuracy of the
observed default rate in the group with the average predicted PD for the group.

CalMeasure = modelCalibration(pdModel,data(Ind,:),{'YOB','ScoreGroup'})

CalMeasure=table
 RMSE

 Cox, grouped by YOB, ScoreGroup 0.0012471

disp(CalMeasure)

 RMSE

 Cox, grouped by YOB, ScoreGroup 0.0012471

Use modelCalibrationPlot to visualize the observed default rates compared to the predicted PD.

modelCalibrationPlot(pdModel,data(Ind,:),{'YOB','ScoreGroup'})

6 Functions

6-544

Predict Conditional and Lifetime PD

Use the predict function to predict conditional PD values. The prediction is a row-by-row prediction.

%dataCustomer1 = data(1:8,:);
CondPD = predict(pdModel,data(Ind,:));

Use predictLifetime to predict the lifetime cumulative PD values (computing marginal and
survival PD values is also supported).

LifetimePD = predictLifetime(pdModel,data(Ind,:));

Select Tie-Break Method for Cox Lifetime PD Models

This example shows how to create a Cox model and select the tie-break method while fitting a Cox
lifetime PD model.

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat
disp(head(data))

 ID ScoreGroup YOB Default Year
 __ __________ ___ _______ ____

 Cox

6-545

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004

disp(head(dataMacro))

 Year GDP Market
 ____ _____ ______

 1997 2.72 7.61
 1998 3.57 26.24
 1999 2.86 18.1
 2000 2.43 3.19
 2001 1.26 -10.51
 2002 -0.59 -22.95
 2003 0.63 2.78
 2004 1.85 9.48

Join the two data components into a single data set.

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Join the Data

Join the two data components into a single data set.

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

6 Functions

6-546

Partition the Data

Separate the data into training and test partitions.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Create a Cox Lifetime PD Model with Breslow's Method

Use fitLifetimePDModel to create a Cox model using the training data. Use the name-value
argument TieBreakMethod to set tie-break method to 'breslow'. This is the default choice for this
argument.

pdModel1 = fitLifetimePDModel(data(TrainDataInd,:),"Cox",...
ModelID="Cox-Breslow", IDVar="ID", AgeVar="YOB", ...
LoanVars="ScoreGroup", MacroVars={'GDP','Market'}, ...
ResponseVar="Default",TieBreakMethod='breslow');

Display the underlying model.

disp(pdModel1.Model)

Cox Proportional Hazards regression model

 Beta SE zStat pValue
 __________ _________ _______ ___________

 ScoreGroup_Medium Risk -0.6794 0.037029 -18.348 3.4442e-75
 ScoreGroup_Low Risk -1.2442 0.045244 -27.501 1.7116e-166
 GDP -0.084533 0.043687 -1.935 0.052995
 Market -0.0084411 0.0032221 -2.6198 0.0087991

Log-likelihood: -41742.871

Use predict to predict the conditional PD.

pd1 = predict(pdModel1,data(TestDataInd,:));

Create a Cox Lifetime PD Model with Efron's Method

Use fitLifetimePDModel to create a Cox model using the training data. Use the name-value
argument TieBreakMethod to set tie-break method to 'Efron'. This is the default choice for this
argument.

pdModel2 = fitLifetimePDModel(data(TrainDataInd,:),"Cox",...
ModelID="Cox-Efron", IDVar="ID", AgeVar="YOB", ...
LoanVars="ScoreGroup", MacroVars={'GDP','Market'}, ...
ResponseVar="Default",TieBreakMethod='efron');

 Cox

6-547

Display the underlying model. The coefficients are only slightly different for this data set.

disp(pdModel2.Model)

Cox Proportional Hazards regression model

 Beta SE zStat pValue
 __________ _________ _______ __________

 ScoreGroup_Medium Risk -0.6844 0.037029 -18.483 2.8461e-76
 ScoreGroup_Low Risk -1.2515 0.045243 -27.662 2.006e-168
 GDP -0.084985 0.043691 -1.9452 0.051756
 Market -0.0085126 0.0032223 -2.6418 0.0082469

Log-likelihood: -41713.445

Use predict to predict the conditional PD for the second Cox model.

pd2 = predict(pdModel2,data(TestDataInd,:));

Compare Cox Models

The predictions for the two Cox models are almost the same for this data set.

[pd1(1:10) pd2(1:10)]

ans = 10×2

 0.0162 0.0161
 0.0091 0.0090
 0.0081 0.0081
 0.0073 0.0072
 0.0064 0.0064
 0.0072 0.0072
 0.0030 0.0030
 0.0016 0.0016
 0.0162 0.0161
 0.0091 0.0090

For this data set, the model discrimination (modelDiscrimination) does not seem to change with
the TieBreakMethod method and the model accuracy (modelCalibration) shows only a negligible
difference in RMSE.

modelDiscriminationPlot(pdModel1,data(TestDataInd,:),ReferencePD=pd2,ReferenceID=pdModel2.ModelID)

6 Functions

6-548

modelCalibrationPlot(pdModel1,data(TestDataInd,:),'Year',ReferencePD=pd2,ReferenceID=pdModel2.ModelID)

 Cox

6-549

More About
Cox Proportional Hazards Models

The Cox proportional hazards (PH) model is a survival model and it models the time until an event of
interest occurs.

For probability of default (PD) models, the event of interest is the default on a credit obligation. Cox
models need information on whether there was a default and when it happened. For other commonly
used PD models, a binary variable indicating whether there was a default is enough. Cox PD models
need that information, plus the age of the loan at the time of default.

The Cox proportional hazards (PH) model, also known as a Cox regression model, assumes the
hazard rate is of the form

h(t; X) = h0(t)exp(Xβ)

where

• h0(t) is the baseline hazard rate.
• X is the predictor data.
• β is a vector of coefficients of the predictors.
• exp(XÎ²) is the hazard ratio.

6 Functions

6-550

The baseline hazard rate is a reference hazard level, common to all observations, and it does not
depend on the predictor values. The hazard ratio is the factor that scales the baseline hazard value up
or down, depending on the predictor values. For lower risk observations, the hazard ratio is less than
1 and this reduces the hazard rate. For higher risk observations, the hazard ratio increases the
hazard rate.

In the hazard rate formula, the predictor values in X are fixed, or independent of time. This is the
basic version of the Cox PH model. For PD models, the basic version of the Cox PH model includes
predictors that have constant values, such as the origination score, or whether a property is for
residential or commercial purposes.

The time-dependent Cox PH model allows predictor values to change over time. For example, the
loan-to-value (LTV) ratio changes over the life of a loan, and the macroeconomic variables change
from period to period. Therefore, the following hazard rate formula for time-dependent models
includes predictor values that can be a function of time:

h(t; X) = h0(t)exp(X(t)β)

The data input for fitLifetimePDModel must be in panel data form. For each ID (IDVar), there
are multiple rows of data. The panel data input is required for both time-dependent and time -
independent models.

For time-independent predictors, the predictor value is constant for each ID. For example, the score
at origination for each customer is constant throughout the life of the loan, and this value is repeated
for each row corresponding to the same ID in the panel data format.

For time-dependent predictors, the values may change from one row to the next for the same ID. The
assumption is that the predictor values in each row are valid in the time interval defined by the age
value (AgeVar) in the previous row and the age value in the current row.

Time Interval for Cox Models

Time is discretized into intervals, and predictor values in the training data (data input) are constant
for each interval: X1 from t0 to t1; X2 from t1 to t2; and so forth.

The data input must be in panel data form, with multiple observations for each ID, with
corresponding age information (the tk values, the AgeVar column) and the corresponding default
indicator values (the ResponseVar column).

Assume that tk - tk - 1 = Δt for all k and this is the time interval. This time interval is the age increment
for consecutive observations in the age data (AgeVar). The assumption is that these increments are
regular and that the default indicator (ResponseVar) is defined consistently with this time interval,
in the sense that a 1 means there was a default in a time interval of length Δt. The time interval Δt is
also used for the computation of the probability of default. For more information, see “Lifetime
Prediction and Time Interval” on page 6-342.

Survival and Probability of Default for Cox Models

The survival function S(t) is a function of time, and gives the probability of surviving longer than a
given time t.

S(t) = P(T > t)

where

 Cox

6-551

• T is the failure time, the random variable of interest, and in the Cox model case, the time to
default.

• t is the specific time of interest, for example, 1 year.

The main relationship between the survival function and the hazard rate is

S(t) = exp −∫0 t
h(u)du

Higher values of the hazard rate cause the survival probability to drop faster. Conversely, lower
values of the hazard rate cause the survival probability to rise faster.

The probability of default (PD) is the conditional probability of defaulting in a time interval, given that
there has been no default prior to that interval. For example, the probability of default between time s
and t, with s < t, is represented as:

PD(s, t) = P(s < T ≤ t T > s)

 = S(s)− S(t)
S(s)

 = 1‐S(t)
S(s)

In credit applications, the time interval of interest, Δt, is consistent with the training data and the
definition of default in the response variable. The PD is a function of a single time variable t and the
implicit time interval Δt:

PD(t) = 1− S(t)
S(t − Δt)

Version History
Introduced in R2021b

R2023a: modelAccuracy object function is renamed to modelCalibration function
Not recommended starting in R2023a

The modelAccuracy object function is renamed to modelCalibration function. The use of
modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot
function
Not recommended starting in R2023a

The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use
of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

R2023a: Added TieBreakMethod name-value argument
Behavior changed in R2023a

The TieBreakMethod name-value argument enables you to specify the method to handle tied default
times.

R2023a: Added discardResiduals method for Cox model
Behavior changed in R2023a

6 Functions

6-552

Use the discardResiduals method to discard residual information of the underlying Cox model.

R2023a: Model property renamed to UnderlyingModel
Behavior changed in R2023a

The Model property is renamed to UnderlyingModel.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models
LLC, 2018.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python.
Independently published, 2020.

See Also
Functions
fitLifetimePDModel | Logistic | Probit | customLifetimePDModel

Topics
“Basic Lifetime PD Model Validation” on page 4-129
“Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
“Compare Lifetime PD Models Using Cross-Validation” on page 4-121
“Expected Credit Loss Computation” on page 4-124
“Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on page
4-144
“Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-75
“Modeling Probabilities of Default with Cox Proportional Hazards” on page 4-28
“Overview of Lifetime Probability of Default Models” on page 1-25

 Cox

6-553

discardResiduals
Discard residual information of underlying Cox model

Syntax
pdModel = discardResiduals(pdModel)

Description
pdModel = discardResiduals(pdModel) discards residual information of underlying Cox model
to reduce memory footprint of the Cox lifetime PD model.

Examples

Discard Residuals for Cox Lifetime PD Model

This example shows how to create a Cox model and then use discardResiduals to remove residual
information to reduce the model's memory usage.

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat
disp(head(data))

 ID ScoreGroup YOB Default Year
 __ __________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004

disp(head(dataMacro))

 Year GDP Market
 ____ _____ ______

 1997 2.72 7.61
 1998 3.57 26.24
 1999 2.86 18.1
 2000 2.43 3.19
 2001 1.26 -10.51
 2002 -0.59 -22.95
 2003 0.63 2.78
 2004 1.85 9.48

6 Functions

6-554

Join the Data

Join the two data components into a single data set.

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Partition the Data

Separate the data into training and test partitions.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Create a Cox Lifetime PD Model

Use fitLifetimePDModel to create a Cox model.

pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Cox",...
 IDVar="ID", AgeVar="YOB", LoanVars="ScoreGroup", ...
 MacroVars={'GDP','Market'}, ResponseVar="Default");
disp(pdModel)

 Cox with properties:

 TimeInterval: 1
 ExtrapolationFactor: 1
 ModelID: "Cox"
 Description: ""
 UnderlyingModel: [1x1 CoxModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

The Cox pdModel object uses a noticeable amount of memory.

 discardResiduals

6-555

whos pdModel

 Name Size Bytes Class Attributes

 pdModel 1x1 59000597 risk.credit.pd.Cox

This is because the underlying Cox model stores residual information, and multiple residual types are
supported.

head(pdModel.UnderlyingModel.Residuals)

 CoxSnell Deviance Martingale Schoenfeld ScaledSchoenfeld Score ScaledScore
 _________ ________ __________ ________________________ ________________________ ________________ ________________

 0.0092625 0 0 NaN NaN NaN NaN NaN NaN NaN NaN 0 0 0 0 0 0 0 0
 0.012537 0 0 NaN NaN NaN NaN NaN NaN NaN NaN 0 0 0 0 0 0 0 0
 0.018878 0 0 NaN NaN NaN NaN NaN NaN NaN NaN 0 0 0 0 0 0 0 0
 0.026346 0 0 NaN NaN NaN NaN NaN NaN NaN NaN 0 0 0 0 0 0 0 0
 0.036303 0 0 NaN NaN NaN NaN NaN NaN NaN NaN 0 0 0 0 0 0 0 0
 0.051269 0 0 NaN NaN NaN NaN NaN NaN NaN NaN 0 0 0 0 0 0 0 0
 0.038922 0 0 NaN NaN NaN NaN NaN NaN NaN NaN 0 0 0 0 0 0 0 0
 0.034104 0 0 NaN NaN NaN NaN NaN NaN NaN NaN 0 0 0 0 0 0 0 0

For additional information on the residuals, see CoxModel.

Remove Residual Information

For prediction purposes, the residual information can be discarded using discardResiduals
without affecting the prediction or validation functionality of the Cox lifetime PD model.

pdModel = discardResiduals(pdModel)

pdModel =
 Cox with properties:

 TimeInterval: 1
 ExtrapolationFactor: 1
 ModelID: "Cox"
 Description: ""
 UnderlyingModel: [1x1 CoxModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

The model storage is minimal once the residuals have been discarded and the Residuals property of
the underlying model have been emptied.

whos pdModel

 Name Size Bytes Class Attributes

 pdModel 1x1 8477 risk.credit.pd.Cox

pdModel.UnderlyingModel.Residuals

6 Functions

6-556

ans =

 0x1 empty table

The prediction and validation functions are not affected after the residuals have been discarded.

pdLifetime = predictLifetime(pdModel,data(1:8,:))

pdLifetime = 8×1

 0.0092
 0.0143
 0.0189
 0.0229
 0.0265
 0.0305
 0.0321
 0.0330

modelCalibrationPlot(pdModel,data(TrainDataInd,:),'Year')

Copyright 2022 The MathWorks, Inc.

Input Arguments
pdModel — Probability of default model
Cox object

 discardResiduals

6-557

Probability of default model, specified as a previously created Cox object using
fitLifetimePDModel.
Data Types: object

Output Arguments
pdModel — Updated Cox PD model
object

Updated Cox PD model, returned as a Cox model.

Version History
Introduced in R2023a

See Also
modelCalibration | modelDiscrimination | modelDiscriminationPlot |
modelCalibrationPlot | predictLifetime | fitLifetimePDModel | Cox |
customLifetimePDModel

Topics
“Basic Lifetime PD Model Validation” on page 4-129
“Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
“Compare Lifetime PD Models Using Cross-Validation” on page 4-121
“Expected Credit Loss Computation” on page 4-124
“Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on page
4-144
“Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-75
“Overview of Lifetime Probability of Default Models” on page 1-25

6 Functions

6-558

creditMigrationCopula
Simulate and analyze multifactor credit migration rating model

Description
The creditMigrationCopula takes as input a portfolio of credit-sensitive positions with a set of
counterparties and performs a copula-based, multifactor simulation of credit rating migrations.
Counterparty credit rating migrations and subsequent changes in portfolio value are calculated for
each scenario and several risk measurements are reported.

creditMigrationCopula associates each counterparty with a random variable, called a latent
variable, which is mapped to credit ratings based on a rating transition matrix. For each scenario, the
value of the position with each counterparty is recomputed based on the realized credit rating of the
counterparty. These latent variables are simulated by using a multifactor model, where systemic
credit fluctuations are modeled with a series of risk factors. These factors can be based on industry
sectors (such as financial or aerospace), geographical regions (such as USA or Eurozone), or any
other underlying driver of credit risk. Each counterparty is assigned a series of weights which
determine their sensitivity to each underlying credit factors.

The inputs to the model are:

• migrationValues — Values of the counterparty positions for each credit rating.
• ratings — Current credit rating for each counterparty.
• transitionMatrix — Matrix of credit rating transition probabilities.
• LGD — Loss given default (1 âˆ’ Recovery).
• Weights — Factor and idiosyncratic model weights

After you create creditMigrationCopula object (see “Create creditMigrationCopula” on page 6-
559 and “Properties” on page 6-563), use the simulate function to simulate credit migration by
using the multifactor model. Then, for detailed reports, use the following functions: portfolioRisk,
riskContribution, confidenceBands, and getScenarios.

Creation

Syntax
cmc = creditMigrationCopula(migrationValues,ratings,transitionMatrix,LGD,
Weights)
cmc = creditMigrationCopula(___ ,Name,Value)

Description

cmc = creditMigrationCopula(migrationValues,ratings,transitionMatrix,LGD,
Weights) creates a creditMigrationCopula object. The creditMigrationCopula object has
the following properties:

 creditMigrationCopula

6-559

• Portfolio on page 6-0 :

A table with the following variables:

• ID — ID to identify each counterparty
• migrationValues — Values of counterparty positions for each credit rating
• ratings — Current credit rating for each counterparty
• LGD — Loss given default
• Weights — Factor and idiosyncratic weights for counterparties

• FactorCorrelation on page 6-0 :

Factor correlation matrix, a NumFactors-by-NumFactors matrix that defines the correlation
between the risk factors.

• RatingLabels on page 6-0 :

The set of all possible credit ratings.
• TransitionMatrix on page 6-0 :

The matrix of probabilities that a counterparty transitions from a starting credit rating to a final
credit rating. The rows represent the starting credit ratings and the columns represent the final
ratings. The top row holds the probabilities for a counterparty that starts at the highest rating (for
example AAA) and the bottom row holds those for a counterparty starting in the default state. The
bottom row may be omitted, indicating that a counterparty in default remains in default. Each row
must sum to 1. The order of rows and columns must match the order of credit ratings defined in
the RatingLabels parameter. The last column holds the probability of default for each of the
ratings. If unspecified, the default rating labels are:
"AAA","AA","A","BBB","BB","B","CCC","D".

• VaRLevel on page 6-0 :

The value-at-risk level, used when reporting VaR and CVaR.
• PortfolioValues on page 6-0 :

A NumScenarios-by-1 vector of portfolio values. This property is empty until you use the
simulate function.

cmc = creditMigrationCopula(___ ,Name,Value) sets Properties on page 6-563 using name-
value pairs and any of the arguments in the previous syntax. For example, cmc =
creditMigrationCopula(migrationValues,ratings,transitionMatrix,LGD,Weights,'V
aRLevel',0.99). You can specify multiple name-value pairs as optional name-value pair arguments.

Input Arguments

migrationValues — Values of counterparty positions for each credit rating
matrix

Values of the counterparty positions for each credit rating, specified as a NumCounterparties-by-
NumRatings matrix. Each row holds the possible values of the counterparty position for each credit
rating. The last rating must be the default rating. The migrationValues input sets the Portfolio on
page 6-0 property.

The migration value for the default rating (the last column of migrationValues input) is pre-
recovery. This is a reference value (for example, face value, forward value at current rating, or other)

6 Functions

6-560

that is multiplied by the recovery rate during the simulation to get the value of the asset in the event
of default. The recovery rate is defined as 1-LGD, where LGD is specified using the LGD input
argument. The LGD is either a constant or a random number drawn from a beta distribution (see the
description of the LGD input).

Note The creditMigrationCopula model simulates the changes in portfolio value over a fixed
time period (for example, one year). The migrationValues and transitionMatrix must be
specific to a particular time period.

Data Types: double

ratings — Current credit rating for each counterparty
cell array of character vectors | numeric value | string

Current credit rating for each counterparty, specified as a NumCounterparties-by-1 vector that
represents the initial credit states. The set of all valid credit ratings and their order is defined by
using the optional RatingLabels parameter. The ratings input sets the Portfolio on page 6-0
property.

If RatingLabels are unspecified, the default rating labels are:
"AAA","AA","A","BBB","BB","B","CCC","D".
Data Types: double | string | cell

transitionMatrix — Credit rating transition probabilities
numeric value

Credit rating transition probabilities, specified as a NumRatings-by-NumRatings matrix. The matrix
contains the probabilities that a counterparty starting at a particular credit rating transitions to every
other rating over some fixed time period. Each row holds all the transition probabilities for a
particular starting credit rating. The transitionMatrix input sets the TransitionMatrix on page 6-
0 property.

The top row holds the probabilities for a counterparty that starts at the highest rating (such as AAA).
The bottom row holds the probabilities for a counterparty starting in the default state. The bottom
row may be omitted, indicating that a counterparty in default remains in default. Each row must sum
to 1.

The order of rows and columns must match the order of credit ratings defined in the RatingLabels
parameter. The last column holds the probability of default for each of the ratings. If RatingLabels
are unspecified, the default rating labels are: "AAA","AA","A","BBB","BB","B","CCC","D".

Note The creditMigrationCopula model simulates the changes in portfolio value over a fixed
time period (for example, one year). The migrationValues and transitionMatrix must be
specific to a particular time period.

Data Types: double

LGD — Loss given default
numeric vector with elements from 0 through 1

 creditMigrationCopula

6-561

Loss given default, specified as a NumCounterparties-by-1 numeric vector with elements from 0
through 1, representing the fraction of exposure that is lost when a counterparty defaults. LGD is
defined as (1 âˆ’ Recovery). For example, an LGD of 0.6 implies a 40% recovery rate in the event of a
default. The LGD input sets the Portfolio on page 6-0 property.

LGD can alternatively be specified as a NumCounterparties-by-2 matrix, where the first column
holds the LGD mean values and the 2nd column holds the LGD standard deviations. Then, in the case
of default, LGD values are drawn randomly from a beta distribution with provided parameters for the
defaulting counterparty.

Valid open intervals for LGD mean and standard deviation are:

• For the first column, the mean values are between 0 and 1.
• For the second column, the LGD standard deviations are between 0 and sqrt(m*(1-m)).

Data Types: double

Weights — Weights variable name
array of factor and idiosyncratic weights

Factor and idiosyncratic weights, specified as a NumCounterparties-by-(NumFactors + 1) array.
Each row contains the factor weights for a particular counterparty. Each column contains the weights
for an underlying risk factor. The last column in Weights contains the idiosyncratic risk weight for
each counterparty. The idiosyncratic weight represents the company-specific credit risk. The total of
the weights for each counterparty (that is, each row) must sum to 1. The Weights input sets the
Portfolio on page 6-0 property.

For example, if a counterparty's creditworthiness was composed of 60% US, 20% European, and 20%
idiosyncratic, then the Weights vector is [0.6 0.2 0.2].
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: cmc =
creditMigrationCopula(migrationValues,ratings,transitionMatrix,LGD,Weights,'V
aRLevel',0.99)

ID — User-defined IDs for counterparties
1:NumCounterparties (default) | vector

User-defined IDs for counterparties, specified as the comma-separated pair consisting of 'ID' and a
NumCounterparties-by-1 vector of IDs for each counterparty. ID is used to identify exposures in
the Portfolio table and the risk contribution table. ID must be a numeric, a string array, or a cell
array of character vectors. The ID name-value pair argument sets the Portfolio on page 6-0
property.

If unspecified, ID defaults to a numeric vector (1:NumCounterparties).
Data Types: double | string | cell

6 Functions

6-562

VaRLevel — Value at risk level
0.95 (default) | numeric between 0 and 1

Value at risk level (used for reporting VaR and CVaR), specified as the comma-separated pair
consisting of 'VaRLevel' and a numeric between 0 and 1. The VaRLevel name-value pair argument
sets the VaRLevel on page 6-0 property.
Data Types: double

FactorCorrelation — Factor correlation matrix
identity matrix (default) | correlation matrix

Factor correlation matrix, specified as the comma-separated pair consisting of
'FactorCorrelation' and a NumFactors-by-NumFactors matrix that defines the correlation
between the risk factors. The FactorCorrelation name-value pair argument sets the
FactorCorrelation on page 6-0 property.

If not specified, the factor correlation matrix defaults to an identity matrix, meaning that the factors
are not correlated.
Data Types: double

RatingLabels — Set of all possible credit ratings
["AAA", "AA", "A", "BBB", "BB", "B", "CCC", "D"] (default) | cell array of character
vectors | numeric | string

Set of all possible credit ratings, specified as the comma-separated pair consisting of
'RatingLabels' and a NumRatings-by-1 vector, where the first element is the highest credit rating
and the last element is the default state. The RatingLabels name-value pair argument sets the
RatingLabels on page 6-0 property.
Data Types: cell | double | string

UseParallel — Flag to use parallel processing for simulations
false (default) | logical with value of true or false

Flag to use parallel processing for simulations, specified as the comma-separated pair consisting of
'UseParallel' and a scalar value of true or false. The UseParallel name-value pair argument
sets the UseParallel on page 6-0 property.

Note The 'UseParallel' property can only be set when creating a creditMigrationCopula
object if you have Parallel Computing Toolbox. Once the 'UseParallel' property is set, parallel
processing is used with riskContribution or simulate.

Data Types: logical

Properties
Portfolio — Details of credit portfolio
table

Details of credit portfolio, specified as a MATLAB table that contains all the portfolio data that was
passed as input into the creditMigrationCopula object.

 creditMigrationCopula

6-563

The Portfolio table has a column for each of the constructor inputs (MigrationValues, Rating,
LGD, Weights, and ID). Each row of the table represents one counterparty.

For example:

 ID MigrationValues Rating LGD Weights
 __ _______________ ______ ______ ____________

 1 [1x8 double] "A" 0.6509 0.5 0.5
 2 [1x8 double] "BBB" 0.8283 0.55 0.45
 3 [1x8 double] "AA" 0.6041 0.7 0.3
 4 [1x8 double] "BB" 0.6509 0.55 0.45
 5 [1x8 double] "BBB" 0.4966 0.75 0.25

Data Types: table

FactorCorrelation — Correlation matrix for credit factors
matrix

Correlation matrix for credit factors, specified as a NumFactors-by-NumFactors matrix. Specify the
correlation matrix by using the optional name-value pair argument 'FactorCorrelation' when
you create the creditMigrationCopula object.
Data Types: double

RatingLabels — Set of all possible credit ratings
cell array of character vectors, string, or numeric vector representing set of credit ratings

Set of all possible credit ratings, specified using an optional name-value input argument for
'RatingLabels' when you create the creditMigrationCopula object.
Data Types: double | cell | string

TransitionMatrix — Probabilities counterparty transitions from starting credit rating to
final credit rating
matrix

Probabilities that a counterparty transitions from a starting credit rating to a final credit rating,
specified using the input argument 'transitionMatrix' when you create the
creditMigrationCopula object. The rows represent the starting credit ratings and the columns
represent the final ratings. The top row corresponds to the highest rating.

The top row holds the probabilities for a counterparty that starts at the highest rating (such as AAA)
and the bottom row holds those for a counterparty starting in the default state. The bottom row may
be omitted, indicating that a counterparty in default remains in default. Each row must sum to 1.

The order of rows and columns must match the order of credit ratings defined in the RatingLabels
parameter. The last column holds the probability of default for each of the ratings. If RatingLabels
are unspecified, the default rating labels are: "AAA","AA","A","BBB","BB","B","CCC","D".
Data Types: double

VaRLevel — Value at Risk Level
numeric value between 0 and 1

Value at risk level used when reporting VaR and CVaR, specified using an optional name-value pair
argument 'VaRLevel' when you create the creditMigrationCopula object.

6 Functions

6-564

Data Types: double

PortfolioValues — Portfolio values
vector

Portfolio values, specified as a 1-by-NumScenarios vector. After creating the
creditMigrationCopula object, the PortfolioValues property is empty. After you invoke the
simulate function, PortfolioValues is populated with the portfolio values over each scenario.
Data Types: double

UseParallel — Flag to use parallel processing for simulations
false (default) | logical with value of true or false

Flag to use parallel processing for simulations, specified using an optional name-value pair argument
'UseParallel' when you create a creditMigrationCopula object. The UseParallel name-
value pair argument sets the UseParallel property.

Note The 'UseParallel' property can only be set when creating a creditMigrationCopula
object if you have Parallel Computing Toolbox. Once the 'UseParallel' property is set, parallel
processing is used with riskContribution or simulate.

Data Types: logical

Object Functions
simulate Simulate credit migrations using creditMigrationCopula object
portfolioRisk Generate portfolio-level risk measurements
riskContribution Generate risk contributions for each counterparty in portfolio
confidenceBands Confidence interval bands
getScenarios Counterparty scenarios

Examples

Create a creditMigrationCopula Object Using a Four-Factor Model

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a four-factor model using
creditMigrationCopula.

cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc =
 creditMigrationCopula with properties:

 creditMigrationCopula

6-565

 Portfolio: [250x5 table]
 FactorCorrelation: [4x4 double]
 RatingLabels: [8x1 string]
 TransitionMatrix: [8x8 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioValues: []

Set the VaRLevel to 99%.

 cmc.VaRLevel = 0.99;

The Portfolio property contains information about migration values, ratings, LGDs and weights.

 head(cmc.Portfolio)

 ID MigrationValues Rating LGD Weights
 __ _______________ ______ ______ ___________________________________

 1 1x8 double "A" 0.6509 0 0 0 0.5 0.5
 2 1x8 double "BBB" 0.8283 0 0.55 0 0 0.45
 3 1x8 double "AA" 0.6041 0 0.7 0 0 0.3
 4 1x8 double "BB" 0.6509 0 0.55 0 0 0.45
 5 1x8 double "BBB" 0.4966 0 0 0.75 0 0.25
 6 1x8 double "BB" 0.8283 0 0 0 0.65 0.35
 7 1x8 double "BB" 0.6041 0 0 0 0.65 0.35
 8 1x8 double "BB" 0.4873 0.5 0 0 0 0.5

The columns in the migration values are in the same order of the ratings, with the default rating in
the last column.

For example, these are the migration values for the first counterparty. Note that the value for default
is higher than some of the non-default ratings. This is because the migration value for the default
rating is a reference value (for example, face value, forward value at current rating, or other) that is
multiplied by the recovery rate during the simulation to get the value of the asset in the event of
default. The recovery rate is 1-LGD when the LGD input to creditMigrationCopula is a constant
LGD value (the LGD input has one column). The recovery rate is a random quantity when the LGD
input to creditMigrationCopula is specified as a mean and standard deviation for a beta
distribution (the LGD input has two columns).

bar(cmc.Portfolio.MigrationValues(1,:))
xticklabels(cmc.RatingLabels)
title('Migration Values for First Company')

6 Functions

6-566

Use the simulate function to simulate 100,000 scenarios, and then view portfolio risk measures
using the portfolioRisk function.

 cmc = simulate(cmc,1e5)

cmc =
 creditMigrationCopula with properties:

 Portfolio: [250x5 table]
 FactorCorrelation: [4x4 double]
 RatingLabels: [8x1 string]
 TransitionMatrix: [8x8 double]
 VaRLevel: 0.9900
 UseParallel: 0
 PortfolioValues: [2.0082e+06 1.9950e+06 1.9933e+06 2.0009e+06 1.9819e+06 1.9955e+06 1.9962e+06 1.9966e+06 2.0018e+06 2.0036e+06 1.9873e+06 1.9929e+06 2.0015e+06 1.9875e+06 1.9962e+06 2.0070e+06 2.0054e+06 2.0037e+06 2.0032e+06 1.9990e+06 ...]

 portRisk = portfolioRisk(cmc)

portRisk=1×4 table
 EL Std VaR CVaR
 ______ _____ _____ _____

 4515.9 12963 57176 83975

View a histogram of the portfolio values.

 creditMigrationCopula

6-567

h = histogram(cmc.PortfolioValues,125);
title('Distribution of Portfolio Values');

Create a creditMigrationCopula Object and Analyze Results

Load the saved portfolio data.

load CreditMigrationData.mat;

Scale the bond prices for portfolio positions for each bond.

migrationValues = migrationPrices .* numBonds;

Create a creditMigrationCopula object with a four-factor model using
creditMigrationCopula.

cmc = creditMigrationCopula(migrationValues,ratings,transMat,...
lgd,weights,'FactorCorrelation',factorCorr)

cmc =
 creditMigrationCopula with properties:

 Portfolio: [250x5 table]
 FactorCorrelation: [4x4 double]
 RatingLabels: [8x1 string]

6 Functions

6-568

 TransitionMatrix: [8x8 double]
 VaRLevel: 0.9500
 UseParallel: 0
 PortfolioValues: []

Set the VaRLevel to 99%.

 cmc.VaRLevel = 0.99;

Use the simulate function to simulate 100,000 scenarios, and then view portfolio risk measures by
using the portfolioRisk function.

 cmc = simulate(cmc,1e5)

cmc =
 creditMigrationCopula with properties:

 Portfolio: [250x5 table]
 FactorCorrelation: [4x4 double]
 RatingLabels: [8x1 string]
 TransitionMatrix: [8x8 double]
 VaRLevel: 0.9900
 UseParallel: 0
 PortfolioValues: [2.0082e+06 1.9950e+06 1.9933e+06 2.0009e+06 1.9819e+06 1.9955e+06 1.9962e+06 1.9966e+06 2.0018e+06 2.0036e+06 1.9873e+06 1.9929e+06 2.0015e+06 1.9875e+06 1.9962e+06 2.0070e+06 2.0054e+06 2.0037e+06 2.0032e+06 1.9990e+06 ...]

 portRisk = portfolioRisk(cmc)

portRisk=1×4 table
 EL Std VaR CVaR
 ______ _____ _____ _____

 4515.9 12963 57176 83975

View a histogram of the portfolio values.

h = histogram(cmc.PortfolioValues,125);
title('Distribution of Portfolio Values');

 creditMigrationCopula

6-569

Overlay the value that the portfolio takes if all counterparties maintained their current credit ratings.

CurrentRatingValue = portRisk.EL + mean(cmc.PortfolioValues);
 hold on
 plot([CurrentRatingValue CurrentRatingValue],[0 max(h.Values)],...
 'LineWidth',2);
 grid on

6 Functions

6-570

Version History
Introduced in R2017a

References
[1] Crouhy, M., Galai, D., and Mark, R. “A Comparative Analysis of Current Credit Risk Models.”

Journal of Banking and Finance. Vol. 24, 2000, pp. 59 – 117.

[2] Gordy, M. “A Comparative Anatomy of Credit Risk Models.” Journal of Banking and Finance. Vol.
24, 2000, pp. 119 – 149.

[3] Gupton, G., Finger, C., and Bhatia, M. “CreditMetrics – Technical Document.” J. P. Morgan, New
York, 1997.

[4] Jorion, P. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

[5] Löffler, G., and Posch, P. Credit Risk Modeling Using Excel and VBA. Wiley Finance, 2007.

[6] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and
Tools. Princeton University Press, 2005.

 creditMigrationCopula

6-571

See Also
table | simulate | portfolioRisk | riskContribution | confidenceBands | getScenarios |
creditDefaultCopula | nearcorr

Topics
“creditMigrationCopula Simulation Workflow” on page 4-10
“One-Factor Model Calibration” on page 4-64
“Credit Rating Migration Risk” on page 1-10

External Websites
Parallel Computing with MATLAB (53 min 27 sec)

6 Functions

6-572

https://www.mathworks.com/videos/parallel-computing-with-matlab-81694.html

developmentTriangle
Create developmentTriangle object

Description
Use this workflow to generate projected ultimate claims for a developmentTriangle:

1 Load or generate the claims data for the development triangle.
2 Create a developmentTriangle object.
3 Use view to display the developmentTriangle data and use claimsPlot to plot the reported

claims.
4 Use linkRatios to compute the link ratio factors (development factors or age-to-age factors)

and use linkRatioAverages to calculate averages from those factors. Also, you can plot link
ratios using linkRatiosPlot.

5 Use cdfSummary to calculate the cumulative development factors (CDFs) and the percentage of
total claims.

6 Use ultimateClaims to calculate the projected ultimate claims.
7 Use fullTriangle to display the development triangle that includes ultimate claims.

Creation

Syntax
dT = developmentTriangle(data)
dT = developmentTriangle(___ ,Name,Value)

Description

dT = developmentTriangle(data) creates a developmentTriangle object using data. You
can plot dT using claimsPlot.

dT = developmentTriangle(___ ,Name,Value) sets properties on page 6-574 using name-
value pair arguments. Specify one or more name-value pair arguments after the input argument in
the previous syntax. For example, dT_reported =
developmentTriangle(data,'Origin','AccidentYear','Development','DevelopmentYe
ar','Claims','ReportedClaims').

Input Arguments

data — Claims data
table

Claims data, specified as a table with at least three columns. If you specify data as a three-column
table and do not specify name-value pair arguments for 'Origin', 'Development' and 'Claims',
the software obtains origin years from the first column, development years from the second column,
and claims from the third column by default.

 developmentTriangle

6-573

Data Types: table

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: dT_reported =
developmentTriangle(data,'Origin','AccidentYear','Development','DevelopmentYe
ar','Claims','ReportedClaims')

Origin — Name of the column containing the origin years
first column of data table (default) | character vector | string

Name of the column containing the origin years, specified as the comma-separated pair consisting of
'Origin' and a character vector or string.
Data Types: char | string

Development — Name of column containing development years
second column of data table (default) | character vector | string

Name of column containing development years, specified as the comma-separated pair consisting of
'Development' and a character vector or string.
Data Types: char | string

Claims — Name of column containing claims periods
third column of data table (default) | character vector | string

Name of column containing claims periods, specified as the comma-separated pair consisting of
'Claims' and a character vector or string.
Data Types: double

Cumulative — Flag to indicate if data is cumulative or incremental
true (cumulative) (default) | logical with a value of true or false

Flag to indicate if data is cumulative or incremental, specified as the comma-separated pair
consisting of 'Cumulative' and a scalar logical value.
Data Types: logical

Properties
Origin — Name of column containing origin years
first column of data table (default) | cell array

Name of column containing origin years, returned as a cell array.
Data Types: cell

Development — Name of column containing development years
second column of data table (default) | cell array

6 Functions

6-574

Name of column containing development years, returned as a cell array.
Data Types: cell

Claims — Name of column containing claims period
third column of data table (default) | vector

Name of column containing claims period, returned as a vector.
Data Types: double

LatestDiagonal — Latest claim values for each Origin period
vector

Latest claim values for each Origin period, returned as a vector.
Data Types: double

Description — User-defined description
" " (default) | string

User-defined description, returned as a string.
Data Types: string

SelectedLinkRatio — Selected link ratios for CDF calculations
simple average (default) | vector

Selected link ratios for the CDF calculations, returned as a vector.
Data Types: double

TailFactor — Tail factor constant
1 (default) | numeric

Tail factor constant, returned as a numeric.
Data Types: double

Object Functions
view Display developmentTriangle object
linkRatios Compute link ratios for developmentTriangle object
linkRatioAverages Compute link ratio averages for developmentTriangle object
cdfSummary Compute CDFs to ultimate claims for developmentTriangle object
ultimateClaims Compute ultimate claims for developmentTriangle object
fullTriangle Display full development triangle including ultimate claims
linkRatiosPlot Plot link ratios for development triangle
claimsPlot Plot claims for development triangle

Examples

Create developmentTriangle Object

Create a developmentTriangle object using simulated claims data.

 developmentTriangle

6-575

load InsuranceClaimsData.mat;
disp(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9
 2010 108 5084.3 4887.7
 2010 120 5089.4 4892.6
 2011 12 3968 2055.5
 2011 24 4682.3 3638.3
 2011 36 4963.2 4365.9
 2011 48 5062.5 4758.9
 2011 60 5113.1 4949.2
 2011 72 5138.7 5048.2
 2011 84 5154.1 5098.7
 2011 96 5169.6 5124.2
 2011 108 5179.9 5134.4
 2012 12 4217 2242.4
 2012 24 5060.4 3946.7
 2012 36 5364 4696.6
 2012 48 5508.9 5119.3
 2012 60 5558.4 5324.1
 2012 72 5586.2 5430.5
 2012 84 5608.6 5484.8
 2012 96 5625.4 5512.3
 2013 12 4374.2 2373.8
 2013 24 5205.3 4130.4
 2013 36 5517.7 4915.2
 2013 48 5661.1 5357.6
 2013 60 5740.4 5571.9
 2013 72 5780.6 5677.8
 2013 84 5803.7 5728.9
 2014 12 4499.7 2421.8
 2014 24 5309.6 4189.6
 2014 36 5628.2 4985.6
 2014 48 5785.8 5434.3
 2014 60 5849.4 5651.7
 2014 72 5878.7 5759.1
 2015 12 4530.2 2484.1
 2015 24 5300.4 4272.6
 2015 36 5565.4 5084.4
 2015 48 5715.7 5541.9
 2015 60 5772.8 5763.6
 2016 12 4572.6 2481.7
 2016 24 5304.2 4218.9
 2016 36 5569.5 5020.5
 2016 48 5714.3 5472.4
 2017 12 4680.6 2577.9
 2017 24 5523.1 4382.4
 2017 36 5854.4 5171.2

6 Functions

6-576

 2018 12 4696.7 2580
 2018 24 5495.1 4386.1
 2019 12 4945.9 2764.8

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data.

dT = developmentTriangle(data)

dT =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

Use the view function to display the developmentTriangle contents in table form. Each row
represents an origin period and each column represents a development period.

developmentTriangleTable = view(dT)

developmentTriangleTable=10×10 table
 12 24 36 48 60 72 84 96 108 120
 ______ ______ ______ ______ ______ ______ ______ ______ ______ ______

 2010 3995.7 4635 4866.8 4964.1 5013.7 5038.8 5059 5074.1 5084.3 5089.4
 2011 3968 4682.3 4963.2 5062.5 5113.1 5138.7 5154.1 5169.6 5179.9 NaN
 2012 4217 5060.4 5364 5508.9 5558.4 5586.2 5608.6 5625.4 NaN NaN
 2013 4374.2 5205.3 5517.7 5661.1 5740.4 5780.6 5803.7 NaN NaN NaN
 2014 4499.7 5309.6 5628.2 5785.8 5849.4 5878.7 NaN NaN NaN NaN
 2015 4530.2 5300.4 5565.4 5715.7 5772.8 NaN NaN NaN NaN NaN
 2016 4572.6 5304.2 5569.5 5714.3 NaN NaN NaN NaN NaN NaN
 2017 4680.6 5523.1 5854.4 NaN NaN NaN NaN NaN NaN NaN
 2018 4696.7 5495.1 NaN NaN NaN NaN NaN NaN NaN NaN
 2019 4945.9 NaN NaN NaN NaN NaN NaN NaN NaN NaN

To visualize the development triangles, use plot.

plot(table2array(developmentTriangleTable)');
xticklabels(developmentTriangleTable.Properties.VariableNames)
xlabel('Development Year')
ylabel('Reported Claims')
title('Development Reported Claims')
legend(developmentTriangleTable.Properties.RowNames)
grid on

 developmentTriangle

6-577

Version History
Introduced in R2020b

See Also
chainLadder | expectedClaims | bornhuetterFerguson

Topics
“Mean Square Error of Prediction for Estimated Ultimate Claims” on page 4-161
“Bootstrap Using Chain Ladder Method” on page 4-168
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

6 Functions

6-578

esbacktest
Create esbacktest object to run suite of table-based expected shortfall (ES) backtests by Acerbi and
Szekely

Description
The general workflow is:

1 Load or generate the data for the ES backtesting analysis.
2 Create an esbacktest object. For more information, see “Create esbacktest” on page 6-579

and “Properties” on page 6-582.
3 Use the summary function to generate a summary report for the number of observations,

expected, and observed average severity ratio.
4 Use the runtests function to run all tests at once.
5 For additional test details, run the following individual tests:

• unconditionalNormal — Unconditional ES backtest assuming returns distribution is
normal

• unconditionalT — Unconditional ES backtest assuming returns distribution is t

For more information, see “Overview of Expected Shortfall Backtesting” on page 2-20.

Creation
Syntax
ebt = esbacktest(PortfolioData,VaRData,ESData)
ebt = esbacktest(___ ,Name,Value)

Description

ebt = esbacktest(PortfolioData,VaRData,ESData) creates an esbacktest (ebt) object
using portfolio outcomes data and corresponding value-at-risk (VaR) and ES data. The ebt object has
the following properties:

• PortfolioData on page 6-0 — NumRows-by-1 numeric array containing a copy of the
PortfolioData

• VaRData on page 6-0 — NumRows-by-NumVaRs numeric array containing a copy of the
VaRData

• ESData on page 6-0 — NumRows-by-NumVaRs numeric array containing a copy of the ESData
• PortfolioID on page 6-0 — String containing the PortfolioID
• VaRID on page 6-0 — 1-by-NumVaRs string vector containing the VaRIDs for the corresponding

columns in VaRData
• VaRLevel on page 6-0 — 1-by-NumVaRs numeric array containing the VaRLevels for the

corresponding columns in VaRData

 esbacktest

6-579

Note

• Test results from esbacktest are only approximate since no distribution information is passed as
input. When distribution information is available, use esbacktestbysim; in particular, the minimally
biased test is recommended (see minBiasAbsolute and minBiasRelative).

• The simulation of critical values assumes a mean of 0 for the underlying distribution. The critical
values are sensitive to the mean of the underlying distribution. If the ES prediction is based on
distributions with means significantly away from 0, the critical values in esbacktest will be
unreliable.

• The required input arguments for PortfolioData, VaRData, and ESData must all be in the
same units. These arguments can be expressed as returns or as profits and losses. There are no
validations in the esbacktest object regarding the units of these arguments.

• If there are missing values (NaNs) in PortfolioData, VaRData, and ESData, the row of data is
discarded before applying the tests. Therefore, a different number of observations are reported for
models with a different number of missing values. The reported number of observations equals the
original number of rows minus the number of missing values. To determine if there are discarded
rows, use the 'Missing' column of the summary report.

• Because the critical values are precomputed, only certain numbers of observations, VaR levels,
and test levels are supported.

• The number of observations (number of rows in the data minus the number of missing values)
must be from 200 through 5000.

• The VaRLevel input argument must be between 0.90 and 0.999; the default is 0.95.
• The TestLevel (test confidence level) input argument for the runtests,

unconditionalNormal, and unconditionalT functions must be between 0.5 and 0.9999;
the default is 0.95.

ebt = esbacktest(___ ,Name,Value) sets Properties on page 6-582 using name-value pairs
and any of the arguments in the previous syntax. For example, ebt =
esbacktest(PortfolioData,VaRData,ESData,'VaRID','TotalVaR','VaRLevel',.999).
You can specify multiple name-value pairs as optional name-value pair arguments.

Input Arguments

PortfolioData — Portfolio outcomes data
NumRows-by-1 numeric array | NumRows-by-1 numeric columns table | NumRows-by-1 numeric
columns timetable

Portfolio outcomes data, specified as a NumRows-by-1 numeric array, NumRows-by-1 numeric columns
table, or a NumRows-by-1 timetable with a numeric column containing portfolio outcomes data. The
PortfolioData input argument sets the PortfolioData on page 6-0 property.

Note PortfolioData must be in the same units as VaRData and ESData. PortfolioData,
VaRData, and ESData can be expressed as returns or as profits and losses. There are no validations
in the esbacktest object regarding the units of portfolio, VaR, and ES data.

Data Types: double | table | timetable

6 Functions

6-580

VaRData — Value-at-risk (VaR) data
NumRows-by-NumVaRs numeric array | NumRows-by-NumVaRs table with numeric columns | NumRows-
by-NumVaRs timetable with numeric columns

Value-at-risk (VaR) data, specified as a NumRows-by-NumVaRs numeric array, NumRows-by-NumVaRs
numeric columns table, or NumRows-by-NumVaRs timetable with numeric columns. The VaRData
input argument sets the VaRData on page 6-0 property.

Negative VaRData values are allowed. However, negative VaR values indicate a highly profitable
portfolio that cannot lose money at the given VaR confidence level. The worst-case scenario at the
given confidence level is still a profit.

Note VaRData must be in the same units as PortfolioData and ESData. VaRData,
PortfolioData, and ESData can be expressed as returns or as profits and losses. There are no
validations in the esbacktest object regarding the units of portfolio, VaR, and ES data.

Data Types: double | table | timetable

ESData — Expected shortfall data
NumRows-by-NumVaRs positive numeric array | NumRows-by-NumVaRs table with positive numeric
columns | NumRows-by-NumVaRs timetable with positive numeric columns

Expected shortfall data, specified as a NumRows-by-NumVaRs positive numeric array, NumRows-by-
NumVaRs table with positive numeric columns, or NumRows-by-NumVaRs timetable with positive
numeric columns containing ES data. The ESData input argument sets the ESData on page 6-0
property.

Note ESData must be in the same units as PortfolioData and VaRData. ESData,
PortfolioData, and VaRData can be expressed as returns or as profits and losses. There are no
validations in the esbacktest object regarding the units of portfolio, VaR, and ES data.

Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ebt =
esbacktest(PortfolioData,VaRData,ESData,'VaRID','TotalVaR','VaRLevel',.999)

PortfolioID — User-defined ID
character vector | string

User-defined ID for PortfolioData input, specified as the comma-separated pair consisting of
'PortfolioID' and a character vector or string. The PortfolioID name-value pair argument sets
the PortfolioID on page 6-0 property.

 esbacktest

6-581

If PortfolioData is a numeric array, the default value for PortfolioID is 'Portfolio'. If
PortfolioData is a table, PortfolioID is set to the corresponding variable name in the table, by
default.
Data Types: char | string

VaRID — VaR identifier
character vector | cell array of character vectors | string | string array

VaR identifier for VaRData columns, specified as the comma-separated pair consisting of 'VaRID'
and a character vector, cell array of character vectors, string, or string array.

Multiple VaRID values are specified using a 1-by-NumVaRs (or NumVaRs-by-1) cell array of character
vectors or a string vector with user-defined IDs for the VaRData columns. A single VaRID identifies a
VaRData column and the corresponding ESData column. The VaRID name-value pair argument sets
the VaRID on page 6-0 property.

If NumVaRs = 1, the default value for VaRID is 'VaR'. If NumVaRs > 1, the default value is 'VaR1',
'VaR2', and so on. If VaRData is a table, 'VaRID' is set by default to the corresponding variable
names in the table.
Data Types: char | cell | string

VaRLevel — VaR confidence level
0.95 (default) | numeric between 0.90 and 0.999

VaR confidence level, specified as the comma-separated pair consisting of 'VaRLevel' and a
numeric value between 0.90 and 0.999 or a 1-by-NumVaRs (or NumVaRs-by-1) numeric array. The
VaRLevel name-value pair argument sets the VaRLevel on page 6-0 property.

Note When specifying a VarLevel > 99%, ensure that the number of observations is sufficient to
generate an appropriate critical value. In addition, when running a test, use a TestLevel > 95%. For
very high VaR levels (for example, VarLevel > 99%) and a relatively small number of observations,
the probability of VaR failures is very small and the distribution of the test statistic has a discrete
nature, leading to unexpected non-monotonicity around some critical values. Larger number of
observations and higher test confidence levels preserve the expected behavior of critical values when
the VarLevel is very high.

Data Types: double

Properties
PortfolioData — Portfolio data for ES backtesting analysis
numeric array

Portfolio data for ES backtesting analysis, specified as a NumRows-by-1 numeric array containing a
copy of the portfolio data.
Data Types: double

VaRData — VaR data for ES backtesting analysis
numeric array

6 Functions

6-582

VaR data for ES backtesting analysis, specified as a NumRows-by-NumVaRs numeric array containing a
copy of the VaR data.
Data Types: double

ESData — Expected shortfall data for ES backtesting analysis
numeric array

Expected shortfall data for ES backtesting analysis, specified as a NumRows-by-NumVaRs numeric
array containing a copy of the ESData.
Data Types: double

PortfolioID — Portfolio identifier
string

Portfolio identifier, specified as a string.
Data Types: string

VaRID — VaR identifier
string | string array

VaR identifier, specified as a 1-by-NumVaRs string array containing the VaR IDs for the corresponding
columns in VaRData.
Data Types: string

VaRLevel — VaR level
numeric array with values between 0.90 and 0.999

VaR level, specified as a 1-by-NumVaRs numeric array with values from 0.90 through 0.999,
containing the VaR levels for the corresponding columns in VaRData.
Data Types: double

esbacktest Property Set or Modify Property from
Command Line Using
esbacktest

Modify Property Using Dot
Notation

PortfolioData Yes No
VaRData Yes No
ESData Yes No
PortfolioID Yes Yes
VaRID Yes Yes
VaRLevel Yes Yes

Object Functions
summary Basic expected shortfall (ES) report on failures and severity
runtests Run all expected shortfall (ES) backtests for esbacktest object
unconditionalNormal Unconditional expected shortfall (ES) backtest by Acerbi-Szekely with critical

values for normal distributions
unconditionalT Unconditional expected shortfall (ES) backtest by Acerbi-Szekely with critical

values for t distributions

 esbacktest

6-583

Examples

Create esbacktest Object and Run ES Backtests for Single VaRLevel at 99.9%

esbacktest takes in portfolio outcomes data, the corresponding value-at-risk (VaR) data, and the
expected shortfall (ES) data and returns an esbacktest object.

Create an esbacktest object.

 load ESBacktestData
 ebt = esbacktest(Returns,VaRModel1,ESModel1,'VaRLevel',VaRLevel)

ebt =
 esbacktest with properties:

 PortfolioData: [1966x1 double]
 VaRData: [1966x1 double]
 ESData: [1966x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9750

ebt, the esbacktest object, contains a copy of the given portfolio data (PortfolioData property),
the given VaR data (VaRData property), and the given ES data (ESData) property. The object also
contains all combinations of portfolio ID, VaR ID, and VaR level to be tested (PortfolioID, VaRID,
and VaRLevel properties).

Run the tests using the ebt object.

 runtests(ebt)

ans=1×5 table
 PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT
 ___________ _____ ________ ___________________ ______________

 "Portfolio" "VaR" 0.975 reject reject

Change the PortfolioID and VaRID properties using dot notation. For more information on
creating an esbacktest object, see esbacktest.

ebt.PortfolioID = 'S&P';
ebt.VaRID = 'Normal at 97.5%';
disp(ebt)

 esbacktest with properties:

 PortfolioData: [1966x1 double]
 VaRData: [1966x1 double]
 ESData: [1966x1 double]
 PortfolioID: "S&P"
 VaRID: "Normal at 97.5%"
 VaRLevel: 0.9750

Run all tests using the updated esbacktest object.

6 Functions

6-584

 runtests(ebt)

ans=1×5 table
 PortfolioID VaRID VaRLevel UnconditionalNormal UnconditionalT
 ___________ _________________ ________ ___________________ ______________

 "S&P" "Normal at 97.5%" 0.975 reject reject

Version History
Introduced in R2017b

References
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk".
January, 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also
summary | runtests | unconditionalNormal | unconditionalT | esbacktestbysim | table |
timetable | varbacktest

Topics
“Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information” on page 2-30
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“Comparison of ES Backtesting Methods” on page 2-26

 esbacktest

6-585

https://www.bis.org/bcbs/publ/d352.pdf

esbacktestbyde
Create esbacktestbyde object to run suite of Du and Escanciano expected shortfall (ES) backtests

Description
The general workflow is:

1 Load or generate the data for the ES backtesting analysis.
2 Create an esbacktestbyde object. For more information, see Create esbacktestbyde on page 6-

586 and Properties on page 6-589.
3 Use the summary function to generate a summary report on the failures and severities.
4 Use the runtests function to run all tests at once.
5 For additional test details, run the following individual tests:

• unconditionalDE — Unconditional ES backtest by Du-Escanciano
• conditionalDE — Conditional ES backtest by Du-Escanciano

6 simulate — Simulate critical values for test statistics

For more information, see “Overview of Expected Shortfall Backtesting” on page 2-20 and “Workflow
for Expected Shortfall (ES) Backtesting by Du and Escanciano” on page 2-63.

Creation

Syntax
ebtde = esbacktestbyde(PortfolioData,DistributionName)
ebtde = esbacktestbyde(___ ,Name,Value)

Description

ebtde = esbacktestbyde(PortfolioData,DistributionName) creates an esbacktestbyde
(ebtde) object using portfolio outcomes data and model distribution information. The
esbacktestbyde object has the following properties:

• PortfolioData on page 6-0 — NumRows-by-1 numeric array or NumRows-by-1 table or timetable
with a numeric column containing portfolio outcomes data.

• VaRData on page 6-0 — Computed VaR data using distribution information from
PortfolioData, returned as a NumRows-by-NumVaRs numeric array.

• ESData on page 6-0 — Computed ES data using distribution information from
PortfolioData, returned as a NumRows-by-NumVaRs numeric array.

• Distribution on page 6-0 — Model distribution information, returned as a structure.
• PortfolioID on page 6-0 — User-defined portfolio ID.
• VaRID on page 6-0 — VaRIDs for the corresponding column in PortfolioData.

6 Functions

6-586

• VaRLevel on page 6-0 — VaRLevel for the corresponding columns in PortfolioData.

ebtde = esbacktestbyde(___ ,Name,Value) sets Properties on page 6-582 using name-value
pairs and any of the arguments in the previous syntax. For example, ebtde =
esbacktestbyde(PortfolioData,DistributionName,'VaRID','TotalVaR','VaRLevel',.
99). You can specify multiple name-value pairs as optional name-value pair arguments.

Input Arguments

PortfolioData — Portfolio outcome data
NumRows-by-1 numeric array | NumRows-by-1 table of numeric columns | NumRows-by-1 timetable
with one numeric column

Portfolio outcome data, specified as a NumRows-by-1 numeric array, NumRows-by-1 table of numeric
columns, or a NumRows-by-1 timetable with a numeric column containing portfolio outcomes data.
The PortfolioData input argument sets the PortfolioData on page 6-0 property.

Unlike other ES backtesting classes, the esbacktestbyde does not require VaR data or ES data
inputs. The distribution information from PortfolioData is sufficient to run the tests.
esbacktestbyde uses the distribution information to apply the cumulative distribution function to
the portfolio data and map it into the (0,1) interval. The ES backtests are applied to the mapped data.

Note Before applying the tests, the function discards rows with missing values (NaN) in the
PortfolioData or Distribution parameters. Therefore, the reported number of observations
equals the original number of rows minus the number of missing values.

Data Types: double | table | timetable

DistributionName — Model distribution name
character vector with a value of 'normal' or 't' | string with a value of "normal" of "t"

Model distribution name for ES backtesting analysis, specified as a character vector with a value of
'normal' or 't' or string with a value of "normal" or "t".
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ebtde =
esbacktestbyde(PortfolioData,"t",'DegreesOfFreedom',10,'Location',Mu,'Scale',
Sigma,'PortfolioID',"S&P",'VaRID',["t(10) 95%","t(10) 97.5%","t(10)
99%"],'VaRLevel',VaRLevel)

Name-Value Pairs for 'normal' or 't' Distributions

PortfolioID — User-defined ID
character vector | string

 esbacktestbyde

6-587

User-defined ID for PortfolioData input, specified as the comma-separated pair consisting of
'PortfolioID' and a character vector or string. The 'PortfolioID' name-value pair argument
sets the PortfolioID on page 6-0 property.

If PortfolioData is a numeric array, the default value for PortfolioID is 'Portfolio'. If
PortfolioData is a table or timetable, PortfolioID is set to the corresponding variable name in
the table, by default.
Data Types: char | string

VaRID — VaR identifier
character vector | cell array of character vectors | string | string array

VaR identifier for the VaR model, specified as the comma-separated pair consisting of 'VaRID' and a
character vector, cell array of character vectors, string, or string array.

You can specify multiple VaRID values by using a 1-by-NumVaRs (or NumVaRs-by-1) cell array of
character vectors or a string vector with user-defined IDs for the different VaR levels The 'VaRID'
name-value pair argument sets the VaRID on page 6-0 property.

If NumVaRs = 1, the default value for VaRID is 'VaR'. If NumVaRs > 1, the default value is 'VaR1',
'VaR2', and so on.
Data Types: char | cell | string

VaRLevel — VaR confidence level
0.95 (default) | numeric between 0 and 1

VaR confidence level, specified as the comma-separated pair consisting of 'VaRLevel' and a scalar
numeric value between 0 and 1 or a 1-by-NumVaRs (or NumVaRs-by-1) numeric array. The
'VaRLevel' name-value pair argument sets the VaRLevel on page 6-0 property.
Data Types: double

Simulate — Indicates if simulation for statistical significance of tests runs
true (default) | scalar logical with a value of true or false

Indicates if simulation for statistical significance of tests runs when an esbacktestbyde object is
created, specified as the comma-separated pair consisting of 'Simulate' and a scalar logical value.
Data Types: logical

Name-Value Pairs for 'normal' Distributions

Mean — Means for the normal distribution
0 (default) | vector

Means for the normal distribution, specified as the comma-separated pair consisting of 'Mean' and a
NumRows-by-1 vector. This parameter is used only when DistributionName is 'normal'.
Data Types: double

StandardDeviation — Standard deviations
1 (default) | positive vector

Standard deviations, specified as the comma-separated pair consisting of 'StandardDeviation'
and a NumRows-by-1 positive vector. This parameter is only used when DistributionName is
"normal".

6 Functions

6-588

Data Types: double

Name-Value Pairs for 't' Distributions

DegreesOfFreedom — Degrees of freedom for 't' distribution
scalar integer ≥ 3

Degrees of freedom for 't' distribution, specified as the comma-separated pair consisting of
'DegreesOfFreedom' and a scalar integer ≥ 3.

Note You must set this name-value parameter when DistributionName is 't'.

Data Types: double

Location — Location parameters for 't' distribution
0 (default) | vector

Location parameters for 't' distribution, specified as the comma-separated pair consisting of
'Location' and a NumRows-by-1 vector. This parameter is used only when DistributionName is
't'.
Data Types: double

Scale — Scale parameters for 't' distribution
1 (default) | positive vector

Scale parameters for 't' distribution, specified as the comma-separated pair consisting of 'Scale'
and a NumRows-by-1 positive vector. This parameter is used only when DistributionName is 't'.
Data Types: double

Properties
PortfolioData — Portfolio data for ES backtesting analysis
numeric array

Portfolio data for ES backtesting analysis, returned as a NumRows-by-1 numeric array containing a
copy of the portfolio data.
Data Types: double

VaRData — VaR data computed using distribution information
numeric array

VaR data computed using distribution information, returned as a NumRows-by-NumVaRs numeric
array.
Data Types: double

ESData — ES data computed using distribution information
numeric array

ES data computed using distribution information, returned as a NumRows-by-NumVaRs numeric array.
Data Types: double

 esbacktestbyde

6-589

Distribution — Model distribution information
struct

Model distribution information, returned as a struct.

For a normal distribution, the Distribution structure has the fields 'Name' (set to normal),
'Mean', and 'StandardDeviation', with values set to the corresponding inputs.

For a t distribution, the Distribution structure has the fields 'Name' (set to t),
'DegreesOfFreedom', 'Location', and 'Scale', with values set to the corresponding inputs.
Data Types: struct

PortfolioID — Portfolio identifier
string

Portfolio identifier, returned as a string.
Data Types: string

VaRID — VaR identifier
string | string array

VaR identifier, returned as a 1-by-NumVaRs string array containing the VaR ES model, where
NumVaRs is the number of VaR levels.
Data Types: string

VaRLevel — VaR level
numeric array with values between 0.90 and 0.99

VaR level, returned as a 1-by-NumVaRs numeric array.
Data Types: double

esbacktestbyde Property Set or Modify Property from
Command Line Using
esbacktestbyde

Modify Property Using Dot
Notation

PortfolioData Yes No
VaRData No No
ESData No No
Distribution Yes No
PortfolioID Yes Yes
VaRID Yes Yes
VaRLevel Yes Yes

Object Functions
summary Basic expected shortfall (ES) report on failures and severity
runtests Run all expected shortfall (ES) backtests for esbacktestbyde object
unconditionalDE Unconditional Du-Escanciano (DE) expected shortfall (ES) backtest
conditionalDE Conditional Du-Escanciano (DE) expected shortfall (ES) backtest
simulate Simulate Du-Escanciano (DE) expected shortfall (ES) test statistics

6 Functions

6-590

Examples

Create an esbacktestbyde Object and Run ES Backtests

Create an esbacktestbyde object for a t model with 10 degrees of freedom at three different VaR
levels, and then run Du and Escanciano ES backtests.

load ESBacktestDistributionData.mat
 rng('default'); % For reproducibility
 ebtde = esbacktestbyde(Returns,"t",...
 'DegreesOfFreedom',T10DoF,...
 'Location',T10Location,...
 'Scale',T10Scale,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel);
 runtests(ebtde)

ans=3×5 table
 PortfolioID VaRID VaRLevel ConditionalDE UnconditionalDE
 ___________ _____________ ________ _____________ _______________

 "S&P" "t(10) 95%" 0.95 reject accept
 "S&P" "t(10) 97.5%" 0.975 reject accept
 "S&P" "t(10) 99%" 0.99 reject reject

Create Two esbacktestbyde Objects and Run ES Backtests

Create two esbacktestbyde objects, one with a normal distribution and another with a t
distribution with 5 degrees of freedom, at three different VaR levels. Then run Du and Escanciano ES
backtests using runtests.

load ESBacktestDistributionData.mat
 rng('default'); % For reproducibility
 ebtde1 = esbacktestbyde(Returns,"normal",...
 'Mean',NormalMean,...
 'StandardDeviation',NormalStd,...
 'PortfolioID',"S&P",...
 'VaRID',["Normal 95%","Normal 97.5%","Normal 99%"],...
 'VaRLevel',VaRLevel);
 ebtde2 = esbacktestbyde(Returns,"t",...
 'DegreesOfFreedom',T5DoF,...
 'Location',T5Location,...
 'Scale',T5Scale,...
 'PortfolioID',"S&P",...
 'VaRID',["t(5) 95%","t(5) 97.5%","t(5) 99%"],...
 'VaRLevel',VaRLevel);

Concatenate results in a single table.

t = [runtests(ebtde1);runtests(ebtde2)];
disp(t)

 esbacktestbyde

6-591

 PortfolioID VaRID VaRLevel ConditionalDE UnconditionalDE
 ___________ ______________ ________ _____________ _______________

 "S&P" "Normal 95%" 0.95 reject accept
 "S&P" "Normal 97.5%" 0.975 reject reject
 "S&P" "Normal 99%" 0.99 reject reject
 "S&P" "t(5) 95%" 0.95 reject accept
 "S&P" "t(5) 97.5%" 0.975 reject accept
 "S&P" "t(5) 99%" 0.99 accept accept

Version History
Introduced in R2019b

References
[1] Du, Z., and J. C. Escanciano. "Backtesting Expected Shortfall: Accounting for Tail Risk."

Management Science. Vol. 63, Issue 4, April 2017.

[2] Basel Committee on Banking Supervision. "Minimum Capital Requirements for Market Risk".
January 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also
summary | runtests | unconditionalDE | conditionalDE | simulate | esbacktestbysim

Topics
“Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano” on page 2-63
“Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and
Escanciano” on page 2-72
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“ES Backtest Using Du-Escanciano Method” on page 2-24
“Comparison of ES Backtesting Methods” on page 2-26

6 Functions

6-592

https://www.bis.org/bcbs/publ/d352.pdf

esbacktestbysim
Create esbacktestbysim object to run simulation-based suite of expected shortfall (ES) backtests
by Acerbi and Szekely

Description
The general workflow is:

1 Load or generate the data for the ES backtesting analysis.
2 Create an esbacktestbysim object. For more information, see “Create esbacktestbysim” on

page 6-593.
3 Use the summary function to generate a summary report for the given data on the number of

observations and the number of failures.
4 Use the runtests function to run all tests at once.
5 For additional test details, run the following individual tests:

• conditional — Conditional test of Acerbi-Szekely (2014)
• unconditional — Unconditional test of Acerbi-Szekely (2014)
• quantile — Quantile test of Acerbi-Szekely (2014)
• minBiasAbsolute — Minimally biased absolute test of Acerbi-Szekely (2017)
• minBiasRelative — Minimally biased relative test of Acerbi-Szekely (2017)

For more information, see “Overview of Expected Shortfall Backtesting” on page 2-20.

Creation

Syntax
ebts = esbacktestbysim(PortfolioData,VaRData,ESData,DistributionName)
ebts = esbacktestbysim(___ ,Name,Value)

Description

ebts = esbacktestbysim(PortfolioData,VaRData,ESData,DistributionName) creates an
esbacktestbysim (ebts) object and simulates portfolio outcome scenarios to compute critical
values for these tests:

• conditional
• unconditional
• quantile
• minBiasAbsolute
• minBiasRelative

The ebts object has the following properties:

 esbacktestbysim

6-593

• PortfolioData on page 6-0 — NumRows-by-1 numeric array containing a copy of the
PortfolioData

• VaRData on page 6-0 — NumRows-by-NumVaRs numeric array containing a copy of the
VaRData

• ESData on page 6-0 — NumRows-by-NumVaRs numeric array containing a copy of the ESData
• Distribution on page 6-0 — Structure containing the model information, including model

distribution name and distribution parameters. For example, for a normal distribution,
Distribution has fields 'Name', 'Mean', and 'StandardDeviation', with values set to the
corresponding inputs.

• PortfolioID on page 6-0 — String containing the PortfolioID
• VaRID on page 6-0 — 1-by-NumVaRs string vector containing the VaRIDs for the corresponding

columns in VaRData
• VaRLevel on page 6-0 — 1-by-NumVaRs numeric array containing the VaRLevels for the

corresponding columns in VaRData.

Note

• The required input arguments for PortfolioData, VaRData, and ESData must all be in the
same units. These arguments can be expressed as returns or as profits and losses. There are no
validations in the esbacktestbysim object regarding the units of these arguments.

• If there are missing values (NaNs) in PortfolioData, VaRData, ESData, or Distribution
parameters data, the row of data is discarded before applying the tests. Therefore, a different
number of observations are reported for models with a different number of missing values. The
reported number of observations equals the original number of rows minus the number of missing
values. To determine if there are discarded rows, use the 'Missing' column of the summary
report.

ebts = esbacktestbysim(___ ,Name,Value) sets Properties on page 6-598 using name-value
pairs and any of the arguments in the previous syntax. For example, ebts =
esbacktestbysim(PortfolioData,VaRData,ESData,DistributionName,'VaRID','TotalV
aR','VaRLevel',.99). You can specify multiple name-value pairs.

Input Arguments

PortfolioData — Portfolio outcomes data
NumRows-by-1 numeric array | NumRows-by-1 numeric columns table | NumRows-by-1 numeric
columns timetable

Portfolio outcomes data, specified as a NumRows-by-1 numeric array, NumRows-by-1 table, or a
NumRows-by-1 timetable with a numeric column containing portfolio outcomes data. The
PortfolioData input argument sets the PortfolioData on page 6-0 property.

Note PortfolioData data must be in the same units as VaRData and ESData. There are no
validations in the esbacktestbysim object regarding the units of portfolio, VaR, and ES data.
PortfolioData, VaRData, and ESData can be expressed as returns or as profits and losses.

Data Types: double | table | timetable

6 Functions

6-594

VaRData — Value-at-risk (VaR) data
NumRows-by-NumVaRs numeric array | NumRows-by-NumVaRs table with numeric columns | NumRows-
by-NumVaRs timetable with numeric columns

Value-at-risk (VaR) data, specified as a NumRows-by-NumVaRs numeric array, NumRows-by-NumVaRs
table, or a NumRows-by-NumVaRs timetable with numeric columns. The VaRData input argument sets
the VaRData on page 6-0 property.

Negative VaRData values are allowed. However negative VaR values indicate a highly profitable
portfolio that cannot lose money at the given VaR confidence level. The worst-case scenario at the
given confidence level is still a profit.

Note VaRData must be in the same units as PortfolioData and ESData. There are no validations
in the esbacktestbysim object regarding the units of portfolio, VaR, and ES data. VaRData,
PortfolioData, and ESData can be expressed as returns or as profits and losses.

Data Types: double | table | timetable

ESData — Expected shortfall data
NumRows-by-NumVaRs positive numeric array | NumRows-by-NumVaRs table with positive numeric
columns | NumRows-by-NumVaRs timetable with positive numeric columns

Expected shortfall data, specified as a NumRows-by-NumVaRs positive numeric array, NumRows-by-
NumVaRs table, or NumRows-by-NumVaRs timetable with positive numeric columns containing ES
data. The ESData input argument sets the ESData on page 6-0 property.

Note ESData data must be in the same units as PortfolioData and VaRData. There are no
validations in the esbacktestbysim object regarding the units of portfolio, VaR, and ES data.
ESData, PortfolioData, and VaRData can be expressed as returns or as profits and losses.

Data Types: double | table | timetable

DistributionName — Distribution name
string with values normal and t

Distribution name, specified as a string with a value of normal or t. The DistributionName input
argument sets the 'Name' field of the Distribution on page 6-0 property.
Data Types: string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ebts =
esbacktestbysim(PortfolioData,VaRData,ESData,DistributionName,'VaRID','TotalV
aR','VaRLevel',.99)

 esbacktestbysim

6-595

PortfolioID — User-defined ID
character vector | string

User-defined ID for PortfolioData input, specified as the comma-separated pair consisting of
'PortfolioID' and a character vector or string. The PortfolioID name-value pair argument sets
the PortfolioID on page 6-0 property.

If PortfolioData is a numeric array, the default value for PortfolioID is 'Portfolio'. If
PortfolioData is a table, PortfolioID is set to the corresponding variable name in the table, by
default.
Data Types: char | string

VaRID — VaR identifier
character vector | cell array of character vectors | string | string array

VaR identifier for VaRData columns, specified as the comma-separated pair consisting of 'VaRID'
and a character vector, cell array of character vectors, string, or string array. Multiple VaRIDs are
specified using a 1-by-NumVaRs (or NumVaRs-by-1) cell array of character vectors, or a string array
with user-defined IDs for the VaRData columns. A single VaRID identifies a VaRData column and the
corresponding ESData column. The VaRID name-value pair argument sets the VaRID on page 6-0
property.

If NumVaRs = 1, the default value for VaRID is 'VaR'. If NumVaRs > 1, the default value is 'VaR1',
'VaR2', and so on. If VaRData is a table, 'VaRID' is set by default to the corresponding variable
names in the table.
Data Types: char | cell | string

VaRLevel — VaR confidence level
0.95 (default) | numeric or numeric array with values between 0 and 1

VaR confidence level, specified as a scalar with the comma-separated pair consisting of 'VaRLevel'
and a numeric value between 0 and 1 or a 1-by-NumVaRs (or NumVaRs-by-1) numeric array with a
numeric value between 0 and 1. The VaRLevel name-value pair argument sets the VaRLevel on page
6-0 property.
Data Types: double

Mean — Means for normal distribution
0 (default) | numeric | numeric array

Means for the normal distribution, specified as a comma-separated pair consisting of 'Mean' and a
numeric value or a NumRows-by-1 numeric array. The Mean name-value pair argument sets the
'Mean' field of the Distribution on page 6-0 property.

Note You set the Mean name-value pair argument only when the DistributionName input
argument is specified as normal.

Data Types: double

StandardDeviation — Standard deviation for normal distribution
1 (default) | positive numeric | positive numeric array

6 Functions

6-596

Standard deviation for the normal distribution, specified as a comma-separated pair consisting of
'StandardDeviation' and a positive numeric value or a NumRows-by-1 array. The
StandardDeviation name-value pair argument sets the 'StandardDeviation' field of the
Distribution on page 6-0 property.

Note You set the StandardDeviation name-value pair argument only when the
DistributionName input argument is specified as normal.

Data Types: double

DegreesOfFreedom — Degrees of freedom for t distribution
integer ≥ 3

Degrees of freedom for the t distribution, specified as a comma-separated pair consisting of
'DegreesOfFreedom' and an integer value ≥ 3. The DegreesOfFreedom name-value pair
argument sets the 'DegreesOfFreedom' field of the Distribution on page 6-0 property.

Note The DegreesOfFreedom name-value pair argument is only set when the DistributionName
input argument is specified as t. A value for DegreesOfFreedom is required when the value of
DistributionName is t.

Data Types: double

Location — Location parameters for t distribution
0 (default) | numeric | numeric array

Location parameters for the t distribution, specified as a comma-separated pair consisting of
'Location' and a numeric value or a NumRows-by-1 array. The Location name-value pair
argument sets the'Location' field of the Distribution on page 6-0 property.

Note The Location name-value pair argument is only set when the DistributionName input
argument is specified as t.

Data Types: double

Scale — Scale parameters for t distribution
1 (default) | positive numeric

Scale parameters for the t distribution, specified as a comma-separated pair consisting of 'Scale'
and a positive numeric value or a NumRows-by-1 array. The Scale name-value pair argument sets the
'Scale' field of the Distribution on page 6-0 property.

Note The Scale name-value pair argument is only set when the DistributionName input
argument is specified as t.

Data Types: double

 esbacktestbysim

6-597

Simulate — Indicates if simulation for statistical significance is run
true (default) | values are true or false

Indicates if a simulation for statistical significance is run when you create an esbacktestbysim
object, specified as a logical scalar with the comma-separated pair consisting of 'Simulate' and a
value of true or false.
Data Types: logical

Properties
PortfolioData — Portfolio data for ES backtesting analysis
numeric array

Portfolio data for the ES backtesting analysis, specified as a NumRows-by-1 numeric array containing
a copy of the portfolio data.
Data Types: double

VaRData — VaR data for ES backtesting analysis
numeric array

VaR data for the ES backtesting analysis, specified as a NumRows-by-NumVaRs numeric array
containing a copy of the VaR data.
Data Types: double

ESData — Expected shortfall data
numeric array

Expected shortfall data for ES backtesting analysis, specified as a NumRows-by-NumVaRs numeric
array containing a copy of the ESData.
Data Types: double

Distribution — Distribution information
structure

Distribution information, including distribution name and the associated distribution parameters,
specified as a structure.

For a normal distribution, the Distribution structure has fields 'Name' (set to normal), 'Mean',
and 'StandardDeviation', with values set to the corresponding inputs.

For a t distribution, the Distribution structure has fields 'Name' (set to t),
'DegreesOfFreedom', 'Location', and 'Scale', with values set to the corresponding inputs.
Data Types: struct

PortfolioID — Portfolio identifier
string

Portfolio identifier, specified as a string.
Data Types: string

6 Functions

6-598

VaRID — VaR identifier
string | string array

VaR identifier, specified as a 1-by-NumVaRs string array containing the VaR IDs for the corresponding
columns in VaRData.
Data Types: string

VaRLevel — VaR level
numeric array with values between 0 and 1

VaR level, specified as a 1-by-NumVaRs numeric array with values between 0 and 1 containing the
VaR levels for the corresponding columns in VaRData.
Data Types: double

esbacktestbysim Property Set or Modify Property from
Command Line Using
esbacktestbysim

Modify Property Using Dot
Notation

PortfolioData Yes No
VaRData Yes No
ESData Yes No
Distribution Yes No
PortfolioID Yes Yes
VaRID Yes Yes
VaRLevel Yes Yes

Object Functions
summary Basic expected shortfall (ES) report on failures and severity
runtests Run all expected shortfall backtests (ES) for esbacktestbysim object
conditional Conditional expected shortfall (ES) backtest by Acerbi and Szekely
unconditional Unconditional expected shortfall backtest by Acerbi and Szekely
quantile Quantile expected shortfall (ES) backtest by Acerbi and Szekely
minBiasRelative Minimally biased relative test for Expected Shortfall (ES) backtest by Acerbi-

Szekely
minBiasAbsolute Minimally biased absolute test for Expected Shortfall (ES) backtest by Acerbi-

Szekely
simulate Simulate expected shortfall (ES) test statistics

Examples

Create esbacktestbysim Object and Run ES Backtests

esbacktestbysim takes in portfolio outcomes data, the corresponding value-at-risk (VaR) data, the
expected shortfall (ES) data, and the Distribution information and returns an esbacktestbysim
object.

Create an esbacktestbysim object and display the Distribution property.

load ESBacktestBySimData
rng('default'); % for reproducibility

 esbacktestbysim

6-599

ebts = esbacktestbysim(Returns,VaR,ES,"t",...
 'DegreesOfFreedom',10,...
 'Location',Mu,...
 'Scale',Sigma,...
 'PortfolioID',"S&P",...
 'VaRID',["t(10) 95%","t(10) 97.5%","t(10) 99%"],...
 'VaRLevel',VaRLevel)

ebts =
 esbacktestbysim with properties:

 PortfolioData: [1966x1 double]
 VaRData: [1966x3 double]
 ESData: [1966x3 double]
 Distribution: [1x1 struct]
 PortfolioID: "S&P"
 VaRID: ["t(10) 95%" "t(10) 97.5%" "t(10) 99%"]
 VaRLevel: [0.9500 0.9750 0.9900]

ebts.Distribution

ans = struct with fields:
 Name: "t"
 DegreesOfFreedom: 10
 Location: 0
 Scale: [1966x1 double]

ebts, the esbacktestbysim object, contains a copy of the given portfolio data (PortfolioData
property), the given VaR data (VaRData property), the given ES data (ESData) property, and the
given Distribution information. The object also contains all combinations of portfolio ID, VaR ID,
and VaR level to be tested (PortfolioID, VaRID, and VaRLevel properties).

Run the tests using the ebts object.

TestResults = runtests(ebts)

TestResults=3×8 table
 PortfolioID VaRID VaRLevel Conditional Unconditional Quantile MinBiasAbsolute MinBiasRelative
 ___________ _____________ ________ ___________ _____________ ________ _______________ _______________

 "S&P" "t(10) 95%" 0.95 reject accept reject accept reject
 "S&P" "t(10) 97.5%" 0.975 reject reject reject reject reject
 "S&P" "t(10) 99%" 0.99 reject reject reject reject reject

Change the PortfolioID property using dot notation. For more information on creating an
esbacktestbysim object, see esbacktestbysim.

ebts.PortfolioID = 'S&P, 1996-2003'

ebts =
 esbacktestbysim with properties:

 PortfolioData: [1966x1 double]
 VaRData: [1966x3 double]
 ESData: [1966x3 double]
 Distribution: [1x1 struct]

6 Functions

6-600

 PortfolioID: "S&P, 1996-2003"
 VaRID: ["t(10) 95%" "t(10) 97.5%" "t(10) 99%"]
 VaRLevel: [0.9500 0.9750 0.9900]

Run all tests using the updated esbacktestbysim object.

runtests(ebts)

ans=3×8 table
 PortfolioID VaRID VaRLevel Conditional Unconditional Quantile MinBiasAbsolute MinBiasRelative
 ________________ _____________ ________ ___________ _____________ ________ _______________ _______________

 "S&P, 1996-2003" "t(10) 95%" 0.95 reject accept reject accept reject
 "S&P, 1996-2003" "t(10) 97.5%" 0.975 reject reject reject reject reject
 "S&P, 1996-2003" "t(10) 99%" 0.99 reject reject reject reject reject

Version History
Introduced in R2017b

References
[1] Acerbi, C., and B. Szekely. Backtesting Expected Shortfall. MSCI Inc. December, 2014.

[2] Basel Committee on Banking Supervision. Minimum Capital Requirements for Market Risk.
January, 2016 (https://www.bis.org/bcbs/publ/d352.pdf).

See Also
summary | runtests | conditional | unconditional | quantile | simulate |
minBiasRelative | minBiasAbsolute | esbacktest | table | timetable | varbacktest |
esbacktestbyde

Topics
“Expected Shortfall (ES) Backtesting Workflow Using Simulation” on page 2-34
“Expected Shortfall Estimation and Backtesting” on page 2-44
“Overview of Expected Shortfall Backtesting” on page 2-20
“Comparison of ES Backtesting Methods” on page 2-26

 esbacktestbysim

6-601

https://www.bis.org/bcbs/publ/d352.pdf

expectedClaims
Create expectedClaims object

Description
Use this workflow to generate unpaid claims for an expectedClaims:

1 Load or generate the data for the development triangle.
2 Create a developmentTriangle object.
3 Create an expectedClaims object.
4 Use the ultimateClaims function to calculate the projected ultimate claims.
5 Use the ibnr function to calculate the incurred-but-not-reported (IBNR) claims.
6 Use the unpaidClaims function to calculate the unpaid claims.
7 Use the summary function to generate a summary report for the expected claims analysis.

Creation

Syntax
ec = expectedClaims(dT_reported,dT_paid,earnedPremium)
ec = expectedClaims(___ ,Name,Value)

Description

ec = expectedClaims(dT_reported,dT_paid,earnedPremium) creates an expectedClaims
object using the developmentTriangle objects for reported claims (dT_reported) and paid claims
(dT_paid), as well as the earnedPremium.

ec = expectedClaims(___ ,Name,Value) sets properties on page 6-603 using name-value
pairs and any of the arguments in the previous syntax. For example, ec =
expectedClaims(dT_reported,dT_paid,earnedPremium,'InitialClaims',initialSelec
tedUltimateClaims). You can specify multiple name-value arguments.

Input Arguments

dT_reported — Development triangle for reported claims
developmentTriangle object

Development triangle for reported claims, specified as a previously created developmentTriangle
object.
Data Types: object

dT_paid — Development triangle for paid claims
developmentTriangle object

6 Functions

6-602

Development triangle for paid claims, specified as a previously created developmentTriangle
object.
Data Types: object

earnedPremium — Earned premium for each Origin period
array

Earned premium for each Origin period, specified as an array.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ec = expectedClaims(dT_reported,dT_paid,
earnedPremium,'InitialClaims',initialSelectedUltimateClaims)

InitialClaims — Initial selected ultimate claims
average of the projected reported ultimate claims and the projected paid Ultimate Claims (default) |
array

Initial selected ultimate claims, specified as the comma-separated pair consisting of
'InitialClaims' and an array.
Data Types: double

Properties
ReportedTriangle — Development triangle for reported claims
developmentTriangle object

Development triangle for reported claims, returned as a developmentTriangle object containing
the origin years, development years, and claims.
Data Types: object

PaidTriangle — Development triangle for paid claims
developmentTriangle object

Development triangle for paid claims, returned as a developmentTriangle object containing the
origin years, development years, and claims.
Data Types: object

earnedPremium — Earned premium for each Origin period
array

Earned premium for each Origin period, returned as an array.
Data Types: double

 expectedClaims

6-603

InitialClaims — Initial selected ultimate claims
average of the projected reported ultimate claims and the projected paid Ultimate Claims (default) |
array

Initial selected ultimate claims, returned as an array.
Data Types: double

Object Functions
ultimateClaims Compute projected ultimate claims for expectedClaims object
ibnr Compute IBNR claims for expectedClaims object
unpaidClaims Compute unpaid claims estimates for expectedClaims object
summary Display summary report for different claims estimates

Examples

Create expectedClaims Object

Create an expectedClaims object for simulated insurance claims data.

load InsuranceClaimsData.mat;
head(data)

 OriginYear DevelopmentYear ReportedClaims PaidClaims
 __________ _______________ ______________ __________

 2010 12 3995.7 1893.9
 2010 24 4635 3371.2
 2010 36 4866.8 4079.1
 2010 48 4964.1 4487
 2010 60 5013.7 4711.4
 2010 72 5038.8 4805.6
 2010 84 5059 4853.7
 2010 96 5074.1 4877.9

Use developmentTriangle to convert the data to a development triangle, which is the standard
form for representing claims data. Create two developmentTriangle objects, one for reported
claims and one for paid claims.

dT_reported = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','ReportedClaims')

dT_reported =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [1.3069 1.1107 1.0516 1.0261 1.0152 1.0098 1.0060 1.0030 1.0010 1]
 SelectedLinkRatio: [1.1767 1.0563 1.0249 1.0107 1.0054 1.0038 1.0030 1.0020 1.0010]

dT_paid = developmentTriangle(data,'Origin','OriginYear','Development','DevelopmentYear','Claims','PaidClaims')

6 Functions

6-604

dT_paid =
 developmentTriangle with properties:

 Origin: {10x1 cell}
 Development: {10x1 cell}
 Claims: [10x10 double]
 LatestDiagonal: [10x1 double]
 Description: ""
 TailFactor: 1
 CumulativeDevelopmentFactors: [2.4388 1.4070 1.1799 1.0810 1.0378 1.0178 1.0080 1.0030 1.0010 1]
 SelectedLinkRatio: [1.7333 1.1925 1.0914 1.0417 1.0196 1.0097 1.0050 1.0020 1.0010]

Create an expectedClaims object where the first input argument is the reported development
triangle and the second input argument is the paid development triangle.

earnedPremium = [17000; 18000; 10000; 19000; 16000; 10000; 11000; 10000; 14000; 10000];
ec = expectedClaims(dT_reported, dT_paid,earnedPremium)

ec =
 expectedClaims with properties:

 ReportedTriangle: [1x1 developmentTriangle]
 PaidTriangle: [1x1 developmentTriangle]
 EarnedPremium: [10x1 double]
 InitialClaims: [10x1 double]
 CaseOutstanding: [10x1 double]
 EstimatedClaimsRatios: [10x1 double]
 SelectedClaimsRatios: [10x1 double]

Version History
Introduced in R2020b

See Also
developmentTriangle | chainLadder | bornhuetterFerguson

Topics
“Overview of Claims Estimation Methods for Non-Life Insurance” on page 1-16

 expectedClaims

6-605

customLifetimePDModel
Create customLifetimePDModel object for lifetime probability of default

Description
Create and analyze a customLifetimePDModel object to calculate the lifetime probability of default
(PD) using this workflow:

1 Fit a PD model that can predict PD for a loan or a portfolio of loans.
2 Define a function handle for a function that predicts the PD in your designated PD model.
3 Use customLifetimePDModel and pass the specified function handle to create a

customLifetimePDModel object. The designated model is now wrapped as a lifetime PD model.
4 Use predict to predict the conditional PD and predictLifetime to predict the lifetime PD.
5 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using

modelDiscriminationPlot.
6 Use modelCalibration to return the RMSE of the observed and predicted PD data. You can

plot the results using modelCalibrationPlot.

Creation

Syntax
CustomLifetimePDModel = customLifetimePDModel(pdFcnHandle,IDVar=idvar_value,
ResponseVar=responsevar_value)
CustomLifetimePDModel = customLifetimePDModel(___ ,Name=Value)

Description

CustomLifetimePDModel = customLifetimePDModel(pdFcnHandle,IDVar=idvar_value,
ResponseVar=responsevar_value) creates a customLifetimePDModel object for a PD model
using required name-value arguments and sets model object properties on page 6-609.

CustomLifetimePDModel = customLifetimePDModel(___ ,Name=Value) specifies options
using one or more name-value arguments in addition to the input arguments in the previous syntax.
The optional name-value arguments set model object properties on page 6-609. For example,
CustomLifetimePDModel =
customLifetimePDModel(pdFcnHandle,IDVar='ID',AgeVar='YOB',Description='Scorec
ard as lifetime PD
model',LoanVars='ScoreGroup',MacroVars={'GDP''Market'},ModelID='ScorecardLife
time',ResponseVar='Default') creates a CustomLifetimePDModel object.

Input Arguments

pdFcnHandle — Function handle for custom model probability of default prediction function
function_handle

6 Functions

6-606

Function handle for custom model probability of default prediction function, specified as a function
handle.

The function takes in a data table which includes variables that you specify in AgeVar, LoanVars,
and MacroVars, and returns a predicted conditional PD value for each row of the table.

Note Because the pdFcnHandle function passes the data input in its entirety to the prediction and
validation methods, it allows extra columns in the data table for other variables, such as IDVar,
ResponseVar, and grouping variables.

Data Types: function_handle

customLifetimePDModel Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: CustompdModel =
customLifetimePDModel(pdFcnHandle,IDVar='ID',AgeVar='YOB',Description='Scorec
ard as lifetime PD
model',LoanVars='ScoreGroup',MacroVars={'GDP''Market'},ModelID='ScorecardLife
time',ResponseVar='Default')

Required customLifetimePDModel Name-Value Arguments

IDVar — ID variable indicating which column in data input contains loan or borrower ID
string | character vector

ID variable indicating which column in the data accepted as input by pdFcnHandle contains the loan
or borrower ID, specified as IDVar and a string or character vector.

Note IDVar is required for lifetime PD prediction using predictLifetime.

Data Types: string | char

ResponseVar — Variable indicating which column in the data input contains response
variable
string | character vector

Variable indicating which column in the data accepted as input by pdFcnHandle contains the
response variable, specified as ResponseVar and a string or character vector.

Note ResponseVar is required for model validation when you use modelDiscrimination,
modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.

Data Types: string | char

 customLifetimePDModel

6-607

Optional customLifetimePDModel Name-Value Arguments

ModelID — User-defined model ID
customLifetimePDModel (default) | string | character vector

User-defined model ID, specified as ModelID and a string or character vector. The software uses the
ModelID to format outputs and is expected to be short.
Data Types: string | char

Description — User-defined description for model
"" (default) | string | character vector

User-defined description for the model, specified as Description and a string or character vector.
Data Types: string | char

AgeVar — Age variable indicating which column in data input contains loan age information
"" (default) | string | character vector

Age variable indicating which column in the data accepted as input by pdFcnHandle contains the
loan age information, specified as AgeVar and a string or character vector.

Note AgeVar, LoanVars, and MacroVars work together as data input for the predictor variables of
the model. You must specify at least one of these inputs. The predict function validates that the data
input contains all the predictor variables.

If the distinction between AgeVar, LoanVars, and MacroVars is not important for the custom
model's PD prediction, use LoanVars to store all the predictor variables in the model.

An age variable is common for lifetime PD modeling. When you specify AgeVar the
predictLifetime function uses it to validate the periodicity of the rows in the data.

Data Types: string | char

LoanVars — Loan variables indicating which column in data input contains loan-specific
information
"" (default) | string array | cell array of character vectors

Loan variables indicating which column in the data accepted as input by pdFcnHandle contains the
loan-specific information, such as origination score or loan-to-value ratio, specified as LoanVars and
a string array or cell array of character vectors.

Note AgeVar, LoanVars, and MacroVars work together as data input for the predictor variables of
the model. You must specify at least one of these inputs. The predict function validates that the data
input contains all the predictor variables.

If the distinction between AgeVar, LoanVars, and MacroVars is not important for the custom
model's PD prediction, use LoanVars to store all the predictor variables in the model.

Data Types: string | cell

6 Functions

6-608

MacroVars — Macro variables indicating which column in data input contains
macroeconomic information
"" (default) | string array | cell array of character vectors

Macro variables indicating which column in the data accepted as input by pdFcnHandle contains the
macroeconomic information, such as gross domestic product (GDP) growth or unemployment rate,
specified as MacroVars and a string array or cell array of character vectors.

Note AgeVar, LoanVars, and MacroVars work together as data input for the predictor variables of
the model. You must specify at least one of these inputs. The predict function validates that the data
input contains all the predictor variables.

If the distinction between AgeVar, LoanVars, and MacroVars is not important for the custom
model's PD prediction, use LoanVars to store all the predictor variables in the model.

Data Types: string | cell

Properties
ModelID — User-defined model ID
customLifetimePDModel (default) | string

User-defined model ID, returned as a string.
Data Types: string

Description — User-defined description
"" (default) | string

User-defined description, returned as a string.
Data Types: string

Model — Custom model defined using function handle
custom model

Custom model defined using the function handle (pdFcnHandle), returned as the PD prediction
function handle (pdFcnHandle).
Data Types: function_handle

IDVar — ID variable indicating which column in data input contains loan or borrower ID
string

ID variable indicating which column in the data input defined by pdFcnHandle contains loan or
borrower ID, returned as a string.
Data Types: string

AgeVar — Age variable indicating which column in data input contains loan age information
"" (default) | string

Age variable indicating which column in the data input defined by pdFcnHandlecontains loan age
information, returned as a string.

 customLifetimePDModel

6-609

Data Types: string

LoanVars — Loan variables indicating which column in data input contains loan-specific
information
"" (default) | string array

Loan variables indicating which column in the data input defined by pdFcnHandle contains loan-
specific information, returned as a string array.
Data Types: string

MacroVars — Macro variables indicating which column in data input contains
macroeconomic information
"" (default) | string array

Macro variables indicating which column in the data input defined by pdFcnHandle contains
macroeconomic information, returned as a string array.
Data Types: string

ResponseVar — Variable indicating which column in data input contains response variable
string

Variable indicating which column in the data input defined by pdFcnHandle contains the response
variable, returned as a string.
Data Types: string

Object Functions
predict Compute conditional PD
predictLifetime Compute cumulative lifetime PD, marginal PD, and survival probability
modelDiscrimination Compute AUROC and ROC data
modelCalibration Compute RMSE of predicted and observed PDs on grouped data
modelDiscriminationPlot Plot ROC curve
modelCalibrationPlot Plot observed default rates compared to predicted PDs on grouped data

Examples

Create Custom Lifetime PD Model

This example shows how to use the customLifetimePDModel object with a function handle to wrap
a credit scorecard model as a customLifetimePDModel model.

Load Data

Load the credit portfolio data. The data set is in panel data format, with multiple rows per loan.

load RetailCreditPanelData.mat
disp(head(data))

 ID ScoreGroup YOB Default Year
 __ __________ ___ _______ ____

 1 Low Risk 1 0 1997

6 Functions

6-610

 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004

disp(head(dataMacro))

 Year GDP Market
 ____ _____ ______

 1997 2.72 7.61
 1998 3.57 26.24
 1999 2.86 18.1
 2000 2.43 3.19
 2001 1.26 -10.51
 2002 -0.59 -22.95
 2003 0.63 2.78
 2004 1.85 9.48

Join the two data components into a single data set.

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Fit Credit Scorecard Model

Use creditscorecard to create a creditscorecard object, use autobinning to perform
automatic binning of specified predictors, and then use fitmodel to fit a logistic regression model to
weight of evidence (WOE) data. In this example, the entire data set is used to train the model.

sc = creditscorecard(data,'IDVar','ID','PredictorVars',{'ScoreGroup' 'YOB' 'GDP' 'Market'},'ResponseVar','Default');
sc = autobinning(sc);
sc = autobinning(sc,'YOB','Algorithm','Split');
sc = fitmodel(sc,'Display','off');
displaypoints(sc)

ans=16×3 table
 Predictors Bin Points
 ______________ _______________ _______

 {'ScoreGroup'} {'High Risk' } 0.61102
 {'ScoreGroup'} {'Medium Risk'} 1.3043
 {'ScoreGroup'} {'Low Risk' } 1.9113
 {'ScoreGroup'} {'<missing>' } NaN

 customLifetimePDModel

6-611

 {'YOB' } {'[-Inf,2)' } 0.56226
 {'YOB' } {'[2,5)' } 1.0024
 {'YOB' } {'[5,7)' } 1.4549
 {'YOB' } {'[7,Inf]' } 2.509
 {'YOB' } {'<missing>' } NaN
 {'GDP' } {'[-Inf,0.63)'} 1.042
 {'GDP' } {'[0.63,Inf]' } 1.1657
 {'GDP' } {'<missing>' } NaN
 {'Market' } {'[-Inf,2.78)'} 1.0731
 {'Market' } {'[2.78,9.48)'} 1.1219
 {'Market' } {'[9.48,Inf]' } 1.2294
 {'Market' } {'<missing>' } NaN

Create customLifetimePDModel Object Using Function Handle

Use customLifetimePDModel with a function handle for the probdefault function.

pdFcnHandle = @(data) probdefault(sc,data);
pdModel = customLifetimePDModel(pdFcnHandle,IDVar='ID',AgeVar='YOB', ...
 Description='Scorecard as lifetime PD model',LoanVars='ScoreGroup', ...
 MacroVars={'GDP' 'Market'},ModelID='ScorecardLifetime',ResponseVar='Default');
disp(pdModel)

 CustomLifetimePD with properties:

 ModelID: "ScorecardLifetime"
 Description: "Scorecard as lifetime PD model"
 UnderlyingModel: @(data)probdefault(sc,data)
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

pdModel.UnderlyingModel

ans = function_handle with value:
 @(data)probdefault(sc,data)

Predict Lifetime PD

Use the predictLifetime function to predict lifetime cumulative PD values for the first ID
associated with the first eight rows of the data. The data input to predictLifetime must be in
panel data form, with multiple rows per loan, and the function computes the cumulative probability of
default for each period. For more information, see “Time Interval and Data Input for Lifetime
Prediction” on page 6-348.

predictLifetime(pdModel,data(1:8,:))

ans = 8×1

 0.0085
 0.0134
 0.0182
 0.0236
 0.0272
 0.0312

6 Functions

6-612

 0.0324
 0.0335

Validate Model

By wrapping the scorecard model as a lifetime PD model, all the validation functionality of the
lifetime PD models is available. For example, use modelCalibrationPlot to visualize the observed
default rates compared to the predicted probabilities of default.

modelCalibrationPlot(pdModel,data,'YOB')

Version History
Introduced in R2022b

R2023a: modelAccuracy object function is renamed to modelCalibration function
Not recommended starting in R2023a

The modelAccuracy object function is renamed to modelCalibration function. The use of
modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot
function
Not recommended starting in R2023a

 customLifetimePDModel

6-613

The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use
of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models
LLC, 2018.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python.
Independently published, 2020.

See Also
Functions
fitLifetimePDModel | Probit | Cox | Logistic

Topics
“Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle” on page 3-131
“Create Custom Lifetime PD Model for Decision Tree Model with Function Handle” on page 4-224
“Expected Credit Loss Computation” on page 4-124
“Overview of Lifetime Probability of Default Models” on page 1-25

6 Functions

6-614

Logistic
Create Logistic model object for lifetime probability of default

Description
Create and analyze a Logistic model object to calculate the lifetime probability (PD) of default
using this workflow:

1 Use fitLifetimePDModel to create a Logistic model object.
2 Use predict to predict the conditional PD and predictLifetime to predict the lifetime PD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using

modelDiscriminationPlot.
4 Use modelCalibration to return the RMSE of the observed and predicted PD data. You can

plot the results using modelCalibrationPlot.

Creation

Syntax
LogisticPDModel = fitLifetimePDModel(data,ModelType)
LogisticPDModel = fitLifetimePDModel(___ ,Name,Value)

Description

LogisticPDModel = fitLifetimePDModel(data,ModelType) creates a Logistic PD model
object.

If you do not specify variable information for IDVar, AgeVar, LoanVars, MacroVars, and
ResponseVar, then:

• IDVar is set to the first column in the data input.
• LoanVars is set to include all columns from the second to the second-to-last columns of the data

input.
• ResponseVar is set to the last column in the data input.

LogisticPDModel = fitLifetimePDModel(___ ,Name,Value) specifies options using one or
more name-value pair arguments in addition to the input arguments in the previous syntax. The
optional name-value pair arguments set model object properties on page 6-617. For example,
LogisticPDModel =
fitLifetimePDModel(data(TrainDataInd,:),"Logistic",'ModelID',"Logistic_A",'De
scription',"Logisitic_model",'AgeVar',"YOB",'IDVar',"ID",'LoanVars',"ScoreGro
up",'MacroVars',{'GDP','Market'}'ResponseVar',"Default") creates a
LogisticPDModel object using a Logistic model type.

 Logistic

6-615

Input Arguments

data — Data
table

Data, specified as a table, in panel data form. The data must contain an ID column. The response
variable must be a binary variable with the value 0 or 1, with 1 indicating default.
Data Types: table

ModelType — Model type
string with value "Logistic" | character vector with value 'Logistic'

Model type, specified as a string with the value of "Logistic" or a character vector with the value
of 'Logistic'.
Data Types: char | string

Logistic Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: LogisticPDModel =
fitLifetimePDModel(data(TrainDataInd,:),"Logistic",'ModelID',"Logistic_A",'De
scription',"Logisitic_model",'AgeVar',"YOB",'IDVar',"ID",'LoanVars',"ScoreGro
up",'MacroVars',{'GDP','Market'}'ResponseVar',"Default")

ModelID — User-defined model ID
Logistic (default) | string | character vector

User-defined model ID, specified as the comma-separated pair consisting of 'ModelID' and a string
or character vector. The software uses the ModelID to format outputs and is expected to be short.
Data Types: string | char

Description — User-defined description for model
"" (default) | string | character vector

User-defined description for model, specified as the comma-separated pair consisting of
'Description' and a string or character vector.
Data Types: string | char

IDVar — ID variable indicating which column in data contains loan or borrower ID
1st column of data (default) | string | character vector

ID variable indicating which column in data contains the loan or borrower ID, specified as the
comma-separated pair consisting of 'IDVar' and a string or character vector.
Data Types: string | char

AgeVar — Age variable indicating which column in data contains loan age information
if not specified, then LoanVars (default) | string | character vector

6 Functions

6-616

Age variable indicating which column in data contains the loan age information, specified as the
comma-separated pair consisting of 'AgeVar' and a string or character vector.
Data Types: string | char

LoanVars — Loan variables indicating which column in data contains loan-specific
information
all columns of data that are not the first or last column (default) | string array | cell array of
character vectors

Loan variables indicating which column in data contains the loan-specific information, such as
origination score or loan-to-value ratio, specified as the comma-separated pair consisting of
'LoanVars' and a string array or cell array of character vectors.
Data Types: string | cell

MacroVars — Macro variables indicating which column in data contains macroeconomic
information
if not specified, then LoanVars (default) | string array | cell array of character vectors

Macro variables indicating which column in data contains the macroeconomic information, such as
gross domestic product (GDP) growth or unemployment rate, specified as the comma-separated pair
consisting of 'MacroVars' and a string array or cell array of character vectors.
Data Types: string | cell

ResponseVar — Variable indicating which column in data contains response variable
string | character vector

Variable indicating which column in data contains the response variable, specified as the comma-
separated pair consisting of 'ResponseVar' and a string or character vector.

Note The response variable values in the data must be a binary variable with 0 or 1 values, with 1
indicating default.

Data Types: string | char

Properties
ModelID — User-defined model ID
Logistic (default) | string

User-defined model ID, returned as a string.
Data Types: string

Description — User-defined description
"" (default) | string

User-defined description, returned as a string.
Data Types: string

UnderlyingModel — Underlying statistical model
compact linear model

 Logistic

6-617

Underlying statistical model, returned as a compact generalized linear model object. For more
information, see fitglm and CompactGeneralizedLinearModel.
Data Types: CompactGneralizedLinearModel

IDVar — ID variable indicating which column in data contains loan or borrower ID
1st column of data (default) | string

ID variable indicating which column in data contains loan or borrower ID, returned as a string.
Data Types: string

AgeVar — Age variable indicating which column in data contains loan age information
if not specified, then LoanVars (default) | string

Age variable indicating which column in data contains loan age information, returned as a string.
Data Types: string

LoanVars — Loan variables indicating which column in data contains loan-specific
information
all columns of data that are not the first or last column (default) | string array

Loan variables indicating which column in data contains loan-specific information, returned as a
string array.
Data Types: string

MacroVars — Macro variables indicating which column in data contains macroeconomic
information
if not specified, then LoanVars (default) | string array

Macro variables indicating which column in data contains macroeconomic information, returned as a
string array.
Data Types: string

ResponseVar — Variable indicating which column in data contains response variable
string

Variable indicating which column in data contains the response variable, returned as a string.
Data Types: string

Object Functions
predict Compute conditional PD
predictLifetime Compute cumulative lifetime PD, marginal PD, and survival probability
modelDiscrimination Compute AUROC and ROC data
modelCalibration Compute RMSE of predicted and observed PDs on grouped data
modelDiscriminationPlot Plot ROC curve
modelCalibrationPlot Plot observed default rates compared to predicted PDs on grouped data

Examples

6 Functions

6-618

Create Logistic Lifetime PD Model

This example shows how to use fitLifetimePDModel to create a Logistic model using credit and
macroeconomic data.

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat
disp(head(data))

 ID ScoreGroup YOB Default Year
 __ __________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004

disp(head(dataMacro))

 Year GDP Market
 ____ _____ ______

 1997 2.72 7.61
 1998 3.57 26.24
 1999 2.86 18.1
 2000 2.43 3.19
 2001 1.26 -10.51
 2002 -0.59 -22.95
 2003 0.63 2.78
 2004 1.85 9.48

Join the two data components into a single data set.

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Partition Data

Separate the data into training and test partitions.

 Logistic

6-619

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Create Logistic Lifetime PD Model

Use fitLifetimePDModel to create a Logistic model using the training data.

pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Logistic",...
 'AgeVar','YOB',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},...
 'ResponseVar','Default');
disp(pdModel)

 Logistic with properties:

 ModelID: "Logistic"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

Display the underlying model.

pdModel.UnderlyingModel

ans =
Compact generalized linear regression model:
 logit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -2.7422 0.10136 -27.054 3.408e-161
 ScoreGroup_Medium Risk -0.68968 0.037286 -18.497 2.1894e-76
 ScoreGroup_Low Risk -1.2587 0.045451 -27.693 8.4736e-169
 YOB -0.30894 0.013587 -22.738 1.8738e-114
 GDP -0.11111 0.039673 -2.8006 0.0051008
 Market -0.0083659 0.0028358 -2.9502 0.0031761

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0

6 Functions

6-620

Predict Conditional and Lifetime PD

Use the predict function to predict conditional PD values. The prediction is a row-by-row prediction.

dataCustomer1 = data(1:8,:);
CondPD = predict(pdModel,dataCustomer1)

CondPD = 8×1

 0.0092
 0.0053
 0.0045
 0.0039
 0.0037
 0.0037
 0.0019
 0.0012

Use predictLifetime to predict the lifetime cumulative PD values (computing marginal and
survival PD values is also supported). The predictLifetime function uses the ID variable (see the
'IDVar' property for the Logistic object) to transform conditional PDs to cumulative PDs for each
ID.

LifetimePD = predictLifetime(pdModel,dataCustomer1)

LifetimePD = 8×1

 0.0092
 0.0145
 0.0189
 0.0228
 0.0264
 0.0300
 0.0319
 0.0330

Validate Model

Use modelDiscrimination to measure the ranking of customers by PD.

DiscMeasure = modelDiscrimination(pdModel,data(TestDataInd,:),DataID='test data');
disp(DiscMeasure)

 AUROC

 Logistic, test data 0.70009

Use modelDiscriminationPlot to visualize the ROC curve.

modelDiscriminationPlot(pdModel,data(TestDataInd,:),DataID='test data');

 Logistic

6-621

Use modelCalibration to measure the calibration of the predicted PD values. The
modelCalibration function requires a grouping variable and compares the accuracy of the
observed default rate in the group with the average predicted PD for the group. For example, you can
group by calendar year using the 'Year' variable.

CalMeasure = modelCalibration(pdModel,data(TestDataInd,:),'Year',DataID='test data');
disp(CalMeasure)

 RMSE

 Logistic, grouped by Year, test data 0.000453

Use modelCalibrationPlot to visualize the observed default rates compared to the predicted
probabilities of default (PD).

modelCalibrationPlot(pdModel,data(TestDataInd,:),'Year',DataID='test data');

6 Functions

6-622

More About
Time Interval for Logistic Models

For Logistic and Probit models, there is a time interval implicit in the data, specifically, in the
definition of the default variable.

For example, if the default indicator is defined so that it takes the value 1 if there is a default over a
3-month period, the time interval is 3-months. In this case, the predicted PD values are 3-month PD
predictions. Then the PD for month 18 would be the conditional probability that there is a default
between months 15 and 18, given that there has been no default in the first 15 months.

Because the data input for fitLifetimePDModel is in panel data form, there is an implicit or
explicit time stamp for each row, and the time interval used in the default definition should be the
same as the time increments between consecutive rows. If there is an optional age variable (AgeVar)
in the training data, the time interval should be the same as the age increments (for the same ID)
from one row to the next.

Logistic and Probit models do not explicitly infer or store the time interval information. However,
the predicted PD values returned by predict are consistent with the time interval implicit in the
panel training data, which in turn should be the same as the time interval used to define the default
variable.

Unlike Logistic and Probit models, Cox models require an AgeVar variable, and the time interval
is inferred from the increments in the age values in the training data. Cox models store the time

 Logistic

6-623

interval value as the TimeInterval property. For more information, see “Lifetime Prediction and
Time Interval” on page 6-342.

Version History
Introduced in R2020b

R2023a: modelAccuracy object function is renamed to modelCalibration function
Not recommended starting in R2023a

The modelAccuracy object function is renamed to modelCalibration function. The use of
modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot
function
Not recommended starting in R2023a

The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use
of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

R2023a: Model property renamed to UnderlyingModel
Behavior changed in R2023a

The Model property is renamed to UnderlyingModel.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models
LLC, 2018.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python.
Independently published, 2020.

See Also
Functions
fitLifetimePDModel | Probit | Cox | customLifetimePDModel

Topics
“Basic Lifetime PD Model Validation” on page 4-129
“Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
“Compare Lifetime PD Models Using Cross-Validation” on page 4-121
“Expected Credit Loss Computation” on page 4-124
“Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on page
4-144
“Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-75

6 Functions

6-624

“Overview of Lifetime Probability of Default Models” on page 1-25

 Logistic

6-625

Probit
Create Probit model object for lifetime probability of default

Description
Create and analyze a Probit model object to calculate lifetime probability of default (PD) using this
workflow:

1 Use fitLifetimePDModel to create a Probit model object.
2 Use predict to predict the conditional PD and predictLifetime to predict the lifetime PD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using

modelDiscriminationPlot.
4 Use modelCalibration to return the RMSE of observed and predicted PD data. You can plot

the results using modelCalibrationPlot.

Creation
Syntax
ProbitPDModel = fitLifetimePDModel(data,ModelType)
ProbitPDModel = fitLifetimePDModel(___ ,Name,Value)

Description

ProbitPDModel = fitLifetimePDModel(data,ModelType) creates a Probit PD model object.

If you do not specify variable information for IDVar, AgeVar, LoanVars, MacroVars, and
ResponseVar, then:

• IDVar is set to the first column in the data input.
• LoanVars is set to include all columns from the second to the second-to-last columns of the data

input.
• ResponseVar is set to the last column in the data input.

ProbitPDModel = fitLifetimePDModel(___ ,Name,Value) specifies options using one or
more name-value pair arguments in addition to the input arguments in the previous syntax. The
optional name-value pair arguments set the model object properties on page 6-628. For example,
ProbitPDModel =
fitLifetimePDModel(data(TrainDataInd,:),"Probit",'ModelID',"Probit_A",'Descri
pion',"Probit_model",'AgeVar',"YOB",'IDVar',"ID",'LoanVars',"ScoreGroup",'Mac
roVars',{'GDP','Market'},'ResponseVar',"Default") creates a ProbitPDModel object
using a Probit model type.

Input Arguments

data — Data
table

6 Functions

6-626

Data, specified as a table, in panel data form. The data must contain an ID column. The response
variable must be a binary variable with the value 0 or 1, with 1 indicating default.

Data, specified as a table where the first column is IDVar, the last column is the ResponseVar, and
all other columns are LoanVars.
Data Types: table

ModelType — Model type
string with value "Probit" | character vector with value 'Probit'

Model type, specified as a string with the value "Probit" or a character vector with the value
'Probit'.
Data Types: char | string

Probit Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ProbitPDModel =
fitLifetimePDModel(data(TrainDataInd,:),"Probit",'ModelID',"Probit_A",'Descri
pion',"Probit_model",'AgeVar',"YOB",'IDVar',"ID",'LoanVars',"ScoreGroup",'Mac
roVars',{'GDP','Market'},'ResponseVar',"Default")

ModelID — User-defined model ID
Probit (default) | string | character vector

User-defined model ID, specified as the comma-separated pair consisting of 'ModelID' and a string
or character vector. The software uses the ModelID to format outputs and is expected to be short.
Data Types: string | char

Description — User-defined description for model
"" (default) | string | character vector

User-defined description for model, specified as the comma-separated pair consisting of
'Description' and a string or character vector.
Data Types: string | char

IDVar — ID variable indicating which column in data contains loan or borrower ID
1st column of data (default) | string | character vector

ID variable indicating which column in data contains the loan or borrower ID, specified as the
comma-separated pair consisting of 'IDVar' and a string or character vector.
Data Types: string | char

AgeVar — Age variable indicating which column in data contains loan age information
if not specified, then LoanVars (default) | string | character vector

Age variable indicating which column in data contains the loan age information, specified as the
comma-separated pair consisting of 'AgeVar' and a string or character vector.

 Probit

6-627

Data Types: string | char

LoanVars — Loan variables indicating which column in data contains loan-specific
information
all columns of data that are not the first or last column (default) | string array | cell array of
character vectors

Loan variables indicating which column in data contains the loan-specific information, such as
origination score or loan-to-value ratio, specified as the comma-separated pair consisting of
'LoanVars' and a string array or cell array of character vectors.
Data Types: string | cell

MacroVars — Macro variables indicating which column in data contains macroeconomic
information
if not specified, then LoanVars (default) | string array | cell array of character vectors

Macro variables indicating which column in data contains the macroeconomic information, such as
gross domestic product (GDP) growth or unemployment rate, specified as the comma-separated pair
consisting of 'MacroVars' and a string array or cell array of character vectors.
Data Types: string | cell

ResponseVar — Variable indicating which column in data contains response variable
string | character vector

Variable indicating which column in data contains the response variable, specified as the comma-
separated pair consisting of 'ResponseVar' and a string or character vector.

Note The response variable values in the data must be a binary variable with 0 or 1 values, with 1
indicating default.

Data Types: string | char

Properties
ModelID — User-defined Model ID
Probit (default) | string

User-defined model ID, returned as a string.
Data Types: string

Description — User-defined description
"" (default) | string

User-defined description, returned as a string.
Data Types: string

UnderlyingModel — Underlying statistical model
compact linear model

Underlying statistical model, returned as a compact generalized linear model object. For more
information, see fitglm and CompactGeneralizedLinearModel.

6 Functions

6-628

Data Types: CompactGneralizedLinearModel

IDVar — ID variable indicating which column in data contains loan or borrower ID
1st column of data (default) | string

ID variable indicating which column in data contains the loan or borrower ID, returned as a string.
Data Types: string

AgeVar — Age variable indicating which column in data contains loan age information
if not specified, then LoanVars (default) | string

Age variable indicating which column in data contains the loan age information, returned as a string.
Data Types: string

LoanVars — Loan variables indicating which column in data contains loan-specific
information
all columns of data that are not the first or last column (default) | string array

Loan variables indicating which column in data contains the loan-specific information, returned as a
string array.
Data Types: string

MacroVars — Macro variables indicating which column in data contains macroeconomic
information
if not specified, then LoanVars (default) | string array

Macro variables indicating which column in data contains the macroeconomic information, returned
as a string array.
Data Types: string

ResponseVar — Variable indicating which column in data contains response variable
string

Variable indicating which column in data contains the response variable, returned as a string.
Data Types: logical

Object Functions
predict Compute conditional PD
predictLifetime Compute cumulative lifetime PD, marginal PD, and survival probability
modelDiscrimination Compute AUROC and ROC data
modelCalibration Compute RMSE of predicted and observed PDs on grouped data
modelDiscriminationPlot Plot ROC curve
modelCalibrationPlot Plot observed default rates compared to predicted PDs on grouped data

Examples

Create Probit Lifetime PD Model

This example shows how to use fitLifetimePDModel to create a Probit model using credit and
macroeconomic data.

 Probit

6-629

Load Data

Load the credit portfolio data.

load RetailCreditPanelData.mat
disp(head(data))

 ID ScoreGroup YOB Default Year
 __ __________ ___ _______ ____

 1 Low Risk 1 0 1997
 1 Low Risk 2 0 1998
 1 Low Risk 3 0 1999
 1 Low Risk 4 0 2000
 1 Low Risk 5 0 2001
 1 Low Risk 6 0 2002
 1 Low Risk 7 0 2003
 1 Low Risk 8 0 2004

disp(head(dataMacro))

 Year GDP Market
 ____ _____ ______

 1997 2.72 7.61
 1998 3.57 26.24
 1999 2.86 18.1
 2000 2.43 3.19
 2001 1.26 -10.51
 2002 -0.59 -22.95
 2003 0.63 2.78
 2004 1.85 9.48

Join the two data components into a single data set.

data = join(data,dataMacro);
disp(head(data))

 ID ScoreGroup YOB Default Year GDP Market
 __ __________ ___ _______ ____ _____ ______

 1 Low Risk 1 0 1997 2.72 7.61
 1 Low Risk 2 0 1998 3.57 26.24
 1 Low Risk 3 0 1999 2.86 18.1
 1 Low Risk 4 0 2000 2.43 3.19
 1 Low Risk 5 0 2001 1.26 -10.51
 1 Low Risk 6 0 2002 -0.59 -22.95
 1 Low Risk 7 0 2003 0.63 2.78
 1 Low Risk 8 0 2004 1.85 9.48

Partition Data

Separate the data into training and test partitions.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

6 Functions

6-630

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Create a Probit Lifetime PD Model

Use fitLifetimePDModel to create a Probit model using the training data.

pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Probit",...
 'AgeVar','YOB',...
 'IDVar','ID',...
 'LoanVars','ScoreGroup',...
 'MacroVars',{'GDP','Market'},...
 'ResponseVar','Default');
disp(pdModel)

 Probit with properties:

 ModelID: "Probit"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactGeneralizedLinearModel]
 IDVar: "ID"
 AgeVar: "YOB"
 LoanVars: "ScoreGroup"
 MacroVars: ["GDP" "Market"]
 ResponseVar: "Default"

Display the underlying model.

disp(pdModel.UnderlyingModel)

Compact generalized linear regression model:
 probit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
 Distribution = Binomial

Estimated Coefficients:
 Estimate SE tStat pValue
 __________ _________ _______ ___________

 (Intercept) -1.6267 0.03811 -42.685 0
 ScoreGroup_Medium Risk -0.26542 0.01419 -18.704 4.5503e-78
 ScoreGroup_Low Risk -0.46794 0.016364 -28.595 7.775e-180
 YOB -0.11421 0.0049724 -22.969 9.6208e-117
 GDP -0.041537 0.014807 -2.8052 0.0050291
 Market -0.0029609 0.0010618 -2.7885 0.0052954

388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0

Predict Conditional and Lifetime PD

Use the predict function to predict conditional PD values. The prediction is a row-by-row prediction.

 Probit

6-631

dataCustomer1 = data(1:8,:);
CondPD = predict(pdModel,dataCustomer1)

CondPD = 8×1

 0.0095
 0.0054
 0.0045
 0.0039
 0.0036
 0.0036
 0.0017
 0.0009

Use predictLifetime to predict the lifetime cumulative PD values (computing marginal and
survival PD values is also supported). The predictLifetime function uses the ID variable (see the
'IDVar' property for the Logistic object) to transform conditional PDs to cumulative PDs for each
ID.

LifetimePD = predictLifetime(pdModel,dataCustomer1)

LifetimePD = 8×1

 0.0095
 0.0149
 0.0193
 0.0232
 0.0267
 0.0302
 0.0318
 0.0327

Validate Model

Use modelDiscrimination to measure the ranking of customers by PD.

DiscMeasure = modelDiscrimination(pdModel,data(TestDataInd,:),DataID='test data');
disp(DiscMeasure)

 AUROC

 Probit, test data 0.69984

Use modelDiscriminationPlot to visualize the ROC curve.

modelDiscriminationPlot(pdModel,data(TestDataInd,:),DataID='test data');

6 Functions

6-632

Use modelCalibration to measure the calibration of the predicted PD values. The
modelCalibration function requires a grouping variable and compares the accuracy of the
observed default rate in the group with the average predicted PD for the group. For example, you can
group by calendar year using the 'Year' variable.

CalMeasure = modelCalibration(pdModel,data(TestDataInd,:),'Year',DataID='test data');
disp(CalMeasure)

 RMSE

 Probit, grouped by Year, test data 0.00039494

Use modelCalibrationPlot to visualize the observed default rates compared to the predicted
probabilities of default (PD).

modelCalibrationPlot(pdModel,data(TestDataInd,:),'Year',DataID='test data');

 Probit

6-633

More About
Time Interval for Probit Models

For Logistic and Probit models, there is a time interval implicit in the data, specifically, in the
definition of the default variable.

For example, if the default indicator is defined so that it takes the value 1 if there is a default over a
3-month period, the time interval is 3-months. In this case, the predicted PD values are 3-month PD
predictions. Then the PD for month 18 would be the conditional probability that there is a default
between months 15 and 18, given that there has been no default in the first 15 months.

Because the data input for fitLifetimePDModel is in panel data form, there is an implicit or
explicit time stamp for each row, and the time interval for the default definition should be the same as
the time increments between consecutive rows. If there is an optional age variable (AgeVar) in the
training data, the time interval is the same as the age increments (for the same ID) from one row to
the next.

Logistic and Probit models do not explicitly infer or store the time interval information. However,
the predicted PD values returned by predict are consistent with the time interval implicit in the
panel training data, which in turn should be the same as the time interval used to define the default
variable.

Unlike Logistic and Probit models, Cox models require an AgeVar variable, and the time interval
is inferred from the increments in the age values in the training data. Cox models store the time

6 Functions

6-634

interval value as the TimeInterval property. For more information, see “Lifetime Prediction and
Time Interval” on page 6-342.

Version History
Introduced in R2020b

R2023a: modelAccuracy object function is renamed to modelCalibration function
Not recommended starting in R2023a

The modelAccuracy object function is renamed to modelCalibration function. The use of
modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot
function
Not recommended starting in R2023a

The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use
of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

R2023a: Model property renamed to UnderlyingModel
Behavior changed in R2023a

The Model property is renamed to UnderlyingModel.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Breeden, Joseph. Living with CECL: The Modeling Dictionary. Santa Fe, NM: Prescient Models
LLC, 2018.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk: Machine Learning with Python.
Independently published, 2020.

See Also
Functions
fitLifetimePDModel | Logistic | Cox | customLifetimePDModel

Topics
“Basic Lifetime PD Model Validation” on page 4-129
“Compare Logistic Model for Lifetime PD to Champion Model” on page 4-113
“Compare Lifetime PD Models Using Cross-Validation” on page 4-121
“Expected Credit Loss Computation” on page 4-124
“Compare Model Discrimination and Model Calibration to Validate of Probability of Default” on page
4-144
“Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models” on page 4-75

 Probit

6-635

“Overview of Lifetime Probability of Default Models” on page 1-25

6 Functions

6-636

Regression
Create Regression model object for exposure at default

Description
Create and analyze a Regression model object to calculate the exposure at default (EAD) using this
workflow:

1 Use fitEADModel to create a Regression model object.
2 Use predict to predict the EAD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using

modelDiscriminationPlot.
4 Use modelCalibration to return the R-square, RMSE, correlation, and sample mean error of

the predicted and observed EAD data. You can plot the results using modelCalibrationPlot.

Creation
Syntax
RegressionEADModel = fitEADModel(data,ModelType)
RegressionEADModel = fitEADModel(___ ,Name=Value)

Description

RegressionEADModel = fitEADModel(data,ModelType) creates a Regression EAD model
object.

RegressionEADModel = fitEADModel(___ ,Name=Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax. The optional
name-value pair arguments set model object properties on page 6-639. For example, eadModel =
fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriag
e'},ConversionMeasure="ccf",DrawnVar='Drawn',LimitVar='Limit',ResponseVar='EA
D') creates an eadModel object using a Regression model type.

Input Arguments

data — Data for loss given default
table

Data for loss given default, specified as a table.
Data Types: table

ModelType — Model type
string with value "Regression" | character vector with value 'Regression'

Model type, specified as a string with the value of "Regression" or a character vector with the
value of 'Regression'.

 Regression

6-637

Data Types: char | string

Regression Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: eadModel =
fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriag
e'},ConversionMeasure="ccf",DrawnVar='Drawn',LimitVar='Limit',ResponseVar='EA
D')

ModelID — User-defined model ID
"Regression" (default) | string | character vector

User-defined model ID, specified as ModelID and a string or character vector. The software uses the
ModelID text to format outputs and is expected to be short.
Data Types: string | char

Description — User-defined description for model
"" (default) | string | character vector

User-defined description for model, specified as Description and a string or character vector.
Data Types: string | char

PredictorVars — Predictor variables
all columns of data except for the ResponseVar (default) | string array | cell array of character
vectors

Predictor variables, specified as PredictorVars and a string array or cell array of character
vectors. PredictorVars indicates which columns in the data input contain the predictor
information. By default, PredictorVars is set to all the columns in the data input except for the
ResponseVar.
Data Types: string | cell

ResponseVar — Response variable
last column of data (default) | string | character vector

Response variable, specified as ResponseVar and a string or character vector. The response variable
contains the EAD data and must be a numeric variable. By default, the ResponseVar is set to the last
column of data.
Data Types: string | char

BoundaryTolerance — Boundary tolerance
1e-7 (default) | positive numeric

Boundary tolerance, specified as BoundaryTolerance and a positive scalar numeric. The
BoundaryTolerance value perturbs the EAD response values away from 0 and 1, before applying a
response transformation.
Data Types: double

6 Functions

6-638

LimitVar — Limit variable
string | character vector

Limit variable, specified as LimitVar and a string or character vector. LimitVar indicates which
column in data contains the limit amount. The limit amount value in the data must be a positive
numeric value. The limit depends on the loan. If its a credit card, the limit is the credit limit, and if
this is a mortgage limit it is the initial loan amount. In general, LimitVar is the maximum amount
that can be borrowed.

Note LimitVar is required when ConversionMeasure is 'ccf' or 'lcf'. For more information
on CCF and LCF, see “Exposure at Default Regression Models” on page 6-645.

Data Types: string | char

DrawnVar — Drawn variable
string | character vector

Drawn variable, specified as DrawnVar and a string or character vector. DrawnVar is the balance on
the account at the time of observation, prior to default and EAD is the balance at the time of default.
DrawnVar indicates which column in the data contains the drawn amount. The drawn variable value
in the data can be a positive or negative numeric value.

Note DrawnVar is required when ConversionMeasure is 'ccf'.

If the ConversionMeasure is 'lcf', DrawnVar is not required. In this case, DrawnVar is set to "".

For more information on CCF, see “Exposure at Default Regression Models” on page 6-645.

Data Types: string | char

ConversionMeasure — Conversion measure for EAD response values
"ccf" (default) | character vector with value of 'ccf' or 'lcf' | string with value of "ccf" or
"lcf"

Response transform, specified as ConversionMeasure and a character vector or string.

• "ccf" — Credit conversion factor (CCF) is the portion of the undrawn amount that will be
converted into credit. The undrawn amount is the limit minus the drawn amount. The EAD thus
becomes the drawn amount plus the CCF times the limit minus the drawn amount (EAD = Drawn
+ CCF*(Limit - Drawn)) .

• "lcf" — Limit conversion factor (LCF) is a fraction of the limit representing the total exposure.
The EAD is then defined as the LCF times the limit (EAD = LCF*Limit).

For more information on CCF and LCF, see “Exposure at Default Regression Models” on page 6-645.
Data Types: string | char

Properties
ModelID — User-defined model ID
"Regression" (default) | string

 Regression

6-639

User-defined model ID, returned as a string.
Data Types: string

Description — User-defined description
"" (default) | string

User-defined description, returned as a string.
Data Types: string

UnderlyingModel — Underlying statistical model
compact linear model

Underlying statistical model, returned as a compact linear model object. The compact version of the
underlying regression model is an instance of the classreg.regr.CompactLinearModel class.
For more information, see fitlm and CompactLinearModel.
Data Types: CompactLinearModel

PredictorVars — Predictor variables
all columns of data except for ResponseVar (default) | string array

Predictor variables, returned as a string array.
Data Types: string

ResponseVar — Response variable
last column of data (default) | string

Response variable, returned as a scalar string.
Data Types: string

LimitVar — Limit variable
string

Limit variable, returned as a string.
Data Types: string

DrawnVar — Drawn variable
string

Drawn variable, returned as a string.
Data Types: string

BoundaryTolerance — Boundary tolerance
1e-7 (default) | positive numeric

This property is read-only.

Boundary tolerance, returned as a scalar positive numeric.
Data Types: double

ConversionMeasure — Conversion measure for EAD response values
"ccf" (default) | string with value of "ccf" or "lcf"

6 Functions

6-640

Conversion measure, returned as a string.
Data Types: string

ConversionTransform — Conversion transform
"complog" (default) | string with value "complog" or "logit"

This property is read-only.

Conversion transform, returned as a string that is "complog" if ConversionMeasure is "ccf" and
"logit" when ConversionMeasure is "lcf".
Data Types: string

Object Functions
predict Predict exposure at default
modelDiscrimination Compute AUROC and ROC data
modelDiscriminationPlot Plot ROC curve
modelCalibration Compute R-square, RMSE, correlation, and sample mean error of

predicted and observed EADs
modelCalibrationPlot Scatter plot of predicted and observed EADs

Examples

Create Regression EAD Model

This example shows how to use fitEADModel to create a Regression model for exposure at default
(EAD).

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

 Regression

6-641

Select Model Type

Select a model type for Regression or Tobit.

ModelType = ;

Select Conversion Measure

Select a conversion measure for the EAD response values.

ConversionMeasure = ;

Create Regression EAD Model

Use fitEADModel to create a Regression model using EADData.

eadModel = fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);

 Regression with properties:

 ConversionTransform: "logit"
 BoundaryTolerance: 1.0000e-07
 ModelID: "Regression"
 Description: ""
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the
EAD response data. Use the 'BoundaryTolerance', 'LimitVar', and 'DrawnVar' name-value
arguments to modify the transformation.

eadModel.UnderlyingModel

ans =
Compact linear regression model:
 EAD_lcf_logit ~ 1 + UtilizationRate + Age + Marriage

Estimated Coefficients:
 Estimate SE tStat pValue
 _________ _________ _______ __________

 (Intercept) -2.4745 0.29892 -8.2781 1.6448e-16
 UtilizationRate 6.0045 0.19901 30.172 7.703e-182
 Age -0.020095 0.0073019 -2.752 0.0059471
 Marriage_not married -0.03509 0.13935 -0.2518 0.8012

Number of observations: 4378, Error degrees of freedom: 4374
Root Mean Squared Error: 4.48
R-squared: 0.173, Adjusted R-Squared: 0.173
F-statistic vs. constant model: 305, p-value = 5.7e-180

6 Functions

6-642

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-vale argument.

predictedEAD = predict(eadModel, EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel, EADData(TestInd,:),ModelLevel="ConversionMeasure");

Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot,
modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

ModelLevel = ;
[DiscMeasure1, DiscData1] = modelDiscrimination(eadModel, EADData(TestInd,:),ModelLevel=ModelLevel);
modelDiscriminationPlot(eadModel, EADData(TestInd, :), ModelLevel=ModelLevel,SegmentBy="Marriage");

Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the
predictions.

YData = ;

 Regression

6-643

[CalMeasure1, CalData1] = modelCalibration(eadModel, EADData(TestInd,:), ModelLevel=ModelLevel);
modelCalibrationPlot(eadModel, EADData(TestInd,:),ModelLevel=ModelLevel,YData=YData);

Plot a histogram of observed with respect to the predicted EAD.

figure;
histogram(CalData1.Observed);
hold on;
histogram(CalData1.(('Predicted_' + ModelType)));
xlabel(ConversionMeasure);
legend('Observed', 'Predicted');

6 Functions

6-644

More About
Exposure at Default Regression Models

You can transform EAD data using linear regression models.

You can relate the EAD to a scaling variable and derive conversion measures like credit conversion
factor (CCF) and limit conversion factor (LCF) using the 'ccf' or 'lcf' options for the
ConversionMeasure name-value argument. In general, Regression models that use a
ConversionMeasure for conversion factors are more robust, as all observations scale to a common
denomination.

The following table summarizes the supported transformations using the 'ccf' or 'lcf' options for
the ConversionMeasure name-value argument:

Measure EAD Formula Lower Bound Upper Bound Inverse
Transformation

CCF EAD = Drawn +
CCF Ã— (Limit
- Drawn)

-Inf 1 CCF = 1 - e(-
CCFt)

LCF EAD = LCF ⨉
Limit

0 1 LCF = eLCFt âˆ•
(1 + eLCFt)

 Regression

6-645

Version History
Introduced in R2021b

R2023a: modelAccuracy object function is renamed to modelCalibration function
Not recommended starting in R2023a

The modelAccuracy object function is renamed to modelCalibration function. The use of
modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot
function
Not recommended starting in R2023a

The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use
of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory
and Applications. SAS Institute, 2014.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also
Functions
fitEADModel | Tobit | Beta

Topics
“Compare Results for Regression and Tobit EAD Models” on page 4-151
“Overview of Exposure at Default Models” on page 1-34

6 Functions

6-646

Tobit
Create Tobit model object for exposure at default

Description
Create and analyze a Tobit model object to calculate the exposure at default (EAD) using this
workflow:

1 Use fitEADModel to create a Tobit model object.
2 Use predict to predict the EAD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using

modelDiscriminationPlot.
4 Use modelCalibration to return the R-squared, RMSE, correlation, and sample mean error of

predicted and observed EAD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax
TobitEADModel = fitEADModel(data,ModelType)
TobitEADModel = fitEADModel(___ ,Name=Value)

Description

TobitEADModel = fitEADModel(data,ModelType) creates a Tobit EAD model object.

TobitEADModel = fitEADModel(___ ,Name=Value) specifies options using one or more name-
value arguments in addition to the input arguments in the previous syntax. The optional name-value
arguments set the model object properties on page 6-650. For example, eadModel =
fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriag
e'},ConversionMeasure="ccf",DrawnVar='Drawn',LimitVar='Limit',ResponseVar='EA
D') creates an eadModel object using a Tobit model type.

Input Arguments

data — Data for exposure at default
table

Data for exposure at default, specified as a table.
Data Types: table

ModelType — Model type
string with value "Tobit" | character vector with value 'Tobit'

Model type, specified as a string with the value of "Tobit" or a character vector with the value of
'Tobit'.

 Tobit

6-647

Data Types: char | string

Tobit Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: eadModel =
fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriag
e'},ConversionMeasure="ccf",DrawnVar='Drawn',LimitVar='Limit',ResponseVar='EA
D')

ModelID — User-defined model ID
"Tobit" (default) | string | character vector

User-defined model ID, specified as ModelID and a string or character vector. The software uses the
ModelID text to format outputs and is expected to be short.
Data Types: string | char

Description — User-defined description for model
"" (default) | string | character vector

User-defined description for model, specified as Description and a string or character vector.
Data Types: string | char

PredictorVars — Predictor variables
all columns of data except for ResponseVar (default) | string array | cell array of character vectors

Predictor variables, specified as PredictorVars and a string array or cell array of character
vectors. PredictorVars indicates which columns in the data input contain the predictor
information. By default, PredictorVars is set to all the columns in the data input except for
ResponseVar.
Data Types: string | cell

ResponseVar — Response variable
last column of data (default) | string | character vector

Response variable, specified as ResponseVar and a string or character vector. The response variable
contains the EAD data and must be a numeric variable. By default, ResponseVar is set to the last
column.
Data Types: string | char

LimitVar — Limit variable
string | character vector

Limit variable, specified as LimitVar and a string or character vector. LimitVar indicates which
column in data contains the limit amount. The limit amount value in the data must be a positive
numeric value. The limit depends on the loan. If its a credit card, the limit is the credit limit, and if
this is a mortgage limit it is the initial loan amount. In general, LimitVar is the maximum amount
that can be borrowed.

6 Functions

6-648

Note LimitVar is required when ConversionMeasure is 'ccf' or 'lcf'. For more information
on CCF and LCF, see “Conversion Measure Options” on page 6-658.

Data Types: string | char

DrawnVar — Drawn variable
string | character vector

Drawn variable, specified as DrawnVar and a string or character vector. DrawnVar is the balance on
the account at the time of observation, prior to default and EAD is the balance at the time of default.
DrawnVar indicates which column in data contains the drawn amount. The drawn variable value in
the data can be a positive or negative numeric value.

Note DrawnVar is required when ConversionMeasure is 'ccf'.

If the ConversionMeasure is 'lcf', DrawnVar is not required. In this case, DrawnVar is set to "".

For more information on CCF, see “Conversion Measure Options” on page 6-658.

Data Types: string | char

ConversionMeasure — Conversion measure for EAD response values
"ccf" (default) | character vector with value of 'ccf' or 'lcf' | string with value of "ccf" or
"lcf"

Response transform, specified as ConversionMeasure and a character vector or string.

• "ccf" — Credit conversion factor (CCF) is the portion of the undrawn amount that will be
converted into credit. The undrawn amount is the limit minus the drawn amount. The EAD thus
becomes the drawn amount plus the CCF times the limit minus the drawn amount (EAD = Drawn
+ CCF*(Limit - Drawn)) .

Note A Tobit model with "ccf" can be unstable.
• "lcf" — Limit conversion factor (LCF) is a fraction of the limit representing the total exposure.

The EAD is then defined as the LCF times the limit (EAD = LCF*Limit).

For more information on CCF and LCF, see “Conversion Measure Options” on page 6-658.
Data Types: string | char

CensoringSide — Censoring side
"both" (default) | character vector with value of 'left', 'right', or 'both' | string with value of
"left", "right", or "both"

Censoring side, specified as CensoringSide and a character vector or string. CensoringSide
indicates whether the desired Tobit model is left-censored, right-censored, or censored on both sides.
Data Types: string | char

LeftLimit — Left-censoring limit
0 (default) | numeric between 0 and 1

 Tobit

6-649

Left-censoring limit, specified as LeftLimit and a scalar numeric between 0 and 1.
Data Types: double

RightLimit — Right-censoring limit
1 (default) | numeric between 0 and 1

Right-censoring limit, specified as RightLimit and a scalar numeric between 0 and 1.
Data Types: double

SolverOptions — optimoptions object
object

Options for fitting, specified as SolverOptions and an optimoptions object that is created using
optimoptions from Optimization Toolbox™. The defaults for the optimoptions object are:

• "Display" — "none"
• "Algorithm" — "sqp"
• "MaxFunctionEvaluations" — 500 ⨉ Number of model coefficients
• "MaxIterations" — The number of Tobit model coefficients is determined at run time; it

depends on the number of predictors and the number of categories in the categorical predictors.

Note When using optimoptions with a Tobit model, specify the SolverName as fmincon.

Data Types: object

Properties
ModelID — User-defined model ID
Tobit (default) | string

User-defined model ID, returned as a string.
Data Types: string

Description — User-defined description
"" (default) | string

User-defined description, returned as a string.
Data Types: string

UnderlyingModel — Underlying statistical model
compact linear model

This property is read-only.

Underlying statistical model, returned as a compact linear model object. The compact version of the
underlying regression model is an instance of the classreg.regr.CompactLinearModel class.
For more information, see fitlm and CompactLinearModel.
Data Types: CompactLinearModel

6 Functions

6-650

PredictorVars — Predictor variables
all columns of data except for the ResponseVar (default) | string array

Predictor variables, returned as a string array.
Data Types: string

ResponseVar — Response variable
last column of data (default) | string

Response variable, returned as a string.
Data Types: string

LimitVar — Limit variable
string

Limit variable, returned as a string.
Data Types: string

DrawnVar — Drawn variable
string

Drawn variable, returned as a string.
Data Types: string

ConversionMeasure — Conversion measure for EAD response values
"ccf" (default) | string with value of "ccf" or "lcf"

Response transform, returned as a string.
Data Types: string

CensoringSide — Censoring side
"both" (default) | string with value of "left", "right", or "both"

This property is read-only.

Censoring side, returned as a string.
Data Types: string

LeftLimit — Left-censoring limit
0 (default) | numeric between 0 and 1

This property is read-only.

Left-censoring limit, returned as a scalar numeric between 0 and 1.
Data Types: double

RightLimit — Right-censoring limit
1 (default) | numeric between 0 and 1

This property is read-only.

Right-censoring limit, returned as a scalar numeric between 0 and 1.

 Tobit

6-651

Data Types: double

Object Functions
predict Predict exposure at default
modelDiscrimination Compute AUROC and ROC data
modelDiscriminationPlot Plot ROC curve
modelCalibration Compute R-square, RMSE, correlation, and sample mean error of

predicted and observed EADs
modelCalibrationPlot Scatter plot of predicted and observed EADs

Examples

Create Tobit EAD Model

This example shows how to use fitEADModel to create a Tobit model for exposure at default
(EAD).

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Select Model Type

Select a model type for Tobit or Regression.

ModelType = ;

Select Conversion Measure

Select a conversion measure for the EAD response values.

ConversionMeasure = ;

6 Functions

6-652

Create Tobit EAD Model

Use fitEADModel to create a Tobit model using the EADData.

eadModel = fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
 ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel);

 Tobit with properties:

 CensoringSide: "both"
 LeftLimit: 0
 RightLimit: 1
 ModelID: "Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: "Drawn"
 ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the
EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the
transformation.

disp(eadModel.UnderlyingModel);

Tobit regression model:
 EAD_lcf = max(0,min(Y*,1))
 Y* ~ 1 + UtilizationRate + Age + Marriage

Estimated coefficients:
 Estimate SE tStat pValue
 __________ __________ ________ ________

 (Intercept) 0.22735 0.025254 9.0025 0
 UtilizationRate 0.47364 0.016435 28.818 0
 Age -0.0013929 0.00061973 -2.2477 0.024646
 Marriage_not married -0.006888 0.01213 -0.56784 0.57017
 (Sigma) 0.36419 0.0038798 93.868 0

Number of observations: 4378
Number of left-censored observations: 0
Number of uncensored observations: 4377
Number of right-censored observations: 1
Log-likelihood: -1791.06

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-vale argument.

predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead");
predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");

 Tobit

6-653

Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot,
modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

ModelLevel = ;

[DiscMeasure1,DiscData1] = modelDiscrimination(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel);
modelDiscriminationPlot(eadModel,EADData(TestInd, :),ModelLevel=ModelLevel,SegmentBy="Marriage");

Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the
predictions.

YData = ;

[CalMeasure1,CalData1] = modelCalibration(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel);
modelCalibrationPlot(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel,YData=YData);

6 Functions

6-654

Plot a histogram of observed with respect to the predicted EAD.

figure;
histogram(CalData1.Observed);
hold on;
histogram(CalData1.(('Predicted_' + ModelType)));
legend('Observed','Predicted');

 Tobit

6-655

More About
Exposure at Default Tobit Models

The exposure at default (EAD) Tobit models fit a Tobit model to EAD data.

Tobit models are "censored" regression models. Tobit models assume that the response variable can
be observed only within certain limits, and no value outside the limits can be observed. Using
ModelLevel, you can set the Tobit model level to EAD, CCF, or LCF conversion measures. The EAD
model level does not have any range, the CCF conversion measure has a range of -Inf to 1, and the
LCF conversion measure is 0 to 1. A distribution of response values where there is a high frequency
of observations at the limits is consistent with the model assumptions.

The Tobit model combines the following two formulas:

Y = min max L, Y* , R
Y* = β0 + β1X1 + ... + βpXp + σε = Xβ + σε

where

• Y is the observed response variable, the observed EAD data for an EAD model.
• L is the left limit, the lower bound for the response values, typically 0 for EAD models.
• R is the right limit, the upper bound for the response values, typically 1 for EAD models.

6 Functions

6-656

• Y* is a latent, unobserved variable.
• βj is the coefficient of the jth predictor (or the intercept for j = 0).
• σ is the standard deviation of the error term.
• ϵ is the error term, assumed to follow a standard normal distribution.

The first formula above is written using min and max operators and is equivalent to

Y =
L if Y* ≤ L
Y* if L < Y* < R
R if Y* ≥ R

The standard deviation of the error is explicitly indicated in the formulas. Unlike traditional
regression least-squares estimation, where the standard deviation of the error can be inferred from
the residuals, for Tobit models the estimation is via maximum likelihood and the standard deviation
needs to be handled explicitly during the estimation. If there are p predictor variables, the Tobit
model estimates p+2 coefficients, namely, one coefficient for each predictor, plus an intercept, plus a
standard deviation.

Three censoring side options are supported in the Tobit EAD models with the CensoringSide name-
value argument:

• 'both' — This option is the default option, with censoring on both sides. The estimation uses left
and right limits.

• 'left' — The left-censored version of the model has no right limit (or R = ∞). The relationship
between Y and Y* is Y = maxâ¡{L,Y* }.

• 'right' — The right-censored version of the model has no left limit (or L = -∞). The relationship
between Y and Y* is Y = min{Y*,R}.

The parameters of the Tobit model are estimated using maximum likelihood. For observation i =
1,...,n, the likelihood function is

LF(β, σ Xi, Yi) =
Φ(L; Xiβ,σ) if Yi ≤ L
ϕ(Yi;Xiβ,σ) if L < Yi < R
1− Φ(R; Xiβ, σ) if Yi ≥ R

where

• Φ(x;m,s) is the cumulative normal distribution with mean m and standard deviation s.
• φ(x;m,s) is the normal density function with mean m and standard deviation s.

This likelihood function is for models censored on both sides. For left-censored models, the right limit
has no effect, and the likelihood function has two cases only (R = ∞); likewise for right-censored
models (L = -∞).

The log-likelihood function is the sum of the logarithm of the likelihood functions for individual
observations

LLF(β, σ X, Y) = ∑
i = 1

n
log(LF(β, σ Xi, Yi))

 Tobit

6-657

The parameters are estimated by maximizing the log-likelihood function. The only constraint is that
the Ïƒ parameter must be positive.

To predict an EAD value, Tobit EAD models return the unconditional expected value of the response,
given the predictor values

EADi
pred = E Yi Xi

The expression for the expected value can be separated into the cases

E Y = E Y Y = L P(Y = L)
+E Y L < Y < R P(L < Y < R)
+E Y Y = R P(Y = R)

Using the previous expression and the properties of the (truncated) normal distribution, it follows
that

E Yi Xi = Φ(ai)L + (Φ(bi)− Φ(ai))(Xiβ + σλi) + (1− Φ(bi))R

where

ai =
L− Xiβ

σ , bi =
R− Xiβ

σ , and λi =
ϕ(ai)− ϕ(bi)
Φ(bi)− Φ(ai)

This expression applies to the models censored on both sides. For models censored on one side only,
the corresponding expressions can be derived from here. For example, for left-censored models, let
the R limit in the expression above go to infinity, and the resulting expression is

E Yi Xi = Φ(ai)L + (1− Φ(ai)) Xiβ+σ
ϕ(ai)

1− Φ(ai)

Similarly, for right-censored models, the L limit is decreased to minus infinity to get

E Yi Xi = Φ(bi) Xiβ− σ
ϕ(bi)
Φ(bi)

+ (1− Φ(bi))R

Conversion Measure Options

You can relate the EAD to a scaling variable and derive conversion measures like credit conversion
factor (CCF) and limit conversion factor (LCF) using the 'ccf' or 'lcf' options for the
ConversionMeasure name-value argument.

The following table summarizes the supported transformations using the 'ccf' or 'lcf' options for
the ConversionMeasure name-value argument:

Measure EAD Formula Lower Bound Upper Bound Inverse
Transformation

CCF EAD = Drawn +
CCF Ã— (Limit
- Drawn)

-Inf 1 CCF = 1 - e(-
CCFt)

LCF EAD = LCF ⨉
Limit

0 1 LCF = eLCFt âˆ•
(1 + eLCFt)

6 Functions

6-658

Version History
Introduced in R2021b

R2023a: modelAccuracy object function is renamed to modelCalibration function
Not recommended starting in R2023a

The modelAccuracy object function is renamed to modelCalibration function. The use of
modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot
function
Not recommended starting in R2023a

The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use
of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory
and Applications. SAS Institute, 2014.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also
Functions
fitEADModel | Regression | Beta

Topics
“Compare Results for Regression and Tobit EAD Models” on page 4-151
“Overview of Loss Given Default Models” on page 1-31

 Tobit

6-659

Beta
Create Beta model object for exposure at default

Description
Create and analyze a Beta model object to calculate the exposure at default (EAD) using this
workflow:

1 Use fitEADModel to create a Beta model object.
2 Use predict to predict the EAD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using

modelDiscriminationPlot.
4 Use modelCalibration to return the R-squared, RMSE, correlation, and sample mean error of

predicted and observed EAD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax
BetaEADModel = fitEADModel(data,ModelType)
BetaEADModel = fitEADModel(___ ,Name=Value)

Description

BetaEADModel = fitEADModel(data,ModelType) creates a Beta EAD model object.

BetaEADModel = fitEADModel(___ ,Name=Value) specifies options using one or more name-
value arguments in addition to the input arguments in the previous syntax. The optional name-value
arguments set the model object properties on page 6-663. For example, BetaEADModel =
fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriag
e'},ConversionMeasure="lcf",DrawnVar='Drawn',LimitVar='Limit',ResponseVar='EA
D') creates an BetaEADModel object using a Beta model type.

Input Arguments

data — Data for exposure at default
table

Data for exposure at default, specified as a table.
Data Types: table

ModelType — Model type
string with value "Beta" | character vector with value 'Beta'

Model type, specified as a string with the value of "Beta" or a character vector with the value of
'Beta'.

6 Functions

6-660

Data Types: char | string

Beta Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: BetaEADModel =
fitEADModel(EADData,ModelType,PredictorVars={'UtilizationRate','Age','Marriag
e'},ConversionMeasure="lcf",LimitVar='Limit',ResponseVar='EAD',BoundaryTolera
nce=1e5)

ModelID — User-defined model ID
"Beta" (default) | string | character vector

User-defined model ID, specified as ModelID and a string or character vector. The software uses the
ModelID text to format outputs and is expected to be short.
Data Types: string | char

Description — User-defined description for model
"" (default) | string | character vector

User-defined description for model, specified as Description and a string or character vector.
Data Types: string | char

PredictorVars — Predictor variables
all columns of data except for ResponseVar (default) | string array | cell array of character vectors

Predictor variables, specified as PredictorVars and a string array or cell array of character
vectors. PredictorVars indicates which columns in the data input contain the predictor
information. By default, PredictorVars is set to all the columns in the data input except for
ResponseVar.
Data Types: string | cell

ResponseVar — Response variable
last column of data (default) | string | character vector

Response variable, specified as ResponseVar and a string or character vector. The response variable
contains the EAD data and must be a numeric variable. By default, ResponseVar is set to the last
column.
Data Types: string | char

BoundaryTolerance — Value to perturb EAD responses
1e-7 (default) | positive numeric

Value to perturb EAD response values away from 0 to 1, specified as BoundaryTolerance and a
positive scalar numeric.
Data Types: double

LimitVar — Limit variable
string | character vector

 Beta

6-661

Limit variable, specified as LimitVar and a string or character vector. LimitVar indicates which
column in data contains the limit amount. The limit amount value in the data must be a positive
numeric value. The limit depends on the loan. If the loan is a credit card, the limit is the credit limit.
If the loan is a mortgage, the limit is the initial loan amount. In general, LimitVar is the maximum
amount that can be borrowed.

Note LimitVar is required when ConversionMeasure is 'lcf'. For more information on LCF, see
“Conversion Measure Options” on page 6-658.

Data Types: string | char

DrawnVar — Drawn variable
string | character vector

Drawn variable, specified as DrawnVar and a string or character vector. DrawnVar is the balance on
the account at the time of observation, before default, and EAD is the balance at the time of default.
DrawnVar indicates which column in data contains the drawn amount. The drawn variable value in
the data can be a positive or negative numeric value.

Note When the ConversionMeasure is 'lcf', DrawnVar is not required. In this case, DrawnVar is
set to "".

Data Types: string | char

ConversionMeasure — Conversion measure for EAD response values
"lcf" (default) | character vector with value 'lcf' | string with value "lcf"

Response transform, specified as ConversionMeasure and a character vector or string. Limit
conversion factor (LCF) is a fraction of the limit representing the total exposure. The EAD is then
defined as the LCF times the limit (EAD = LCF*Limit).

For more information on LCF, see “Conversion Measure Options” on page 6-658.
Data Types: string | char

SolverOptions — optimoptions object
object

Options for fitting, specified as SolverOptions and an optimoptions object that is created using
optimoptions from Optimization Toolbox. The defaults for the optimoptions object are:

• "Display" — "none"
• "Algorithm" — "quasi-newton"
• "MaxFunctionEvaluations" — 500 ✕ Number of model coefficients
• "MaxIterations" — 1000

Note When using optimoptions with a Beta model, specify the SolverName as fminunc.

6 Functions

6-662

The number of Beta model coefficients is determined at run time, depending on the number of
predictors and the number of categories in the categorical predictors.
Data Types: object

Properties
ModelID — User-defined model ID
Beta (default) | string

User-defined model ID, returned as a string.
Data Types: string

Description — User-defined description
"" (default) | string

User-defined description, returned as a string.
Data Types: string

UnderlyingModel — Underlying statistical model
compact linear model

This property is read-only.

Underlying statistical model, returned as a compact linear model object. The compact version of the
underlying regression model is an instance of the risk.internal.credit.BetaModel class.
Data Types: object

PredictorVars — Predictor variables
all columns of data except for the ResponseVar (default) | string array

Predictor variables, returned as a string array.
Data Types: string

ResponseVar — Response variable
last column of data (default) | string

Response variable, returned as a string.
Data Types: string

LimitVar — Limit variable
string

Limit variable, returned as a string.
Data Types: string

DrawnVar — Drawn variable
string

Drawn variable, returned as a string.
Data Types: string

 Beta

6-663

ConversionMeasure — Conversion measure for EAD response values
"lcf" (default) | string with value "lcf"

Response transform, returned as a string.
Data Types: string

BoundaryTolerance — Value to perturb LGD responses
1e-7 (default) | positive numeric

Value to perturb LGD response values away from 0 to 1, returned as a positive scalar numeric.
Data Types: double

Object Functions
predict Predict exposure at default
modelDiscrimination Compute AUROC and ROC data
modelDiscriminationPlot Plot ROC curve
modelCalibration Compute R-square, RMSE, correlation, and sample mean error of

predicted and observed EADs
modelCalibrationPlot Scatter plot of predicted and observed EADs

Examples

Create Beta EAD Model

This example shows how to use fitEADModel to create a Beta model object for exposure at default
(EAD).

Load EAD Data

Load the EAD data.

load EADData.mat
head(EADData)

 UtilizationRate Age Marriage Limit Drawn EAD
 _______________ ___ ___________ __________ __________ __________

 0.24359 25 not married 44776 10907 44740
 0.96946 44 not married 2.1405e+05 2.0751e+05 40678
 0 40 married 1.6581e+05 0 1.6567e+05
 0.53242 38 not married 1.7375e+05 92506 1593.5
 0.2583 30 not married 26258 6782.5 54.175
 0.17039 54 married 1.7357e+05 29575 576.69
 0.18586 27 not married 19590 3641 998.49
 0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05

rng('default');
NumObs = height(EADData);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

6 Functions

6-664

Select Model Type

Select a model type for Beta.

ModelType = ;

Select Conversion Measure

Select a conversion measure for the EAD response values.

ConversionMeasure = ;

Create Beta EAD Model

Use fitEADModel to create a Beta model object using the TrainingInd data.

BetaEADModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
 ConversionMeasure=ConversionMeasure,LimitVar="Limit",ResponseVar="EAD",BoundaryTolerance=2e-05);
disp(BetaEADModel);

 Beta with properties:

 BoundaryTolerance: 2.0000e-05
 ModelID: "Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["UtilizationRate" "Age" "Marriage"]
 ResponseVar: "EAD"
 LimitVar: "Limit"
 DrawnVar: ""
 ConversionMeasure: "lcf"

Display the underlying model. The underlying model's response variable is the transformation of the
EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the
transformation.

disp(BetaEADModel.UnderlyingModel);

Beta regression model:
 logit(EAD_lcf) ~ 1_mu + UtilizationRate_mu + Age_mu + Marriage_mu
 log(EAD_lcf) ~ 1_phi + UtilizationRate_phi + Age_phi + Marriage_phi

Estimated coefficients:
 Estimate SE tStat pValue
 __________ _________ _________ __________

 (Intercept)_mu -0.68477 0.1145 -5.9807 2.5234e-09
 UtilizationRate_mu 1.7029 0.077717 21.912 0
 Age_mu -0.0056329 0.0027489 -2.0492 0.040543
 Marriage_not married_mu -0.025614 0.051927 -0.49328 0.62186
 (Intercept)_phi -0.46429 0.095342 -4.8697 1.1838e-06
 UtilizationRate_phi 0.41621 0.06701 6.2112 6.0942e-10
 Age_phi -0.001282 0.0023261 -0.55114 0.58159
 Marriage_not married_phi 0.00014873 0.042884 0.0034682 0.99723

Number of observations: 2627
Log-likelihood: -2931.19

 Beta

6-665

Predict EAD

EAD prediction operates on the underlying compact statistical model and then transforms the
predicted values back to the EAD scale. You can specify the predict function with different options
for the 'ModelLevel' name-vale argument.

predictedEAD = predict(BetaEADModel,EADData(TestInd,:))

predictedEAD = 1751×1
105 ×

 0.1758
 0.1029
 0.1528
 0.0832
 0.3261
 0.5148
 0.0648
 0.0531
 0.0712
 0.3215
 ⋮

Validate EAD Model

For model validation, use modelDiscrimination, modelDiscriminationPlot,
modelCalibration, and modelCalibrationPlot.

Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.

ModelLevel = ;

[DiscMeasure1,DiscData1] = modelDiscrimination(BetaEADModel,EADData(TestInd,:),ModelLevel=ModelLevel);
modelDiscriminationPlot(BetaEADModel,EADData(TestInd, :),ModelLevel=ModelLevel,SegmentBy="Marriage");

6 Functions

6-666

Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the
predictions.

YData = ;

[CalMeasure1,CalData1] = modelCalibration(BetaEADModel,EADData(TestInd,:),ModelLevel=ModelLevel);
modelCalibrationPlot(BetaEADModel,EADData(TestInd,:),ModelLevel=ModelLevel,YData=YData);

 Beta

6-667

Plot a histogram of observed EAD with respect to the predicted EAD.

figure;
histogram(CalData1.Observed);
hold on;
histogram(CalData1.(('Predicted_' + ModelType)));
legend('Observed','Predicted');

6 Functions

6-668

More About
Beta Regression Models

Beta regression models model continuous variables that assume values in the open standard unit
interval (0, 1).

The beta regression model is based on the assumption that the dependent variable is beta-distributed
and that its mean is related to a set of regressors through a linear predictor with unknown
coefficients and a link function. The beta regression model also includes a precision parameter that
may be constant or depend on a potentially different set of regressors through a link function as well.

If the variable takes on values in (a, b) with a < b, you can model (y - a) / (b - a). Also, if y also
assumes the extremes 0 and 1, a useful transformation in practice is y (n - 1) + 0.5) / n, where n is the
sample size.

The beta regression model is based on an alternative parameterization of the beta density in terms of
the mean and a precision parameter: μ = a / (a + b) and φ = a + b, 0 < μ < 1, φ > 0.

f (y; μ, ϕ) = Γ(ϕ)
Γ(μϕ)Γ((1− μ)ϕ) yμϕ− 1(1, 0<y<1,

y~B(μ,φ) with E(y)=μ, VAR(φ)=μ(1‐μ)/(1+φ)

The beta regression model is defined as

 Beta

6-669

g1(μi) = η1i = xi
Tβ,

g2(ϕi) = η2i = zi
Tγ,

where β = (β0,β1,…,βk)T, ᵞ = (ᵞ0,ᵞ1,…,ᵞk)T are the regression coefficients, η1i, η2i are the linear
predictors, and xi, zi are the independent variables. g1 and g2 are the link functions where g1 is logit
and g2 is log.

Parameter estimation is performed by maximum likelihood (ML).

Version History
Introduced in R2022b

R2023a: modelAccuracy object function is renamed to modelCalibration function
Not recommended starting in R2023a

The modelAccuracy object function is renamed to modelCalibration function. The use of
modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot
function
Not recommended starting in R2023a

The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use
of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory
and Applications. SAS Institute, 2014.

[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.

See Also
Functions
fitEADModel | Regression | Tobit

Topics
“Compare Results for Regression and Tobit EAD Models” on page 4-151
“Overview of Loss Given Default Models” on page 1-31

6 Functions

6-670

Regression
Create Regression model object for loss given default

Description
Create and analyze a Regression model object to calculate the loss given default (LGD) using this
workflow:

1 Use fitLGDModel to create a Regression model object.
2 Use predict to predict the LGD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using

modelDiscriminationPlot.
4 Use modelCalibration to return the R-square, RMSE, correlation, and sample mean error of

the predicted and observed LGD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax
RegressionLGDModel = fitLGDModel(data,ModelType)
RegressionLGDModel = fitLGDModel(___ ,Name,Value)

Description

RegressionLGDModel = fitLGDModel(data,ModelType) creates a Regression LGD model
object.

RegressionLGDModel = fitLGDModel(___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax. The optional
name-value pair arguments set model object properties on page 6-673. For example, lgdModel =
fitLGDModel(data,'regression','PredictorVars',{'LTV' 'Age'
'Type'},'ResponseVar','LGD','ResponseTransform','probit','BoundaryTolerance',
1e-6) creates a lgdModel object using a Regression model type.

Input Arguments

data — Data for loss given default
table

Data for loss given default, specified as a table where the first column and all other columns except
the last column are PredictorVars, the last column is ResponseVar.
Data Types: table

ModelType — Model type
string with value "Regression" | character vector with value 'Regression'

 Regression

6-671

Model type, specified as a string with the value of "Regression" or a character vector with the
value of 'Regression'.
Data Types: char | string

Regression Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: lgdModel = fitLGDModel(data,'regression','PredictorVars',{'LTV' 'Age'
'Type'},'ResponseVar','LGD','ResponseTransform','probit','BoundaryTolerance',
1e-6)

ModelID — User-defined model ID
"Regression" (default) | string | character vector

User-defined model ID, specified as the comma-separated pair consisting of 'ModelID' and a string
or character vector. The software uses the ModelID text to format outputs and is expected to be
short.
Data Types: string | char

Description — User-defined description for model
"" (default) | string | character vector

User-defined description for model, specified as the comma-separated pair consisting of
'Description' and a string or character vector.
Data Types: string | char

PredictorVars — Predictor variables
all columns of data except for the ResponseVar (default) | string array | cell array of character
vectors

Predictor variables, specified as the comma-separated pair consisting of 'PredictorVars' and a
string array or cell array of character vectors. PredictorVars indicates which columns in the data
input contain the predictor information. By default, PredictorVars is set to all the columns in the
data input except for the ResponseVar.
Data Types: string | cell

ResponseVar — Response variable
last column of data (default) | string | character vector

Response variable, specified as the comma-separated pair consisting of 'ResponseVar' and a string
or character vector. The response variable contains the LGD data and must be a numeric variable. An
LGD value of 0 indicates no loss (full recovery), 1 indicates total loss (no recovery), and values
between 0 and 1 indicate a partial loss. By default, the ResponseVar is set to the last column of
data.
Data Types: string | char

BoundaryTolerance — Boundary tolerance
1e-5 (default) | positive numeric

6 Functions

6-672

Boundary tolerance, specified as the comma-separated pair consisting of 'BoundaryTolerance'
and a positive scalar numeric. The BoundaryTolerance value perturbs the LGD response values
away from 0 and 1, before applying a ResponseTransform.
Data Types: double

ResponseTransform — Response transform
"logit" (default) | character vector with value of'logit', 'probit', or 'log' | string with value
of "logit", "probit", or "log"

Response transform, specified as the comma-separated pair consisting of 'ResponseTransform'
and a character vector or string.
Data Types: string | char

Properties
ModelID — User-defined model ID
"Regression" (default) | string

User-defined model ID, returned as a string.
Data Types: string

Description — User-defined description
"" (default) | string

User-defined description, returned as a string.
Data Types: string

UnderlyingModel — Underlying statistical model
compact linear model

Underlying statistical model, returned as a compact linear model object. The compact version of the
underlying regression model is an instance of the classreg.regr.CompactLinearModel class.
For more information, see fitlm and CompactLinearModel.
Data Types: CompactLinearModel

PredictorVars — Predictor variables
all columns of data except for ResponseVar (default) | string array

Predictor variables, returned as a string array.
Data Types: string

ResponseVar — Response variable
last column of data (default) | string

Response variable, returned as a scalar string.
Data Types: string

BoundaryTolerance — Boundary tolerance
1e-5 (default) | numeric

This property is read-only.

 Regression

6-673

Boundary tolerance, returned as a scalar numeric.
Data Types: double

ResponseTransform — Response transform
"logit" (default) | string

This property is read-only.

Response transform, returned as a string.
Data Types: string

Object Functions
predict Predict loss given default
modelDiscrimination Compute AUROC and ROC data
modelDiscriminationPlot Plot ROC curve
modelCalibration Compute R-square, RMSE, correlation, and sample mean error of

predicted and observed LGDs
modelCalibrationPlot Scatter plot of predicted and observed LGDs

Examples

Create Regression LGD Model

This example shows how to use fitLGDModel to create a Regression model for loss given default
(LGD).

Load LGD Data

Load the LGD data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

rng('default');
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create Regression LGD Model

Use fitLGDModel to create a Regression model using the TrainingInd data.

6 Functions

6-674

lgdModel = fitLGDModel(data(TrainingInd,:),'regression',...
 'ModelID','Example Probit',...
 'Description','Example LGD probit regression model.',...
 'PredictorVars',{'LTV' 'Age' 'Type'},...
 'ResponseVar','LGD','ResponseTransform','probit','BoundaryTolerance',1e-6);
disp(lgdModel)

 Regression with properties:

 ResponseTransform: "probit"
 BoundaryTolerance: 1.0000e-06
 ModelID: "Example Probit"
 Description: "Example LGD probit regression model."
 UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model. The underlying model's response variable is the probit transformation
of the LGD response data. Use the 'ResponseTransform' and 'BoundaryTolerance' arguments
to modify the transformation.

lgdModel.UnderlyingModel

ans =
Compact linear regression model:
 LGD_probit ~ 1 + LTV + Age + Type

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ________ _______ __________

 (Intercept) -2.2212 0.14824 -14.984 2.7409e-48
 LTV 1.192 0.17183 6.9372 5.3152e-12
 Age -0.60356 0.035256 -17.119 1.3828e-61
 Type_investment 0.61814 0.1018 6.0723 1.4933e-09

Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 1.74
R-squared: 0.197, Adjusted R-Squared: 0.196
F-statistic vs. constant model: 171, p-value = 4.39e-99

Predict LGD

For LGD prediction, use predict. The LGD model applies the inverse transformation so the
predictions are in the LGD scale, not in the transformed scale used to fit the underlying model.

predictedLGD = predict(lgdModel,data(TestInd,:))

predictedLGD = 1394×1

 0.0011
 0.0058
 0.2091
 0.0015
 0.0192
 0.0620
 0.0757

 Regression

6-675

 0.0000
 0.0156
 0.0388
 ⋮

Validate LGD Model

Use modelDiscriminationPlot to plot the ROC curve.

modelDiscriminationPlot(lgdModel,data(TestInd,:))

Use modelCalibrationPlot to show a scatter plot of the predictions.

modelCalibrationPlot(lgdModel,data(TestInd,:))

6 Functions

6-676

More About
Loss Given Default Regression Models

You can transform LGD data using linear regression models.

The loss given default (LGD) regression models transform the LGD response variable

TransformedLGD = f (LGD)

and fit a linear regression model

TransformedLGD = β0 + β1X1 + ...βpXp + ε
 = Xβ + ε

For prediction, the models first predict on the transformed space using the underlying linear
regression model and the estimated coefficients β

∧

TransformedLGDpred = Xβ
∧

You can then apply the inverse transformation to return predictions on the LGD scale

LGDpred = f−1(TransformedLGDpred)

 Regression

6-677

The following table summarizes the supported transformations using the ResponseTransform
name-value argument and their corresponding inverses, where Φ(x) is the cumulative normal
distribution:

Version History
Introduced in R2021a

R2023a: modelAccuracy object function is renamed to modelCalibration function
Not recommended starting in R2023a

The modelAccuracy object function is renamed to modelCalibration function. The use of
modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot
function
Not recommended starting in R2023a

The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use
of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

See Also
Functions
fitLGDModel | Tobit | Beta

Topics
“Model Loss Given Default” on page 4-90
“Basic Loss Given Default Model Validation” on page 4-131
“Compare Tobit LGD Model to Benchmark Model” on page 4-133
“Compare Loss Given Default Models Using Cross-Validation” on page 4-140
“Overview of Loss Given Default Models” on page 1-31

6 Functions

6-678

Beta
Create Beta model object for loss given default

Description
Create and analyze a Beta model object to calculate loss given default (LGD) using this workflow:

1 Use fitLGDModel to create a Beta model object.
2 Use predict to predict the LGD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using

modelDiscriminationPlot.
4 Use modelCalibration to return the R-squared, RMSE, correlation, and sample mean error of

predicted and observed LGD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax
BetaLGDModel = fitLGDModel(data,ModelType)
BetaLGDModel = fitLGDModel(___ ,Name=Value)

Description

BetaLGDModel = fitLGDModel(data,ModelType) creates a Beta LGD model object.

BetaLGDModel = fitLGDModel(___ ,Name=Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax. The optional name-
value pair arguments set the model object properties on page 6-681. For example, BetaLGDModel
= fitLGDModel(data,'Beta',PredictorVars={'LTV' 'Age'
'Type'},ResponseVar='LGD',BoundaryTolerance=1e-4) creates a BetaLGDModel object
using a Beta model type.

Input Arguments

data — Data for loss given default
table

Data for loss given default, specified as a table.
Data Types: table

ModelType — Model type
string with value "Beta" | character vector with value 'Beta'

Model type, specified as a string with the value of "Beta" or a character vector with the value of
'Beta'.
Data Types: char | string

 Beta

6-679

Beta Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: BetaLGDModel = fitLGDModel(data,'Beta',PredictorVars={'LTV' 'Age'
'Type'},ResponseVar='LGD',BoundaryTolerance=1e-4)

ModelID — User-defined model ID
"Beta" (default) | string | character vector

User-defined model ID, specified as ModelID and a string or character vector. The software uses the
ModelID text to format outputs and is expected to be short.
Data Types: string | char

Description — User-defined description for model
"" (default) | string | character vector

User-defined description for model, specified as Description and a string or character vector.
Data Types: string | char

PredictorVars — Predictor variables
all columns of data except for ResponseVar (default) | string array | cell array of character vectors

Predictor variables, specified as PredictorVars and a string array or cell array of character
vectors. PredictorVars indicates which columns in the data input contain the predictor
information. By default, PredictorVars is set to all the columns in the data input except for
ResponseVar.
Data Types: string | cell

ResponseVar — Response variable
last column of data (default) | string | character vector

Response variable, specified as ResponseVar and a string or character vector. The response variable
contains the LGD data and must be a numeric variable. An LGD value of 0 indicates no loss (full
recovery), 1 indicates total loss (no recovery), and values between 0 and 1 indicate a partial loss. By
default, ResponseVar is set to the last column.
Data Types: string | char

BoundaryTolerance — Value to perturb LGD responses
1e-5 (default) | positive numeric

Value to perturb LGD response values away from 0 to 1, specified as BoundaryTolerance and a
positive scalar numeric.
Data Types: double

SolverOptions — optimoptions object
object

Options for fitting, specified as SolverOptions and an optimoptions object that is created using
optimoptions from Optimization Toolbox. The defaults for the optimoptions object are:

6 Functions

6-680

• "Display" — "none"
• "Algorithm" — "quasi-newton"
• "MaxFunctionEvaluations" — 500 ✕ Number of model coefficients
• "MaxIterations" — 1000

Note When using optimoptions with a Beta model, specify the SolverName as fminunc.

The number of Beta model coefficients is determined at run time, depending on the number of
predictors and the number of categories in the categorical predictors.
Data Types: object

Properties
ModelID — User-defined model ID
Beta (default) | string

User-defined model ID, returned as a string.
Data Types: string

Description — User-defined description
"" (default) | string

User-defined description, returned as a string.
Data Types: string

UnderlyingModel — Underlying statistical model
compact linear model

This property is read-only.

Underlying statistical model, returned as a compact linear model object. The compact version of the
underlying regression model is an instance of the risk.internal.credit.BetaModel class.
Data Types: object

PredictorVars — Predictor variables
all columns of data except for the ResponseVar (default) | string array

Predictor variables, returned as a string array.
Data Types: string

ResponseVar — Response variable
last column of data (default) | string

Response variable, returned as a string.
Data Types: string

BoundaryTolerance — Value to perturb LGD responses
1e-5 (default) | positive numeric

 Beta

6-681

Value to perturb LGD response values away from 0 to 1, returned as a positive scalar numeric.
Data Types: double

Object Functions
predict Predict loss given default
modelDiscrimination Compute AUROC and ROC data
modelDiscriminationPlot Plot ROC curve
modelCalibration Compute R-square, RMSE, correlation, and sample mean error of

predicted and observed LGDs
modelCalibrationPlot Scatter plot of predicted and observed LGDs

Examples

Create Beta LGD Model

This example shows how to use fitLGDModel to create a Beta model object for loss given default
(LGD).

Load LGD Data

Load the LGD data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

rng('default');
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create Beta LGD Model

Use fitLGDModel to create a Beta model object using the TrainingInd data.

BetaLGDModel = fitLGDModel(data(TrainingInd,:),'Beta',...
 ModelID='Example LGD Beta',...
 PredictorVars={'LTV' 'Age' 'Type'},...
 ResponseVar='LGD',...
 BoundaryTolerance=2e-05);
disp(BetaLGDModel)

6 Functions

6-682

 Beta with properties:

 BoundaryTolerance: 2.0000e-05
 ModelID: "Example LGD Beta"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.BetaModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model.

disp(BetaLGDModel.UnderlyingModel)

Beta regression model:
 logit(LGD) ~ 1_mu + LTV_mu + Age_mu + Type_mu
 log(LGD) ~ 1_phi + LTV_phi + Age_phi + Type_phi

Estimated coefficients:
 Estimate SE tStat pValue
 ________ ________ ________ __________

 (Intercept)_mu -1.3884 0.13116 -10.585 0
 LTV_mu 0.61404 0.14988 4.0967 4.3501e-05
 Age_mu -0.47446 0.039808 -11.919 0
 Type_investment_mu 0.45159 0.084719 5.3305 1.0847e-07
 (Intercept)_phi -0.113 0.12578 -0.89843 0.36906
 LTV_phi 0.030906 0.14692 0.21036 0.83341
 Age_phi 0.23972 0.040152 5.9703 2.7749e-09
 Type_investment_phi -0.14724 0.078187 -1.8831 0.059823

Number of observations: 2093
Log-likelihood: -4976.51

Predict LGD

For Beta models, use predict to calculate the predicted LGD value, which is the unconditional
expected value of the response, given the predictor values.

predictedLGD = predict(BetaLGDModel,data(TestInd,:))

predictedLGD = 1394×1

 0.0935
 0.1483
 0.3520
 0.0963
 0.1879
 0.2587
 0.2671
 0.0212
 0.1768
 0.2249
 ⋮

Validate LGD Model

Use modelDiscriminationPlot to plot the ROC curve.

 Beta

6-683

modelDiscriminationPlot(BetaLGDModel,data(TestInd,:))

Use modelCalibrationPlot to show a scatter plot of the predictions.

modelCalibrationPlot(BetaLGDModel,data(TestInd,:))

6 Functions

6-684

More About
Beta Regression Models

Beta regression models model continuous variables that assume values in the open standard unit
interval (0, 1).

The beta regression model is based on the assumption that the dependent variable is beta-distributed
and that its mean is related to a set of regressors through a linear predictor with unknown
coefficients and a link function. The beta regression model also includes a precision parameter that
may be constant or depend on a potentially different set of regressors through a link function as well.

The beta regression model is based on an alternative parameterization of the beta density in terms of
the mean and a precision parameter: μ = a / (a + b) and φ = a + b, 0 < μ < 1, φ > 0.

f (y; μ, ϕ) = Γ(ϕ)
Γ(μϕ)Γ((1− μ)ϕ) yμϕ− 1(1, 0<y<1,

y~B(μ,φ) with E(y)=μ, VAR(φ)=μ(1‐μ)/(1+φ)

The beta regression model is defined as

g1(μi) = η1i = xi
Tβ,

g2(ϕi) = η2i = zi
Tγ,

 Beta

6-685

where β = (β0,β1,…,βk)T, ᵞ = (ᵞ0,ᵞ1,…,ᵞk)T are the regression coefficients, η1i, η2i are the linear
predictors, and xi, zi are the independent variables. g1 and g2 are the link functions where g1 is logit
and g2 is log.

Parameter estimation is performed by maximum likelihood (ML).

Version History
Introduced in R2022b

R2023a: modelAccuracy object function is renamed to modelCalibration function
Not recommended starting in R2023a

The modelAccuracy object function is renamed to modelCalibration function. The use of
modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot
function
Not recommended starting in R2023a

The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use
of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

See Also
Functions
fitLGDModel | Regression | Tobit

Topics
“Model Loss Given Default” on page 4-90
“Basic Loss Given Default Model Validation” on page 4-131
“Compare Tobit LGD Model to Benchmark Model” on page 4-133
“Compare Loss Given Default Models Using Cross-Validation” on page 4-140
“Overview of Loss Given Default Models” on page 1-31

6 Functions

6-686

Tobit
Create Tobit model object for loss given default

Description
Create and analyze a Tobit model object to calculate loss given default (LGD) using this workflow:

1 Use fitLGDModel to create a Tobit model object.
2 Use predict to predict the LGD.
3 Use modelDiscrimination to return AUROC and ROC data. You can plot the results using

modelDiscriminationPlot.
4 Use modelCalibration to return the R-squared, RMSE, correlation, and sample mean error of

predicted and observed LGD data. You can plot the results using modelCalibrationPlot.

Creation

Syntax
TobitLGDModel = fitLGDModel(data,ModelType)
TobitLGDModel = fitLGDModel(___ ,Name,Value)

Description

TobitLGDModel = fitLGDModel(data,ModelType) creates a Tobit LGD model object.

TobitLGDModel = fitLGDModel(___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax. The optional name-
value pair arguments set the model object properties on page 6-689. For example, lgdModel =
fitLGDModel(data,'tobit','PredictorVars',{'LTV' 'Age'
'Type'},'ResponseVar','LGD','CensoringSide','left','LeftLimit',1e-4) creates a
lgdModel object using a Tobit model type.

Input Arguments

data — Data for loss given default
table

Data for loss given default, specified as a table.
Data Types: table

ModelType — Model type
string with value "Tobit" | character vector with value 'Tobit'

Model type, specified as a string with the value of "Tobit" or a character vector with the value of
'Tobit'.
Data Types: char | string

 Tobit

6-687

Tobit Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: lgdModel = fitLGDModel(data,'tobit','PredictorVars',{'LTV' 'Age'
'Type'},'ResponseVar','LGD','CensoringSide','left','LeftLimit',1e-4)

ModelID — User-defined model ID
"Tobit" (default) | string | character vector

User-defined model ID, specified as the comma-separated pair consisting of 'ModelID' and a string
or character vector. The software uses the ModelID text to format outputs and is expected to be
short.
Data Types: string | char

Description — User-defined description for model
"" (default) | string | character vector

User-defined description for model, specified as the comma-separated pair consisting of
'Description' and a string or character vector.
Data Types: string | char

PredictorVars — Predictor variables
all columns of data except for ResponseVar (default) | string array | cell array of character vectors

Predictor variables, specified as the comma-separated pair consisting of 'PredictorVars' and a
string array or cell array of character vectors. PredictorVars indicates which columns in the data
input contain the predictor information. By default, PredictorVars is set to all the columns in the
data input except for ResponseVar.
Data Types: string | cell

ResponseVar — Response variable
last column of data (default) | string | character vector

Response variable, specified as the comma-separated pair consisting of 'ResponseVar' and a string
or character vector. The response variable contains the LGD data and must be a numeric variable. An
LGD value of 0 indicates no loss (full recovery), 1 indicates total loss (no recovery), and values
between 0 and 1 indicate a partial loss. By default, ResponseVar is set to the last column.
Data Types: string | char

CensoringSide — Censoring side
"both" (default) | character vector with value of 'left', 'right', or 'both' | string with value of
"left", "right", or "both"

Censoring side, specified as the comma-separated pair consisting of 'CensoringSide' and a
character vector or string. CensoringSide indicates whether the desired Tobit model is left-
censored, right-censored, or censored on both sides.
Data Types: string | char

6 Functions

6-688

LeftLimit — Left-censoring limit
0 (default) | numeric between 0 and 1

Left-censoring limit, specified as the comma-separated pair consisting of 'LeftLimit' and a scalar
numeric between 0 and 1.
Data Types: double

RightLimit — Right-censoring limit
1 (default) | numeric between 0 and 1

Right-censoring limit, specified as the comma-separated pair consisting of 'RightLimit' and a
scalar numeric between 0 and 1.
Data Types: double

SolverOptions — optimoptions object
object

Options for fitting, specified as the comma-separated pair consisting of 'SolverOptions' and an
optimoptions object that is created using optimoptions from Optimization Toolbox. The defaults
for the optimoptions object are:

• "Display" — "none"
• "Algorithm" — "sqp"
• "MaxFunctionEvaluations" — 500 ✕ Number of model coefficients
• "MaxIterations" — The number of Tobit model coefficients is determined at run time, it

depends on the number of predictors and the number of categories in the categorical predictors.

Note When using optimoptions with a Tobit model, specify the SolverName as fmincon.

Data Types: object

Properties
ModelID — User-defined model ID
Tobit (default) | string

User-defined model ID, returned as a string.
Data Types: string

Description — User-defined description
"" (default) | string

User-defined description, returned as a string.
Data Types: string

UnderlyingModel — Underlying statistical model
compact linear model

This property is read-only.

 Tobit

6-689

Underlying statistical model, returned as a compact linear model object. The compact version of the
underlying regression model is an instance of the classreg.regr.CompactLinearModel class.
For more information, see fitlm and CompactLinearModel.
Data Types: CompactLinearModel

PredictorVars — Predictor variables
all columns of data except for the ResponseVar (default) | string array

Predictor variables, returned as a string array.
Data Types: string

ResponseVar — Response variable
last column of data (default) | string

Response variable, returned as a string.
Data Types: string

CensoringSide — Censoring side
"both" (default) | string with value of "left", "right", or "both"

This property is read-only.

Censoring side, returned as a string.
Data Types: string

LeftLimit — Left-censoring limit
0 (default) | numeric between 0 and 1

This property is read-only.

Left-censoring limit, returned as a scalar numeric between 0 and 1.
Data Types: double

RightLimit — Right-censoring limit
1 (default) | numeric between 0 and 1

This property is read-only.

Right-censoring limit, returned as a scalar numeric between 0 and 1.
Data Types: double

Object Functions
predict Predict loss given default
modelDiscrimination Compute AUROC and ROC data
modelDiscriminationPlot Plot ROC curve
modelCalibration Compute R-square, RMSE, correlation, and sample mean error of

predicted and observed LGDs
modelCalibrationPlot Scatter plot of predicted and observed LGDs

Examples

6 Functions

6-690

Create Tobit LGD Model

This example shows how to use fitLGDModel to create a Tobit model for loss given default (LGD).

Load LGD Data

Load the LGD data.

load LGDData.mat
head(data)

 LTV Age Type LGD
 _______ _______ ___________ _________

 0.89101 0.39716 residential 0.032659
 0.70176 2.0939 residential 0.43564
 0.72078 2.7948 residential 0.0064766
 0.37013 1.237 residential 0.007947
 0.36492 2.5818 residential 0
 0.796 1.5957 residential 0.14572
 0.60203 1.1599 residential 0.025688
 0.92005 0.50253 investment 0.063182

rng('default');
NumObs = height(data);
c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Create Tobit LGD Model

Use fitLGDModel to create a Tobit model using the TrainingInd data.

lgdModel = fitLGDModel(data(TrainingInd,:),'Tobit',...
 'ModelID','Example Tobit',...
 'PredictorVars',{'LTV' 'Age' 'Type'},...
 'ResponseVar','LGD',...
 'CensoringSide','left',...
 'LeftLimit',1e-4);
disp(lgdModel)

 Tobit with properties:

 CensoringSide: "left"
 LeftLimit: 1.0000e-04
 RightLimit: 1
 ModelID: "Example Tobit"
 Description: ""
 UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
 PredictorVars: ["LTV" "Age" "Type"]
 ResponseVar: "LGD"

Display the underlying model. The underlying model is a left-censored Tobit model. Use the
'CensoringSide' argument and the 'LeftLimit' and 'RightLimit' arguments to modify the
underlying Tobit model.

disp(lgdModel.UnderlyingModel)

Tobit regression model, left-censored:
 LGD = max(0.0001,Y*)

 Tobit

6-691

 Y* ~ 1 + LTV + Age + Type

Estimated coefficients:
 Estimate SE tStat pValue
 ________ _________ _______ __________

 (Intercept) 0.057356 0.026619 2.1547 0.031297
 LTV 0.2003 0.030641 6.5369 7.8659e-11
 Age -0.09405 0.0072991 -12.885 0
 Type_investment 0.10071 0.017913 5.6223 2.1363e-08
 (Sigma) 0.28833 0.0055231 52.204 0

Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1546
Number of right-censored observations: 0
Log-likelihood: -638.353

Predict LGD

For Tobit models, use predict to calculate the predicted LGD value, which is the unconditional
expected value of the response, given the predictor values.

predictedLGD = predict(lgdModel,data(TestInd,:))

predictedLGD = 1394×1

 0.0871
 0.1228
 0.3181
 0.0926
 0.1654
 0.2215
 0.2347
 0.0102
 0.1576
 0.1969
 ⋮

Validate LGD Model

Use modelDiscriminationPlot to plot the ROC curve.

modelDiscriminationPlot(lgdModel,data(TestInd,:))

6 Functions

6-692

Use modelCalibrationPlot to show a scatter plot of the predictions.

modelCalibrationPlot(lgdModel,data(TestInd,:))

 Tobit

6-693

More About
Loss Given Default Tobit Models

The loss given default (LGD) Tobit models fit a Tobit model to LGD data.

Tobit models are “censored” regression models. Tobit models assume that the response variable can
be observed only within certain limits, and no value outside the limits can be observed. In the case of
LGD models, the limits are typically 0 (total recovery or cure) and 1 (total loss). A distribution of
response values where there is a high frequency of observations at the limits is consistent with the
model assumptions. For LGD models, it is common to have distributions with a high proportion of
cures, or high proportion of total losses, or both.

The Tobit model combines the following two formulas:

Y = min max L, Y* , R
Y* = β0 + β1X1 + ... + βpXp + σε = Xβ + σε

where

• Y is the observed response variable, the observed LGD data for an LGD model.
• L is the left limit, the lower bound for the response values, typically 0 for LGD models.
• R is the right limit, the upper bound for the response values, typically 1 for LGD models.

6 Functions

6-694

• Y* is a latent, unobserved variable.
• βj is the coefficient of the jth predictor (or the intercept for j = 0).
• σ is the standard deviation of the error term.
• ε is the error term, assumed to follow a standard normal distribution.

The first formula above is written using min and max operators and is equivalent to

Y =
L if Y* ≤ L
Y* if L < Y* < R
R if Y* ≥ R

The standard deviation of the error is explicitly indicated in the formulas. Unlike traditional
regression least-squares estimation, where the standard deviation of the error can be inferred from
the residuals, for Tobit models the estimation is via maximum likelihood and the standard deviation
needs to be handled explicitly during the estimation. If there are p predictor variables, the Tobit
model estimates p+2 coefficients, namely, one coefficient for each predictor, plus an intercept, plus a
standard deviation.

Three censoring side options are supported in the Tobit LGD models with the CensoringSide name-
value argument:

• 'both' — This is the default option, with censoring on both sides. The estimation uses left and
right limits.

• 'left' — The left-censored version of the model has no right limit (or R = ∞). The relationship
between Y and Y* is Y = max{L,Y* }.

• 'right' — The right-censored version of the model has no left limit (or L = -∞). The relationship
between Y and Y* is Y = min{Y*,R}.

The parameters of the Tobit model are estimated using maximum likelihood. For observation i = 1,
…,n, the likelihood function is

LF(β, σ Xi, Yi) =
Φ(L; Xiβ,σ) if Yi ≤ L
ϕ(Yi;Xiβ,σ) if L < Yi < R
1− Φ(R; Xiβ, σ) if Yi ≥ R

where

• Φ(x;m,s) is the cumulative normal distribution with mean m and standard deviation s.
• ϕ(x;m,s) is the normal density function with mean m and standard deviation s.

This likelihood function is for models censored on both sides. For left-censored models, the right limit
has no effect, and the likelihood function has two cases only (R = ∞); likewise for right-censored
models (L = -∞).

The log-likelihood function is the sum of the logarithm of the likelihood functions for individual
observations

LLF(β, σ X, Y) = ∑
i = 1

n
log(LF(β, σ Xi, Yi))

 Tobit

6-695

The parameters are estimated by maximizing the log-likelihood function. The only constraint is that
the σ parameter must be positive.

To predict an LGD value, Tobit LGD models return the unconditional expected value of the response,
given the predictor values

LGDi
pred = E Yi Xi

The expression for the expected value can be separated into the cases

E Y = E Y Y = L P(Y = L)
+E Y L < Y < R P(L < Y < R)
+E Y Y = R P(Y = R)

Using the previous expression and the properties of the (truncated) normal distribution, it follows
that

E Yi Xi = Φ(ai)L + (Φ(bi)− Φ(ai))(Xiβ + σλi) + (1− Φ(bi))R

where

ai =
L− Xiβ

σ , bi =
R− Xiβ

σ , and λi =
ϕ(ai)− ϕ(bi)
Φ(bi)− Φ(ai)

This expression applies to the models censored on both sides. For models censored on one side only,
the corresponding expressions can be derived from here. For example, for left-censored models, let
the R limit in the expression above go to infinity, and the resulting expression is

E Yi Xi = Φ(ai)L + (1− Φ(ai)) Xiβ+σ
ϕ(ai)

1− Φ(ai)

Similarly, for right-censored models, the L limit is decreased to minus infinity to get

E Yi Xi = Φ(bi) Xiβ− σ
ϕ(bi)
Φ(bi)

+ (1− Φ(bi))R

Version History
Introduced in R2021a

R2023a: modelAccuracy object function is renamed to modelCalibration function
Not recommended starting in R2023a

The modelAccuracy object function is renamed to modelCalibration function. The use of
modelAccuracy is discouraged, use modelCalibration instead.

R2023a: modelAccuracyPlot object function is renamed to modelCalibrationPlot
function
Not recommended starting in R2023a

The modelAccuracyPlot object function is renamed to modelCalibrationPlot function. The use
of modelAccuracyPlot is discouraged, use modelCalibrationPlot instead.

6 Functions

6-696

References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement

Techniques, Applications, and Examples in SAS. Wiley, 2016.

[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with
Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.

See Also
Functions
fitLGDModel | Regression | Beta

Topics
“Model Loss Given Default” on page 4-90
“Basic Loss Given Default Model Validation” on page 4-131
“Compare Tobit LGD Model to Benchmark Model” on page 4-133
“Compare Loss Given Default Models Using Cross-Validation” on page 4-140
“Overview of Loss Given Default Models” on page 1-31

 Tobit

6-697

varbacktest
Create varbacktest object to run suite of value-at-risk (VaR) backtests

Description
The general workflow is:

1 Load or generate the data for the VaR backtesting analysis.
2 Create a varbacktest object. For more information, see “Create varbacktest” on page 6-698.
3 Use the summary function to generate a summary report for the given data on the number of

observations and the number of failures.
4 Use the runtests function to run all tests at once.
5 For additional test details, run the following individual tests:

• tl — Traffic light test
• bin — Binomial test
• pof — Proportion of failures
• tuff — Time until first failure
• cc — Conditional coverage mixed
• cci — Conditional coverage independence
• tbf — Time between failures mixed
• tbfi — Time between failures independence

For more information, see “VaR Backtesting Workflow” on page 2-6.

Creation

Syntax
vbt = varbacktest(PortfolioData,VaRData)
vbt = varbacktest(___ ,Name,Value)

Description

vbt = varbacktest(PortfolioData,VaRData) creates a varbacktest (vbt) object using
portfolio outcomes data and corresponding value-at-risk (VaR) data. The vbt object has the following
properties:

• PortfolioData on page 6-0 — NumRows-by-1 numeric array containing a copy of the
PortfolioData

• VaRData on page 6-0 — NumRows-by-NumVaRs numeric array containing a copy of the
VaRData

• PortfolioID on page 6-0 — String containing the PortfolioID

6 Functions

6-698

• VaRID on page 6-0 — 1-by-NumVaRs string vector containing the VaRIDs for the corresponding
columns in VaRData

• VaRLevel on page 6-0 — 1-by-NumVaRs numeric array containing the VaRLevels for the
corresponding columns in VaRData.

Note

• The required input arguments for PortfolioData and VaRData must all be in the same units.
These arguments can be expressed as returns or as profits and losses. There are no validations in
the varbacktest object regarding the units of these arguments.

• If there are missing values (NaNs) in the data for PortfolioData or VaRData, the row of data is
discarded before applying the tests. Therefore, a different number of observations are reported for
models with different number of missing values. The reported number of observations equals the
original number of rows minus the number of missing values. To determine if there are discarded
rows, use the 'Missing' column of the summary report.

vbt = varbacktest(___ ,Name,Value) sets Properties on page 6-701 using name-value pairs
and any of the arguments in the previous syntax. For example, vbt =
varbacktest(PortfolioData,VaRData,'PortfolioID','Equity100','VaRID','TotalVaR
','VaRLevel',.99). You can specify multiple name-value pairs as optional name-value pair
arguments.

Input Arguments

PortfolioData — Portfolio outcomes data
NumRows-by-1 numeric array | NumRows-by-1 numeric columns table | NumRows-by-1 numeric
columns timetable

Portfolio outcomes data, specified as a NumRows-by-1 numeric array, NumRows-by-1 table, or a
NumRows-by-1 timetable with a numeric column containing portfolio outcomes data. PortfolioData
input sets the PortfolioData on page 6-0 property.

Note The required input arguments for PortfolioData and VaRData must all be in the same units.
These arguments can be expressed as returns or as profits and losses. There are no validations in the
varbacktest object regarding the units of these arguments.

Data Types: double | table | timetable

VaRData — Value-at-risk (VaR) data
NumRows-by-NumVaRs numeric array | NumRows-by-NumVaRs table with numeric columns | NumRows-
by-NumVaRs timetable with numeric columns

Value-at-risk (VaR) data, specified using a NumRows-by-NumVaRs numeric array, NumRows-by-NumVaRs
table, or a NumRows-by-NumVaRs timetable with numeric columns. VaRData input sets the VaRData
on page 6-0 property.

If VaRData has more than one column (NumVaRs> 1), the PortfolioData is tested against each
column in VaRData. By default, a 0.95 VaR confidence level is used for all columns in VaRData. (Use
VaRLevel to specify different VaR confidence levels.)

 varbacktest

6-699

The convention is that VaR is a positive amount. Therefore, a failure is recorded when the loss (the
negative of the portfolio data) exceeds the VaR, that is, when

 -PortfolioData > VaRData

For example, a VaR of 1,000,000 (positive) is violated whenever there is an outcome worse than a
1,000,000 loss (the negative of the portfolio outcome, or loss, is larger than the VaR).

Negative VaRData values are allowed, however negative VaR values indicate a highly profitable
portfolio that cannot lose money at the given VaR confidence level. That is, the worst-case scenario at
the given confidence level is still a profit.

Note The required input arguments for PortfolioData and VaRData must all be in the same units.
These arguments can be expressed as returns or as profits and losses. There are no validations in the
varbacktest object regarding the units of these arguments.

Data Types: double | table | timetable

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: vbt =
varbacktest(PortfolioData,VaRData,'PortfolioID','Equity100','VaRID','TotalVaR
','VaRLevel',.99)

PortfolioID — User-defined ID for PortfolioData input
character vector | string

User-defined ID for PortfolioData input, specified as the comma-separated pair consisting of
'PortfolioID' and a character vector or string. The PortfolioID name-value pair argument sets
the PortfolioID on page 6-0 property.

If PortfolioData is a numeric array, the default value for PortfolioID is 'Portfolio'. If
PortfolioData is a table, PortfolioID is set by default to the corresponding variable name in the
table.
Data Types: char | string

VaRID — VaR identifier for VaRData columns
character vector | cell array of character vectors | string | string array

VaR identifier for VaRData columns, specified as the comma-separated pair consisting of 'VaRID'
and a character vector or string. Multiple VaRIDs are specified using a 1-by-NumVaRs (or NumVaRs-
by-1) cell array of character vectors or string vector with user-defined IDs for the VaRData columns.
The VaRID name-value pair argument sets the VaRID on page 6-0 property.

If NumVaRs = 1, the default value for VaRID is 'VaR'. If NumVaRs > 1, the default value is 'VaR1',
'VaR2', and so on. If VaRData is a table, 'VaRID' is set by default to the corresponding variable
names in the table.

6 Functions

6-700

Data Types: char | cell | string

VaRLevel — VaR confidence level
0.95 (default) | numeric with values between 0 and 1 | numeric array with values between 0 and 1

VaR confidence level, specified as the comma-separated pair consisting of 'VaRLevel' and a
numeric between 0 and 1 or a 1-by-NumVaRs numeric array with values between 0 and 1 for the
corresponding columns in VaRData. The VaRLevel name-value pair argument sets the VaRLevel on
page 6-0 property.
Data Types: double

Properties
PortfolioData — Portfolio data for VaR backtesting analysis
numeric array

Portfolio data for the VaR backtesting analysis, specified as a NumRows-by-1 numeric array containing
a copy of the portfolio data.
Data Types: double

VaRData — VaR data for VaR backtesting analysis
numeric array

VaR data for the VaR backtesting analysis, specified as a NumRows-by-NumVaRs numeric array
containing a copy of the VaR data.
Data Types: double

PortfolioID — Portfolio identifier
string

Portfolio identifier, specified as a string.
Data Types: string

VaRID — VaR identifier
string array

VaR identifier, specified as a 1-by-NumVaRs string array containing the VaR IDs for the corresponding
columns in VaRData.
Data Types: string

VaRLevel — VaR level
numeric array with values between 0 and 1

VaR level, specified as a 1-by-NumVaRs numeric array containing the VaR levels for the corresponding
columns in VaRData.
Data Types: double

 varbacktest

6-701

varbacktest Property Set or Modify Property from
Command Line Using
varbacktest

Modify Property Using Dot
Notation

PortfolioData Yes No
VaRData Yes No
PortfolioID Yes Yes
VaRID Yes Yes
VaRLevel Yes Yes

Object Functions
tl Traffic light test for value-at-risk (VaR) backtesting
bin Binomial test for value-at-risk (VaR) backtesting
pof Proportion of failures test for value-at-risk (VaR) backtesting
tuff Time until first failure test for value-at-risk (VaR) backtesting
cc Conditional coverage mixed test for value-at-risk (VaR) backtesting
cci Conditional coverage independence test for value-at-risk (VaR) backtesting
tbf Time between failures mixed test for value-at-risk (VaR) backtesting
tbfi Time between failures independence test for value-at-risk (VaR) backtesting
summary Report on varbacktest data
runtests Run all tests in varbacktest

Examples

Create varbacktest Object and Run VaR Backtests for Single VaR at 95%

varbacktest takes in portfolio outcomes data and corresponding value-at-risk (VaR) data and
returns a varbacktest object.

Create a varbacktest object.

 load VaRBacktestData
 vbt = varbacktest(EquityIndex,Normal95)

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9500

vbt, the varbacktest object, contains a copy of the given portfolio data (PortfolioData
property), the given VaR data (VaRData property) and all combinations of portfolio ID, VaR ID, and
VaR level to be tested (PortfolioID, VaRID, and VaRLevel properties).

Run the tests using the vbt object.

 runtests(vbt)

6 Functions

6-702

ans=1×11 table
 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI
 ___________ _____ ________ _____ ______ ______ ______ ______ ______ ______ ______

 "Portfolio" "VaR" 0.95 green accept accept accept accept accept reject reject

Change the PortfolfioID and VaRID properties using dot notation.

vbt.PortfolioID = 'S&P'

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "S&P"
 VaRID: "VaR"
 VaRLevel: 0.9500

vbt.VaRID = 'Normal at 95%'

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "S&P"
 VaRID: "Normal at 95%"
 VaRLevel: 0.9500

Run all tests using the updated varbacktest object.

 runtests(vbt)

ans=1×11 table
 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI
 ___________ _______________ ________ _____ ______ ______ ______ ______ ______ ______ ______

 "S&P" "Normal at 95%" 0.95 green accept accept accept accept accept reject reject

Run VaR Backtests for a Single VaR at 95%

Create a varbacktest object.

 load VaRBacktestData
 vbt = varbacktest(EquityIndex,Normal95)

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]

 varbacktest

6-703

 PortfolioID: "Portfolio"
 VaRID: "VaR"
 VaRLevel: 0.9500

vbt, the varbacktest object, contains a copy of the given portfolio data (PortfolioData
property), the given VaR data (VaRData property) and all combinations of portfolio ID, VaR ID, and
VaR level to be tested (PortfolioID, VaRID, and VaRLevel properties).

Run the tests using the varbacktest object.

 runtests(vbt)

ans=1×11 table
 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI
 ___________ _____ ________ _____ ______ ______ ______ ______ ______ ______ ______

 "Portfolio" "VaR" 0.95 green accept accept accept accept accept reject reject

Change the PortfolfioID and VaRID properties using dot notation.

vbt.PortfolioID = 'S&P'

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "S&P"
 VaRID: "VaR"
 VaRLevel: 0.9500

vbt.VaRID = 'Normal at 95%'

vbt =
 varbacktest with properties:

 PortfolioData: [1043x1 double]
 VaRData: [1043x1 double]
 PortfolioID: "S&P"
 VaRID: "Normal at 95%"
 VaRLevel: 0.9500

Run all tests using the updated varbacktest object.

 runtests(vbt)

ans=1×11 table
 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI
 ___________ _______________ ________ _____ ______ ______ ______ ______ ______ ______ ______

 "S&P" "Normal at 95%" 0.95 green accept accept accept accept accept reject reject

6 Functions

6-704

Run VaR Backtests for Multiple VaRs at Different Confidence Levels

Create a varbacktest object that has multiple VaR identifiers with different confidence levels.

load VaRBacktestData
 vbt = varbacktest(EquityIndex,...
 [Normal95 Normal99 Historical95 Historical99 EWMA95 EWMA99],...
 'PortfolioID','Equity',...
 'VaRID',{'Normal95' 'Normal99' 'Historical95' 'Historical99' 'EWMA95' 'EWMA99'},...
 'VaRLevel',[0.95 0.99 0.95 0.99 0.95 0.99]);

Run the summary report for the varbacktest object.

 summary(vbt)

ans=6×10 table
 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected Ratio FirstFailure Missing
 ___________ ______________ ________ _____________ ____________ ________ ________ ______ ____________ _______

 "Equity" "Normal95" 0.95 0.94535 1043 57 52.15 1.093 58 0
 "Equity" "Normal99" 0.99 0.9837 1043 17 10.43 1.6299 173 0
 "Equity" "Historical95" 0.95 0.94343 1043 59 52.15 1.1314 55 0
 "Equity" "Historical99" 0.99 0.98849 1043 12 10.43 1.1505 173 0
 "Equity" "EWMA95" 0.95 0.94343 1043 59 52.15 1.1314 28 0
 "Equity" "EWMA99" 0.99 0.97891 1043 22 10.43 2.1093 143 0

Run all tests using the varbacktest object.

 runtests(vbt)

ans=6×11 table
 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI
 ___________ ______________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "Equity" "Normal95" 0.95 green accept accept accept accept accept reject reject
 "Equity" "Normal99" 0.99 yellow reject accept accept accept accept accept accept
 "Equity" "Historical95" 0.95 green accept accept accept accept accept reject reject
 "Equity" "Historical99" 0.99 green accept accept accept accept accept accept accept
 "Equity" "EWMA95" 0.95 green accept accept accept accept accept accept accept
 "Equity" "EWMA99" 0.99 yellow reject reject accept reject accept reject accept

Run the traffic light test (tl) using the varbacktest object.

 tl(vbt)

ans=6×9 table
 PortfolioID VaRID VaRLevel TL Probability TypeI Increase Observations Failures
 ___________ ______________ ________ ______ ___________ _________ ________ ____________ ________

 "Equity" "Normal95" 0.95 green 0.77913 0.26396 0 1043 57
 "Equity" "Normal99" 0.99 yellow 0.97991 0.03686 0.26582 1043 17
 "Equity" "Historical95" 0.95 green 0.85155 0.18232 0 1043 59
 "Equity" "Historical99" 0.99 green 0.74996 0.35269 0 1043 12
 "Equity" "EWMA95" 0.95 green 0.85155 0.18232 0 1043 59
 "Equity" "EWMA99" 0.99 yellow 0.99952 0.0011122 0.43511 1043 22

 varbacktest

6-705

Run VaR Backtests for Multiple Portfolios and Concatenate Results

Use varbacktest with table inputs and name-value pair arguments to create two varbacktest
objects and run the concatenated summary report. varbacktest uses the variable names in the
table inputs as PortfolioID and VaRID.

load VaRBacktestData
vbtE = varbacktest(DataTable(:,2),DataTable(:,3:4),'VaRLevel',[0.95 0.99]);
vbtD = varbacktest(DataTable(:,5),DataTable(:,6:7),'VaRLevel',[0.95 0.99]);
[summary(vbtE); summary(vbtD)]

ans=4×10 table
 PortfolioID VaRID VaRLevel ObservedLevel Observations Failures Expected Ratio FirstFailure Missing
 _____________ __________________ ________ _____________ ____________ ________ ________ _______ ____________ _______

 "Equity" "VaREquity95" 0.95 0.94343 1043 59 52.15 1.1314 28 0
 "Equity" "VaREquity99" 0.99 0.97891 1043 22 10.43 2.1093 143 0
 "Derivatives" "VaRDerivatives95" 0.95 0.95014 1043 52 52.15 0.99712 9 0
 "Derivatives" "VaRDerivatives99" 0.99 0.97028 1043 31 10.43 2.9722 28 0

Run all the tests and concatenate the results.

[runtests(vbtE); runtests(vbtD)]

ans=4×11 table
 PortfolioID VaRID VaRLevel TL Bin POF TUFF CC CCI TBF TBFI
 _____________ __________________ ________ ______ ______ ______ ______ ______ ______ ______ ______

 "Equity" "VaREquity95" 0.95 green accept accept accept accept accept accept accept
 "Equity" "VaREquity99" 0.99 yellow reject reject accept reject accept reject accept
 "Derivatives" "VaRDerivatives95" 0.95 green accept accept accept accept accept reject reject
 "Derivatives" "VaRDerivatives99" 0.99 red reject reject accept reject accept reject reject

Run the pof test and concatenate the results.

 [pof(vbtE); pof(vbtD)]

ans=4×9 table
 PortfolioID VaRID VaRLevel POF LRatioPOF PValuePOF Observations Failures TestLevel
 _____________ __________________ ________ ______ __________ __________ ____________ ________ _________

 "Equity" "VaREquity95" 0.95 accept 0.91023 0.34005 1043 59 0.95
 "Equity" "VaREquity99" 0.99 reject 9.8298 0.0017171 1043 22 0.95
 "Derivatives" "VaRDerivatives95" 0.95 accept 0.00045457 0.98299 1043 52 0.95
 "Derivatives" "VaRDerivatives99" 0.99 reject 26.809 2.2457e-07 1043 31 0.95

Version History
Introduced in R2016b

6 Functions

6-706

References
[1] Basel Committee on Banking Supervision, Supervisory Framework for the Use of 'Backtesting' in

Conjunction with the Internal Models Approach to Market Risk Capital Requirements.
January, 1996, https://www.bis.org/publ/bcbs22.htm.

[2] Christoffersen, P. "Evaluating Interval Forecasts." International Economic Review. Vol. 39, 1998,
pp. 841 – 862.

[3] Cogneau, Ph. “Backtesting Value-at-Risk: How Good is the Model?" Intelligent Risk, PRMIA, July,
2015.

[4] Haas, M. "New Methods in Backtesting." Financial Engineering, Research Center Caesar, Bonn,
2001.

[5] Jorion, Ph. Financial Risk Manager Handbook. 6th Edition. Wiley Finance, 2011.

[6] Kupiec, P. "Techniques for Verifying the Accuracy of Risk Management Models." Journal of
Derivatives. Vol. 3, 1995, pp. 73 – 84.

[7] McNeil, A., Frey, R., and Embrechts, P. Quantitative Risk Management. Princeton University Press,
2005.

[8] Nieppola, O. “Backtesting Value-at-Risk Models.” Helsinki School of Economics, 2009.

See Also
tl | tuff | bin | pof | cc | cci | tbf | tbfi | summary | runtests | table | esbacktest |
esbacktestbysim

Topics
“VaR Backtesting Workflow” on page 2-6
“Value-at-Risk Estimation and Backtesting” on page 2-10
“Overview of VaR Backtesting” on page 2-2
“Comparison of ES Backtesting Methods” on page 2-26

 varbacktest

6-707

https://www.bis.org/publ/bcbs22.htm

	Getting Started
	Risk Management Toolbox Product Description
	Risk Modeling with Risk Management Toolbox
	Consumer Credit Risk
	Corporate Credit Risk
	Market Risk
	Insurance Risk
	Lifetime Models for Probability of Default
	Loss Given Default Models
	Exposure at Default Models

	Credit Rating Migration Risk
	Default Probability by Using the Merton Model for Structural Credit Risk
	Concentration Indices
	Overview of Claims Estimation Methods for Non-Life Insurance
	Workflow to Estimate Unpaid Claims
	Estimation of Ultimate Claims Using Development Triangles
	Estimation of Unpaid Claims Using Chain Ladder Method
	Estimation of Unpaid Claims Using Expected Claims Method
	Estimation of Unpaid Claims Using Bornhuetter-Ferguson Method
	Estimation of Unpaid Claims Using Cape Cod Method

	Overview of Lifetime Probability of Default Models
	Traditional PD Models Compared to Lifetime PD Models
	Model Development and Validation
	Computation of Lifetime ECL
	Lifetime Credit Analysis Compared to Stress Testing

	Overview of Loss Given Default Models
	Model Development and Validation

	Overview of Exposure at Default Models
	Model Development and Validation

	Market Risk Measurements Using VaR BackTesting Tools
	Overview of VaR Backtesting
	Binomial Test
	Traffic Light Test
	Kupiec’s POF and TUFF Tests
	Christoffersen’s Interval Forecast Tests
	Haas’s Time Between Failures or Mixed Kupiec’s Test

	VaR Backtesting Workflow
	Value-at-Risk Estimation and Backtesting
	Overview of Expected Shortfall Backtesting
	Conditional Test by Acerbi and Szekely
	Unconditional Test by Acerbi and Szekely
	Quantile Test by Acerbi and Szekely
	Minimally Biased Test by Acerbi and Szekely
	ES Backtest Using Du-Escanciano Method
	Comparison of ES Backtesting Methods

	Expected Shortfall (ES) Backtesting Workflow with No Model Distribution Information
	Expected Shortfall (ES) Backtesting Workflow Using Simulation
	Expected Shortfall Estimation and Backtesting
	Workflow for Expected Shortfall (ES) Backtesting by Du and Escanciano
	Rolling Windows and Multiple Models for Expected Shortfall (ES) Backtesting by Du and Escanciano

	Managing Consumer Credit Risk Using the Binning Explorer for Credit Scorecards
	Overview of Binning Explorer
	Common Binning Explorer Tasks
	Import Data
	Change Predictor Type
	Change Binning Algorithm for One or More Predictors
	Change Algorithm Options for Binning Algorithms
	Split Bins for a Numeric Predictor
	Split Bins for a Categorical Predictor
	Manual Binning to Merge Bins for a Numeric or Categorical Predictor
	Change Bin Boundaries for a Single Predictor
	Change Bin Boundaries for Multiple Predictors
	Set Options for Display
	Export and Save the Binning
	Troubleshoot the Binning

	Bin Data to Create Credit Scorecards Using Binning Explorer
	Stress Testing of Consumer Credit Default Probabilities Using Panel Data
	compactCreditScorecard Object Workflow
	Feature Screening with screenpredictors
	Use Reject Inference Techniques with Credit Scorecards
	Credit Scoring Using Logistic Regression and Decision Trees
	Explore Fairness Metrics for Credit Scoring Model
	Bias Mitigation in Credit Scoring by Reweighting
	Bias Mitigation in Credit Scoring by Disparate Impact Removal
	Create Custom Lifetime PD Model for Credit Scorecard Model with Function Handle

	Corporate Credit Risk Simulations for Portfolios
	Credit Simulation Using Copulas
	Factor Models
	Supported Simulations

	creditDefaultCopula Simulation Workflow
	creditMigrationCopula Simulation Workflow
	Modeling Correlated Defaults with Copulas
	Modeling Probabilities of Default with Cox Proportional Hazards
	Analyze the Sensitivity of Concentration to a Given Exposure
	Compare Concentration Indices for Random Portfolios
	Comparison of the Merton Model Single-Point Approach to the Time-Series Approach
	Calculating Regulatory Capital with the ASRF Model
	One-Factor Model Calibration
	Compare Probability of Default Using Through-the-Cycle and Point-in-Time Models
	Model Loss Given Default
	Compare Logistic Model for Lifetime PD to Champion Model
	Compare Lifetime PD Models Using Cross-Validation
	Expected Credit Loss Computation
	Basic Lifetime PD Model Validation
	Basic Loss Given Default Model Validation
	Compare Tobit LGD Model to Benchmark Model
	Compare Loss Given Default Models Using Cross-Validation
	Compare Model Discrimination and Model Calibration to Validate of Probability of Default
	Compare Results for Regression and Tobit EAD Models
	Mean Square Error of Prediction for Estimated Ultimate Claims
	Bootstrap Using Chain Ladder Method
	Interpret and Stress-Test Deep Learning Networks for Probability of Default
	Incorporate Macroeconomic Scenario Projections in Loan Portfolio ECL Calculations
	Create Custom Lifetime PD Model for Decision Tree Model with Function Handle
	Measure Transition Risk for Loan Portfolios with Respect to Climate Scenarios
	Assess Physical and Transition Risk for Mortgages
	Analyze Transition Scenarios for Climate-Related Financial Risks
	Interpretability and Explainability for Credit Scoring

	Model Risk Management with Modelscape
	Get Started with Modelscape
	Installation
	Modelscape Workflow

	Modelscape Governance
	Modelscape Governance Workflow

	Modelscape Develop
	Modelscape Develop Workflow

	Modelscape Validate
	Modelscape Validate Workflow

	Modelscape Test
	Modelscape Test Workflow

	Modelscape Deploy
	Modelscape Deploy Workflow

	Extensibility
	Customize Inventory Browser
	Implement Test Metrics
	Customize Review Editor

	Model Development and Experiment Manager
	Remove Risk Factors
	Fairness Metrics in Modelscape
	Screen Risk Factors by Custom Criteria
	Model Documentation in Modelscape
	Metrics Handlers
	Credit Scorecard Validation Metrics
	Validation of Credit Models in ECB Templates
	Validation of External Models
	File Attachments in Modelscape Review Editor
	Customization of Signoff Forms in Review Editor
	Model Implementation for Modelscape Deploy
	Customizing Model Inventory: Risk Tiering
	Test Metrics in Modelscape
	Inventory Browser
	Lifecycle Designer
	Review Editor
	Remove Risk Factors
	Screen Risk Factors
	checkModel
	packageModel

	Functions
	Binning Explorer
	asrf
	bin
	cc
	cci
	cdfSummary
	claimsPlot
	concentrationIndices
	conditional
	conditionalDE
	confidenceBands
	getScenarios
	portfolioRisk
	riskContribution
	simulate
	confidenceBands
	getScenarios
	portfolioRisk
	riskContribution
	simulate
	displaypoints
	fitEADModel
	fitLGDModel
	fitLifetimePDModel
	fullTriangle
	ibnr
	ibnr
	ibnr
	ibnr
	linkRatioAverages
	linkRatios
	linkRatiosPlot
	mertonByTimeSeries
	mertonmodel
	minBiasAbsolute
	minBiasRelative
	modelAccuracy
	modelAccuracy
	modelAccuracy
	modelAccuracyPlot
	modelAccuracyPlot
	modelCalibration
	modelCalibration
	modelCalibration
	modelCalibrationPlot
	modelCalibrationPlot
	modelCalibrationPlot
	modelAccuracyPlot
	modelDiscrimination
	modelDiscrimination
	modelDiscriminationPlot
	modelDiscrimination
	modelDiscriminationPlot
	modelDiscriminationPlot
	pof
	predict
	predict
	predict
	predictLifetime
	probdefault
	quantile
	runtests
	runtests
	runtests
	runtests
	score
	screenpredictors
	simulate
	simulate
	summary
	summary
	summary
	summary
	summary
	summary
	summary
	summary
	tbf
	tbfi
	tl
	tuff
	ultimateClaims
	ultimateClaims
	ultimateClaims
	ultimateClaims
	unconditional
	unconditionalDE
	unconditionalNormal
	unconditionalT
	unpaidClaims
	unpaidClaims
	unpaidClaims
	unpaidClaims
	validatemodel
	portfolioECL
	view
	Threshold Predictors
	bornhuetterFerguson
	capeCod
	chainLadder
	compactCreditScorecard
	creditDefaultCopula
	Cox
	discardResiduals
	creditMigrationCopula
	developmentTriangle
	esbacktest
	esbacktestbyde
	esbacktestbysim
	expectedClaims
	customLifetimePDModel
	Logistic
	Probit
	Regression
	Tobit
	Beta
	Regression
	Beta
	Tobit
	varbacktest

